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1. Introduction

Let xn} be a sequence of points in a topological space X, and let ( be a space
of real or complex continuous functions on X. Under what conditions is the
sequence space {/f(xn)} f e (} summable by a regular matrix? This question
was considered by Rudin in [4] for X N, the (ech compactification of the
integers, and a C*(X), the space of bounded real-valued continuous func-
tions on X. Rudin’s work was extended somewhat by the present writer in
[6]. Henriksen and Isbell in [2] and the present writer in [5] considered the
summability of C* (X), where X is an arbitrary countable space.
Here the question is examined in the context of certain families of harmonic

functions on the open unit disk D of the complex plane. Suppose [z < 1
tor n 1, 2, 3, .... If/z} has a limit point in D or if {z} approaches the
boundary exponentially, then for H, for example, the problem is easy. In
the first case, {f(x) f e H} is summable by a submethod of the identity.
In the latter case, no regular matrix sums {{f(z)} :f e H}.

Suppose z < 1 and z -- 1. In 3 it is proved that regular summa-
bility of {{f(z)} :f is bounded and harmonic on D} implies that the set of
limit points of (z} has positive Lebesgue measure on the circle. In 4 the
positive regular summability of {{f(z)} :f e H1} is characterized in terms of
boundedness of certain convex combinations of members of the Poisson
kernel. Finally, in 5 it is proved that if 0 <- rn < 1 and =1 (1 r) ,
then there exists/O} such that {f(r, e) f H} is summable by a positive
regular matrix, and that the condition -’=1 (1 r) is necessary.

2. Preliminaries

Let A (ak) be a complex infinite matrix. The matrix A may be con-
sidered as a linear transformation of complex sequences x {xk} by the
formula

(Ax) = a, x

A is called regular if lira Ax lim x for all convergent sequences x. It is well
known thut A is regular if and only if lim an 0 for each It, lim kl an 1
and IIAII sup-’=llal < . See [8, p. 57]. If the sequenceAxis
convergent, then A is said to sum the sequence x. A matrix A (a) is
called positive if a 0 for all n and k.
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It is known that no regular matrix sums every sequence of zeros and ones.
See [8, p. 54].
For sets S and T with S c T, let x(S) denote the characteristic function of

S; i.e. x(S) (x) 1 if x e S, x(S) (x) 0 otherwise.
Throughout this article let D denote the open unit disk and C the unit circle

in the complex plane.
The Poisson kernel is the family of functions Pr for 0 =< r < 1 defined by

1 rPr(0)
1 2rcos0ff- r2"

The Poisson kernel satisfies the following"

(i) Pr(O) >- 0;
(ii) 1/2f- Pr(O) dO 1;
(iii) if 0 < < r then lim sup,0, a P(O) O.

Let f be a Lebesgue integrable function on C. The harmonic function g on D
defined by

g(re) f(t)G(O t) dt

is called the Poisson integral of f. The basic properties of the Poisson kernel
and integral may be found in [3]. Note that the nh Fourier coefficient of
P is rInl.
For p >_- 1 let L be the usual Banach space of complex-valued functions on

C with

{i S PdO}lip

f II, G f(0)

L is the space of bounded measurable functions on C with the essential
supremum norm IIf II ess supolf(o)l. Recall that the conjugate space of
L is L. Let H denote the closed subspaee of L consisting of those functions
f such that

f’__ f(O) dO 0 forn 1, 2, 3,eino

Then H consists of all functions in L whose Poisson integrals are analytic on
D. In fact, H may be identified via the Poisson integral with the Banach
space of analytic functions on D such that the functions fi(O) f(re) are
bounded in LCnorm as r -- 1. See [3, p. 39] for details.
Note that functions on C are frequently identified for convenience with

functions on the interval [--r, ].
A sequence {Zn} in D is called an interpolating sequence if {{f(zn)} f e H}

is precis61y the set of all bounded complex sequences. By [3, p. 203], if

<c<l

then {z} is an interpolating sequence.
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Let m denote normalized Lebesgue measure on [-, ]. For E C, let

m(E) m({O ee E} ).

3. Measure of the set of limit points
Assume that {z} D, z, - 1, and that the set E of limit points of {z}

has Lebesgue measure zero on the circle. A certain regular matrix B cor-
responding to {z} will now be constructed. The existence of B solves the
summability question in the negative.

