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THE PATH-CONNECTIVITY OF MRA WAVELETS IN L2(Rd)

ZHONGYAN LI, XINGDE DAI, YUANAN DIAO AND WEI HUANG

Abstract. We show that for any d × d expansive matrix A with
integer entries and | det(A)| = 2, the set of all A-dilation MRA

wavelets is path-connected under the L2(Rd) norm topology. We

do this through the application of A-dilation wavelet multipliers,

namely measurable functions f with the property that the inverse

Fourier transform of (fψ̂) is an A-dilation wavelet for any A-

dilation wavelet ψ (where ψ̂ is the Fourier transform of ψ). In this

process, we have completely characterized all A-dilation wavelet
multipliers for any integral expansive matrix A with | det(A)| = 2.

1. Introduction

Let A be a d × d real expansive matrix, i.e., a matrix with real entries
whose eigenvalues are all of modules greater than one. An A-dilation wavelet
is a function ψ ∈ L2(Rd) such that the set

{ | detA| n
2 ψ(Ant − �) : n ∈ Z, � ∈ Zd}

forms an orthonormal basis for L2(Rd). For any function f(t) ∈ L1(Rd) ∩
L2(Rd), its Fourier transform is defined by

(1.1) F (f(t)) = f̂(s) =
1

(2π)
d
2

∫
Rd

f(t)e−it◦s dt,

where t ◦ s is the standard inner product of the vectors s, t ∈ Rd. The inverse
Fourier transform will be denoted by F −1.
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One of the many problems in wavelet theory concerns the construction
of different wavelets. Naturally, one may attempt to construct new wavelets
from an existing one. This approach leads to the concept of wavelet multipliers
[3]. A measurable function f is called an A-dilation wavelet multiplier if the
inverse Fourier transform of (fψ̂) is an A-dilation wavelet for any A-dilation
wavelet ψ. Our study in this paper concerns the case where the dilation
matrix A is an expansive matrix with integer entries such that | det(A)| = 2.
For such matrices, the wavelet multipliers have been studied extensively and
are completely characterized for dimension 1 [11, 14] and dimension 2 [9, 10].
These results then lead to the characterization of the phases of A-dilation
MRA wavelets and the establishment of the path-connectedness of the set of
all A-dilation MRA wavelets under the L2(R1) or L2(R2) norm topology for
dimension d = 1 and dimension d = 2. Here in this paper, we will generalize
the above mentioned results to all d × d expansive matrices with integer entries
and determinant ±2. It is important for us to point out that the approach
used for the case d = 2 depends on certain special properties a 2 × 2 integral
expansive matrix A (with | det(A)| = 2) possesses [9, 10]. This is no longer
the case for d ≥ 3 so a different approach has to be used.

The rest of the paper is organized as follows. In the next section, we intro-
duce the notations and terms needed for this paper, with some preliminary
results needed in the later sections. In Section 3, we state and prove our
results on wavelet multipliers on L2(Rd). In Section 4, we prove the path-
connectivity of the set of all A-dilation MRA wavelets. In the last section, we
compare our approach in this paper with the ones used in lower dimensions
(d = 1 and d = 2). We show that in the higher dimensions d ≥ 3 there exist in-
tegral expansive matrices that would prohibit the direct generalizations of the
approaches used to solve the path-connectivity of A-dilation MRA wavelets
in d = 1 and d = 2 ([9]–[11], [14]).

2. Notations, definitions and preliminary results

Let M
(2)
d (Z) be the set of all d × d expansive integral matrices (i.e., matrices

with integer entries) whose determinants are ±2. Throughout this paper, we
will limit our discussion to matrices A ∈ M

(2)
d (Z). We will use T , DA as

the translation and dilation unitary operators acting on L2(Rd) defined by
(T �f)(t) = f(t − �), (DAf)(t) = | det(A)| 1

2 f(At), ∀f ∈ L2(Rd), t ∈ Rd and
� ∈ Zd. A measurable function ψ ∈ L2(Rd) is called an A-dilation wavelet
if {Dn

AT �ψ : n ∈ Z, � ∈ Zd} is an orthonormal basis for L2(Rd). Whenever
we state that two functions f , g ∈ L2(Rd) are equal, it is understood that
f(s) = g(s) for almost all s ∈ Rd. Furthermore, we say that E = F for two
measurable sets F and E in Rd if (F \ F ) ∪ (E \ F ) is a measure zero set.
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Definition 2.1. A sequence {Vj : j ∈ Z} of closed subspaces of L2(Rd) is
called an A-dilation multi-resolution analysis (or A-dilation MRA for short)
if the following hold:
(i) Vj ⊂ Vj+1, ∀j ∈ Z;
(ii)

⋂
j∈Z

Vj = {0},
⋃

j∈Z
Vj = L2(Rd);

(iii) f(t) ∈ Vj if and only if f(A−jt) ∈ V0 for j ∈ Z; and
(iv) There exists φ(t) in V0 such that {φ(t − �) : � ∈ Zd} is an orthonormal

basis for V0.

The function φ(t) defined in (iv) above is called an A-dilation scaling func-
tion for the MRA. In our case, it is known that a single A-dilation wavelet
can be derived from the above A-dilation MRA [12] (due to the fact that
| det(A)| − 1 = 1). An A-dilation wavelet ψ ∈ V1 ∩ V ⊥

0 so obtained is called an
MRA wavelet. For any f ∈ V1, f(A−1t) ∈ V0, hence we have

(2.1) f(t) = | det(A)|
∑
�∈Zd

c�φ(At − �).

If we define mf (s) =
∑

�∈Zd c�e
−i�◦s, then by taking Fourier transform on both

sides of (2.1) we obtain f̂(Aτs) = mf (s)φ̂(s), where Aτ is the transpose of A.
In particular, we have

(2.2) φ̂(Aτs) = m(s)φ̂(s)

for some function m(s) of the form similar to (2.1). m(s) is called the low
pass A-dilation filter of the MRA.

A measurable function f(t) ∈ L2(Rd) is called a 2πZd periodic if f(t +
2π�) = f(t) on Rd for any � ∈ Zd.

The following lemmas are well-known results and can be easily obtained
by standard textbook arguments [2, 4, 7].

Lemma 2.1. ψ is an A-dilation wavelet iff the following conditions hold:
(i) ‖ψ‖2 = 1;
(ii)

∑
j∈Z

|ψ̂((Aτ )js)|2 = 1/(2π)d and

(iii)
∑∞

j=0 ψ̂((Aτ )js)ψ̂((Aτ )j(s + 2π�)) = 0 ∀� ∈ Zd \ AτZd.

Lemma 2.2. An A-dilation wavelet ψ is an A-dilation MRA wavelet iff

(2.3) Dψ(s) =
∞∑

n=1

∑
�∈Zd

∣∣ψ̂(
(Aτ )n(s + 2π�)

)∣∣2 =
1

(2π)d
.

Lemma 2.3. φ is an A-dilation scaling function for an MRA iff the follow-
ing conditions hold:

(i)
∑

�∈Zd |φ̂(s + 2π�)|2 = 1/(2π)d;
(ii) limj→∞ |φ̂((Aτ )−js)| = 1/(2π)

d
2 and
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(iii) there exists a 2πZd periodic function m(s) ∈ L2([−π,π)d) such that
φ̂(Aτs) = m(s)φ̂(s).

