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SHARP INEQUALITY FOR MARTINGALE MAXIMAL
FUNCTIONS AND STOCHASTIC INTEGRALS

ADAM OSȨKOWSKI

Abstract. The paper contains the description of the optimal
constant β = 3.4351. . . for which the following inequality holds.

Let X be a real-valued martingale, H be a predictable process

taking values in [−1,1] and let Y be an Itô integral of H with

respect to X. Then∥∥∥sup
t≥0

|Yt |
∥∥∥

1
≤ β

∥∥∥sup
t≥0

|Xt |
∥∥∥

1
.

A version of this inequality in the discrete-time case is also es-
tablished. The proof is based on Burkholder’s technique, which

relates the above estimate to the construction of an upper solu-
tion to a corresponding nonlinear three-dimensional problem.

1. Introduction

The paper aims at answering a natural and basic question about the sto-
chastic integrals, stated by Burkholder in [5]. Let us start with introduc-
ing the necessary notation. Suppose that (Ω, F ,P) is a complete probabil-
ity space, equipped with a nondecreasing right-continuous family (Ft)t≥0 of
sub-σ-algebras of F . Assume in addition, that F0 contains all the events of
probability 0. Let X = (Xt)t≥0 be an adapted real-valued martingale, which
has right-continuous paths with limits from the left and suppose H = (Ht)t≥0

is a predictable process taking values in the interval [−1,1]. Let Y = (Yt)t≥0

be the Itô integral of H with respect to X , that is, for t ≥ 0,

Yt = H0X0 +
∫

(0,t]

Hs dXs.
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Let X∗ = supt≥0 |Xt| stand for the maximal function of X and let ‖X‖p =
supt≥0 ‖Xt‖p denote the pth moment of X , 1 ≤ p ≤ ∞.

In the literature, there has been an interest in the sharp comparison of the
sizes of X and Y defined as above. An excellent source of information on this
subject is the survey [4] by Burkholder (see also references therein), which
contains moment, weak-type, exponential and escape inequalities, and much
more. For more recent results, see the papers [10], [11] by the author and [15]
by Suh.

In what follows, we will be particularly interested in maximal estimates.
In [5], Burkholder introduced a method to determine the optimal constants
in the problems of this type (see Section 2 below) and used it to establish the
following sharp inequality.

Theorem 1.1. If X and Y are as above, then

(1.1) ‖Y ‖1 ≤ κ‖X∗ ‖1,

where κ = 2.536. . . is the unique positive solution to the equation

κ = 3 − exp
1 − κ

2
.

Using Burkholder’s technique, the author established two further results in
this direction. In [8] it was shown that if the martingale X is nonnegative,
then the optimal constant in (1.1) decreases to 2 + (3e)−1 = 2.1226. . . . The
paper [9] contains the proof of the related estimate, where the first moment
of Y is replaced by the first moment of the one-sided maximal function of Y .
To be precise, it was proved that if X , Y are as above, then

(1.2)
∥∥∥sup

t≥0
Yt

∥∥∥
1

≤ η‖X∗ ‖1,

where η = 2.0856. . . is the unique positive solution to the equation 1 − η =
2 log( 8

3 − η). Furthermore, if X is assumed to be nonnegative, the best con-
stant in (1.2) equals 14/9 = 1.555. . . .

In the present paper, we focus on the bound

(1.3) ‖Y ∗ ‖1 ≤ β‖X∗ ‖1,

a stronger estimate than the ones considered above. By (1.2) or Davis’ square
function inequality (cf. [7]), we see that (1.3) holds with some finite univer-
sal β. We will determine the optimal value of this constant.

Theorem 1.2. The constant β = 3.4351. . . given by (3.5) below, is optimal
in (1.3). It is already the best possible even when the process H takes values
in {−1,1}.

It suffices to establish the discrete-time version of this result; then one
obtains the continuous-time extension using approximation theorems due to
Bichteler [1] (see [5] for analogous argumentation). Let us reformulate our
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problem in this new setting. Suppose that f = (fn)n≥0 is a discrete-time real-
valued martingale, with a difference sequence (dfn)n≥0 defined by df0 = f0 and
dfn = fn − fn−1 for n ≥ 1. Let v = (vn)n≥0 be a predictable sequence taking
values in [−1,1] and let g = (gn)n≥0 be a transform of f by v: that is, assume
that dgn = vndfn for n ≥ 0. In the particular case when vn is deterministic
and takes values in { −1,1}, we will write dgn = ±dfn. If f and g satisfy
dgn = ±dfn for all n, we will say that g is a ±1-transform of f . We will use
the notation f ∗ = supn≥0 |fn| and ‖f ‖p = supn ‖fn‖p, analogous to the one
used in the continuous-time setting.

The discrete-time version of Theorem 1.2 can be stated as follows.

Theorem 1.3. Assume that f , g are martingales such that g is a transform
of f by a predictable sequence bounded in absolute value by 1. Then

(1.4) ‖g∗ ‖1 ≤ β‖f ∗ ‖1,

where β is given by (3.5). The constant β is the best possible. It is already
the best possible even if g is assumed to be a ±1-transform of f .

A few words about the structure of the proof and the organization of the
paper. We will use Burkholder’s technique, which is described in the next
section. The method relates a given maximal inequality for martingales to an
upper solution to a certain nonlinear problem. In contrast with the papers [5],
[8] and [9], where the corresponding problems were two-dimensional, we will
have to construct a function of three variables; this results in a considerable
growth of difficulty of the calculations. The solution is presented in Section 4,
using an auxiliary differential equation, studied in Section 3. Section 5 is
the most elaborate and is devoted to the optimality of the constant β. In
Section 6, we establish some technical facts needed in the earlier sections, and
in the final part of the paper we present some concluding remarks as well as
some open problems, which await further research.

2. Burkholder’s method

Throughout this section, we deal with the discrete-time setting. In order to
apply Burkholder’s technique, we need some reductions in (1.4). First, using
standard approximation, we restrict ourselves to simple martingales f : that
is, we assume that for any n the random variable fn takes only a finite number
of values and there is a deterministic N such that fN = fN+1 = fN+2 = · · ·
almost surely. Moreover, we may assume that |f0| > 0 with probability 1. The
next observation is that it suffices to show (1.4) for ±1 transforms. It is an
immediate consequence of the following fact.

Lemma 2.1. Let g be the transform of a real valued martingale f by a
real-valued predictable sequence v uniformly bounded in absolute value by 1.
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Then there exist real valued martingales F j = (F j
n)n≥0 and Borel measurable

functions ϕj : [−1,1] → { −1,1} such that, for j ≥ 1 and n ≥ 0,

fn = F j
2n+1, f ∗

n = (F j
2n+1)

∗,

gn =
∞∑

j=1

2−jϕj(v0)G
j
2n+1,

where Gj is the transform of F j by ε = (εk)k≥0 with εk = (−1)k.

Proof. This is essentially Lemma A.1 in [4]. The only difference, which
is the equality f ∗

n = (F j
2n+1)

∗, follows from the construction of the sequence
(F j) there. �

The final observation is that it suffices to prove

(2.1) ‖g∗
n‖1 ≤ β‖f ∗

n ‖1

for any n. This is a consequence of the fact that f , and hence also g, are
simple.

