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ORLICZ–SOBOLEV CAPACITY OF BALLS

T. FUTAMURA, Y. MIZUTA, T. OHNO AND T. SHIMOMURA

Abstract. Our aim in this note is to estimate the Orlicz–Sobolev
capacity of balls.

1. Introduction and statement of results

For 0 < α < n and a locally integrable function f on Rn, we define the
Riesz potential Iαf of order α by

Iαf(x) =
∫
Rn

|x − y|α−nf(y)dy.

In the present note, we treat functions f satisfying an Orlicz condition:

(1.1)
∫
Rn

ϕp

(∣∣f(y)
∣∣)dy < ∞.

Here, ϕp(r) is a positive nondecreasing function on the interval (0, ∞) of the
form

ϕp(r) = rpϕ(r),

where p > 1 and ϕ(r) is a positive monotone function on (0, ∞) which is of
logarithmic type; that is, there exists c1 > 0 such that

(ϕ1)
c−1
1 ϕ(r) ≤ ϕ

(
r2

)
≤ c1ϕ(r) whenever r > 0.

We set
ϕp(0) = 0,

because we will see from (ϕ4) below that

lim
r→0+

ϕp(r) = 0;
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see [14, p. 205]. For an open set G ⊂ Rn, we denote by Lϕp(G) the family of
all locally integrable functions g on G such that∫

G

ϕp

(∣∣g(x)
∣∣)dx < ∞,

and define

‖g‖ϕp,G = inf
{

λ > 0 :
∫

G

ϕp

(∣∣g(x)
∣∣/λ

)
dx ≤ 1

}
.

This is a quasi-norm in Lϕp(G). For E ⊂ G, the (α,ϕp)-capacity is defined
by

Cα,ϕp(E;G) = inf ‖f ‖ϕp,G,

where the infimum is taken over all functions f such that f = 0 outside G and

Iαf(x) ≥ 1 for all x ∈ E

(cf. Adams and Hedberg [1], Meyers [10], Ziemer [17] and the second author
[11], [12]).

Our aim in the present note is to give an estimate of (α,ϕp)-capacity of
balls. We denote by B(x, r) the open ball centered at x of radius r. For R > 0,
consider

ϕ̃p(r) =
∫ R

r

[
tn−αpϕ

(
t−1

)]−1/(p−1)
dt/t.

As an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11] and Joen-
suu [9, Corollary 6.3], we state our theorem in the following.

Theorem A. Suppose p > 1 and

ϕ̃p(0) = ∞.

For R > 0, there exists a constant A > 0 such that

A−1ϕ̃p(r)−(p−1)/p ≤ Cα,ϕp

(
B(x, r);B(x,R)

)
≤ Aϕ̃p(r)−(p−1)/p

whenever 0 < r < R/2.

Recently Joensuu [9, Corollary 6.3] treated the case when ϕ is nondecreas-
ing. His main idea was to use the rearrangement equivalent norm for ‖f ‖ϕp,G

([5], [7], [8]), as an extension of Adams and Hurri-Syrjänen [3, Theorem 2.11]
in the case when ϕ(t) = (log(e+ t))β with p = n/α > 1 and 0 ≤ β ≤ p − 1. Our
proof will be done straightforward from the definition of capacity, and several
technical assumptions posed in [9] are removed.

Throughout this note, let A denote various constants independent of the
variables in question and A(a, b, . . .) be a constant that depends on a, b, . . . .

Remark 1.1. If ϕ̃p(0) < ∞, then Cα,ϕp({0};B(0,R)) > 0. In this case,
Iαf is continuous when f ∈ Lϕp(Rn) vanishes outside a compact set; for this
fact, we refer the reader to the paper [14], [16].
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Remark 1.2. We here introduce another capacity. For a set E ⊂ Rn and
an open set G ⊂ Rn, we define

Bα,ϕp(E;G) = inf
∫

G

ϕp

(
f(y)

)
dy,

where the infimum is taken over all nonnegative measurable functions f on
Rn such that f = 0 outside G and Iαf(x) ≥ 1 for all x ∈ E. With the aid of
Adams and Hurri-Syrjänen [3], Joensuu [7], [8], [9] and Mizuta [12, Section 8.3,
Lemma 3.1], [11], one can find a constant A > 1 such that

A−1ϕ̃p(r)−(p−1) ≤ Bα,ϕp

(
B(x, r);B(x,R)

)
≤ Aϕ̃p(r)−(p−1)

for 0 < r < R/2 and x ∈ Rn. Hence, in view of Theorem A, there is a constant
A > 1 such that

A−1Bα,ϕp

(
B(x, r);B(x,R)

)1/p ≤ Cα,ϕp

(
B(x, r);B(x,R)

)
≤ ABα,ϕp

(
B(x, r);B(x,R)

)1/p

for 0 < r < R/2 and x ∈ Rn.