Lemma 2.4 below describes some special properties a matrix in the set
M

(2)
d (Z) possesses. Its proof is elementary and our reader can also refer to

[5].

Lemma 2.4. Let A ∈ M
(2)
d (Z). Then the group Zd/AτZd is isomorphic to

(Aτ )−1Zd/Zd and the order of Zd/AτZd is equal to 2. In particular, for any
h1 ∈ Zd \ AτZd, Zd = AτZd ∪ (AτZd + h1) and (Aτ )−1Zd = Zd ∪ (Zd + h2)
where h2 = (Aτ )−1h1.

Remark 2.1. Since A ∈ M
(2)
d (Z), any noninteger entry in (Aτ )−1 is a ra-

tional number with denominator 2 (namely a number of the form 1
2 (2r + 1)

with r ∈ Z. It follows that h2 = (Aτ )−1h1 /∈ Zd has at least one noninteger
entry and all noninteger entries are rational numbers with denominator 2. We
will use ρ(h2) to denote the index of the first such noninteger entry in h2.

Remark 2.2. Notice that for h1,h′
1 ∈ Zd \ Aτ (Zd) and h2 = (Aτ )−1h1,

h′
2 = (Aτ )−1h′

1, we have ρ(h2) = ρ(h′
2) since h2 − h′

2 ∈ Zd. Thus the index
ρ(h2) only depends on A. Hence, it is appropriate to denote such an index by
ρ(A). Let u ∈ Rd be the vector with all of its entries being zero except that at
its ρ(A)th coordinate, where it has 1 as its entry. Then e±i2πh2◦u = −1. We
leave it to our reader to verify that there is a unique element h1 ∈ Zd \ AτZd

such that (Aτ )−1h1 = h2 is a nonzero vector whose entries are either 1/2 or
0. In this case h2 ◦ u = 1/2. From now on, h1 and h2 will be understood to
be these two uniquely determined vectors to avoid any confusion.

Lemma 2.5. Suppose that ψ is an A-dilation MRA wavelet with scaling
function φ and low pass filter m(s), then

|φ̂(s)|2 =
∞∑

j=1

|ψ̂((Aτ )js)|2,(2.4)

|m(s)|2 + |m(s + 2πh2)|2 = 1.(2.5)

A measurable set F ∈ Rd is called a 2πZd translation tiling domain (or
just a tiling domain for short) if {F + 2π� : � ∈ Zd} is a partition of Rd. It
is shown in [6] that there exist special translation tiling domains F with the
property that 0 ∈ F , F ⊂ AτF and

⋃
n≥0(A

τ )nF = Rd. The set E = AτF \ F

is called a generalized Shannon-type wavelet set (from which an A-dilation
MRA wavelet can be obtained). A function f with the property |f | = 1 is
called a unimodular function.

Proposition 2.1. Let φ ∈ L2(Rd) be a scaling function for an A-dilation
MRA {Vj } and let m be its associated low pass filter. Let ψ ∈ W0 = V1 ∩ V ⊥

0 ,
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then {ψ(t − �) : � ∈ Zd} is an orthonormal basis for W0 iff there exists a 2πZd

periodic, measurable and unimodular function v : Rd → C such that

(2.6) ψ̂(Aτs) = ei(s◦u)v(Aτs)m(s + 2πh2)φ̂(s),

where u is the vector defined in Remark 2.2.

Let us give an outline of the proof for Proposition 2.1. From the discus-
sion following (2.1), we have ψ̂(Aτs) = mψ(s)φ̂(s) for some 2πZd periodic
function mψ . Again, standard arguments show that {ψ(t − �) : � ∈ Zd} is
an orthonormal basis for W0 iff the equations |m(s)|2 + |m(s + 2πh2)|2 = 1,
|mψ(s)|2 + |mψ(s+2πh2)|2 = 1 and m(s)mψ(s)+m(s+2πh2)mψ(s + 2πh2) =
0 hold. The reader can verify that the solution for mψ(s) (in terms of m(s))
is of the form ei(s◦u)v(Aτs)m(s + 2πh2).

Proposition 2.2. Letψ be anA-dilationMRAwavelet, then ei(s◦A−1u)|ψ̂(s)|
is the Fourier transform of an A-dilation MRA wavelet.

Proof. Let φ be the corresponding scaling function with low pass filter m,
then F −1(|φ̂|) is also an A-dilation scaling function whose associated low pass
filter is |m| by Lemma 2.3. Thus, the function ψ1 defined by ψ̂1(Aτs) =
ei(s◦u)|m(s + 2πh2)φ̂(s)| = ei(s◦u)|ψ(Aτs)| is an A-dilation MRA wavelet by
Proposition 2.1. �

A measurable subset E of Rd is simple if E(Ω) =
⋃

�∈Zd(E ∩ (Ω + 2π�) −
2π�) ⊂ Ω is a disjoint union (where Ω = [−π,π)d). Two simple sets E,F ⊂ Rd

are said to be 2πZd translation congruent (or just translation congruent for
short) to each other if E(Ω) = F (Ω).

Proposition 2.3. Let F be a 2πZd translation tiling domain of Rd, then
there exist disjoint subsets F0 and F1 of F such that (1) F = F0 ∪ F1; (2) each
of F0, F1 is a 2π(Aτ )−1Zd translation tiling domain of Rd; (3) F1 − 2πh2 is
2πZd translation congruent to F0.

Proposition 2.3 is key to our proof for the path-connectivity of the A-
dilation MRA wavelets so we provide a detailed proof here.

Proof of Proposition 2.3. Since F is a 2πZd translation tiling domain of Rd,
(Aτ )−1F is a 2π(Aτ )−1Zd translation tiling domain of Rd. For each � ∈ Zd,
define F� = F ∩ (((Aτ )−1)F +2π�). F� is measurable since it is the intersection
of two measurable sets. Now define F1 =

⋃
�∈Zd F�. F1 is measurable since it

is the union of countably many measurable sets. It follows that F0 = F \ F1

is also measurable and conditions (1) is met. We now proceed to prove (2)
and (3).

Claim 1. For any two points, x,y ∈ F1, x − y /∈ 2π(Aτ )−1Zd. For if not,
then ∃x,y ∈ F1 such that x �= y but x − y = 2π(Aτ )−1� for some � ∈ Zd.
By the definition of F1, x = (Aτ )−1x0 + 2π�1 for some x0 ∈ F and �1 ∈ Zd,
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y = (Aτ )−1y0 + 2π�2 for some y0 ∈ F and �2 ∈ Zd. It follows that x − y =
(Aτ )−1(x0 − y0) + 2π(�1 − �2) = 2π(Aτ )−1� hence x0 − y0 ∈ 2πZd. Thus,
x0 = y0 since F is a tiling domain. This in turn implies that x − y ∈ 2πZd so
x = y (again because F is a tiling domain). This contradicts to our assumption
that x �= y.