Now we are ready to describe the method. Let us explain it in the general
setting. Suppose that V : D → R is a fixed function, where D = R × R ×
(0, ∞) × (0, ∞). Assume that we are interested in the inequality

(2.2) EV (fn, gn, f ∗
n, g∗

n) ≤ 0

for all n and all pairs (f, g) of simple martingales such that P(|f0| > 0) = 1
and g is a ±1-transform of f . The key idea to study this problem is to
introduce the class U (V ) which consists of all functions U : D → R satisfying
the following properties: if (x, y, z,w) ∈ D, then

U(x, y, z,w) = U(x, y, |x| ∨ z, |y| ∨ w),(2.3)
U(x, y, |x|, |y|) ≤ 0 if |x| = |y| > 0,(2.4)

V (x, y, z,w) ≤ U(x, y, z,w),(2.5)

and, furthermore, for any |x| ≤ z, |y| ≤ w, ε ∈ { −1,1}, α ∈ (0,1) and t1, t2 ∈ R

such that αt1 + (1 − α)t2 = 0,

αU(x + t1, y + εt1, z,w) + (1 − α)U(x + t2, y + εt2, z,w)(2.6)
≤ U(x, y, z,w).

The connection between the class U (V ) and the inequality (2.2) is described
in the following result.

Theorem 2.2. If U (V ) is nonempty, then (2.2) is valid.

Proof. The argumentation is similar to the one used in the proof of Theo-
rem 2.1 in [5]. Using (2.3) and (2.6), one proves that (U(fk, gk, f ∗

k , g∗
k))k≥0 is

a supermartingale. Therefore, by (2.5) and then by (2.4),

EV (fn, gn, f ∗
n, g∗

n) ≤ EU(fn, gn, f ∗
n, g∗

n) ≤ EU(f0, g0, f
∗
0 , g∗

0) ≤ 0. �
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We have the following result in the reverse direction, a slight modification
of Theorem 2.2 from [5]. It will be the key tool to provide the lower bound
for the constant β.

Theorem 2.3. Suppose V satisfies (2.3) and assume that the inequality
(2.2) holds for all n and all pairs (f, g) of simple martingales such that g is a
±1-transform of f . Then the class U (V ) is nonempty. Furthermore, assume
that U0 : D → R is given by

(2.7) U0(x, y, z,w) = sup{EV (fn, gn, f ∗
n ∨ z, g∗

n ∨ w)},

where the supremum is taken over all pairs (f, g) of simple martingales such
that f starts from x, g starts from y and for all n ≥ 1, dgn = ±dfn almost
surely. Then U0 is the least element in U (V ).

From now on, we will consider V = Vγ given by

Vγ(x, y, z,w) = |y| ∨ w − γ|x| ∨ z

and our aim is to find the smallest γ for which the class U (Vγ) is nonempty.
Due to the additional homogeneity of Vγ , we see that it suffices to search for a
suitable U in the class of functions satisfying U(λx,λy,λz,λw) = λU(x, y, z,w)
for all λ > 0 and (x, y, z,w) ∈ D (see (2.7)). Thus, the problem is three-
dimensional. Its solution is studied in the next sections.

3. A differential equation and the optimal value of β

In order to introduce the special function and give the description of β, we
need to consider the following auxiliary differential equation. Let w > 1 be a
fixed number. Standard argumentation yields the existence and uniqueness
of Y = Y w : [1,w] → R satisfying

(3.1) Y ′(t) =
1
2

(
1 +

1
w

)
(1 + t)−2

[
t2 + 2(1 − t)

(
exp

(
t − Y (t)

2

)
− 1

)]
,

t ∈ (1,w), with the terminal condition Y (w) = w.

Lemma 3.1. Let w > 1. Then Y w is nondecreasing and

(3.2) Y w(t) ≥ t for all t, with equality only for t = w.

Proof. Note that 2(1 − t) exp( t−Y w(t)
2 ) ≤ 0 for t ∈ (1,w), so

(Y w)′(t) ≤ 1 + w−1

2(1 + t)2
(t2 + 2t − 2) =

1 + w−1

2

(
t +

3
1 + t

)′
.

Hence, since t ≤ w and w > 1,

Y w(t) ≥ Y w(w) − 1 + w−1

2

[
w +

3
1 + w

− t − 3
1 + t

]
(3.3)

≥ w − 1 + w−1

2
(w − t) = t +

1 − w−1

2
(w − t),
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which gives (3.2). This also implies 2(1 − t)(exp( t−Y w(t)
2 ) − 1) ≥ 0 for t ∈

(1,w), so

(3.4) (Y w)′(t) ≥ 1 + w−1

2

(
t

1 + t

)2

≥ 0

and the proof is complete. �
Let β be the positive number given by

(3.5) β = min
w

{
Y w(1) +

5
4

(
1 +

1
w

)}
.

It will be shown to be equal to the best constant in (1.4). Let us provide some
approximation of β.

Lemma 3.2. We have

(3.6) 3.4142. . . < β < 3.4358. . . .

Proof. The number on the left is 2 +
√

2. To prove the bound, take w > 1
and use the first line of (3.3) with t = 1 to obtain

Y w(1) +
5
4
(1 + w−1)(3.7)

≥ w − 1 + w−1

2

(
w +

3
1 + w

− 5
2

)
+

5
4
(1 + w−1)

= 2 + w−1 +
w

2
.

The expression on the right, as a function of w ∈ (1, ∞), attains its minimum
2 +

√
2 for w =

√
2. This gives the left inequality in (3.6). To prove the right

one, we proceed as previously, using a lower bound for (Y w)′ coming from
(3.4). After integration, we get

Y w(1) +
5
4
(1 + w−1) ≤

(
1 +

1
w

)
[2 − log 2 + log(1 + w)] +

w

2
− 1,

and the upper bound in (3.6) is the minimum of the expression on the right
above. �

It is clear that the function w 
→ Y w(1) + 5/4(1 + 1/w) is continuous. In
addition, it tends to 7/2 > β as w ↓ 1 and, by (3.7), tends to infinity as
w → ∞. Hence, the minimum defining β is attained for some w0. To avoid
the question about the uniqueness of w0, let us take the smallest number
with this property. Combining (3.7) with the right inequality in (3.6), we
conclude that 1/w0 + w0/2 < 1.436, so 1.18 < w0 < 1.69. To complete the
discussion about the explicit values of β and w0, let us record here that
numerical approximation gives β = 3.4351. . . and w0 = 1.302. . . .

A few words about some auxiliary notation. Throughout the paper, we
will set w1 = Y w0(1) and write γ = −1 − 1/w0. We will also use the function
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y0 : [w1,w0] → [1,w0], the inverse of Y w0 ; we will often skip the argument
and write y0 instead of y0(w). It can be verified readily that the function y0

satisfies the differential equation

(3.8) y′
0 = − 1

γ
· 2(1 + y0)2

y2
0 + 2y0 − 2 + 2(1 − y0) exp(y0−w

2 )

for w ∈ (w1,w0). Moreover, in view of (3.2), we have

(3.9) y0(w) ≤ w for w ∈ [w1,w0], with equality only for w = w0.

We conclude this section with a technical fact, which will be needed later.

Lemma 3.3. We have

(3.10) y′
0 ≥ 1

and

(3.11) y′
0(y0 − 1) ≤ y0 + 1.

