HARMONIC FUNCTIONS ON THE DISK AND REGULAR
MATRIX SUMMABILITY

BY
A. K. SNYDER

1. Introduction

Let {x,} be a sequence of points in a topological space X, and let @ be a space
of real or complex continuous functions on X. Under what conditions is the
sequence space {{f(x.)} : fe @} summable by a regular matriz? This question
was considered by Rudin in [4] for X = 8N, the Cech compactification of the
integers, and @ = C *(X), the space of bounded real-valued continuous func-
tions on X. Rudin’s work was extended somewhat by the present writer in
[6]. Henriksen and Isbell in [2] and the present writer in [5] considered the
summability of C*(X), where X is an arbitrary countable space.

Here the question is examined in the context of certain families of harmonic
functions on the open unit disk D of the complex plane. Suppose |z,| < 1
forn = 1,2, 3,---. If {2} has a limit point in D or if {2,} approaches the
boundary exponentially, then for H”, for example, the problem is easy. In
the first case, {{f(x.)} : f e H*} is summable by a submethod of the identity.
In the latter case, no regular matrix sums {{f(z,)} : fe H7}.

Suppose |z, | < 1 and |2, | — 1. In §3 it is proved that regular summa-
bility of {{f(2.)} : f is bounded and harmonic on D} implies that the set of
limit points of {z,} has positive Lebesgue measure on the circle. In §4 the
positive regular summability of {{f(z.)} : fe H'} is characterized in terms of
boundedness of certain convex combinations of members of the Poisson
kernel. Finally, in §5 it is proved thatif 0 < r, < land D mey (1 —7,) = o,
then there exists {6,} such that { {f(r,e™)} : fe H'} is summable by a positive
regular matrix, and that the condition ) ney (1 — 7,) = o is necessary.

2. Preliminaries

Let A = (a.) be a complex infinite matrix. The matrix A may be con-
sidered as a linear transformation of complex sequences x = {x;} by the
formula

(AZ)n = D it ot T«

A is called regular if lim Az = lim z for all convergent sequences z. It is well
known that 4 is regular if and only if lim, a.. = 0 for each k, lim,, Z::l Qe = 1
and || A | = sup, D oeei|@m| < . See[8, p. 57]. If the sequence Az is
convergent, then A is said to sum the sequence z. A matrix 4 = (@) is
called positive if a,, = 0 for all n and k.
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It is known that no regular matrix sums every sequence of zeros and ones.
See [8, p. 54].

For sets S and T' with 8 < T, let x(S) denote the characteristic function of
S;ie x(8)(x) = 1lifz e S, x(S)(z) = 0 otherwise.

Throughout this article let D denote the open unit disk and C the unit circle
in the complex plane.

The Poisson kernel is the family of functions P, for 0 < r < 1 defined by
1—7
1 —2rcosf 4+ 72’
The Poisson kernel satisfies the following:
(i) P.(6) = 0;
(i) 1/2x [, P.(6) do = 1;
(iii) if 0 < § < 7 then lim SUPr-110] 25 P.(0) = 0.

P(9) =

Let f be a Lebesgue integrable function on €. The harmonie function ¢ on D
defined by

o) = o= [ 5P - o)

is called the Poisson integral of f. The basic properties of the Poisson kernel
and integral may be found in [3]. Note that the n'™® Fourier coefficient of
P, is r'".

For p = 1 let L” be the usual Banach space of complex-valued functions on

C with ) .
171 ={g [ 151 anf

L” is the space of bounded measurable functions on C' with the essential
supremum norm || f |l = esssups |f(8)]|. Recall that the conjugate space of
L'isL”. Let H? denote the closed subspace of L” consisting of those functions
f such that

f f(0)e™do =0 forn =1,23,....

Then H?” consists of all functions in L” whose Poisson integrals are analytic on
D. 1In fact, H® may be identified via the Poisson integral with the Banach
space of analytic functions on D such that the functions f,(8) = f(re”) are
bounded in L*’-norm as r — 1. See [3, p. 39] for details.

Note that functions on C are frequently identified for convenience with
functions on the interval [—, 7).

A sequence {z,} in D is called an ¢nterpolating sequence if {{f(z.)} : fe H"}

is precisély the set of all bounded complex sequences. By [3, p. 203], if
1 — 2|
1-—|2n—1l<c<1

then {z,} is an interpolating sequence.



408 A. K. SNYDER

Let m denote normalized Lebesgue measure on [—m, 7]. For £ < C, let
m(E) = m({6: ¢” ¢ E}).

3. Measure of the set of limit points

Assume that {z.} < D, |2,| — 1, and that the set E of limit points of {2,}
has Lebesgue measure zero on the circle. A certain regular matrix B cor-
responding to {z,} will now be constructed. The existence of B solves the
summability question in the negative.

Using the regularity of Lebesgue measure, choose a sequence {F} of disjoint
closed subsets of C such that Uy Fr € C ~ E and D e m(Fi) = 1. Let
f be the Poisson integral of x(F). Define a matrix B = (bu;) by bue = f(2n).