Claim 2. F1 is 2πZd translation congruent to (Aτ )−1F . ∀x ∈ F1, then
x = (Aτ )−1y + 2π� for some y ∈ F and � ∈ 2πZd. Thus, x − (Aτ )−1y ∈ 2πZd

and it follows that F1 is 2πZd translation congruent to a subset of (Aτ )−1F .
Similarly, for any y ∈ (Aτ )−1F , y = (Aτ )−1x for some x ∈ F . Since F is
a tiling of Rd, y = z + 2π� for some z ∈ F and � ∈ Zd. It follows that
z = y − 2π� = (Aτ )−1x − 2π� ∈ F−�1 ⊂ F1. Thus, (Aτ )−1F is 2πZd trans-
lation congruent to a subset of F1. Therefore, F1 is translation congruent to
(Aτ )−1F .

Since (Aτ )−1F is a tiling of Rd under the 2π(Aτ )−1Zd translation, it follows
that F1 is a tiling of Rd under the 2π(Aτ )−1Zd translation. This proves half
of (2).

Claim 3. F1 − 2πh2 is translation congruent to F0. ∀ x ∈ F1, then x −
2πh2 = y + 2π�1 for some y ∈ F, �1 ∈ Zd since F is a tiling domain. If y ∈ F1,
then y = (Aτ )−1y1 + 2π�2, and x = (Aτ )−1x1 + 2π�3, where y1,x1 ∈ F . So
(Aτ )−1x1 + 2π�3 − 2πh2 = (Aτ )−1y1 + 2π�2 + 2π�1. Multiplying both sides
of this by Aτ shows that x1 − y1 ∈ 2πZd hence x1 = y1. But then we have
h2 = �3 − �1 − �2 ∈ Zd, which contradicts to h2 /∈ Zd. So we must have y ∈ F0

and this shows that F1 − 2πh2 is translation congruent to a subset of F0.
For any x0 ∈ F0, x0 = x1 + 2π(Aτ )−1)�1 for some x1 ∈ F1 and �1 ∈ Zd. It
is necessary (Aτ )−1)�1 /∈ Zd, otherwise x0 = x1 (again because F is a tiling
domain), which contradicts to x0 /∈ F1. So 2π(Aτ )−1)�1 = 2πh2 + 2π�2 for
some �2 ∈ Zd. It follows that x0 + 2πh2 is congruent equivalent to x1 modulo
2πZd. Thus, F0 is translation congruent to a subset of F1 − 2πh2 (3) is proven.
The other half of (2) now follows easily: for any z ∈ Rd, z = x+2π(Aτ )−1� for
some x ∈ F0. But x = x1 − 2πh2 + 2π�1 for some �1 ∈ Zd, so z = x1 − 2πh2 +
2π�1 + 2π(Aτ )−1� = x1 + 2π(Aτ )−1(� + �1 − Aτh2) = x1 + 2π(Aτ )−1�2 where
�2 = � + �1 − Aτh2 ∈ Zd and since Aτh2 ∈ Zd. �

A direct consequence of Proposition 2.3 is the following corollary. Its proof
is elementary and is left to the reader.

Corollary 2.1. Let A ∈ M
(2)
d (Z), F a tiling domain and h1, h2 be as

defined in Remark 2.2. Then for any m ∈ L1(Rd) that is 2πZd periodic, we
have:

(i)
∫

F
m((Aτ )−1s)ds = 2

∫
F1

m(s)ds = 2
∫

F1(Ω)
m(s)ds and

(ii)
∫

Fj
m(s)ds =

∫
Fj(Ω)

m(s)ds =
∫

F1−j(Ω)
m(s + 2πh2)ds =

∫
F1−j

m(s +
2πh2)ds where j = 0,1.
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3. A-dilation wavelet multipliers

A measurable function f is called an A-dilation wavelet multiplier (or
wavelet multiplier for short) if the inverse Fourier transform of fψ̂ is an A-
dilation wavelet whenever ψ is an A-dilation wavelet. In this section, we
characterize the A-dilation wavelet multipliers. By an argument similar to
the one used in [9], it can be shown that any wavelet multiplier f has to
be unimodular. Thus, in the following we will limit our discussion to such
functions. Instead of trying to characterize the scaling function multiplier or
the low pass filter multiplier (which is the approach used in [9]), we will use
a different approach.

Theorem 3.1. A unimodular function f ∈ L∞(Rd) is an A-dilation wavelet
multiplier iff the function k(s) = f(Aτs)/f(s) is 2πZd periodic.

Proof. “⇐=” Assume that f ∈ L∞(Rd) is a unimodular function and that
k(s) = f(Aτs)/f(s) is 2πZd periodic. To show that f is a wavelet multiplier,
we need to show that for any A-dilation wavelet ψ, η = F −1(fψ̂) is also
a wavelet. It suffices to verify that η̂ satisfies conditions (ii) and (iii) in
Lemma 2.1. It is easy to see that (ii) holds for η̂ since |η̂| = |ψ̂| and (ii) holds
for ψ̂. Applying the relation f(Aτs) = k(s)f(s) repeatedly, for any j ≥ 1 and
� ∈ Zd, we obtain

(3.1) f((Aτ )js) = k((Aτ )j−1s) · · · k(Aτs)k(s)f(s),

and

f
(
(Aτ )j(s + 2π�)

)
= k

(
(Aτ )j−1(s + 2π�)

)
k
(
(Aτ )j−2(s + 2π�)

)
· · · k

(
Aτ (s + 2π�)

)
k(s + 2π�)f(s + 2π�)

= k((Aτ )j−1s) · · · k(Aτs)k(s)f(s + 2π�).

Since k(s) is unimodular, this leads to

f((Aτ )js) · f
(
(Aτ )j(s + 2π�)

)
= k((Aτ )j−1s) · · · k(Aτs)k(s)f(s) · k((Aτ )j−1s) · · · k(Aτs)k(s)f(s + 2π�)

= f(s)f(s + 2π�)

for any j ≥ 0 and � ∈ Zd. Thus,
∞∑

j=0

η̂((Aτ )js)η̂
(
(Aτ )j(s + 2π�)

)
= f(s)f(s + 2π�)

∞∑
j=0

ψ̂((Aτ )js)ψ̂
(
(Aτ )j(s + 2π�)

)
= 0

for any � ∈ Zd\AτZd. So condition (iii) of Lemma 2.1 holds for η̂ as well.
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“=⇒” We need to show that k(s) = f(Aτs)/f(s) is 2πZd periodic. Let
ψ be any A-dilation MRA wavelet such that supp(ψ̂) = Rd (the existence of
such ψ is proven in [5, Example 5.14]). By Proposition 2.2, the function ψ1(t)
defined by

(3.2) ψ̂1 = ei(Aτ )−1s◦u|ψ̂(s)| = eis◦A−1u|ψ̂1(s)|

is an A-dilation wavelet. Since F −1(fψ̂1) is also an A-dilation wavelet, ψ̂1

and fψ̂1 both satisfy condition (iii) of Lemma 2.1, that is,

(3.3)
∞∑

j=0

ψ̂1((Aτ )js) · ψ̂1

(
(Aτ )j(s + 2π�)

)
= 0 and

∞∑
j=0

f((Aτ )js)ψ̂1((Aτ )js)(3.4)

× f
(
(Aτ )j(s + 2π�)

)
ψ̂1

(
(Aτ )j(s + 2π�)