Proof. The first estimate follows immediately from the fact that

y′
0 ≥ − 2

γ
· (1 + y0)2

y2
0 + 2y0 − 2

and that both the factors are bigger than 1. To prove the second inequality,
observe that by (3.9), we have 2(1 − y0) exp(y0−w

2 ) ≥ 2(1 − y0). Plugging this
into (3.8) gives

y′
0(y0 − 1) ≤ − 1

γ
· 2(1 + y0)2

y2
0

· (y0 − 1),

so we will be done if we show that 2(y2
0 − 1) ≤ −γy2

0 . But

2(y2
0 − 1) + γy2

0 = y2
0(2 + γ) − 2 ≤ w2

0(2 + γ) − 2 = w0(w0 − 1) − 2 ≤ 0,

the latter estimate coming from the bound w0 < 2. �

4. Proof of (1.4)

In this section, we will construct an element U of U (Vβ). Consider the
following subsets of [0,1] × [0, ∞) × (0, ∞):

D1 = {(x, y,w) : w ≤ w1, y ≤ x},

D2 = {(x, y,w) : w ≤ w1, x < y ≤ x + w1 − 1},

D3 = {(x, y,w) : w ≤ w1, x + w1 − 1 < y},

D4 = {(x, y,w) : w1 < w ≤ w0, y ≤ x + y0(w) − 1},

D5 = {(x, y,w) : w1 < w ≤ w0, x + y0(w) − 1 < y ≤ x + w − 1},

D6 = {(x, y,w) : w1 < w ≤ w0, x + w − 1 < y},

D7 = {(x, y,w) : w > w0, x + y ≤ 1},
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D8 = {(x, y,w) : w > w0,1 < x + y ≤ 1 + w − w0},

D9 = {(x, y,w) : w > w0,1 + w − w0 < x + y}.

Now we introduce an auxiliary function u : [−1,1] × R × (0, ∞) → R. First,
we define it on the sets D1–D9. Let u(x, y,w) be equal to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− γ
4 (y2 − x2 + 1) + 5

4γ on D1,

3γ − γy + (x − 2)γ exp
(

x−y
2

)
on D2,

γ(3 − y) + γ exp
(

1−w1
2

)(
−1 + y − w1 − (y−w1+1)2−x2

4

)
on D3,

− γ
2(1+y0)

(y2 − x2 + 1) + w − β on D4,
2γ

1+y0
exp

(
y0−y−1+x

2

)
(x − 2) + α(y,w) on D5,

2γ
1+y0

exp
(

y0−w
2

)(
−1 + y − w − (y−w+1)2−x2

4

)
+ α(y,w) on D6,

exp(w0−w)
2w0

(y2 − x2 + 1) + w − β on D7,
(1−x)

w0
exp(x + y + w0 − w − 1) + w − β on D8,

(y−w+w0)
2−x2+1

2w0
+ w − β on D9,

where

α(y,w) = γ(1 − y) +
γy2

0 + 2γ

2(1 + y0)
+ w − β.

We extend u to its whole domain [−1,1] × R × (0, ∞), setting

(4.1) u(x, y,w) = u(−x, y,w) = u(x, −y,w) = u(−x, −y,w)

for all x ∈ [0,1], y ≥ 0 and w > 0.
In the lemma below, we describe the main properties of the function u.

For the sake of convenience and clarity of the arguments, the proofs of these
technical facts are postponed to the last section.

Lemma 4.1. (i) The function u is continuous. In addition, it is of class C1

on each of the sets {(x, y,w) : w < w1}, {(x, y,w) : w ∈ (w1,w0)}, {(x, y,w) :
w > w0}.

(ii) For all w > 0 and |y| ≤ w,

(4.2) lim
δ↓0

u(1, y,w) − u(1 − δ, y ± δ,w)
δ

≥ γ.

Furthermore, for all w > 0 and x ∈ (−1,1],

(4.3) lim
δ↓0

u(x,w,w) − u(x − δ,w − δ,w)
δ

≥ γ.

(iii) For x ∈ [−1,1] and w ∈ (0, ∞) \ {w0,w1}, we have uw(x,w,w) ≤ 0.
(iv) For any x, the function Hx : (−1 − x,1 − x) → R, given by Hx(t) =

ux(x + t, t, t) + uy(x + t, t, t), is nonincreasing.
(v) The function J : (0, ∞) → R given by J(y) = u(1, y, y) is convex.
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(vi) For any fixed w > 0, the function u(·, ·,w), restricted to the rectangle
[−1,1] × [−w,w], is diagonally concave, i.e., concave along any line of slope

±1.
(vii) For any fixed w > 0, the function y 
→ u(1, y,w) is nondecreasing on

[0,w].
(viii) For any w > 0 and |y| ≤ w,

(4.4) u(1, y,w) − (y − 1)uy(1, y,w) − wuw(1, y,w) ≤ γ.

(ix) For any w > 0 and |x| ≤ 1, |y| ≤ w we have

u(x, y,w) ≥ w − β.

(x) If w ∈ (0,1] and |x| = |y| ≤ w, then u(x, y,w) ≤ 0.

Now we introduce the special function U : R × R × (0, ∞) × (0, ∞) → R by

(4.5) U(x, y, z,w) = (|x| ∨ z)u
(

x

|x| ∨ z
,

y

|x| ∨ z
,

|y| ∨ w

|x| ∨ z

)
.

In the following theorem, we establish the inequality (1.4).

Theorem 4.2. The function U belongs to the class U (Vβ).

Proof. We check the conditions (2.3)–(2.6). The first property is evident
from the definition of U . The inequality (2.4) follows from Lemma 4.1(x).
The majorization (2.5) is a consequence of part (ix), due to the homogeneity
of U and Vβ . The main technical difficulty lies in proving the property (2.6).
Fix all the variables as in the statement and first note some reductions. Since
U is homogeneous, we may and do assume that z = 1. By the continuity
of U , we are allowed to take |x| < z and |y| < w. Moreover, since U satisfies
U(x, y, z,w) = U(x, −y, z,w), we may assume that ε = 1. Now let Φ(t) =
U(x+ t, y+ t, z,w) for t ∈ R. Lemma 4.1(i) guarantees the following regularity
of this function: Φ is continuous and differentiable at 0. In fact, the derivative
exists except for a finite number of points and the one sided derivatives of Φ
exist everywhere.

To show the condition (2.6), it suffices to prove that

(4.6) Φ(t) ≤ Φ(0) + Φ′(0)t

for positive t. Indeed, applying this to the function Φ(t) = U(−x + t, −y +
t, z,w) we get, for t < 0,

Φ(t) = Φ(−t) ≤ Φ(0) + Φ
′
(0)(−t) = Φ(0) + Φ′(0)t.

Thus, there is a linear function Ψ such that Φ ≤ Ψ on R and Φ(0) = Ψ(0);
this implies (2.6).

To show (4.6), it will be convenient to consider two cases.
The case y ≥ x + w − 1. It will be proved below that

Φ is concave on the set [0,w − y],(4.7)
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Φ′(t+) ≤ Φ′((w − y)−
)

for t ∈ (w − y,1 − x),(4.8)
Φ is convex on [1 − x, ∞),(4.9)
lim

t→∞
Φ′(t) ≤ Φ′((w − y)−

)
.(4.10)

These properties clearly yield (4.6). The first condition is a consequence of
Lemma 4.1(vi). The property (4.8) follows from parts (iii) and (iv) of this
lemma; indeed,

Φ′(t+) = lim
s↓t

(ux + uy + uw)(x + s, y + s, y + s)

≤ limsup
s↓t

(ux + uy)(x + s, y + s, y + s)

≤ limsup
s↑(w−y)

(ux + uy)(x + s, y + s, y + s) = Φ′((w − y)−
)
.