We write f ∼ g if there exists a constant A so that A−1g ≤ f ≤ Ag.

Example 1.3. For n = αp, consider the function

ϕ(t) =
(
log(e + t)

)β
.

If β < p − 1, then

ϕ̃p(r) ∼
(
log(e + 1/r)

)−β/(p−1)+1

for 0 < r < 1. In this case,

Cα,ϕp

(
B(x0, r);B(x0,R)

)
∼

(
log(e + 1/r)

)(β−p+1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.
If β = p − 1, then

ϕ̃p(r) ∼ log
(
e +

(
log(e + 1/r)

))
for 0 < r < 1. In this case,

Cα,ϕp

(
B(x0, r);B(x0,R)

)
∼

(
log

(
e +

(
log(e + 1/r)

)))−(p−1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.

For further related results, see Aissaoui and A. Benkirane [4], Adams and
Hurri-Syrjänen [2], Edmunds and Evans [6] and Mizuta and Shimomura [14],
[15], [16].
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2. Proof of Theorem A

First, we collect properties which follow from condition (ϕ1) (see [12], [14,
Lemma 2.3], [13, Section 7]).
(ϕ2) ϕ satisfies the doubling condition, that is, there exists c2 > 1 such that

c−1
2 ϕ(r) ≤ ϕ(2r) ≤ c2ϕ(r) whenever r > 0.

(ϕ3) For each γ > 0, there exists c3 = c3(γ) ≥ 1 such that

c−1
3 ϕ(r) ≤ ϕ

(
rγ

)
≤ c3ϕ(r) whenever r > 0.

(ϕ4) For each γ > 0, there exists c4 = c4(γ) ≥ 1 such that

sγϕ(s) ≤ c4t
γϕ(t) whenever 0 < s < t.

(ϕ5) For each γ > 0, there exists c5 = c5(γ) ≥ 1 such that

t−γϕ(t) ≤ c5s
−γϕ(s) whenever 0 < s < t.

(ϕ6) If ϕ and ϕ1 are positive monotone functions on [0, ∞) satisfying (ϕ1),
then for each γ > 0 then there exists a constant c6 = c6(γ) ≥ 1 such that

c6
−1ϕ(r) ≤ ϕ

(
rγϕ1(r)

)
≤ c6ϕ(r) whenever r > 0.

Remark 2.1. For each A1 > 0 there exists A2 > 0 such that

(2.1) A1ϕp(r) ≥ ϕp(A2r) whenever r > 0.

Remark 2.2. If αp < n, then we see from (ϕ2) and (ϕ5) that

(2.2) ϕ̃p(r) ∼
[
rn−αpϕ

(
r−1

)]−1/(p−1)

whenever 0 < r < R/2.

Remark 2.3. If n = αp and 0 < R ≤ 1, then ϕ̃p is of logarithmic type on
[0,R2], that is, there exists c > 0 such that

c−1ϕ̃p(r) ≤ ϕ̃p

(
r2

)
≤ cϕ̃p(r) whenever 0 ≤ r ≤ R2.

In fact, we see from (ϕ1) that

ϕ̃p

(
r2

)
=

∫ R

r2

[
ϕ
(
t−1

)]−1/(p−1)
dt/t

=
∫ R2

r2

[
ϕ
(
t−1

)]−1/(p−1)
dt/t +

∫ R

R2

[
ϕ
(
t−1

)]−1/(p−1)
dt/t

= 2
∫ R

r

[
ϕ
(
t−2

)]−1/(p−1)
dt/t +

∫ R

R2

[
ϕ
(
t−1

)]−1/(p−1)
dt/t

≤ 2c
1/(p−1)
1

∫ R

r

[
ϕ
(
t−1

)]−1/(p−1)
dt/t +

∫ R

R2

[
ϕ
(
t−1

)]−1/(p−1)
dt/t

≤
(
2c

1/(p−1)
1 + 1

)
ϕ̃p(r)
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whenever 0 < r ≤ R2. Since ϕ̃p(r) ≤ ϕ̃p(r2), we see that ϕ̃p is of logarithmic
type on [0,R2].

