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SOME REFLECTIONS ON PROVING GROUPS RESIDUALLY
TORSION-FREE NILPOTENT. I

GILBERT BAUMSLAG

Abstract. The objective of this note is to give some alternative
proofs that the intersection of the normal subgroups with torsion-
free nilpotent factor groups of free groups is the identity. Our

approach gives rise to a new family of one-relator groups with this

property. This family includes, among others, the fundamental

groups of orientable surfaces. Our hope is that the idea involved

will lead to new insights into these well-known groups, and, even

more important for us, a proof that free Q-groups have the same
property.

1. Introduction

1.1. Magnus’ proof revisited. Recall that a group is said to be resid-
ually torsion-free nilpotent if the intersection of its normal subgroups with
torsion-free nilpotent quotients is trivial. Proving that a given group is resid-
ually torsion-free nilpotent is usually hard. In 1935, Wilhelm Magnus [11]
introduced associative algebras together with topology into the mix making
it possible to prove that free groups are residually torsion-free nilpotent. In
order to explain his proof, we need to recall a related definition. To this
end, let R be an augmented associative algebra over Q, the field of rational
numbers. So by definition, R is unitary and contains an ideal A, called the
augmentation ideal of R, such that R/A ∼= Q. We say that R is residually
nilpotent if the powers of A intersect in 0. Now the group algebra QG of a
group G is an augmented algebra where the augmentation ideal consists of
those elements of QG with coefficient sum 0. Then the group G turns out to
be residually torsion-free nilpotent if and only if QG is residually nilpotent.
The powers of the augmentation ideal of an augmented associated unitary
algebra can be used as the basis of a topology which allows us to form the
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completion R̂ of R. The group of units of R̂ is usually quite rich and often
provides one with a good supply of residually torsion-free nilpotent groups.
In the event that R = QG, where G is the free group on X = {xi | i ∈ I}, then
it is not hard to see that

R̂ = 〈〈ξ | i ∈ I〉〉,

is the algebra of power series in the free (and hence, noncommuting) variables
ξi = 1 − xi (i ∈ I). This allows us to reexpress x−1

i as a power series which
takes the form

x−1
i = (1 − ξi)−1 = 1 + ξi + ξ2

i + · · · .

It follows that we have proved that free groups are subgroups of the group
of units of such completions R̂. This makes it easy to prove that free groups
are residually torsion-free nilpotent since commutators of larger and larger
weight get closer and closer to the identity. This brilliant insight is due to
Magnus [11]. The idea was generalized by A. I. Malcev in a beautifully written
paper [13] in which he proved, in particular, that free products of residually
torsion-free nilpotent groups are residually torsion-free nilpotent.

1.2. Q-groups. We observe next that the set H consisting of those elements
h ∈ R̂ of the form h = 1 − α, where the constant term of α is zero, is a Q-group,
that is, a group in which extraction of nth-roots is uniquely possible for every
positive integer n. Q-groups form a variety of algebras and so free objects
exist. These are the free Q-groups. If F is the free Q-group on X , then the
mapping which sends xi to 1 − ξi can be continued to a homomorphism of F

into R̂. It turns out that free Q-groups are residually torsion-free nilpotent
if and only if this homomorphism is a monomorphism. Now free Q-groups
are the end result of repeatedly freely adjoining nth roots to a free group and
the resultant groups. In 1968, I could only show that one adjunction did give
rise to a residually torsion-free nilpotent group [2]. The argument was quite
technical and seems hard to generalize.

The primary aim of this note is to describe some new ways of proving groups
residually torsion-free nilpotent in the hope that they will shed some light on
how to prove free Q-groups are residually torsion-free nilpotent. Although
our efforts have only been minimally successful, they have led to a new family
of one-relator groups that are residually torsion-free nilpotent which include,
among others, the fundamental groups of orientable surfaces. They provide
potentially new insights into these well-known groups. One of our ways of
proving free groups residually torsion-free nilpotent is to make use of wreath
products and work of A. I. Lichtman [9], suggesting that an exploration of an
analogue of wreath products for Q-groups will be worth-while.
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2. Summary of results

We give first two proofs that free groups are residually torsion-free nilpo-
tent.

2.1. A combinatorial proof of residual nilpotence. The first of these
in, Section 4, makes no use of Magnus’ original proof [11] described above. It,
as well as the proof of our main theorem, Theorem 1, follows very closely the
argument in [4]. It is hard to describe the proof without giving most of the
details, which we have chosen to do here. Despite its simplicity it reduces the
proof of residual torsion-free nilpotence to that of an allied group providing
a very different perspective as to why free groups turn out to be residually
torsion-free nilpotent.