We move to (4.9). Suppose that t1, t2 ≥ 1 − x and α1, α2 ∈ (0,1) satisfy
α1+α2 = 1. Using Lemma 4.1(v), we may write, for α = α1(x+t1)+α2(x+t2)
and α′

i = αi(x + ti)/α,

α1Φ(t1) + α2Φ(t2) = α

[
α′

1J

(
y + t1
x + t1

)
+ α′

2J

(
y + t2
x + t2

)]

≥ αJ

(
α′

1

y + t1
x + t1

+ α′
2

y + t2
x + t2

)

= αJ

(
y + α1t1 + α2t2

α

)
= Φ(α1t1 + α2t2).

Finally, we turn to (4.10). We have, for sufficiently large t,

Φ(t) = U(x + t, y + t, x + t, y + t)

= (x + t)u
(

1,
y + t

x + t
,
y + t

x + t

)

=

{
γ(x + t) + 1

2γ(x − y) − γ(y−x)2

4(x+t) if y < x,

3γ(x + t) − γ(y + t) − γ(x + t) exp
(

x−y
2(x+t)

)
if y ≥ x,

from which we infer that limt→∞ Φ′(t) = γ. It suffices to use (4.3).
The case y < x + w − 1. We have

Φ is concave on the set [0,1 − x],(4.11)
Φ′(t) ≤ γ for t ∈ (1 − x,w − y),(4.12)

Φ is convex on [w − y, ∞),(4.13)
lim

t→∞
Φ′(t) ≤ Φ′(1 − x−).(4.14)
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The properties (4.11), (4.13) and (4.14) can be established in the same manner
as above. To show (4.12), note that for t ∈ (1 − x,w − y),

Φ′(t) = u(1, y′,w′) − (y′ − 1)uy(1, y′,w′) − wuw(1, y′,w′),

where y′ = (y + 1)/(x + t) and w′ = w/(x + t). It suffices to apply Lem-
ma 4.1(viii) to complete the proof. �

5. Sharpness

The purpose of this section is to show that the constant β defined in (3.5)
is optimal in (1.4). One could try to construct an example, but this leads
to very complicated calculations. We take a different approach and exploit
Theorem 2.3. The proof is much simpler, however, it is still quite involved:
for the convenience of the reader we have split it into nine lemmas.

Suppose that the inequality (1.4) holds with some constant γ. Clearly, the
set of those γ’s forms an interval of the form [β′, ∞). Let Uγ be the function
guaranteed by Theorem 2.3: we have

Uγ(x, y, z,w) = supE[g∗
n ∨ w − γf ∗

n ∨ z],

the supremum being taken over all n and all simple martingales f , g starting
from x, y, respectively, and such that dgn = ±dfn for n ≥ 1.

Lemma 5.1. The function F : [β′, ∞) → R given by F (γ) = Uγ(1,1,1,1) is
convex.

Proof. This is straightforward. Fix λ ∈ (0,1) and γ1, γ2 ≥ β′. Let f , g be
martingales starting from 1 such that dgn = ±dfn for n ≥ 1. Then for any n,

E
[
g∗

n ∨ w −
(
λγ1 + (1 − λ)γ2

)
f ∗

n ∨ z
]
= λE[g∗

n ∨ w − γ1f
∗
n ∨ z]

+ (1 − λ)E[g∗
n ∨ w − γ2f

∗
n ∨ z]

≤ λF (γ1) + (1 − λ)F (γ2).

It suffices to take supremum over f , g and n to complete the proof. �
Now suppose that the inequality (1.4) holds with some constant β0 < β. By

the previous lemma, enlarging β0 if necessary, we may assume that Uβ0(1,1,
1,1) ≤ Uβ(1,1,1,1) + 1/100. Since Uβ is the least element of U (Vβ) and U
belongs to this class, we have Uβ(1,1,1,1) ≤ U(1,1,1,1) = γ ≤ −1 − (1.7)−1.
The latter estimate follows from the bound w0 < 1.69, see Section 3. In
consequence,

(5.1) Uβ0(1,1,1,1) < −3/2.

From now on, we will work with the function Uβ0 . It satisfies (2.3)–(2.6)
(with V = Vβ0). There are two extra properties which follow directly from the
definition. First, Uβ0 is homogeneous: Uβ0(λx,λy,λz,λw) = λUβ0(x, y, z,w)
for all x, y ∈ R, z, w > 0 and λ > 0. Second, Uβ0 is symmetric in a sense that
we have Uβ0(x, y, z,w) = Uβ0(−x, y, z,w) = Uβ0(x, −y, z,w) for all x, y ∈ R,
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z, w > 0. We will use the following notation: u0(x, y,w) = Uβ0(x, y,1,w),
Aw(y) = u0(0, y,w), Bw(y) = u0(1, y,w) and γ0 = u0(1,1,1).

Lemma 5.2. For any x ∈ [−1,1], y1, y2 ∈ R and w1, w2 > 0 we have

|u0(x, y1,w1) − u0(x, y2,w2)| ≤ max{ |y1 − y2|, |w1 − w2| }.

Proof. By the triangle inequality, for any numbers a1, a2, . . . , an, b1, b2,
. . . , bn,

|y1 + a1| ∨ |y1 + a2| ∨ · · · ∨ |y1 + an| ∨ w1

− |y1 + a1| ∨ |y2 + a2| ∨ · · · ∨ |y2 + an| ∨ w2

≤ max{ |y1 − y2|, |w1 − w2| }.

In consequence, if f , g are simple martingales such that f starts from x, g
starts from 0 and dgn = ±dfn for n ≥ 1, then, by the definition of u0,

E
(
(y1 + g)∗

n ∨ w1 − β0f
∗
n ∨ 1

)
− u0(x, y2,w2)

≤ E
[(

(y1 + g)∗
n ∨ w1 − β0f

∗
n ∨ 1

)
−

(
(y2 + g)∗

n ∨ w1 − β0f
∗
n ∨ 1

)]
≤ max{|y1 − y2|, |w1 − w2| }.

It suffices to take supremum over f , g and n to obtain

u0(x, y1,w1) − u0(x, y2,w2) ≤ max{ |y1 − y2|, |w1 − w2| },

and the claim follows by symmetry. �

Lemma 5.3. For any w > 0, |y| ≤ w and δ ∈ (0,1),

(5.2) Bw(y) ≥ u0(1 − δ, y + δ,w) + δγ0.

Proof. Apply (2.6) to (x, y, z,w) := (1, y,1,w), ε = −1 and t1 = −δ, t2 > 0
(the number α is uniquely determined by t1 and t2: α = t2/(t2 + δ)). We
obtain

t2
t2 + δ

Uβ0(1 − δ, y + δ,1,w) +
δ

t2 + δ
Uβ0(1 + t2, y − t2,1,w) ≤ Uβ0(1, y,1,w).