If R2 < r < R, then one sees that ϕ̃p(r) ∼ ϕ(R−1)−1/(p−1) log(R/r).

Here let us give an upper estimate of (α,ϕp)-capacity of balls.

Lemma 2.4. There exists a constant A > 0 such that

Cα,ϕp

(
B(x0, r);B(x0,2r)

)
≤ A

[
rn−αpϕ

(
r−1

)]1/p

whenever r > 0 and x0 ∈ Rn.

Proof. Without loss of generality, we may assume that x0 = 0. For sim-
plicity, set

ψ(r) =
[
rn−αpϕ

(
r−1

)]1/p
.

For r > 0, consider the function

fr(y) = |y| −α

for r < |y| < 2r and fr = 0 elsewhere. If x ∈ B(0, r) and y ∈ B(0,2r) \ B(0, r),
then |x − y| < 3r, so that

Iαfr(x) ≥ (3r)α−n

∫
B(0,2r)\B(0,r)

|y| −α dy = A1

with a constant A1 = A1(α,n) > 0. It follows from the definition of capacity
that

Cα,ϕp

(
B(0, r);B(0,2r)

)
≤ ‖fr/A1‖ϕp,B(0,2r).

Here, in view of (ϕ6) with ϕ1(r) = ϕ(r−1)−1/p, we see that∫
B(0,2r)

ϕp

(
fr(y)/ψ(r)

)
dy ≤ A2

∫
B(0,2r)\B(0,r)

r−αpψ(r)−pϕ
(
r−1

)
dy

= A3

with constants A2 = A2(c6) > 0 and A3 = A3(c6, n) > 0. Hence, in view of
(2.1), we can find A4 > 0 such that

‖fr ‖ϕp,B(0,2r) ≤ A4ψ(r).

Now we establish

Cα,ϕp

(
B(0, r);B(0,2r)

)
≤ A−1

1 ‖fr ‖ϕp,B(0,2r)

≤ A−1
1 A4ψ(r),

which proves the lemma. �
For 0 < R ≤ 1, we take r0 = r0(R) > 0 such that r < rϕ̃p(r)1/n ≤ √

r for
0 < r < r0 and

(2.3)
∫ R

r0

[
ϕ
(
t−1

)]−1/(p−1)
dt/t ≥ 2

∫ R

R2

[
ϕ
(
t−1

)]−1/(p−1)
dt/t.

By Lemma 2.4 and Remark 2.2, we obtain the following result.
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Corollary 2.5. Suppose αp < n. Then there exists a constant A > 0
independent of R such that

Cα,ϕp

(
B(x0, r);B(x0,R)

)
≤ Aϕ̃p(r)−(p−1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.

Next, we prove the following result.

Lemma 2.6. Let αp = n and 0 < R ≤ 1. Then there exists a constant A > 0
independent of R such that

Cα,ϕp

(
B(x0, r);B(x0,R)

)
≤ Aϕ̃p(r)−(p−1)/p

whenever 0 < r < r0 and x0 ∈ Rn.

Proof. Suppose αp = n, 0 < R ≤ 1 and x0 = 0. For 0 < r < r0 and 0 < K <
1, consider the function

fr,K(y) = |y| −α
[
ϕ
(
K|y| −1

)]−1/(p−1)

for r < |y| < KR and fr,K = 0 elsewhere. If x ∈ B(0, r) and y ∈ B(0,R) \
B(0, r), then |x − y| < 2|y|, so that

Iαfr,K(x) ≥ 2α−n

∫
B(0,KR)\B(0,r)

|y|α−nfr,K(y)dy

≥ 2α−nωn−1

∫ KR

r

[
ϕ(K/t)