)
= 0

for any � ∈ Zd \ AτZd. Since � ∈ Zd \ AτZd, there exists �1 ∈ Zd such that
� = Aτ �1 + h1 = Aτ (�1 + h2) by Lemma 2.4. Thus,

ψ̂1(s)ψ̂1(s + 2π�) = eis◦A−1u|ψ̂1(s)| · e−i(s+2π�)◦A−1u|ψ̂1(s + 2π�)|
= e−i2π(�1+h2)◦u|ψ̂1(s)| · |ψ̂1(s + 2π�)|
= e−i2πh2◦u|ψ̂1(s)| · |ψ̂1(s + 2π�)|
= −|ψ̂1(s)| · |ψ̂1(s + 2π�)|,

since �1 ◦ u is an integer and e−i2πh2◦u = −1 (see Remark 2.2). On the other
hand, for any j > 0,

ψ̂1((Aτ )js)ψ̂1

(
(Aτ )j(s + 2π�)

)
= ei(Aτ )js)◦A−1u|ψ̂1((Aτ )js)| · e−i(Aτ )j(s+2π�)◦A−1u

∣∣ψ̂1

(
(Aτ )j(s + 2π�)

)∣∣
= |ψ̂1((Aτ )js)

∣∣· |ψ̂1

(
(Aτ )j(s + 2π�)

)∣∣.
Thus, (3.3) and (3.4) can be rewritten as

|ψ̂1(s)| · |ψ̂1(s + 2π�)|(3.5)

=
∞∑

j=1

|ψ̂1((Aτ )js)| ·
∣∣ψ̂1

(
(Aτ )j(s + 2π�)

)∣∣ and

f(s)f(s + 2π�) · |ψ̂1(s)| · |ψ̂1(s + 2π�)|(3.6)

=
∞∑

j=1

f((Aτ )js)f
(
(Aτ )j(s + 2π�)

)
|ψ̂1((Aτ )js)|

×
∣∣ψ̂1

(
(Aτ )j(s + 2π�)

)∣∣.
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Since f is unimodular, f = 1/f . Hence, (3.6) can be rewritten as

f(s)
f(s + 2π�)

|ψ̂1(s)| · |ψ̂1(s + 2π�)|(3.7)

=
∞∑

j=1

f((Aτ )js)
f((Aτ )j(s + 2π�))

|ψ̂1((Aτ )js)| ·
∣∣ψ̂1

(
(Aτ )j(s + 2π�)

)∣∣.
Combining this with (3.5) then leads to

∞∑
j=1

|ψ̂1((Aτ )js)| ·
∣∣ψ̂1

(
(Aτ )j(s + 2π�)

)∣∣(3.8)

=
∞∑

j=1

f(s + 2π�)
f(s)

f((Aτ )js)
f((Aτ )j(s + 2π�))

|ψ̂1((Aτ )js)|

×
∣∣ψ̂1

(
(Aτ )j(s + 2π�)

)∣∣.
Finally, since |ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))| > 0 by the choice of ψ1 and
| f(s+2π�)

f(s)
f((Aτ )js)

f((Aτ )j(s+2π�)) | = 1, it follows that f(s+2π�)
f(s)

f((Aτ )js)
f((Aτ )j(s+2π�)) = 1. In par-

ticular, k(s) = f(Aτ s)
f(s) = f(Aτ (s+2π�))

f(s+2π�) = k(s+2π�) ∀� ∈ Zd \ AτZd. If � ∈ AτZd,
then � − h1 /∈ AτZd, and k(s+2π�) = k(s+2πh1 +2π(� − h1)) = k(s+2πh1) =
k(s) as well. Therefore, k(s) = f(Aτs)/f(s) is 2πZd periodic. �

Combining Lemma 2.2 and Theorem 3.1 then leads to the following corol-
lary.

Corollary 3.1. A unimodular function f ∈ L∞(Rd) is an A-dilation
MRA wavelet multiplier iff the function k(s) = f(Aτs)/f(s) is 2πZd periodic.

Next, we show that all A-dilation wavelet multipliers can be constructed
in the way described in the following theorem. A measurable set E ⊂ Rd is
called an A-dilation wavelet set if F −1((2π)− d

2 χE) is an A-dilation wavelet.
It is known that E is an A-dilation wavelet set iff both the sets {AnE : n ∈ Z}
and {E + 2π� : � ∈ Zd} are partitions of Rd [1].

Theorem 3.2. Let E be an A-dilation wavelet set, k(s) be a measurable
unimodular 2πZd periodic function and g(s) be a measurable unimodular func-
tion defined on E. Define

f(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(s), s ∈ E,

k((Aτ )−1s) · · · k((Aτ )−ns) · g((Aτ )−ns), s ∈ (Aτ )nE,n ≥ 1,

k(s)k(Aτs) · · · k((Aτ )n−1s) · g((Aτ )ns), s ∈ (Aτ )−nE,n ≥ 1,

1, s = 0.

Then f is an A-dilation wavelet multiplier. Moreover, any A-dilation wavelet
multiplier can be constructed this way.
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Proof. Since k(s) is 2πZd periodic, it suffices to show that f(Aτs) = k(s) ·
f(s) in order to show that f is an A-dilation wavelet multiplier by Theo-
rem 3.1.

Case 1. s ∈ E. Then Aτs ∈ AτE and

f(Aτs) = k((Aτ )−1Aτs)g((Aτ )−1Aτs) = k(s)g(s) = k(s)f(s).

Case 2. s ∈ (Aτ )nE where n ≥ 1. Then Aτs ∈ (Aτ )n+1E and

f(Aτs) = k(s)k((Aτ )−1s) · · · k((Aτ )−ns)g((Aτ )−ns) = k(s)f(s).

Case 3. s ∈ (Aτ )−1E. Then Aτs ∈ E and f(s) = k(s)g(Aτs), so f(Aτs) =
g(Aτs) = k(s)f(s).

Case 4. s ∈ (Aτ )−nE where n > 1. Then Aτs ∈ (Aτ )−(n−1)E and

f(Aτs) = k(s)k(s)k(Aτs) · · · k((Aτ )n−1s)g((Aτ )ns) = k(s)f(s).

Since {(Aτ )nE : n ∈ Z} is a partition of Rd modulo a null set, the above four
cases have exhausted all possibilities for s ∈ Rd in the sense.

Now suppose that f(s) is an A-dilation wavelet multiplier. Let g(s) =
f(s) for s ∈ E, and k(s) = f(Aτs)/f(s). Then k(s) is 2πZd periodic and is
unimodular. We leave it to our reader to verify that f(s) has the form given
in the theorem. �

4. Path-connectivity of the set of A-dilation MRA wavelets

In this section, we prove the main result of this paper, namely that the
set of all A-dilation MRA wavelets is path-connected under the L2(Rd) norm
topology. For more discussions and related results on this topic, interested
reader may refer to [11, 13, 14].

Theorem 4.1. For any two A-dilation MRA wavelets ψ0 and ψ1, there
exists a continuous map γ : [0,1] −→ L2(Rd) such that γ(0) = ψ0, γ(1) = ψ1

and γ(t) is an A-dilation MRA wavelet for ∀t ∈ [0,1].