Using (2.3) and the homogeneity of Uβ0 , we have

Uβ0(1 + t2, y − t2,1,w) = Uβ0(1 + t2, y − t2,1 + t2,w)

= (1 + t2)Uβ0

(
1,

y − t2
1 + t2

,1,
w

1 + t2

)
,

so we can rewrite the above estimate in the form
t2

t2 + δ
u0(1 − δ, y + δ,w) +

δ(1 + t2)
t2 + δ

u0

(
1,

y − t2
1 + t2

,
w

1 + t2

)
≤ Bw(y).

By (2.3), we have u0(1, y−t2
1+t2

, w
1+t2

) = u0(1, y−t2
1+t2

, | y−t2
1+t2

|) for sufficiently large t2.
Therefore, letting t2 → ∞ and using the previous lemma together with u0(1,
−1,1) = u0(1,1,1) = γ0, we get (5.2). �
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Lemma 5.4. For any w > y ≥ 1 and δ ∈ (0,1) satisfying δ ≤ (w − y)/2,

Bw(y) ≥ δAw(y + 2δ − 1) + (1 − δ)Bw(y + 2δ) + δγ0,(5.3)

Aw(y + 2δ − 1) ≥ δ

1 + δ
Bw(y + 2δ) +

1
1 + δ

u0(−δ, y + δ − 1,w)(5.4)

≥ δ

1 + δ
Bw(y + 2δ) +

δ

1 + δ
Bw(y) +

1 − δ

1 + δ
Aw(y − 1)

and

(5.5) (1 − δ)
(
Bw(y) − Aw(y − 1) + γ0

)
≥ Bw(y + 2δ) − Aw(y − 1 + 2δ) + γ0.

Proof. Applying (2.6) to (x, y, z,w) := (1 − δ, y + δ,1,w), ε = 1 and t1 =
δ − 1, t2 = δ, we obtain

δAw(y + 2δ − 1) + (1 − δ)Bw(y + 2δ) ≤ u0(1 − δ, y + δ,w).

Combining this with (5.2) yields (5.3). Similarly, if we apply (2.6) twice,
first to (x, y, z,w) := (0, y + 2δ − 1,1,w), ε = 1, t1 = −1, t2 = δ, then to
(x, y, z,w) := (−δ, y + δ − 1,1,w), ε = −1, t1 = δ − 1 and t2 = δ, we get (5.4).
To obtain (5.5), multiply both sides of (5.4) by 1+δ and add this to (5.3). �

Lemma 5.5. For any w > 1,

(5.6) Bw(w) ≤ γ0

[
3 − w − exp

(
1 − w

2

)]
.

Proof. We start with the observation that Aw(0) ≥ Bw(1), which follows
from (2.6) applied to (x, y, z,w) := (0,0,1,w), ε = 1 and t1 = −1, t2 = 1. Thus,
using (5.5) and induction,

(1 − δ)Nγ0 ≥ (1 − δ)N
(
Bw(1) − Aw(0) + γ0

)
≥ Bw(1 + 2Nδ) − Aw(2Nδ) + γ0.

Hence, if we put δ = (w − 1)/(2N) and let N → ∞, we arrive at

(5.7) Aw(w − 1) ≥ Bw(w) + γ0

(
1 − exp

(
(1 − w)/2

))
.

Now repeat the arguments leading to (5.3), with y replaced by w, to get

Bw(w) ≥ (1 − δ)Bw+2δ(w + 2δ) + δAw+δ(w + 2δ − 1) + δγ0,

so, by Lemma 5.2,

(5.8) Bw(w) ≥ (1 − δ)Bw+2δ(w + 2δ) + δAw+2δ(w + 2δ − 1) + δγ0 − δ2.

Applying (5.7) yields

Bw(w) ≥ Bw+2δ(w + 2δ) + δγ0

(
2 − exp

(
(1 − w − 2δ)/2

))
− δ2.

Using induction as in the proof of (5.7), this leads to

γ0 = B1(1) ≥ Bw(w) + γ0

[
w − 2 + exp

(
(1 − w)/2

)]
,

which is the claim. �
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Lemma 5.6. Suppose that w ∈ (1,2) and let 1 ≤ y ≤ w. Then

(5.9) Aw(y − 1)y2 ≥ Bw(y)(y2 − 2y + 2) + 2(y − 1)(w − β0).

Proof. We apply (2.6) three times:

Aw(y − 1) ≥ y

y + 2
Bw(y) +

2
y + 2

u0(−y/2, y/2 − 1,w),

u0(−y/2, y/2 − 1,w) ≥ 2 − y

y
u0(−1 + y/2, −y/2,w) +

2y − 2
y

u0(−1,0,w),

u0(−1 + y/2, −y/2,w) = u0(1 − y/2, y/2,w) ≥ y

2
Aw(y − 1) +

2 − y

2
Bw(y)

and combine these estimates with u0(−1,0,w) ≥ w − β0, a consequence of
(2.5), thus obtaining (5.9). �

Lemma 5.7. Suppose that w ∈ (1,2) and let 1 ≤ y ≤ w. Then

(
Aw(w − 1) − w + β0

)[
2exp

(
w − y

2

)
− 1

]
(5.10)

≥
(
Bw(y) − w + β0

)
(1 − 2y−1 + 2y−2) + (y − w)γ0

+ 2
(
Bw(w) − w + β0 + γ0

)[
exp

(
w − y

2

)
− 1

]

and (
Bw(y) − w + β0

)[
1 +

2(y − 1)
y2

(
1 − exp

(
y − w

2

))]
(5.11)

≥ Bw(w) − w + β0 + γ0

[
w − y − 1 + exp

(
y − w

2

)]
.

In addition,

Bw−2δ(w − 2δ)(5.12)

≥ Bw(w) + 2δγ0 −
δ exp(y−w

2 )
1 + 2y−2(y − 1)(1 − exp(y−w

2 ))

×
{
2y−2(y − 1)

(
Bw(w) − w + β0 + γ(w − y)

)
+ γ0

}
− δ2.

Proof. Using the inequality (5.5) inductively, as in the proof of (5.7), yields
the following estimate: for 1 ≤ y′ ′ ≤ y′ ≤ w,

exp
(

y′ ′ − y′

2

)(
Bw(y′ ′) − Aw(y′ ′ − 1) + γ0

)
(5.13)

≥ Bw(y′) − Aw(y′ − 1) + γ0.

Take y′ = w and note that Bw(y′ ′ + 2δ) ≥ Bw(y′ ′) − 2δ, a consequence of
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Lemma 5.2. Plug these two estimates into (5.4) to get

Aw(y′ ′ + 2δ − 1) ≥ Aw(y′ ′ − 1) +
2δ

1 + δ

[
−γ0 − δ + exp

(
w − y′ ′

2

)

×
(
Bw(w) − Aw(w − 1) + γ0

)]
.

Now set δ = (w − y)/(2N), write the above estimates for y′ ′ = y, y′ ′ = y + 2δ,
. . . , y′ ′ = y + (2N − 2)δ and sum them up. We obtain

Aw(w − 1) = Aw(y + 2Nδ − 1)

≥ Aw(y − 1) − 2δ

1 + δ
N(γ0 + δ)

+
2δ

1 + δ

(
Bw(w) − Aw(w − 1) + γ0

)
exp

(
w − y

2

)
1 − e−Nδ

1 − e−δ
.