]−1/(p−1)
dt/t

= 2α−nωn−1ϕ̃p(r/K),

where ωn−1 is the surface measure of the boundary of the unit ball in Rn. If
K = ϕ̃p(r)−1/n(< 1), then we see from (ϕ1) and (2.3) that

ϕ̃p(r/K) =
∫ R

r/K

[
ϕ(1/t)

]−1/(p−1)
dt/t

≥
∫ R

√
r

[
ϕ(1/t)

]−1/(p−1)
dt/t

≥ 2c
−1/(p−1)
1

∫ R2

r

[
ϕ(1/t)

]−1/(p−1)
dt/t

≥ 2c
−1/(p−1)
1

×
(∫ R

r

[
ϕ(1/t)

]−1/(p−1)
dt/t − 2−1

∫ R

r0

[
ϕ(1/t)

]−1/(p−1)
dt/t

)

≥ c
−1/(p−1)
1 ϕ̃p(r).

Thus, it follows that

Iαfr,K(x) ≥ 2α−nωn−1c
−1/(p−1)
1 ϕ̃p(r) = A1ϕ̃p(r)
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with a constant A1 = 2α−nωn−1c
−1/(p−1)
1 , which implies

Cα,ϕp

(
B(0, r);B(0,R)

)
≤

∥∥fr,K/
{
A1ϕ̃p(r)

}∥∥
ϕp,B(0,R)

=
{
A1ϕ̃p(r)

}−1‖fr,K ‖ϕp,B(0,R).

Here note from (ϕ6) with ϕ1(r) = ϕ(r)−1/p that∫
B(0,KR)

ϕp

(
Kαfr,K(y)

)
dy

≤ c6

∫
B(0,KR)\B(0,r)

(
K/|y|

)αp[
ϕ
(
K|y| −1

)]−p/(p−1)
ϕ
(
K|y| −1

)
dy

= A2K
αp

∫ KR

r

[
ϕ(K/t)

]−1/(p−1)
dt/t ≤ A2

with K = ϕ̃p(r)−1/n and A2 = c6ωn−1. This implies by (2.1) that there exists
a constant A3 > 0 such that

‖fr,K ‖ϕp,B(0,R) ≤ A3K
−α = A3ϕ̃p(r)1/p.

Now it follows that

Cα,ϕp

(
B(0, r);B(0,R)

)
≤ A−1

1 ϕ̃p(r)−1‖fr,K ‖ϕp,B(0,R)

≤ A−1
1 A3ϕ̃p(r)−1+1/p.

Thus, the lemma is proved. �
By Corollary 2.5 and Lemma 2.6, we find the following result.

Theorem 2.7. Suppose p > 1 and 0 < R ≤ 1. Then there exist constants
A > 0 independent of R and r0 = r0(R) > 0 such that

Cα,ϕp

(
B(x0, r);B(x0,R)

)
≤ Aϕ̃p(r)−(p−1)/p

whenever 0 < r < r0 and x0 ∈ Rn.

Remark 2.8. Suppose p > 1. Then for each R > 0 one can find a constant
A(R) > 0 such that

Cα,ϕp

(
B(x0, r);B(x0,R)

)
≤ A(R)ϕ̃p(r)−(p−1)/p

whenever 0 < r < R/2 and x0 ∈ Rn.
In fact, if 0 < R ≤ 1 and 0 < r < r0, then this is a consequence of Theo-

rem 2.7. If 0 < R ≤ 1 and r0 ≤ r < R/2, then

Cα,ϕp

(
B(x0, r);B(x0,R)

)
≤ Cα,ϕp

(
B(x0,R/2);B(x0,R)

)
and hence one can take A(R) > 0 such that

Cα,ϕp

(
B(x0,R/2);B(x0,R)

)
≤ A(R)ϕ̃p(r0)−(p−1)/p.

The case R ≥ 1 is similarly treated.

Next, we give a lower estimate of (α,ϕp)-capacity of balls.
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Theorem 2.9. For R > 0, there exists a constant A = A(R) > 0 such that

ϕ̃p(r)−(p−1)/p ≤ ACα,ϕp

(
B(x0, r);B(x0,R)

)
whenever 0 < r < R/2 < ∞ and x0 ∈ Rn.

Proof. As above, we assume that x0 = 0. For 0 < r < R/2, take a nonneg-
ative measurable function f on B(0,R) such that

Iαf(x) ≥ 1 for x ∈ B(0, r).