We will prove the theorem by directly constructing a continuous path con-
necting the two MRA wavelets. Since the proof is of constructive nature and
is fairly long, we will break it into several lemmas. For a given A-dilation
MRA wavelet ψ0, we will associate with it three special subsets of A-dilation
MRA wavelets denoted by Mψ0 , Wψ0 and Sψ0 : Mψ0 contains all A-dilation
MRA wavelets ψ such that ψ̂ = vψ̂0 for some A-dilation wavelet multiplier
v, Wψ0 contains all A-dilation MRA wavelets ψ such that |ψ̂| = |ψ̂0| and Sψ0

contains all A-dilation MRA wavelets ψ such that |φ̂| = |φ̂0|, where φ and φ0

are the corresponding scaling functions of ψ and ψ0.

Lemma 4.1. Sψ0 = Mψ0 = Wψ0 for any A-dilation MRA wavelet ψ0.
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Proof. Let ψ ∈ Wψ0 , then |ψ̂| = |ψ̂0|. By (2.4), we have

|φ̂(s)|2 =
∞∑

j=1

|ψ̂((Aτ )js)|2 =
∞∑

j=1

|ψ̂0((Aτ )js)|2 = |φ̂0(s)|2,

so ψ ∈ Sψ0 . This shows that Wψ0 ⊆ Sψ0 . Mψ0 ⊆ Wψ0 by definition. Sψ0 ⊆
Mψ0 follows from an argument similar to the one used in the proof of [9, The-
orem 1.2] and Proposition 2.1. Thus, Mψ0 ⊆ Wψ0 ⊆ Sψ0 ⊆ Mψ0 . Therefore,
Sψ0 = Mψ0 = Wψ0 . �

Lemma 4.2. Let ψ0 be an A-dilation MRA wavelet. Then Mψ0 is path-
connected.

Proof. This is proved in [9, Theorem 1.3] for two special cases of A. How-
ever, that proof can be easily modified for the general case and is left to the
reader. �

Let F be a tiling domain with the property that 0 ∈ F , F ⊂ AτF and⋃
n≥0(A

τ )nF = Rd (the existence of such sets is shown in [6] as we mentioned
in Section 2). In this case, the function ψ0 defined by

(4.1) ψ̂0(s) = (2π)− d
2 eis◦A−1uχE(s)

is an A-dilation MRA wavelet (where E = AτF \ F ) and is called a general-
ized Shannon-type wavelet. To show that any two A-dilation MRA wavelets
are connected by a continuous path, it suffices to show any A-dilation MRA
wavelet ψ can be path-connected to ψ0. We will do this by showing that there
exists a ψ1 ∈ Sψ such that ψ1 is path-connected to ψ0. By Lemmas 4.1 and
4.2 above, ψ1 is path-connected to ψ hence ψ0 is path-connected to ψ as well.

Note that the corresponding scaling function and low pass filter of ψ0 are
given by is φ̂0(s) = (2π)− d

2 χF and m0(s) = χ(Aτ )−1F . Keep in mind that F is
a 2πZd tiling domain so it is 2πZd translation congruent to Ω = [−π,π]d.

By Lemma 2.3 and Proposition 2.2, there exists ψ1 ∈ Sψ such that its
corresponding scaling function φ1 and low pass filter m1 satisfy φ̂1 ≥ 0, m1 ≥ 0
and

(4.2) ψ̂1(s) = eis◦A−1um1

(
(Aτ )−1s + 2πh2

)
φ̂1((Aτ )−1s).

We will now show that this particular choice of ψ1 suffices for our purpose.
In the following, we will first build a path that connects the low-pass filters,
then use this filter path to construct the path for the scaling functions and
ultimately the path that connects wavelet functions ψ1 and ψ0.

Keep in mind that m0 and m1 are 2πZd periodic functions. Let F1 =
(Aτ )−1F ⊂ F and F0 = F \ F1 (thus, the support of m0 on F is simply
F1). Recall from Proposition 2.3 (and its proof) that F0 and F1 are both
2π(Aτ )−1Zd tiling domains of Rd and F1 ± 2πh2 is 2πZd translation congru-
ent to F0. So the measure of F0 and F1 are both (2π)d/2 and the measure of
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(Aτ )−kF1 is (2π)d/2k+1 for any k ≥ 0. For any t ∈ (0,1), there exists an inte-
ger k0(t) ≥ 0 such that 2−(k0(t)+1) < 1 − t ≤ 2−k0(t). If 1 − t = 2−k0(t), define
Ht = (Aτ )−k0(t)F1. If 2−(k0(t)+1) < 1 − t < 2−k0(t), then there exists a positive
real number rt > 0 such that the set Gt = B(rt) ∩ (Aτ )−k0(t)(F1 \ (Aτ )−1F1)
has measure (1 − t − 2−(k0(t)+1))(2π)d/2 = (1 − t − 2−(k0(t)+1))μ(F1), where
B(rt) = {x ∈ Rd : |x|2 ≤ r2

t } and μ denotes the Lebesgue measure in Rd. And
we will define Ht = Gt ∪ (Aτ )−(k0(t)+1)F1. Under this definition, observe that
the measure of Ht is precisely (1 − t)μ(F1). Furthermore, for any s ∈ F , it is
obvious that (Aτ )−ks ∈ Ht for any k ≥ k0(t) + 2. For t = 0 and t = 1, Ht is
defined as F1 and the empty set respectively. Since Ht is a subset of F1 and
F1 ± 2πh2 is 2πZd translation congruent to F0, Ht ± 2πh2 is 2πZd translation
congruent to a subset (uniquely determined by Ht modular a zero measure
set) Jt ⊂ F0. Equivalently, Jt ± 2πh2 is 2πZd translation congruent to Ht.
The low-pass filter path mt(s) is then defined for any s ∈ F first as below and
then extended to Rd as a 2πZd periodic function (this is possible since F is
a tiling domain).

(4.3) mt(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1 − t + tm2
1(s), s ∈ F1 \ Ht,

1, s ∈ Ht,√
tm1(s), s ∈ F0 \ Jt,

0, s ∈ Jt.

For t = 0 and t = 1, mt(s) is just m0(s) and m1(s). Furthermore, mt(s)
satisfies the equation |mt(s)|2 + |mt(s + 2πh2)|2 = 1. These are left to our
reader to verify.

Lemma 4.3. For each t ∈ [0,1], the function φt defined by

(4.4) φ̂t(s) = (2π)− d
2

∞∏
j=1

mt((Aτ )−js)

is an MRA A-dilation scaling function hence ψt defined by

(4.5) ψ̂t(s) = eis◦A−1umt

(
(Aτ )−1s + 2πh2

)
φ̂t((Aτ )−1s)

is an MRA A-dilation wavelet.