Letting N → ∞ gives

Aw(w − 1) ≥ Aw(y − 1)

+ 2
(
Bw(w) − Aw(w − 1) + γ0

)[
exp

(
w − y

2

)
− 1

]
+ γ0(y − w)

and combining this with (5.9) yields the first estimate. We skip the proof of
(5.11), it can be established using similar argumentation. To get (5.12), plug
(5.11) into (5.10) to obtain

Aw(w − 1) ≥ Bw(w) + γ0 −
exp(y−w

2 )
1 + 2y−2(y − 1)(1 − exp(y−w

2 ))

×
{
2y−2(y − 1)

(
Bw(w) − w + β0 + γ(w − y)

)
+ γ0

}
.

It suffices to make use of (5.8) (with w replaced by w − 2δ) to complete the
proof. �

The final estimate we will need is the following. It can be established
essentially in the same manner as above; we omit the tedious and lengthy
calculations.

Lemma 5.8. For any w ≥ 1,

(5.14) Bw(w) ≥ w2(1 + γ0)
2

+ 2w − β0.

Now we are ready to complete the proof.

Sharpness of (1.4). The first observation is that γ0 ∈ (−2, −3/2). The in-
equality γ0 < −3/2 is precisely (5.1). To get the lower bound, apply (5.14)
to w = 1 to obtain γ0 ≥ 5 − 2β0 > −2 (we have β0 < β < 3.5). Now let
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v0 = −(1 + γ0)−1 ∈ (1,2), define Y v0 as in Section 3 and let y0 be the in-
verse to Y v0 . Finally, let v1 = Y v0(1) and

C(w) = − 2γ0

1 + y0

exp
(

y0 − w

2

)
+ γ0(1 − w) +

γ0(y2
0 + 2)

2(1 + y0)
+ w − β0

for w ∈ [v1, v0]. Observe that since y0(v0) = v0, we have, after some manipu-
lations,

(5.15) C(v0) =
3
2
v0 − β0 =

v2
0(1 + γ0)

2
+ 2v0 − β0 ≤ Bv0(v0),

by virtue of the previous lemma. Furthermore, it can be verified that C
satisfies the differential equation

C ′(w) = −γ0 +
exp(y0−w

2 )

2[1 + 2y−2
0 (y0 − 1)(1 − exp(y0−w

2 ))]

×
{
2y−2

0 (y0 − 1)
(
C(w) − w + β0 + γ(w − y0)

)
+ γ0

}
for w ∈ (v1, v0). Note that C ′ ′ is bounded on (v1, v0). To see this, observe
that the solution Y v0 to (3.1) can be extended to an increasing C∞ function
on a certain open interval I containing [1, v0]. Consequently, y0, y′

0, y′ ′
0 are

bounded on (v1, v0) and hence C ′ ′ also has this property. Therefore, for some
absolute constant r,

C(w − 2δ)(5.16)

≤ C(w) + 2δγ0 −
δ exp(y0−w

2 )

1 + 2y−2
0 (y0 − 1)(1 − exp(y0−w

2 ))

×
{
2y−2

0 (y0 − 1)
(
C(w) − w + β0 + γ(w − y0)

)
+ γ0

}
+ rδ2.

Combining this with (5.12), applied to y = y0 (which is allowed, since y0 ∈
(1,2)), yields

Bw−2δ(w − 2δ) − C(w − 2δ) ≥
(
Bw(w) − Cw(w)

)
· R(δ,w) − (r + 1)δ2,

where R(δ,w) is a certain constant lying in [0,1]. By induction and (5.15),
we obtain B(v1) − C(v1) ≥ 0, which implies, by (5.6), that

γ0

[
3 − v1 − exp

(
1 − v1

2

)]
≥ C(v1).

This is equivalent to

β0 ≥ v1 +
5
4

(
1 +

1
v0

)
= Y v0(1) +

5
4

(
1 +

1
v0

)

and gives β0 ≥ β, by virtue of (3.5). This contradicts the assumption β0 < β
and completes the proof. �
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6. The proof of Lemma 4.1

Proof of (i). This is straightforward. It is clear that u is of class C1 in the
interiors of D1–D9. To show the smoothness, one only needs to verify if the
partial derivatives match at the common boundaries of D1, D2, D3 (this cor-
responds to the set {(x, y,w) : w < w1}), D4, D5, D6 (the set {(x, y,w) : w ∈
(w1,w0)}) and, finally, D7, D8, D9 (the set {(x, y,w) : w > w1}). We omit
the tedious calculations. �

Proof of (ii). We will only show (4.2); the arguments leading to the second
inequality are similar. By (4.1), it suffices to establish the estimate for y ≥ 0.
Let

L− = lim
δ↓0

u(1, y,w) − u(1 − δ, y − δ,w)
δ

,

L+ = lim
δ↓0

u(1, y,w) − u(1 − δ, y + δ,w)
δ

.

We have that

L− =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− γ(y−1)
2 if y ≤ 1,w ≤ w1,

−γ + γ exp
(

1−y
2

)
if 1 < y ≤ w ≤ w1,

− γ(y−1)
1+y0(w) if y ≤ y0,w1 < w < w0,
2γ

1+y0(w) exp
(y0(w)−y

2

)
− γ if w ≥ y > y0,w1 < w < w0,

− 1
w0

exp(y + w0 − w) if y ≤ w − w0,w ≥ w0,
y−w+w0−1

w0
if y > w − w0,w ≥ w0

and it is easy to verify that none of these expressions is smaller than γ (to
check the last two, recall that γ = −1 − 1/w0). Similarly,

L+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(y+1)
2 for y ≤ 1,w ≤ w1,

γ for 1 < y ≤ w ≤ w1,

− γ(−y−1)
1+y0(w) if y ≤ y0,w1 < w < w0,

γ if w ≥ y > y0,w1 < w < w0,

− 1
w0

exp(y + w0 − w) if y ≤ w − w0,w ≥ w0,
−y+w−w0−1

w0
if w ≥ y > w − w0,w ≥ w0,

and it is not difficult to check that L+ ≥ γ. �

Proof of (iii). If w < w1, we have uw(x,w,w) = 0. Suppose that w ∈
(w1,w0). First, note that uw(1,w,w) = 0; this is equivalent to (3.8). For

|x| < 1, a little computation shows that

uw(x,w,w) = uw(1,w,w)

+
γ(x2 − 1)

4(1 + y0(w))2
exp

(
y0(w) − w

2

)(
y′
0(y0 − 1) − y0 − 1

)
,
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and the latter term is nonpositive due to (3.11). Finally, if w ≥ w0, we have
the equality again: uw(x,w,w) = 0. �

Proof of (iv). There are no points of the form (x, t, t) in the sets D4, D5,
D7 and D8. A little computation shows that

Hx(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γx/2 if (|x + t|, t, t) ∈ D1,

−γ + γ exp(x/2) if (x + t, t, t) ∈ D2,

−γ + γ(x + t + 1)exp(−x/2 − t) if (−x − t, t, t) ∈ D2,

−γ + γ exp
(

1−w1
2

)(
1+w1+x

2

)
if (|x + t|, t, t) ∈ D3,

−γ + 2γ
1+y0(t)

exp
(y0(t)−t

2

)(
1+x+t

2

)
if (|x + t|, t, t) ∈ D6,

1 − (x + t)/w0 if (|x + t|, t, t) ∈ D9.