3.1 LemMma. The matriz B 1s regular.
Proof. For each k the closed sets Fy, and E are disjoint. Let 2z, = 7, e,
There exists 8 > 0 and N such that |6, — ¢| = 6forallteFrandn = N. It

follows from property (iii) of the Poisson kernel that
bue = fu(22) =0 as n—
for each k. Also, note that for n fixed,
P, (0, — t) 2im x(Fi) (8) = Pr,(6n — ©)

almost everywhere. By the monotone convergence theorem [1, p. 112] and
properties (i) and (ii) of the Poisson kernel,

D bw = 2 fi(za) = 1
for each n. Finally, B is positive, so || B || < «. The result follows.

3.2 THEOREM. Assume that {z,} D, |2,| — 1, and m(E) = 0 where E is
the set of limit points of {z.}. Then no regular matriz can sum all bounded
harmonic functions on D restricted to {z.}.

Proof. Assume that the regular matrix 4 does sum {{f(z,)} : f is bounded
and harmonic}. Construct a regular matrix B as in 3.1. Then the matrix
AB is regular.

Let S be an arbitrary set of positive integers. Then

ABx(8) = A({Zkesbu}) = A({2nes fi(2a)}).

But _iesfi is the Poisson integral of x(Ukes Fi), so > kesfr i a bounded
harmonic function. It follows that AB sums x(S). But this is a contra-
diction since no regular matrix sums every sequence of zeros and ones.

Note that the condition m(E) > 0 is not sufficient for regular matrix sum-
mability. In fact, there is an interpolating sequence {z,} such that C = E.
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4. The principal result

4.1 THEOREM. Assume that {z,} C D, 2, = r,e™, and r, — 1. Let
Py(t) = P,(6r — t) and C, = convex hull of {Pxs:k = n}. Then
{{f(2n)} : f e H'} s summable by a positive regular matriz if and only if there
extsts Qn € C,, for each n such that {|| Qn ||«} 7s bounded.

Proof. Let A = (am) sum {{f(z,)} : fe H'} with A positive regular.
Now

A({f(z)}) Z anf(22)
= ,; e [Ql; [: FO P (6 — 1) dt]
= 2%, :f(t) [g ancPr (01 — t)] dt

-~ FOKL(E) di say,

using the monotone convergence theorem. Let

Rai) = o= [ 50K at

By the Banach-Steinhaus closure theorem [7, p. 117], each K, is a bounded
linear functional on H'. Also, {K,(f)} converges for each f in H'. By the
uniform boundedness principle [7, p. 116, Theorem 1], || K, || = || K |lo = M,
say, for all n. Now for each positive integer m choose p,, and ¢, such that

Do Qo Dttt Gpps < 1/2.

Let Qn = (D8 0pp i) - Dot @p,x Pr . Then {Q,)} is the required sequence
of functions.

Conversely, choose Q, = D e ant Py e C, for each n such that {]| Qn [|«}
is bounded. Using a typical diagonal process, it may be assumed that

Qo(f) = —[ F(£)Q,,(t) dt converges as n — o«

for each f(¢) = ¢™, m = 0. Hence, Q,,(P) converges for each polynomial P.
By [7, p. 118], it follows that Qpﬁ( f) converges for all f in H', since the poly-
nomials are dense in H* and {|| @, ||} is bounded. But

Qo) = 200 ap, f(2),
so the matrix A = (ap, ) sums {{f(z.)} : fe H'}.

4.2 CoroLLARY. If {{f(2.)} : feH'} s summable by a positive regular
matriz, then so s the family of restrictions to {z,} of the Poisson integrals of L'
Junctions on C.
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Proof. Just modify the second half of the proof of 4.1 by requiring that
Q.. (e™) converges for negative m as well.

4.3 Example. Let 6; = 2kn/n for integers n and k satisfying 0 < k < n,
and let 7, = 1 — 1/n. Let {2,} be the sequence

9091 092 0,2 103 0,8 023
{rie™ [ re” [ rae™t [ rse” ,rze”t et oo}

in D. It follows from 4.1 that {{f(2.)} : fe H'} is summable by a positive
regular matrix, for consider

Qu(t) = (1/n) 2050 P, (6% — ¢).

Now
1 n—1 o Lol iphin —ipt
t) == P | 300" 0P
CXOREIND My
0 | n—l
— Z Tn [Z e2l“lpk/‘n] —zpt
p=—cx N F=0

Let ¢p be the p“‘ Fourier coefficient of @, . Note that if p is not a multiple of
n, then ¢ = 0, whereas if p = mn, then ¢ = r'2!. Hence,

= 2 e+ 1
< Imin -
llQ”I|°°=m;oor” 1_,’,: 1"—)6_1-

In particular, {|| @. ||«} is bounded. The boundedness of {|| @, ||»} Will follow
also from the considerations of §5.

