ORLICZ-SOBOLEV CAPACITY OF BALLS

T. FUTAMURA, Y. MIZUTA, T. OHNO AND T. SHIMOMURA

ABSTRACT. Our aim in this note is to estimate the Orlicz–Sobolev capacity of balls.

1. Introduction and statement of results

For $0 < \alpha < n$ and a locally integrable function f on \mathbb{R}^n , we define the Riesz potential $I_{\alpha}f$ of order α by

$$I_{\alpha}f(x) = \int_{\mathbf{R}^n} |x - y|^{\alpha - n} f(y) \, dy.$$

In the present note, we treat functions f satisfying an Orlicz condition:

(1.1)
$$\int_{\mathbf{R}^n} \varphi_p(|f(y)|) \, dy < \infty$$

Here, $\varphi_p(r)$ is a positive nondecreasing function on the interval $(0,\infty)$ of the form

$$\varphi_p(r) = r^p \varphi(r),$$

where p > 1 and $\varphi(r)$ is a positive monotone function on $(0, \infty)$ which is of logarithmic type; that is, there exists $c_1 > 0$ such that

 $(\varphi 1)$

$$c_1^{-1}\varphi(r) \le \varphi(r^2) \le c_1\varphi(r)$$
 whenever $r > 0$.

We set

$$\varphi_p(0) = 0$$

because we will see from $(\varphi 4)$ below that

$$\lim_{r \to 0+} \varphi_p(r) = 0;$$

©2013 University of Illinois

Received October 19, 2009; received in final form March 1, 2010. 2010 Mathematics Subject Classification. 46E30, 31B15.

see [14, p. 205]. For an open set $G \subset \mathbf{R}^n$, we denote by $L^{\varphi_p}(G)$ the family of all locally integrable functions g on G such that

$$\int_G \varphi_p(|g(x)|) \, dx < \infty,$$

and define

$$\|g\|_{\varphi_p,G} = \inf\left\{\lambda > 0: \int_G \varphi_p\left(\left|g(x)\right|/\lambda\right) dx \le 1\right\}.$$

This is a quasi-norm in $L^{\varphi_p}(G)$. For $E \subset G$, the (α, φ_p) -capacity is defined by

$$C_{\alpha,\varphi_p}(E;G) = \inf \|f\|_{\varphi_p,G},$$

where the infimum is taken over all functions f such that f = 0 outside G and

 $I_{\alpha}f(x) \ge 1$ for all $x \in E$

(cf. Adams and Hedberg [1], Meyers [10], Ziemer [17] and the second author [11], [12]).

Our aim in the present note is to give an estimate of (α, φ_p) -capacity of balls. We denote by B(x, r) the open ball centered at x of radius r. For R > 0, consider

$$\tilde{\varphi}_p(r) = \int_r^R \left[t^{n-\alpha p} \varphi(t^{-1}) \right]^{-1/(p-1)} dt/t.$$

As an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11] and Joensuu [9, Corollary 6.3], we state our theorem in the following.

THEOREM A. Suppose p > 1 and

$$\tilde{\varphi}_p(0) = \infty.$$

For R > 0, there exists a constant A > 0 such that

$$A^{-1}\tilde{\varphi}_p(r)^{-(p-1)/p} \le C_{\alpha,\varphi_p}\left(B(x,r);B(x,R)\right) \le A\tilde{\varphi}_p(r)^{-(p-1)/p}$$

whenever 0 < r < R/2.

Recently Joensuu [9, Corollary 6.3] treated the case when φ is nondecreasing. His main idea was to use the rearrangement equivalent norm for $||f||_{\varphi_p,G}$ ([5], [7], [8]), as an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11] in the case when $\varphi(t) = (\log(e+t))^{\beta}$ with $p = n/\alpha > 1$ and $0 \le \beta \le p - 1$. Our proof will be done straightforward from the definition of capacity, and several technical assumptions posed in [9] are removed.

Throughout this note, let A denote various constants independent of the variables in question and A(a, b, ...) be a constant that depends on a, b, ...

REMARK 1.1. If $\tilde{\varphi}_p(0) < \infty$, then $C_{\alpha,\varphi_p}(\{0\}; B(0,R)) > 0$. In this case, $I_{\alpha}f$ is continuous when $f \in L^{\varphi_p}(\mathbf{R}^n)$ vanishes outside a compact set; for this fact, we refer the reader to the paper [14], [16].