Now it can be easily verified that Hx is continuous. Furthermore, all the
expressions above define nonincreasing functions of t. The only nontrivial
case is for (|x + t|, t, t) ∈ D6; then we have, by (3.11),

H ′
x(t) = a(t)

[
(1 + x + t)

(
y′
0(1 − y0) + 1 + y0

)
− 2(1 + y0)

]
≤ a(t)

[
2
(
y′
0(1 − y0) + 1 + y0

)
− 2(1 + y0)

]
= 2a(t)y′

0(1 − y0) ≤ 0,

where a(t) = − γ
2(1+y0)2

exp(y0−t
2 ) > 0. �

Proof of (v). A direct calculation shows that

J(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− γ
4 y2 + 5

4 for y ≤ 1,

3γ − γy − γ exp
(

1−y
2

)
for 1 < y ≤ w1,

− 2γ
1+y0

exp
(

y0−y
2

)
+ γ(1 − y) + γ(y2

0+2)
2(1+y0)

+ y − β for w1 < y < w0,

w0/2 + y − β for y ≥ w0

and

J ′(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− γy
2 for y < 1,

−γ + γ
2 exp

(
1−y
2

)
for 1 < y < w1,

γ
1+y0

exp
(

y0−y
2

)
− γ for w1 < y < w0,

1 for y > w0.

From the formulas above we infer that J is of class C1, so we will be done if
we show that J ′ ′ is nonnegative on (0,1) ∪ (1,w1) ∪ (w1,w0) ∪ (w0, ∞). This
is trivial on (0,1), (1,w1) and (w0, ∞). For y ∈ (w1,w0), we have

J ′ ′(y) = − γ

2(1 + y0)2
exp

(
y0 − y

2

)(
y′
0(1 − y0) + 1 + y0

)
≥ 0,

by virtue of (3.11). �
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Proof of (vi). By part (i) and the symmetry condition (4.1), it suffices to
check the concavity in [0,1] × [0,w]. This clearly will follow when we show
that uxx + 2|uxy | + uyy ≤ 0 in the interiors of D1–D9. One can check that for
ε ∈ {−1,1}, uxx(x, y,w) + 2εuxy(x, y,w) + uyy(x, y,w) equals⎧⎪⎨

⎪⎩
0 on Do

1 ∪ Do
3 ∪ Do

4 ∪ Do
6 ∪ Do

7 ∪ Do
9,

−γx exp
(

x−y
2

)(
ε−1
2

)
on Do

2,

− 2γx
1+y0

exp
(

y0−y−1+x
2

)(
ε−1
2

)
on Do

5

and we are done, since all the expressions above are nonpositive. �

Proof of (vii). We will show that uy(1, y,w) ≥ 0 for y ∈ (0,w). The in-
equality is evident for (1, y,w) ∈ D1 ∪ D2 ∪ D4 ∪ D8 ∪ D9; in addition, no
points of the form (1, y,w) lie in D3 ∪ D6 ∪ D7. Thus, it remains to check the
estimate for (1, y,w) ∈ D5. We have

uy(1, y,w) =
γ

1 + y0
exp

(
y0 − y

2

)
− γ ≥ γ

1 + y0
− γ,

which is positive. �

Proof of (viii). Suppose that y < 0. Then, by (4.1), we may write

u(1, y,w) − (y − 1)uy(1, y,w) − wuw(1, y,w)
= u(1, −y,w) + (y − 1)uy(1, −y,w) − wuw(1, y,w)
= u(1, −y,w) − (−y − 1)uy(1, −y,w) − wuw(1, −y,w) − 2uy(1, −y,w),

which, by the previous part, does not exceed

u(1, −y,w) − (−y − 1)uy(1, −y,w) − wuw(1, −y,w).

The latter is the left-hand side of (4.4) for −y; thus it suffices to show the
estimate for nonnegative y. Suppose first that w ≤ w1. If y ≤ 1, we have

u(1, y,w) − (y − 1)uy(1, y,w) − wuw(1, y,w) = γ +
γ

4
(y − 1)2 ≤ γ.

If y ∈ (1,w1], then

u(1, y,w) − (y − 1)uy(1, y,w) − wuw(1, y,w) = γ + γ

[
1 − y + 1

2
exp

(
1 − y

2

)]

and the expression in the square brackets is nonnegative (due to the estimate
ez ≥ 1 + z applied to z = (y − 1)/2). Now let w ∈ (w1,w0). The function
ψ : y 
→ u(1, y,w) − (y − 1)uy(1, y,w) − wuw(1, y,w) is continuous; moreover,
for y 
= y0, we have ψ′(y) = −(y − 1)uyy(1, y,w) − uwy(1, y,w), or, in an explicit
form,

ψ′(y) =

{
−γ(1 + y0)−2[−(y − 1)(y0 + 1) + wyy′

0] for y < y0,
γ

2(1+y0)2
exp

(
y0−y

2 [y′
0(y0 − 1) − (y0 + 1)]

)
for y > y0.
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Note that ψ′ ≥ 0; indeed, this is an immediate consequence of (3.10) and
(3.11). Thus, it suffices to show (4.4) for y = w. As uw(1,w,w) = 0, the
inequality takes the form

u(1,w,w) − (w − 1)uy(1,w,w) ≤ γ.

Differentiating the left-hand side, one gets

− γ(w − 1)
(1 + y0)2

exp
(

y0(w) − w

2

)(
1 + y0 − y′

0(y0 − 1)
)
,

which is negative due to (3.11). Thus,

u(1,w,w) − (w − 1)uy(1,w,w) ≤ u(1,w1,w1) − (w1 − 1)uy(1,w1,w1) ≤ γ,

as we have already checked above. Finally, assume that w ≥ w0. Then, for
y ≤ w − w0, the inequality (4.4) takes the form −β ≤ γ, which is obviously
true. If y ≥ w − w0, then

u(1, y,w) − (y − 1)uy(1, y,w) − wuw(1, y,w)

=
y − w

w0
− (y − w)2

2w0
+

w0

2
+ 1 − β ≤ w0

2
+ 1 − β

and the latter does not exceed γ: substituting γ = −1 − w−1
0 , we see that this

is equivalent to (3.7) applied to w = w0. �

Proof of (ix). By (4.1) and part (vi), it suffices to check the majorization
on the sets {(x, y,w) : x = 1, y ≥ 0} and {(x, y,w) : x ≥ 0, y = w}. Now, by
part (vii), u(1, y,w) ≥ u(1,0,w) and, as one easily verifies, the right-hand side
is not smaller than w − β. The proof is completed by the observation that for
any fixed w > 0, the function x 
→ u(x,w,w) is nonincreasing on [0,1]. �

Proof of (x). This is trivial: for x, y, w as in the statement, we have
(x, y,w) ∈ D1, so u(x, y,w) = γ < 0. �

7. Concluding remarks and related open problems

The final section of the paper is devoted to various modifications and ex-
tensions of Burkholder’s method. We will also formulate here a number of
open problems which may be investigated using this technique. Throughout
this section, unless stated otherwise, we assume that f is a martingale and g
is its transform by a certain predictable sequence bounded in absolute value
by 1.