Using the regularity of Lebesgue measure, choose a sequence {F} of disjoint
closed subsets of C such that (J-F C E and -m(F) 1. Let
f be the Poisson integral of x(F). Define a matrix B (b) by b, f(z,).

3.1 LEMMA. The matrix B is regular.

Proof. For each/c the closed sets F and E are disjoint. Let z, r. e’.
There exists > 0 and N such that I. -> for all e F and n => N. It
follows from property (iii)of the Poisson kernel that

b f(z)

for each k. Also, note that for n fixed,

P(O t) - x(F)(t) P(O, t)

almost everywhere. By the monotone convergence theorem [1, p. 112] and
properties (i) and (ii) of the Poisson kernel,

Zk.=l bnk Zk.l fk(Z) 1

for each n. Finally, B is positive, so IIB I! < . The result follows.

3.2 THEOrEm. Assume that {z,}
the set of limit points of {z,}. Then no regular matrix can sum all bounded
harmonic functions on D restricted to

Proof. Assume that the regular matrix A does sum {{f(z.)} f is bounded
and harmonic}. Construct a regular matrix B as in 3.1. Then the matrix
AB is regular.

Let S be an arbitrary set of positive integers. Then

ABx(S) A ({,s b,} A ({,sf(z,)} ).

But ,sf is the Poisson integral of x(tJ,sF), so ,sf is a bounded
harmonic function. It follows that AB sums x(S). But this is a contra-
diction since no regular matrix sums every sequence of zeros and ones.
Not that the condition re(E) > 0 is not sufficient for regular matrix sum-

inability. In fact, there is an interpolating sequence {z,} such that C E.



HARMONIC FUNCTIONS AND REGULAR MATRIX SUMMABILITY 409

4. The principal result
4.1 THEOREM. Assume that {z,} c D, z,, r, en, and r, 1. Let

Pk(t) Prk(Ok t) and C, convex hull of {P: k >- n}. Then
{{f(z)} :f e H1} is summable by a positive regular matrix if and only if there
exists Q, e C for each n such that ll Q I} is bounded.

Let A (a) sum {f(z.) f e H1} with A positive regular.Proof.
Now

using the monotone convergence theorem. Let

g,(f) f(t)g,(t) d.

By ghe Banaeh-Steinhaus closure gheorem [7, p. 117], each/, is a bounded
linear functional on H1. Also, {/(f)} converges for each f in H. By he
uniform boundedness principle [7, p. 116, Theorem 1], II/, [I II K, I], -<- M,
say, for all . Now for each positive integer m choose p and q such that

LetQ (a,)-I-a. Pk. Then Q} is the required sequence
of functions.

Conversely, choose Q. ’aP e C. for each n such that
is bounded. Using a typical diagonal process, it may be assumed that

(f) f(t)Q(t) dt converges as n --+

for each f(t) et, m => 0. Hence, ((P) converges for each polynomial P.
By [7, p. 118], it follows that Q(f) converges for all f in H, since the poly-
nomials are dense in H and Ill Q II} is bounded. But

((f) a., f(zk),
Hso the matrix A (a..) sums {f(z.) f e }.

4.2 ConoAnv. If {{f(z,)}’fe H} is summable by a positive regular
matrix, then so is the family of restrictions to {z} of the Poisson integrals of L
functions on C.
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Proof. Just modify the second half of the proof of 4.1 by requiring that
n(emt) converges for negative m as well.

4.3 Example. Let O 2k/n for integers n and k satisfying 0

_
k < n,

and let r 1 1In. Let {z} be the sequence

rl ez e ez e eiz er2 r2 r3 r8 r3

Hin D. It follows from 4.1 that {{f(z)} f e is summable by a positive
regular matrix, for consider

Now
Q,(t) (l/n) 0 P.(0’ t).

Q.(t) 1_ _,
n -o ---

Let c be the p Fourier coefficient of Q. Note that if p is not multiple of
n, then c 0, whereas if p ran, then c r. Hence,

Q] r 2
1-- 1 r e-- 1"

In particular, [ Q, is bounded. The boundedness of ( Q. [ will follow
also from the considerations of 5.

5. Behavior o the modli

5.1 THEOREm. If {f(Z) f H] is summable by a positive regular matrix,
ten

_
(

Proof. Using 4.1 let Q. .aP C such that Q. [[ M, say,
for all n. Now

a 1 z
so

Therefore,

o E] (i I l) .
By a sequence of lemmas involving estimates of the Poisson kernel, it will

be shown that the requirement k-i (1 z I) cannot be strengthened.
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Proof.