REMARK 1.2. We here introduce another capacity. For a set $E \subset \mathbf{R}^n$ and an open set $G \subset \mathbf{R}^n$, we define

$$B_{\alpha,\varphi_p}(E;G) = \inf \int_G \varphi_p(f(y)) \, dy,$$

where the infimum is taken over all nonnegative measurable functions f on \mathbf{R}^n such that f = 0 outside G and $I_{\alpha}f(x) \ge 1$ for all $x \in E$. With the aid of Adams and Hurri-Syrjänen [3], Joensuu [7], [8], [9] and Mizuta [12, Section 8.3, Lemma 3.1], [11], one can find a constant A > 1 such that

$$A^{-1}\tilde{\varphi}_p(r)^{-(p-1)} \le B_{\alpha,\varphi_p}\big(B(x,r);B(x,R)\big) \le A\tilde{\varphi}_p(r)^{-(p-1)}$$

for 0 < r < R/2 and $x \in \mathbf{R}^n$. Hence, in view of Theorem A, there is a constant A > 1 such that

$$A^{-1}B_{\alpha,\varphi_p}(B(x,r);B(x,R))^{1/p} \le C_{\alpha,\varphi_p}(B(x,r);B(x,R))$$
$$\le AB_{\alpha,\varphi_p}(B(x,r);B(x,R))^{1/p}$$

for 0 < r < R/2 and $x \in \mathbf{R}^n$.

We write $f \sim g$ if there exists a constant A so that $A^{-1}g \leq f \leq Ag$.

EXAMPLE 1.3. For $n = \alpha p$, consider the function

$$\varphi(t) = \left(\log(e+t)\right)^{\beta}$$

If $\beta , then$

$$\tilde{\varphi}_p(r) \sim \left(\log(e+1/r)\right)^{-\beta/(p-1)+1}$$

for 0 < r < 1. In this case,

$$C_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,R)\right) \sim \left(\log(e+1/r)\right)^{(\beta-p+1)/p}$$

(0) (1) (

whenever 0 < r < R/2 and $x_0 \in \mathbf{R}^n$.

If $\beta = p - 1$, then

$$\tilde{\varphi}_p(r) \sim \log(e + (\log(e + 1/r)))$$

for 0 < r < 1. In this case,

$$C_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,R)\right) \sim \left(\log\left(e + \left(\log(e+1/r)\right)\right)\right)^{-(p-1)/p}$$

whenever 0 < r < R/2 and $x_0 \in \mathbf{R}^n$.

For further related results, see Aissaoui and A. Benkirane [4], Adams and Hurri-Syrjänen [2], Edmunds and Evans [6] and Mizuta and Shimomura [14], [15], [16].

2. Proof of Theorem A

First, we collect properties which follow from condition (φ 1) (see [12], [14, Lemma 2.3], [13, Section 7]).

 $(\varphi 2) \varphi$ satisfies the doubling condition, that is, there exists $c_2 > 1$ such that

$$c_2^{-1}\varphi(r) \le \varphi(2r) \le c_2\varphi(r)$$
 whenever $r > 0$.

 $(\varphi 3)$ For each $\gamma > 0$, there exists $c_3 = c_3(\gamma) \ge 1$ such that

$$c_3^{-1}\varphi(r) \le \varphi(r^{\gamma}) \le c_3\varphi(r) \quad \text{whenever } r > 0.$$

- $(\varphi 4)$ For each $\gamma > 0$, there exists $c_4 = c_4(\gamma) \ge 1$ such that
 - $s^{\gamma} \varphi(s) \le c_4 t^{\gamma} \varphi(t)$ whenever 0 < s < t.

(φ 5) For each $\gamma > 0$, there exists $c_5 = c_5(\gamma) \ge 1$ such that $t^{-\gamma}\varphi(t) \le c_5 s^{-\gamma}\varphi(s)$ whenever 0 < s < t.