Then we have by Fubini’s theorem∫
B(0,r)

dx ≤
∫

B(0,r)

Iαf(x)dx

≤
∫

B(0,R)

(∫
B(0,r)

|x − y|α−n dx

)
f(y)dy

≤ A1r
n

∫
B(0,R)

(
r + |y|

)α−n
f(y)dy,

so that

(2.4) 1 ≤ A1

∫
B(0,R)

(
r + |y|

)α−n
f(y)dy.

We show that

(2.5)
∫

B(0,R)

(
r + |y|

)α−n
f(y)dy ≤ A2ϕ̃p(r)−1/p+1‖f ‖ϕp,B(0,R).

For this purpose, suppose ‖f ‖ϕp,B(0,R) ≤ 1. Then, considering

k(y) = ϕ̃p

(
r + |y|

)−1/p(
r + |y|

)−α[(
r + |y|

)n−αp
ϕ
((

r + |y|
)−1)]−1/(p−1)

,

we find by (ϕ4), (ϕ6) and Remark 2.2∫
B(0,R/2)

(
r + |y|

)α−n
f(y)dy

≤
∫

B(0,R/2)

(
r + |y|

)α−n
k(y)dy

+ A3

∫
B(0,R/2)

(
r + |y|

)α−n
f(y)

(
f(y)
k(y)

)p−1
ϕ(f(y))
ϕ(k(y))

dy

≤ A4

{∫ R

r

ϕ̃p(t)−1/p
[
tn−αpϕ

(
t−1

)]−1/(p−1)
dt/t

+
∫

B(0,R)

ϕ̃p

(
r + |y|

)(p−1)/p
ϕp

(
f(y)

)
dy

}

≤ A5

{
ϕ̃p(r)1−1/p + ϕ̃p(r)(p−1)/p

∫
B(0,R)

ϕp

(
f(y)

)
dy

}
≤ 2A5ϕ̃p(r)1−1/p.
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Next, considering

k = ϕ̃p(R/2)−1/p(R/2)−α
[
(R/2)n−αpϕ

(
(R/2)−1

)]−1/(p−1)

∼ ϕ̃p(R/2)1−1/p(R/2)−α,

we find by (ϕ4), (ϕ6) and Remark 2.2∫
B(0,R)\B(0,R/2)

(
r + |y|

)α−n
f(y)dy

≤ (R/2)α−n

∫
B(0,R)\B(0,R/2)

f(y)dy

≤ (R/2)α−n

∫
B(0,R)\B(0,R/2)

k dy

+ A6(R/2)α−n

∫
B(0,R)\B(0,R/2)

f(y)
(

f(y)
k

)p−1
ϕ(f(y))

ϕ(k)
dy

≤ A7ϕ̃p(R/2)1−1/p

(
1 +

∫
B(0,R)

ϕp

(
f(y)

)
dy

)

≤ 2A7ϕ̃p(R/2)1−1/p

≤ 2A7ϕ̃p(r)1−1/p.

Thus, ∫
B(0,R)

(
r + |y|

)α−n
f(y)dy ≤ A8ϕ̃p(r)1−1/p

whenever ‖f ‖ϕp,B(0,R) ≤ 1, which implies (2.5).
In view of (2.4), (2.5) and the definition of capacity, we find

1 ≤ A9ϕ̃p(r)1−1/pCα,ϕp

(
B(0, r);B(0,R)

)
,

which gives the conclusion. �

Proof of Theorem A. Theorem A follows from Theorems 2.7 and 2.9 to-
gether with Remark 2.8. �

3. Cα,ϕ1-capacity

In this section, we deal with the case p = 1. For this purpose, set

ϕ1(r) = rϕ(r)

and
ϕ̃1(r) = rn−αϕ

(
r−1

)
.

Here suppose further that ϕ(r) is nondecreasing on (0, ∞).
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Theorem B. For R > 0, there exists a constant A > 0 such that

A−1ϕ̃1(r) ≤ Cα,ϕ1

(
B(x, r);B(x,R)

)
≤ Aϕ̃1(r)

whenever 0 < r < R/2.

The proof is quite similar to that of Theorem A, and thus we omit it.
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