Assume that nO <- %/’), 0 1 r, and r >= 1/2. Then

P,(nO) <- (12/n)P,(8).

P(nO) 1 2r cos -t- r
P(O) 1 2r cos nO + r

02 O)1--2r 1
2 2-4 Tr
n0

1--2r 1 --- - --] -t-

(1 r) -- 2r (n

r

(1 r) -t- 2rO

(1 r) -- rn21 - 2r 12_<
rn -.

5.3 LEMMA. Assume that

_(1 r) =< 2, 1/2_-< r_-< r._-< -< r, and

1 r. _>- (1

Let Ok (1 rl) for l <-- tc <= n. Let

R(t)

_
(1 rk)P,(Ok t).

Then there exists a constant M such that II R II <= M, independent of the choice of
Irk} satisfying the above conditions.

Proof. Let0 1-r. Note that

nO n(1 r) -< 2n(1 r.) _-< 2 .. (1 rk)

_
/’.

Also, note that in general (1 r)P,(O) <- 2.
Suppose first that (n 1)0 _-< -< 2. Then cos (0 t)

_
cos 0 and

cos (0. -t) <- cos ; cos ( t) -< cos 20 and cos (._ t) =< cos 2; etc.
Therefore,

R(t) ,"- (1 rk)P,(O t)

<- (1 r)P,(O) -t- (1 r)P(20)

-t-"" + (1 --r_)P,_(20) + (1



412 A. K. SNYDER

-< (1 r)P,(1 r) -[- (1 r)P(2(1 r.))
q-... q- (1 r,_)P_(2(1 r,_)) q- (1 r)P,(1 r)

=< (1 r)P,(1 r) q- (12/2)(1 r.)P(1 r)
q- (12/3)(1 r)P,(1 r) q-... q- (1 r,)Pr,(1

Now suppose J0,- t] < 0. Then cos (0- t)

_
cos0 and

cos (0_ t) -< cos 0; cos (0,+ t) =<. cos 20 and cos (0,, t) =< cos 20;
etc. Therefore, as above,

R,(t) v’,+
z.,--- (1 r)P,(O t) q- 1-1> (1 r)P,(O t)

=< 6 q- 48 /-.
5.4 LEMX. Let R (t) be defined as in 5.3. If

nO q- 2V(1 r) -< -< 2r q- 0 2V’(1 r),
then

__< (1

Proof. For each/, cos (0 t)

_
cos (2V’(1 r)) __< r, so

1--r < 1Pro(G--t) 1-2rcos(0-t) q-r
and the result follows.

5.5 LEMM. There exists a constant N such that for any {r, r.,
satisfying

(i) 63/64 =< r =< r =< _-< r, K land
(ii) Y]. (1 r) -< 1,

there exists 0 0. 0,,} such that II S II <- N where

S(t) - (1 r)P(O t).

Proof. For each positive integer p let

I {r" 2-- < 1 -r =< 2--}.
Renumber the sets I deleting those which are empty. LetR be the function
constructed in 5.3 for the members of I. Then define the following"

(i) m min{/c’reI};
(ii) n cardinality of {/" r e I}
(iii) a n(1 r) q- 2v’(1 r)
(iv) ,S’(t) R(t _,.: a);
(v) s(t) &(t).
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Note that

a [n(1 r) - 2v/(1 r)]
_<_ [2 k,zp (1 ra) + 22(1 r)]
2(1 r) + _,2
2 + 2-//(1 2-’) < 2.

Therefore, by 5.3 and 5.4, S ]] M + (1 r) M + 1, where M
is the constant for 5.3.

5.6 TheoReM. Asmethat (1 r) where O r < 1 and
r 1. Th there exists 0 such that {f(r ek) f e is summable by a
positive regular matrix.

Proof. Choose an increasing sequence {p} of positive integers such that

1/2 - (1 r) < 1

for each n. Of course, it may be assumed that r, 63/64 and {r} is increas-
ing.

For each n let S. be the function constructed in 5.5 for

{r, r+,, r.+,}.
Then ] S ] N for each n as in 5.5. Let

Q. (’+’_. (1 r) )-S.
Then ] Q 2N for each n, and the result follows from 4.1.
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