Proof. The statement holds trivially for t = 0 and 1, so we only need to
consider the case 0 < t < 1. φ̂t is well defined since 0 ≤ mt(s) ≤ 1, so is
ψ̂t. From the definition of φ̂t, we have φ̂t(Aτs) = mt(s)φ̂t(s), So φ̂t satisfies
condition (iii) of Lemma 2.3. On the other hand, φ̂t(s) = (2π)− d

2 , ∀s ∈ Ht,
also by the definition of φ̂t. Since 0 < t < 1, (Aτ )−(k0(t)+1)F1 ⊂ Ht so Ht

contains a neighborhood of 0 since F (hence F1) contains a neighborhood
of 0. From this condition (ii) of Lemma 2.3 follows. We now prove that φt

satisfies condition (i) of Lemma 2.3 as well, which then implies that φt is
a scaling function and ψt is an MRA A-dilation wavelet.
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As we observed earlier, ∀s ∈ F , (Aτ )−ks ∈ Ht, ∀k > k0(t) + 1 = k′
0. So by

the definition of mt(s), we have mt((Aτ )−ks) = 1 for all such k. On the other
hand, if 1 ≤ k ≤ k′

0, we have (Aτ )−ks ∈ F1 hence mt((Aτ )−ks) ≥
√

1 − t. It
follows that for any s ∈ F we have

φ̂t(s) = (2π)− d
2

k′
0∏

k=1

mt((Aτ )−ks)
∞∏

k=k′
0+1

mt((Aτ )−ks)

= (2π)− d
2

k′
0∏

k=1

mt((Aτ )−ks) ≥ (2π)− d
2 (1 − t)k′

0/2.

This implies that χF (s) ≤ (2π)
d
2 φ̂t(s)/(1 − t)k′

0/2. For each k ≥ 1, define

pt,k(s) = (2π)− d
2 χF ((Aτ )−ks) ·

k∏
j=1

mt((Aτ )−js).

Then

pt,k(s) ≤ φ̂t((Aτ )−ks)
(1 − t)k′

0/2

k∏
j=1

mt((Aτ )−js) =
φ̂t(s)

(1 − t)k′
0/2

.

For k ≥ 2,
∫

Rd |pt,k(s)|2e−in◦s ds can be rewritten as (substituting s for
(Aτ )−ks)

1
(2π)d

∫
Rd

|χF ((Aτ )−ks)|2 ·
k∏

j=1

|mt((Aτ )−js)|2 · e−in◦s ds

=
2k

(2π)d

∫
F

k−1∏
j=0

|mt((Aτ )js)|2e−in◦((Aτ )ks) ds

=
2k

(2π)d

(∫
F0

|mt(s)|2
k−1∏
j=1

|mt((Aτ )js)|2e−in◦((Aτ )ks) ds

+
∫

F1

|mt(s)|2
k−1∏
j=1

|mt((Aτ )js)|2e−in◦((Aτ )ks) ds

)
.

Since F0 ± 2πh2 is 2πZd translation congruent to F1 and e−ins, mt(s) are 2πZd

periodic, the above equality becomes (keep in mind that F1 = (Aτ )−1F )

2k

(2π)d

(∫
F1

|mt(s + 2πh2)|2
k−1∏
j=1

∣∣mt

(
(Aτ )j(s + 2πh2)

)∣∣2e−in◦((Aτ )k(s+2πh2)) ds

+
∫

F1

|mt(s)|2
k−1∏
j=1

|mt((Aτ )js)|2e−in◦((Aτ )ks) ds

)
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=
2k

(2π)d

∫
F1

(
|mt(s)|2 + |mt(s + 2πh2)|2

) k−1∏
j=1

|mt((Aτ )js)|2e−in◦((Aτ )ks) ds

=
2k

(2π)d

∫
F1

k−1∏
j=1

|mt((Aτ )js)|2e−in◦((Aτ )ks) ds

=
2k−1

(2π)d

∫
F

k−2∏
j=0

|mt((Aτ )js)|2e−in◦((Aτ )k−1s) ds =
∫

Rd

|pt,k−1(s)|2e−in◦s ds.

Repeating the above procedure then leads to∫
Rd

|pt,k(s)|2e−in◦s ds

=
∫

Rd

|pt,1(s)|2e−in◦s ds

=
2

(2π)d

∫
F

|mt(s)|2e−in◦(Aτ s) ds =
2

(2π)d

∫
F1

e−in◦(Aτ s) ds

=
1

(2π)d

∫
F

e−in◦s ds =
1

(2π)d

∫
Ω

e−in◦s ds = δn,0.

So ‖pt,k ‖2 = 1. Clearly, limk→∞ pt,k(s) = φ̂t(s) for all s ∈ Rd. Thus, φt ∈
L2(Rd) by Fatou’s lemma. Since pt,k(s) is dominated by φ̂t(s)/(1 − t)k′

0/2,

lim
k→∞

∫
Rd

|pt,k(s)|2e−in◦s ds =
∫

Rd

|φ̂t(s)|2e−in◦s ds = δn,0

by Lebesgue’s dominated convergence theorem. This is equivalent to∑
�∈Zd

|φ̂t(s + 2π�)|2 = 1/(2π)d.

By Lemma 2.3, φt is an MRA scaling function. �

Lemma 4.4. For each fixed t0 ∈ [0,1], the mapping t �→ mt(s) is continuous
at t0 for almost all s ∈ Rd. That is, there exists a measure zero set Nt0 ⊂ Rd

such that for each s ∈ Rd \ Nt0 , ∀ε > 0, ∃δ > 0 such that |mt(s) − mt0(s)| < ε
for all t ∈ [0,1] ∩ (t0 − δ, t0 + δ).

Proof. We shall only prove the case for 0 < t0 < 1 and leave the cases t0 = 0
and t0 = 1 (which are simpler than the case of 0 < t0 < 1) to the reader. Recall
from the definition of the set Ht that Ht2 ⊂ Ht1 (hence F1 \ Ht1 ⊂ F1 \ Ht2)
whenever t2 ≥ t1 and that μ(Ht) = (1 − t)μ(F1).

For any t0 ∈ (0,1), define

Mt0 =
( ⋂

t>t0

(
(F1 \ Ht) ∩ Ht0

))
∪

( ⋂
t<t0

(Ht) ∩ (F1 \ Ht0)
)

.
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It is easy to check that for any t > t0, we have μ((F1 \ Ht) ∩ Ht0) = μ(Ht0 \
Ht) = (t − t0)μ(F1). Similarly, for any t < t0, μ(Ht ∩ (F1 \ Ht0)) = μ(Ht \
Ht0) = (t0 − t)μ(F1). Hence, μ(Mt0) ≤ 2|t − t0|μ(F1) for any t �= t0. Since t is
arbitrary and Mt0 is a fixed measurable set, we must have μ(Mt0) = 0. Now
define Nt0 =

⋃
�∈Zd(Mt0 + π�), which is also a measure zero set.

For any s ∈ Rd \ Nt0 , there exists a (unique) s0 ∈ F such that s − s0 ∈
2πZd, s0 ∈ F1 \ Mt0 or s0 ∈ F0 \ M ′

t0 where M ′
t0 is the subset in F0 that is

2πZd translation congruent to Mt0 + 2πh2. Since mt is 2πZd translation
periodic, we have mt(s) = mt(s0). Consider first the case that s0 ∈ F1 \ Mt0 .
By the definition of Mt0 , there exist t1 < t0 < t2 such that s0 /∈ Ht1 \ Ht2 .
Choose δ > 0 small enough so that δ < min{t0 − t1, t2 − t0} and |

√
1 − t + bt −√

1 − t0 + bt0| < ε for any t ∈ (0,1) ∩ (t0 − δ, t0 + δ) and any 0 ≤ b ≤ 1. Then
for any such t we have s0 ∈ Ht2 ⊂ Ht0 or s0 ∈ F1 \ Ht1 ⊂ F1 \ Ht0 . In the
first case, |mt(s0) − mt0(s0)| = 0 and in the second case |mt(s0) − mt0(s0)| =
|
√

1 − t + tm2
1(s0) −

√
1 − t0 + t0m2

1(s0)| < ε by the choice of δ. The case of
s0 ∈ F0 \ M ′

t0 can be similarly proven. �

The result of Lemma 4.4 can be easily extended to the following corollary.
We leave the proof to the reader.