5. Behavior of the moduli

5.1 TaEorEM. If {{f(2.)} : fe H'} is summable by a positive regular matriz,
then Y maa (1 — | 22|) = .

Proof. Using 4.1 let Q, = 2 pen @m: Pi € C, such that || Q. |« < M, say,
for alln. Now

e LB P 2 Qe 2 M,
1 — |z
S0
& 1 — ||
= 2, o M?:lwlz |
Therefore,
1 —|z| _
,;1+|zk| -
S0 2=z =-.
k=1

By a sequence of lemmas involving estimates of the Poisson kernel, it will
be shown that the requirement Y g (1 — |z |) = o cannot be strengthened.
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5.2 LEMMA. Assume thatnd < /6,0 = 1 — r,and r = 1/2. Then

P,(nf) = (12/n")P.(6).
Proof.
P.(nf) 1 — 2rcosf 4+ r”
P.6) 1 —2rcosnd+ 1

1—2r(1—%2——)+ 2

4’
1~2r<1—’3-"1+"”)+r2

(1—r)2+2r(—+2—4)
T Q- ("0 —ﬁ)

IIA

2 24

1 —=7r) 4+ 2r6?
2 A2
(1—r)+ ’"20

2r
e 12

+ n?

—

N|§

5.3 Lemma. Assume that
Sia(l—n) =6/2 1/2SnSns<--=r, ond
1—r 2 (1 —mn)/2
Let0y = k(1 — rn) for1 < k < n. Let
R(t) = 2ie1 (1 — 1) Pry(6s — £).

Then there exists a constant M such that || R ||« < M, independent of the choice of
{re} satisfying the above conditions.

Proof. Let =1 — r,. Note that
=n(l—mn) =201l —r) £ 22 m (1 —n) <6

Also, note that in general (1 — r)P,(0) = 2.

Suppose first that (n + 1)8 < ¢ < 2x. Then cos (6 — &) =< cos6 and
cos (6, — t) < cosf; cos (f2 — t) < cos 20 and cos (0.—1 — &) < cos 20; ete.
Therefore,

R(t) = 220 (1 — n)Pry(6 — ©)
= (1 — n)P,(8) + (1 — )Py, (20)
+ oo+ (1 = 1P, (20) + (1 — 7,)P, (6)



412 A. K. SNYDER

S L=r)P(1—r)+ (A —1n)P,(2(1 — 1))
+oo+ (1= ra)Pr, (2(1 = 701)) + (1 — 1) P (1 — 1)
= (1= n)P(1 —mn) + (12/2)(1 — 1) P, (1 — 1)
+ (12/3°)(1 = m)Ppry(1 = 15) 4+ + (1 — ra)Pp (1 — 1)
<48 3K
Now suppose |6, — ¢| < 6. Then cos (fpus — t) < cosf and

cos (02 — t) = cos0; cos (043 — t) < cos 20 and cos (0,3 — t) < cos 26;
etc. Therefore, as above,

R(t) = 2251 (1 — n)Pu(B — £) + Zppiss (1 — m)Pp(6 — 1)
<6448 pa k2
54 Lemma. Let R(t) be defined as in 5.3. If
W+ 2vV(1—r) St 2r+60—2v(1 —ri),

R(t) £ 21 (1 —m).
Proof. Tor each k, cos (6, — t) < cos (2/(1 — 13)) < 1, S0

then

_ 1—ri
Pry(0 — 1) = 1 —2r,cos (6, —t) + r2 =1

and the result follows.

5.5 LEmma., There exists a constant N such that for any {ri, ra, -+, 7}
satisfying

(i) 68/64 =n=mn=---=rm<land

(i) 2k (l—m) =1,
there extsts {01, 0z, - -+ , 0,} such that || S ||o < N where
8(t) = i1 (1 — 74)Pry (6, — t).
Proof. For each positive integer p let
I,={n:27°%<1—mn=<277%,

Renumber the sets I, deleting those which are empty. Let R, be the function
constructed in 5.3 for the members of I,. Then define the following:

(i) mp = min {k : reel,};

(ii) m, = cardinality of {k: rv e I,};
(iii) ap = ny(1 — 7m,) + 24/(1 — ryznp);
(iv) Sp(t) = Rp(t — 2851 au);

(v) 8(t) = 225 8,(2).
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Note that
Zzn op = Zp [np(1 — 7m,) + 24/(1 — 7'?»,,)]
202 Zonier, (1 — 1) + 2v20/(1 = 14,)]
2 E;:Bl (1—m) + Z:_l o~p=2/2
24+ 27"/(1 —27") < 2m

Therefore, by 5.3 and 5.4, || S lo £ M + X ia (1 — 1) < M + 1, where M
is the constant for 5.3.

A HIA

I\

5.6 THEOREM. Assume that Zf..l a1 - rk)‘ = o where 0 = 1, < 1 and
1o — 1. Then there exists {6} such that {{f(ry €”k)} : f e H'} is summable by a
positive regular matriz.

Proof. Choose an increasing sequence {p,} of positive integers such that
1/2 = 2025 (1 —m) S 1

for each n. Of course, it may be assumed that 11 = 63/64 and {rs} is increas-
ing.
For each n let S, be the function constructed in 5.5 for

T s Toutt s =0 5 Toaia}
Then || S, ||« = N for each n as in 5.5. Let
Qv = (2825, (1 — 1)) 78
Then || Q. ||« = 2N for each n, and the result follows from 4.1.
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