(φ 6) If φ and φ_1 are positive monotone functions on $[0, \infty)$ satisfying $(\varphi 1)$, then for each $\gamma > 0$ then there exists a constant $c_6 = c_6(\gamma) \ge 1$ such that

$${c_6}^{-1}\varphi(r) \leq \varphi \big(r^\gamma \varphi_1(r) \big) \leq c_6 \varphi(r) \quad \text{whenever } r > 0.$$

REMARK 2.1. For each $A_1 > 0$ there exists $A_2 > 0$ such that

(2.1)
$$A_1\varphi_p(r) \ge \varphi_p(A_2r)$$
 whenever $r > 0$.

REMARK 2.2. If $\alpha p < n$, then we see from $(\varphi 2)$ and $(\varphi 5)$ that

(2.2)
$$\tilde{\varphi}_p(r) \sim \left[r^{n-\alpha p}\varphi(r^{-1})\right]^{-1/(p-1)}$$

whenever 0 < r < R/2.

REMARK 2.3. If $n = \alpha p$ and $0 < R \leq 1$, then $\tilde{\varphi}_p$ is of logarithmic type on $[0, R^2]$, that is, there exists c > 0 such that

$$c^{-1}\tilde{\varphi}_p(r) \le \tilde{\varphi}_p(r^2) \le c\tilde{\varphi}_p(r)$$
 whenever $0 \le r \le R^2$.

In fact, we see from $(\varphi 1)$ that

$$\begin{split} \tilde{\varphi}_{p}(r^{2}) &= \int_{r^{2}}^{R} \left[\varphi(t^{-1}) \right]^{-1/(p-1)} dt/t \\ &= \int_{r^{2}}^{R^{2}} \left[\varphi(t^{-1}) \right]^{-1/(p-1)} dt/t + \int_{R^{2}}^{R} \left[\varphi(t^{-1}) \right]^{-1/(p-1)} dt/t \\ &= 2 \int_{r}^{R} \left[\varphi(t^{-2}) \right]^{-1/(p-1)} dt/t + \int_{R^{2}}^{R} \left[\varphi(t^{-1}) \right]^{-1/(p-1)} dt/t \\ &\leq 2 c_{1}^{1/(p-1)} \int_{r}^{R} \left[\varphi(t^{-1}) \right]^{-1/(p-1)} dt/t + \int_{R^{2}}^{R} \left[\varphi(t^{-1}) \right]^{-1/(p-1)} dt/t \\ &\leq (2 c_{1}^{1/(p-1)} + 1) \tilde{\varphi}_{p}(r) \end{split}$$

whenever $0 < r \le R^2$. Since $\tilde{\varphi}_p(r) \le \tilde{\varphi}_p(r^2)$, we see that $\tilde{\varphi}_p$ is of logarithmic type on $[0, R^2]$.

If $R^2 < r < R$, then one sees that $\tilde{\varphi}_p(r) \sim \varphi(R^{-1})^{-1/(p-1)} \log(R/r)$.

Here let us give an upper estimate of (α, φ_p) -capacity of balls.

LEMMA 2.4. There exists a constant A > 0 such that

$$C_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,2r)\right) \le A\left[r^{n-\alpha p}\varphi(r^{-1})\right]^{1/p}$$

whenever r > 0 and $x_0 \in \mathbf{R}^n$.

Proof. Without loss of generality, we may assume that $x_0 = 0$. For simplicity, set

$$\psi(r) = \left[r^{n-\alpha p}\varphi(r^{-1})\right]^{1/p}$$

For r > 0, consider the function

$$f_r(y) = |y|^{-\alpha}$$

for r < |y| < 2r and $f_r = 0$ elsewhere. If $x \in B(0, r)$ and $y \in B(0, 2r) \setminus B(0, r)$, then |x - y| < 3r, so that

$$I_{\alpha}f_r(x) \ge (3r)^{\alpha-n} \int_{B(0,2r)\setminus B(0,r)} |y|^{-\alpha} \, dy = A_1$$

with a constant $A_1 = A_1(\alpha, n) > 0$. It follows from the definition of capacity that

$$C_{\alpha,\varphi_p}(B(0,r);B(0,2r)) \le \|f_r/A_1\|_{\varphi_p,B(0,2r)}$$

Here, in view of $(\varphi 6)$ with $\varphi_1(r) = \varphi(r^{-1})^{-1/p}$, we see that