Corollary 4.1. For each fixed t0 ∈ [0,1] and each fixed k ≥ 1, the mapping
t �→

∏k
j=1 mt((Aτ )−js) is continuous at t0 for almost all s ∈ Rd. That is,

there exists a measure zero set Nk
t0 ⊂ Rd such that for each s ∈ Rd \ Nk

t0 ,
∀ε > 0, ∃δ > 0 such that |

∏k
j=1 mt((Aτ )−js) −

∏k
j=1 mt0((A

τ )−js)| < ε for all
t ∈ [0,1] ∩ (t0 − δ, t0 + δ).

Lemma 4.5. For any t0 ∈ [0,1], limt→t0 φ̂t(s) = φ̂t0(s) for s ∈ Rd. More
precisely, for each fixed t0 ∈ [0,1], there exists a measure zero set N ′

t0 ⊂ Rd

such that for any s ∈ Rd \ N ′
t0 , we have limt→t0 φ̂t(s) = φ̂t0(s).

Proof. Since φ̂1 ≥ 0, limj→∞ φ̂1((Aτ )−js) = 1/(2π)
d
2 . For any given ε > 0

and s ∈ Rd (modular a zero measure set), there exists a positive integer n0 such
that φ̂1((Aτ )−ns) > 1/(2π)

d
2 − ε/2 and (Aτ )−ns ⊂ (Aτ )−1F for any n ≥ n0.

It follows that mt((Aτ )−ns) is either 1 or
√

(1 − t) + tm2
1((Aτ )−ns) for any

t ∈ [0,1]. In either case, mt((Aτ )−ns) ≥ m1((Aτ )−ns), thus φ̂t((Aτ )−ns) ≥
φ̂1((Aτ )−ns) for any t ∈ [0,1]. Since φ̂t(s′) ≤ 1/(2π)

d
2 for any s′ ∈ Rd by its

definition, it follows that for any t1, t2 ∈ [0,1], we have

(4.6) |φ̂t1((A
τ )−ns) − φ̂t2((A

τ )−ns)| < ε/2.

On the other hand, by Corollary 4.1, for each t0 ∈ [0,1], there exists a zero
measure set Nn0

t0 ⊂ Rd such that for each s ∈ Rd \ Nn0
t0 , ∃δ > 0 such that

|
∏n0

j=1 mt((Aτ )−js) −
∏n0

j=1 mt0((A
τ )−js)| < ε/2 for all t ∈ [0,1] ∩ (t0 − δ,
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t0 + δ). Hence, |φ̂t(s) − φ̂t0(s)| is bounded by∣∣∣∣∣
n0∏

j=1

mt((Aτ )−js)φ̂t((Aτ )−n0s) −
n0∏

j=1

mt0((A
τ )−js)φ̂t0((A

τ )−n0s)

∣∣∣∣∣
=

∣∣∣∣∣
n0∏

j=1

mt((Aτ )−js) · φ̂t((Aτ )−n0s) −
n0∏

j=1

mt0((A
τ )−js)φ̂t((Aτ )−n0s)

+
n0∏

j=1

mt0((A
τ )−js)φ̂t((Aτ )−n0s) −

n0∏
j=1

mt0((A
τ )−js)φ̂t0((A

τ )−n0s)

∣∣∣∣∣
≤ (2π)− d

2

∣∣∣∣∣
n0∏

j=1

mt((Aτ )−js) −
n0∏

j=1

mt0((A
τ )−js)

∣∣∣∣∣
+ |φ̂t((Aτ )−n0s) − φ̂t0((A

τ )−n0s)| <
ε

2
+

ε

2
= ε.

So limt→t0 φ̂t(s) = φ̂t0(s). �

By the continuity of mt(s) and φ̂t, we now have limt→t0 ψ̂t(s) = ψ̂t0(s) for
almost every s ∈ Rd.

Lemma 4.6. For t0, t ∈ [0,1], limt→t0 ‖ψ̂t − ψ̂t0 ‖2 = 0.

Proof. Since ‖ψ̂t‖2 = ‖ψ̂t0 ‖2 = 1, ‖ψ̂t − ψ̂t0 ‖2 = 〈ψ̂t − ψ̂t0 , ψ̂t − ψ̂t0 〉 = 2 −
〈ψ̂t, ψ̂t0 〉 − 〈ψ̂t0 , ψ̂t〉. Thus, it suffices to show that limt→t0 〈ψ̂t, ψ̂t0 〉 = 1.

Since ψ̂t0 ∈ L2(Rd), for any ε > 0, there exists a sufficiently large number
r > 0 such that (

∫
|s|>r

|ψ̂t0(s)|2 ds)
1
2 < ε/4. By Hölder’s Inequality, we then

have
∫

|s|>r
|ψ̂t(s) − ψ̂t0(s)| · |ψ̂t0(s)| ds ≤ ‖ψ̂t(s) − ψ̂t0(s)‖(

∫
|s|>r

|ψ̂t0(s)|2 ds)
1
2 <

ε/2 since ‖ψ̂t(s) − ψ̂t0(s)‖ ≤ ‖ψ̂t(s)‖ + ‖ψ̂t0(s)‖ = 2. On the other hand,
|ψ̂t(s) − ψ̂t0(s)| ≤ 1/(π)d/2 since |ψ̂t(s)| ≤ 1/(2π)

d
2 and |ψ̂t0(s)| ≤ 1/(2π)

d
2 by

(4.4), (4.5) and the fact that |mt| ≤ 1 for any t. Thus, by the dominated
convergence theorem, we have limt→t0

∫
|s|≤r

|ψ̂t(s) − ψ̂t0(s)| ds = 0. Therefore,

there exists a number δ > 0 such that
∫

|s|≤r
|ψ̂t(s) − ψ̂t0(s)| ds < ε/2 whenever

|t − t0| < δ. Combining the above leads to

| 〈ψ̂t, ψ̂t0 〉 − 1| = | 〈ψ̂t, ψ̂t0 〉 − 〈ψ̂t0 , ψ̂t0 〉| =
∣∣∣∣∫

Rd

(
ψ̂t(s) − ψ̂t0(s)

)
· ψ̂t0(s)ds

∣∣∣∣
≤

∫
|s|≤r

∣∣(ψ̂t(s) − ψ̂t0(s)
)
ψ̂t0(s)

∣∣ds
+

∫
|s|>r

∣∣(ψ̂t(s) − ψ̂t0(s)
)
ψ̂t0(s)

∣∣ds < ε.

So limt→t0 ‖ψ̂t − ψ̂t0 ‖2 = 0. �
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Since the inverse Fourier transform preserves norm, it follows that the
mapping t �→ ψt is continuous in the L2(Rd) norm topology. This completes
the proof of the connectedness theorem.