For the sake of clarity, we have split the problems into several groups.
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7.1. Doob’s bounds. As observed by Burkholder in [4], the classical Doob’s
inequality

‖f ∗ ‖p ≤ p

p − 1
‖f ‖p, 1 < p < ∞,(7.1)

can also be established using the above approach. Due to the fact that the
transform g does not appear in this estimate, the corresponding functions V
and U will not depend on y and w. Namely, for a fixed γ > 0, let V γ

p : R ×
(0, ∞) → R be given by the formula

V γ
p (x, z) = (|x| ∨ z)p − γp|x|p

and let U (V γ
p ) consist of those U satisfying (2.3)–(2.6), which depend only on x

and z. It can be shown that this class is nonempty if and only if γ ≥ p/(p − 1),
and that Up : R × (0, ∞) → R, given by

Up(x, z) = p(|x| ∨ z)p−1

(
(|x| ∨ z) − p

p − 1
|x|

)
,

belongs to U (V p/(p−1)
p ). For details, see pages 14–15 in [4].

For 0 < p ≤ 1 Doob’s inequality does not hold with any finite constant, but
we have the following fact, due to Shao [14].

Theorem 7.1. Suppose that f is a nonnegative martingale. Then for 0 <
p < 1,

(7.2) ‖f ∗ ‖p ≤ (1 − p)−1/p‖f ‖p.

The inequality is sharp.

Proof. The original argument of Shao did not exploit Burkholder’s tech-
nique; however, the method can be successfully implemented and we take the
opportunity to present it here. Introduce the functions

Vp(x, z) = (x ∨ z)p, Up(x, z) = (x ∨ z)p−1

(
(x ∨ z) +

p

1 − p
x

)
,

given on [0, ∞) × (0, ∞). It is easy to verify that Vp and Up satisfy the
appropriate modifications of (2.3), (2.5) and (2.6): one has to restrict oneself
to nonnegative x there, and to t1, t2 ≥ −x in (2.6). On the other hand, (2.4)
is not satisfied. Nonetheless, arguing as in the proof of Theorem 2.2, we get
that (Up(fn, f ∗

n))n≥0 is a supermartingale and hence

‖f ∗
n ‖p

p = EVp(fn, f ∗
n)

≤ EUp(fn, f ∗
n) ≤ EUp(f0, f

∗
0 ) = (1 − p)−1

Efp
0 = (1 − p)−1‖f ‖p

p.

It suffices to let n → ∞ to get (7.2). To see that the constant (1 − p)−1 is the
best possible, we apply Theorem 2.3. Let U0

p : [0, ∞) × (0, ∞) → R be given
by

U0
p (x, z) = sup{EVp(fn, f ∗

n ∨ z)},
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where the supremum is taken over all n and simple nonnegative martingales
f starting from x. Then Vp, U0

p satisfy (2.3), (2.5) and (2.6). Applying the
latter condition, with x = z = 1, t1 = −1, t2 = δ (and any ε, y, w), we obtain

U0
p (1,1) ≥ δ

1 + δ
U0

p (0,1) +
1

1 + δ
U0

p (1 + δ,1).

Now use (2.3), (2.5) and the fact that U0
p is homogeneous of order p to get

U0
p (1,1) ≥ δ

1 + δ
+ (1 + δ)p−1U0

p (1,1),

or

U0
p (1,1) ≥ δ

(1 + δ)(1 − (1 + δ)p−1)
.

Letting δ → 0 yields U0
p (1,1) ≥ (1 − p)−1. This is the claim, by the very

definition of U0
p . �

7.2. Maximal Lp-estimates for martingale transforms. A natural ex-
tension of the problem studied in the present paper is the following. Let
1 < p < ∞. What are the best values of the constants κp, κ∗

p in the estimates

‖g∗ ‖p ≤ κp‖f ‖p,(7.3)
‖g∗ ‖p ≤ κ∗

p‖f ∗ ‖p?(7.4)

We can throw some light on this problem, using Doob’s bound (7.1) and
Burkholder’s famous sharp inequality (cf. [2]):

‖g‖p ≤ (p∗ − 1)‖f ‖p,

where p∗ = max{p, p/(p − 1)}. As the result, we get

(7.5) ‖g∗ ‖p ≤ p

(p − 1)2
‖f ‖p, ‖g∗ ‖p ≤ p

(p − 1)2
‖f ∗ ‖p

for 1 < p < 2, and

(7.6) ‖g∗ ‖p ≤ p‖f ‖p, ‖g∗ ‖p ≤ p‖f ∗ ‖p

for p ≥ 2. Quite surprisingly, both inequalities in (7.6) are sharp: this can
be seen by a careful study of the examples invented by Burkholder in [2] (see
page 669–670 there). On the other hand, neither of the inequalities in (7.5) is
sharp. The constant p/(p − 1)2 is not even of optimal order as p → 1 (which
is known to be O((p − 1)−1) in both the estimates). The question about
the optimal values of κp and κ∗

p in this case is open, to the best of author’s
knowledge.
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7.3. Logarithmic estimates for martingale transforms. A related and
very interesting problem is to study the inequality

(7.7) ‖g∗ ‖1 ≤ K sup
n

E|fn| log+ |fn| + L(K).

There are two questions to be answered:

(i) For which K > 0 there is a universal L(K) < ∞ such that the above
holds?

(ii) What is the optimal value of L(K)?

Both these questions seem to be open so far. Let us mention here that a similar
problem, with g∗ replaced by the one-sided maximal function supn≥0 gn, was
solved by the author in [12]. Since the full answer is quite complicated, we
will not present it here and refer the interested reader to that paper. See also
[10] for a sharp non-maximal version of (7.7).

7.4. Maximal inequalities for the martingale square function. Given
a martingale f , we define its square function S(f) by

S(f) =

( ∞∑
k=0

|dfk |2
)1/2

.

The classical problem of comparing the sizes of f , f ∗ and S(f) plays an
important role in many areas of mathematics and has been studied by many
authors. As shown by Burkholder in [3], for 1 < p < ∞ we have

(7.8) (p∗ − 1)−1‖S(f)‖p ≤ ‖f ‖p ≤ (p∗ − 1)‖S(f)‖p.

Furthermore, the left inequality is sharp for 1 < p ≤ 2, and the right is sharp for
p ≥ 2; in the remaining cases the optimal constants are not known. A related
problem is to study the maximal estimates

(7.9) cp‖S(f)‖p ≤ ‖f ∗ ‖p ≤ Cp‖S(f)‖p, 1 ≤ p < ∞.

Combining (7.8) with Doob’s inequality (7.1) we get that the above estimate
holds with cp = (p∗ − 1)−1 and Cp = p(p∗ − 1)/(p − 1). Surprisingly, for p ≥ 2
the constant Cp = p is the best possible (cf. [13] and page 19 in [4]); this should
be compared to similar phenomenon in (7.6). An important and interesting
case in (7.9) corresponds to the choice p = 1. Using a clever decomposition of a
martingale, Davis [7] proved that the estimate holds with some finite universal
c1 and C1. Later, Burkholder [6] invented a method, which is a modification of
the one presented in Section 2 and allows to obtain sharp estimates involving
f , f ∗ and S(f). Burkholder used it to show that c1 = 1/

√
3 is the best, and

obtained some tight bounds for cp when 1 < p ≤ 2. For details, we refer the
reader to that paper. However, the optimal values of cp for 1 < p < ∞, p 
= 2
and Cp for 1 ≤ p < 2 seem to be unknown so far.
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