$$\int_{B(0,2r)} \varphi_p(f_r(y)/\psi(r)) \, dy \le A_2 \int_{B(0,2r)\setminus B(0,r)} r^{-\alpha p} \psi(r)^{-p} \varphi(r^{-1}) \, dy$$
$$= A_3$$

with constants $A_2 = A_2(c_6) > 0$ and $A_3 = A_3(c_6, n) > 0$. Hence, in view of (2.1), we can find $A_4 > 0$ such that

$$||f_r||_{\varphi_p, B(0,2r)} \le A_4 \psi(r)$$

Now we establish

$$C_{\alpha,\varphi_p}(B(0,r); B(0,2r)) \le A_1^{-1} ||f_r||_{\varphi_p, B(0,2r)} \le A_1^{-1} A_4 \psi(r),$$

which proves the lemma.

For $0 < R \le 1$, we take $r_0 = r_0(R) > 0$ such that $r < r\tilde{\varphi}_p(r)^{1/n} \le \sqrt{r}$ for $0 < r < r_0$ and

(2.3)
$$\int_{r_0}^{R} \left[\varphi(t^{-1})\right]^{-1/(p-1)} dt/t \ge 2 \int_{R^2}^{R} \left[\varphi(t^{-1})\right]^{-1/(p-1)} dt/t.$$

By Lemma 2.4 and Remark 2.2, we obtain the following result.

 \square

COROLLARY 2.5. Suppose $\alpha p < n$. Then there exists a constant A > 0 independent of R such that

$$C_{\alpha,\varphi_n}(B(x_0,r);B(x_0,R)) \le A\tilde{\varphi}_p(r)^{-(p-1)/p}$$

whenever 0 < r < R/2 and $x_0 \in \mathbf{R}^n$.

Next, we prove the following result.

LEMMA 2.6. Let $\alpha p = n$ and $0 < R \le 1$. Then there exists a constant A > 0 independent of R such that

$$C_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,R)\right) \le A\tilde{\varphi}_p(r)^{-(p-1)/p}$$

whenever $0 < r < r_0$ and $x_0 \in \mathbf{R}^n$.

Proof. Suppose $\alpha p = n$, $0 < R \le 1$ and $x_0 = 0$. For $0 < r < r_0$ and 0 < K < 1, consider the function

$$f_{r,K}(y) = |y|^{-\alpha} \left[\varphi(K|y|^{-1}) \right]^{-1/(p-1)}$$

for r < |y| < KR and $f_{r,K} = 0$ elsewhere. If $x \in B(0,r)$ and $y \in B(0,R) \setminus B(0,r)$, then |x - y| < 2|y|, so that

$$\begin{split} I_{\alpha}f_{r,K}(x) &\geq 2^{\alpha-n} \int_{B(0,KR)\setminus B(0,r)} |y|^{\alpha-n} f_{r,K}(y) \, dy \\ &\geq 2^{\alpha-n} \omega_{n-1} \int_{r}^{KR} \left[\varphi(K/t)\right]^{-1/(p-1)} dt/t \\ &= 2^{\alpha-n} \omega_{n-1} \tilde{\varphi}_p(r/K), \end{split}$$

where ω_{n-1} is the surface measure of the boundary of the unit ball in \mathbb{R}^n . If $K = \tilde{\varphi}_p(r)^{-1/n} (< 1)$, then we see from ($\varphi 1$) and (2.3) that

$$\begin{split} \tilde{\varphi}_{p}(r/K) &= \int_{r/K}^{R} \left[\varphi(1/t) \right]^{-1/(p-1)} dt/t \\ &\geq \int_{\sqrt{r}}^{R} \left[\varphi(1/t) \right]^{-1/(p-1)} dt/t \\ &\geq 2c_{1}^{-1/(p-1)} \int_{r}^{R^{2}} \left[\varphi(1/t) \right]^{-1/(p-1)} dt/t \\ &\geq 2c_{1}^{-1/(p-1)} \\ &\times \left(\int_{r}^{R} \left[\varphi(1/t) \right]^{-1/(p-1)} dt/t - 2^{-1} \int_{r_{0}}^{R} \left[\varphi(1/t) \right]^{-1/(p-1)} dt/t \right) \\ &\geq c_{1}^{-1/(p-1)} \tilde{\varphi}_{p}(r). \end{split}$$