5. Further discussions

The path-connectivity for the set of all 2-dilation MRA wavelets was first
established in [11, 14] for the one dimensional case. In [10], the authors solved
the path-connectivity problem for all matrices in M

(2)
2 (Z). The approach used

in [10] depends on a special property that a matrix in M
(2)
2 (Z) possesses.

The purpose of this section is to show that a matrix in M
(2)
3 (Z) may no

longer possess this property. Consequently, the argument used in this paper
to establish the path-connectivity of all A-dilation MRA wavelets for any
A ∈ M

(2)
d (Z) is not a simple generalization of the earlier approaches.

Two d × d integral matrices B and C are said to be integrally similar if there
exists an integral d × d matrix P such that | det(P )| = 1 and P −1BP = C.
The integral similarity then defines an equivalent relation among matrices of
M2

d (Z). For d = 2, there are exactly six integrally similar classes in M
(2)
2 (Z)

[8]. A representative from each of these classes is listed below.(
0 2
1 0

)
,

(
0 2

−1 0

)
,

(
1 1

−1 1

)
,

(
−1 −1
1 −1

)
,

(
0 2

−1 1

)
,

(
0 −2
1 −1

)
.

An important point about the above representatives is that each of them
has the property that (Aτ )−1Ω ⊂ Ω where Ω = [−π,π)2. For an expansive
matrix with this property, one could then employ the nice geometric structures
of Ω and (Aτ )−1Ω in the construction of mt (and φ̂t(s), ψ̂t(s)). In particular,
a general Shannon-type wavelet can be visualized in these cases. For a matrix
in M

(2)
2 (Z) that does not have this property, one can use its representative

in the above list (in its equivalent class) and use the following useful theorem
(proved in [10]).

Theorem 5.1 ([10]). For any 2 × 2 integral matrix P with | detP | = 1, let
ΦP : L2(R2) −→ L2(R2) be the operator defined by ΦP (g(t)) = g(P t). If B
and C are two 2 × 2 integral, expansive matrices such that P −1BP = C, then
the following statements hold:

(i) ψ is a B-dilation wavelet iff ΦP (ψ) is a C-dilation wavelet;
(ii) A function f ∈ L2(R2) is a B-dilation wavelet multiplier iff the function

Φ(P τ )−1(f) is a C-dilation wavelet multiplier.
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The linear operator ΦP : L2(R2) −→ L2(R2) defined above is obviously con-
tinuous and unitary (since | detP | = 1). In the case that P is also integral
and P −1BP = C, then Theorem 5.1 asserts that ΦP : WB −→ WC is a con-
tinuous and bijective mapping, where WB is the set of all B-dilation wavelets
and WC is the set of all C-dilation wavelets. ΦP is also a bijection between
the set of all B-dilation MRA wavelets and the set of all C-dilation MRA
wavelets. These observations imply that at least for the two dimensional
case, the path-connectivity problem of all B-dilation MRA wavelets for any
B ∈ M

(2)
2 (Z) is equivalent to the path-connectivity problem of all A-dilation

MRA wavelets where A is one of the six matrices listed above. This is pre-
cisely what these authors did in [10]: they established the path-connectivity
of all A-dilation MRA wavelets where A is one of the six matrices listed above,
which then implied that all B-dilation MRA wavelets are path-connected for
any B ∈ M

(2)
2 (Z). A different way to interpret the above theorem (or the clas-

sifications of M
(2)
2 (Z) matrices into the 6 integrally similar equivalent classes)

is that for any matrix A in M
(2)
2 (Z), a general Shannon-type A-dilation MRA

wavelet can be constructed using a set F where F has the form PΩ for some
P ∈ M

(1)
2 (Z). Of course, such explicit expression for an MRA wavelet would

be desirable. In some sense, the approach in [10] made the maximum use of
this property of M

(2)
2 (Z).

Let us now consider the possibility of extending that approach in the case
of d = 3. In other words, one would like to establish the following:

(1) Identify all integrally similar equivalent classes of matrices in M
(2)
3 (Z);

(2) Show that in each such class there is a representative matrix A with
the property that (Aτ )−1Ω ⊂ Ω where Ω = [−π,π)3;

(3) Explore the structure of (Aτ )−1Ω and the possibility of using this struc-
ture in the definition of mt(s) (and φt, ψt) that would lead to the establish-
ment of path-connectivity of all A-dilation MRA wavelets for such matrix A.

Unfortunately, the first task seems to be a very difficult problem. The
authors failed to find an answer to this question in the literature. The third
task, even when successfully carried out, can only solve the problem for some
matrices in M

(2)
3 (Z). The biggest problem turned out to be task 2: there

are integrally similar equivalent classes in M
(2)
3 (Z) which do not have any

representative A with the property (Aτ )−1Ω ⊂ Ω. The authors do not intend
to elaborate the details here. Instead, we will just list some of our findings
about M

(2)
3 (Z).

Firstly, there are 14 similar equivalent classes (but we are not sure if they
are all the integrally similar classes) in M

(2)
3 (Z). A representative from each
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class is listed below.⎛⎝0 −1 −1
0 −1 1
1 0 0

⎞⎠ ,

⎛⎝0 0 −1
2 −1 0
0 1 0

⎞⎠ ,

⎛⎝0 −1 1
0 −1 −1
1 0 0

⎞⎠ ,

⎛⎝0 0 1
2 0 0
0 1 0

⎞⎠ ,

⎛⎝0 1 0
0 0 1
2 1 0

⎞⎠ ,

⎛⎝0 1 0
0 0 −1
2 −1 0

⎞⎠ ,

⎛⎝1 −1 0
0 0 −1
1 1 0

⎞⎠ ,

⎛⎝1 0 1
1 0 −1
0 −1 0

⎞⎠ ,

⎛⎝0 0 1
2 1 0
0 1 0

⎞⎠ ,

⎛⎝0 2 0
0 0 −1
1 0 0

⎞⎠ ,

⎛⎝−1 −1 −1
0 −1 1
1 0 0

⎞⎠ ,

⎛⎝−1 −1 −1
−1 0 0
0 −1 1

⎞⎠ ,

⎛⎝−1 −1 0
0 0 −1
1 −1 1

⎞⎠ ,

⎛⎝0 −1 −1
0 1 −1
1 0 1

⎞⎠ .

Secondly, of these 14 classes, 4 of them do not have any representative A
with the property (Aτ )−1Ω ⊂ Ω. The last four matrices listed above are the
representatives of these four classes. It would be interesting to know if one
can find a bounded set F (as used in the definition of a general Shannon type
wavelet) that is also geometrically nice and simple.

Thirdly, the 10 other representatives in the above list all have the property
(Aτ )−1Ω ⊂ Ω. It is interesting to note that within each of these 10 classes,
there are exactly 24 matrices with this property. For any other matrix in one
of these classes, it is not clear whether it is integrally similar to one of these
24 representatives. We suspect that is the case.

Finally, for d ≥ 4, the situation will be even more complicated and it is
plausible that similar equivalent classes like the last 4 in the above list exist.
Since our findings above are obtained through exhaustive search, the method
cannot be easily generalized to handle the more general cases in higher di-
mension. This would be a problem for future study.
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