Thus, it follows that

$$I_{\alpha}f_{r,K}(x) \ge 2^{\alpha-n}\omega_{n-1}c_1^{-1/(p-1)}\tilde{\varphi}_p(r) = A_1\tilde{\varphi}_p(r)$$

with a constant $A_1 = 2^{\alpha - n} \omega_{n-1} c_1^{-1/(p-1)}$, which implies

$$C_{\alpha,\varphi_p} \left(B(0,r); B(0,R) \right) \le \left\| f_{r,K} / \left\{ A_1 \tilde{\varphi}_p(r) \right\} \right\|_{\varphi_p, B(0,R)} \\ = \left\{ A_1 \tilde{\varphi}_p(r) \right\}^{-1} \| f_{r,K} \|_{\varphi_p, B(0,R)}.$$

Here note from $(\varphi 6)$ with $\varphi_1(r) = \varphi(r)^{-1/p}$ that

$$\int_{B(0,KR)} \varphi_p \left(K^{\alpha} f_{r,K}(y) \right) dy$$

$$\leq c_6 \int_{B(0,KR) \setminus B(0,r)} \left(K/|y| \right)^{\alpha p} \left[\varphi \left(K|y|^{-1} \right) \right]^{-p/(p-1)} \varphi \left(K|y|^{-1} \right) dy$$

$$= A_2 K^{\alpha p} \int_r^{KR} \left[\varphi (K/t) \right]^{-1/(p-1)} dt/t \leq A_2$$

with $K = \tilde{\varphi}_p(r)^{-1/n}$ and $A_2 = c_6 \omega_{n-1}$. This implies by (2.1) that there exists a constant $A_3 > 0$ such that

$$||f_{r,K}||_{\varphi_p,B(0,R)} \le A_3 K^{-\alpha} = A_3 \tilde{\varphi}_p(r)^{1/p}.$$

Now it follows that

$$C_{\alpha,\varphi_p}(B(0,r);B(0,R)) \leq A_1^{-1}\tilde{\varphi}_p(r)^{-1} ||f_{r,K}||_{\varphi_p,B(0,R)}$$
$$\leq A_1^{-1}A_3\tilde{\varphi}_p(r)^{-1+1/p}.$$

Thus, the lemma is proved.

By Corollary 2.5 and Lemma 2.6, we find the following result.

THEOREM 2.7. Suppose p > 1 and $0 < R \le 1$. Then there exist constants A > 0 independent of R and $r_0 = r_0(R) > 0$ such that

$$C_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,R)\right) \le A\tilde{\varphi}_p(r)^{-(p-1)/p}$$

whenever $0 < r < r_0$ and $x_0 \in \mathbf{R}^n$.

REMARK 2.8. Suppose p > 1. Then for each R > 0 one can find a constant A(R) > 0 such that

$$C_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,R)\right) \le A(R)\tilde{\varphi}_p(r)^{-(p-1)/p}$$

whenever 0 < r < R/2 and $x_0 \in \mathbf{R}^n$.

In fact, if $0 < R \le 1$ and $0 < r < r_0$, then this is a consequence of Theorem 2.7. If $0 < R \le 1$ and $r_0 \le r < R/2$, then

$$C_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,R)\right) \le C_{\alpha,\varphi_p}\left(B(x_0,R/2);B(x_0,R)\right)$$

and hence one can take A(R) > 0 such that

$$C_{\alpha,\varphi_p}(B(x_0, R/2); B(x_0, R)) \le A(R)\tilde{\varphi}_p(r_0)^{-(p-1)/p}.$$

The case $R \ge 1$ is similarly treated.

Next, we give a lower estimate of (α, φ_p) -capacity of balls.

THEOREM 2.9. For R > 0, there exists a constant A = A(R) > 0 such that

$$\tilde{\varphi}_p(r)^{-(p-1)/p} \le AC_{\alpha,\varphi_p}\left(B(x_0,r);B(x_0,R)\right)$$

whenever $0 < r < R/2 < \infty$ and $x_0 \in \mathbf{R}^n$.

Proof. As above, we assume that $x_0 = 0$. For 0 < r < R/2, take a nonnegative measurable function f on B(0, R) such that

$$I_{\alpha}f(x) \ge 1$$
 for $x \in B(0,r)$.

Then we have by Fubini's theorem

$$\int_{B(0,r)} dx \leq \int_{B(0,r)} I_{\alpha}f(x) dx$$

$$\leq \int_{B(0,R)} \left(\int_{B(0,r)} |x-y|^{\alpha-n} dx \right) f(y) dy$$

$$\leq A_1 r^n \int_{B(0,R)} (r+|y|)^{\alpha-n} f(y) dy,$$

so that

(2.4)
$$1 \le A_1 \int_{B(0,R)} (r+|y|)^{\alpha-n} f(y) \, dy.$$

We show that

(2.5)
$$\int_{B(0,R)} (r+|y|)^{\alpha-n} f(y) \, dy \le A_2 \tilde{\varphi}_p(r)^{-1/p+1} \|f\|_{\varphi_p, B(0,R)}.$$

For this purpose, suppose $||f||_{\varphi_p,B(0,R)} \leq 1$. Then, considering

$$k(y) = \tilde{\varphi}_p \left(r + |y| \right)^{-1/p} \left(r + |y| \right)^{-\alpha} \left[\left(r + |y| \right)^{n-\alpha p} \varphi \left(\left(r + |y| \right)^{-1} \right) \right]^{-1/(p-1)},$$
 we find by (\varphi 4), (\varphi 6) and Remark 2.2

$$\begin{split} &\int_{B(0,R/2)} \left(r+|y|\right)^{\alpha-n} f(y) \, dy \\ &\leq \int_{B(0,R/2)} \left(r+|y|\right)^{\alpha-n} k(y) \, dy \\ &\quad + A_3 \int_{B(0,R/2)} \left(r+|y|\right)^{\alpha-n} f(y) \left(\frac{f(y)}{k(y)}\right)^{p-1} \frac{\varphi(f(y))}{\varphi(k(y))} \, dy \\ &\leq A_4 \bigg\{ \int_r^R \tilde{\varphi}_p(t)^{-1/p} \big[t^{n-\alpha p} \varphi(t^{-1}) \big]^{-1/(p-1)} \, dt/t \\ &\quad + \int_{B(0,R)} \tilde{\varphi}_p(r+|y|)^{(p-1)/p} \varphi_p(f(y)) \, dy \bigg\} \\ &\leq A_5 \bigg\{ \tilde{\varphi}_p(r)^{1-1/p} + \tilde{\varphi}_p(r)^{(p-1)/p} \int_{B(0,R)} \varphi_p(f(y)) \, dy \bigg\} \leq 2A_5 \tilde{\varphi}_p(r)^{1-1/p}. \end{split}$$

Next, considering

$$k = \tilde{\varphi}_p(R/2)^{-1/p} (R/2)^{-\alpha} [(R/2)^{n-\alpha p} \varphi((R/2)^{-1})]^{-1/(p-1)}$$

 $\sim \tilde{\varphi}_p(R/2)^{1-1/p} (R/2)^{-\alpha},$

we find by $(\varphi 4)$, $(\varphi 6)$ and Remark 2.2

$$\begin{split} &\int_{B(0,R)\setminus B(0,R/2)} (r+|y|)^{\alpha-n} f(y) \, dy \\ &\leq (R/2)^{\alpha-n} \int_{B(0,R)\setminus B(0,R/2)} f(y) \, dy \\ &\leq (R/2)^{\alpha-n} \int_{B(0,R)\setminus B(0,R/2)} k \, dy \\ &+ A_6(R/2)^{\alpha-n} \int_{B(0,R)\setminus B(0,R/2)} f(y) \left(\frac{f(y)}{k}\right)^{p-1} \frac{\varphi(f(y))}{\varphi(k)} \, dy \\ &\leq A_7 \tilde{\varphi}_p(R/2)^{1-1/p} \left(1 + \int_{B(0,R)} \varphi_p(f(y)) \, dy\right) \\ &\leq 2A_7 \tilde{\varphi}_p(R/2)^{1-1/p} \\ &\leq 2A_7 \tilde{\varphi}_p(r)^{1-1/p}. \end{split}$$

Thus,

$$\int_{B(0,R)} \left(r + |y| \right)^{\alpha - n} f(y) \, dy \le A_8 \tilde{\varphi}_p(r)^{1 - 1/p}$$

whenever $||f||_{\varphi_p, B(0,R)} \leq 1$, which implies (2.5).

In view of (2.4), (2.5) and the definition of capacity, we find

 $1 \le A_9 \tilde{\varphi}_p(r)^{1-1/p} C_{\alpha, \varphi_p} \big(B(0, r); B(0, R) \big),$

which gives the conclusion.

Proof of Theorem A. Theorem A follows from Theorems 2.7 and 2.9 together with Remark 2.8. \Box

3. C_{α,φ_1} -capacity

In this section, we deal with the case p = 1. For this purpose, set

$$\varphi_1(r) = r\varphi(r)$$

and

$$\tilde{\varphi}_1(r) = r^{n-\alpha} \varphi(r^{-1}).$$

Here suppose further that $\varphi(r)$ is nondecreasing on $(0, \infty)$.

THEOREM B. For R > 0, there exists a constant A > 0 such that

$$A^{-1}\tilde{\varphi}_1(r) \le C_{\alpha,\varphi_1} \left(B(x,r); B(x,R) \right) \le A\tilde{\varphi}_1(r)$$

whenever 0 < r < R/2.

The proof is quite similar to that of Theorem A, and thus we omit it.

References

- D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, 1996. MR 1411441
- [2] D. R. Adams and R. Hurri-Syrjänen, Vanishing exponential integrability for functions whose gradients belong to Lⁿ(log(e+L))^α, J. Funct. Anal. 197 (2003), 162–178. MR 1957679
- [3] D. R. Adams and R. Hurri-Syrjänen, *Capacity estimates*, Proc. Amer. Math. Soc. 131 (2003), 1159–1167. MR 1948107
- [4] N. Aissaoui and A. Benkirane, *Capacités dans les espaces d'Orlicz*, Ann. Sci. Math. Québec 18 (1994), 1–23. MR 1273865
- [5] C. Bennett and R. Sharpley, *Interpolation of operators*, Academic Press, New York, 1988. MR 0928802
- [6] D. E. Edmunds and W. D. Evans, *Hardy operators, function spaces and embeddings*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2091115
- J. Joensuu, On null sets of Sobolev-Orlicz capacities, Illinois J. Math. 52 (2008), 1195–1211. MR 2595762
- [8] J. Joensuu, Orlicz-Sobolev capacities and their null sets, Rev. Mat. Complut. 23 (2010), 217–232. MR 2578579
- J. Joensuu, Estimates for certain Orlicz-Sobolev capacities of an Euclidean ball, Nonlinear. Anal. 72 (2010), 4316–4330. MR 2606790
- [10] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255–292. MR 0277741
- [11] Y. Mizuta, Continuity properties of potentials and Beppo-Levi-Deny functions, Hiroshima Math. J. 23 (1993), 79–153. MR 1211771
- [12] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996. MR 1428685
- Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, J. Math. Soc. Japan. 62 (2010), 707–744. MR 2648060
- [14] Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of functions in Orlicz classes, Analysis 20 (2000), 201–223. MR 1778254
- [15] Y. Mizuta and T. Shimomura, Vanishing exponential integrability for Riesz potentials of functions in Orlicz classes, Illinois J. Math. 51 (2007), 1039–1060. MR 2417414
- [16] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. 61 (2009), 225–240. MR 2541407
- [17] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989. MR 1014685

T. Futamura, Department of Mathematics, Daido University, Nagoya 457-8530, Japan

E-mail address: futamura@daido-it.ac.jp

Y. MIZUTA, DEPARTMENT OF MECHANICAL SYSTEMS ENGINEERING, HIROSHIMA INSTI-TUTE OF TECHNOLOGY, 2-1-1 MIYAKE, SAEKI-KU, HIROSHIMA 731-5193, JAPAN

E-mail address: y.mizuta.5x@it-hiroshima.ac.jp

T. Ohno, Faculty of Education and Welfare Science, Oita University, Dannoharu Oita-city 870-1192, Japan

E-mail address: t-ohno@oita-u.ac.jp

T. Shimomura, Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan

E-mail address: tshimo@hiroshima-u.ac.jp