2.2. Using wreath products. The second proof, in Section 6, has been
organized so that it requires only a few lines. It makes use of work of A. I.
Lichtman [9], which itself depends on a second theorem of Magnus [12], which
tacitly makes use of wreath products. However, this proof can be adjusted
so that it too can be made completely elementary. It is worth pointing out
that the same sort of argument can be used to prove various other residual
properties of free groups. Perhaps even more important here is that it suggests
that an exploration of analogues of wreath products in the category of Q-
groups could turn out to be quite interesting. It promises to give rise to
a number of new results about Q-groups. Among these would be a proof
that free Q-groups are residually torsion-free nilpotent. In addition, it would
provide a means for understanding the monoid of varieties of Q-groups. In
the case of every-day groups, the corresponding monoid is free (Shmelkin [17]
and independently, B. H., Hanna and Peter Neumann [15]).

2.3. Our main theorem. We will prove in Section 5 the following theorem.

Theorem 1. Let Y = {b, . . . , c} and let w be a Y -word. Then

G = 〈t, a, b, . . . , c; t−1at = aw〉

is residually torsion-free nilpotent.

The proof of Theorem 1 follows readily along the lines of our direct proof
that free groups are residually torsion-free nilpotent. It can be considerably
generalized but the additional complexity does not seem worth-while at this
point.

Before commenting on some possible impacts of the method of proof of
Theorem 1, it is worth recording two of its immediate consequences, both of
which are well known.
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2.4. Some consequences of Theorem 1 and its proof. First, we have
the following corollary.

Corollary 2. The fundamental groups Gk of two dimensional orientable
surfaces are residually torsion-free nilpotent.

We need only note here that the Gk can be presented in the form

Gk = 〈t, a, x1, y1, . . . , xk, yk | t−1at = a[x1, y1] · · · [xk, yk] (k ≥ 0)〉.

This was proved first in [1] and at about the same time, by Karen N. Frederick
[6]. The residual nilpotence of the Gk is a corollary of a more general theorem,
namely that the family of finite presentations of the form

〈a, b, . . . , c, t; [w, t]〉

define residually free groups provided only that the words w represent elements
in the free group on a, b, . . . , c which are not proper powers. In particular then
it follows, as noted for the first time in [1], that the Gk are residually free.

Second, we have the following corollary.

Corollary 3. The groups

〈a, b, c; [a, b] = cn〉

are residually torsion-free nilpotent.

It follows, as noted in [5] as well as in [2], that a commutator in a free group
is a proper power only if it is trivial. This was first proved by Magnus, Karrass
and Solitar in [8]. These and other results about equations in free groups can
be deduced on knowing that free groups are residually finite p-groups, a less
demanding requirement than being residually torsion-free nilpotent.

An inspection of the proof of Theorem 1 suggests that it may well allow
one to find some finer residual properties of a number of groups. We will
focus here only on surface groups. It is well known that surface groups have
solvable conjugacy problem. It probably follows from the proof of Theorem 1
that a little more is true, namely that two elements are conjugate if and only
if they are conjugate in every nilpotent quotient. Moreover, it is easy to find
an algorithm which determines whether or not an element in a surface group
is a proper power. The proof of Theorem 1 suggests again that more is true,
namely that an element in a surface group is a proper power if and only if it is a
proper power modulo every term of its lower central series. More interestingly,
it may allow us to determine the quotient of the group automorphisms of a
surface group which are trivial modulo the derived group by the subgroup of
inner automorphisms.

We need to recall some notation and definitions.
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3. Notation and definitions

Let G be a group and let x1, x2, . . . be elements of G. We denote the
commutator x−1

1 x−1
2 x1x2 by [x1, x2] and define, for n > 1,

[x1, . . . , xn+1] = [[x1, . . . , xn], xn+1].

If H and K are subgroups of G, we define

[H,K] = gp([h,k] | h ∈ H,k ∈ K).

The lower central series

G = γ1(G) ≥ γ2(G) ≥ · · ·
of G is defined inductively by setting

γn+1(G) = [γn(G),G].

As usual, G is nilpotent if γc+1(G) = 1 for some c, with the least such c the
class of G. Now the elements of finite order in a nilpotent group H form a
normal subgroup tor(H), the torsion subgroup of H . So it makes sense to
define

γn(G)/γn(G) = tor
(
G/γn(G)

)
.

We define

γω(G) =
∞⋂

n=1

γn(G).

Then it follows that a group G is residually torsion-free nilpotent if γω(G) = 1.
So the residually torsion-free nilpotent groups consist of those groups G such
that for each g ∈ G, g �= 1, there exists a normal subgroup N of G, which may
depend on g, such that g /∈ N and G/N is a torsion-free nilpotent group. For
convenience, we denote the class of torsion-free nilpotent groups by T and the
class of residually torsion-free nilpotent groups by rT . We will need also the
class Tc of torsion-free nilpotent groups of class at most c. We term a group in
rT free in the class rT if it can be generated by a set X such that every map
from X into an rT group can be continued to a homomorphism. Of course we
already know that the free groups in rT are the absolutely free groups. Our
objective here is to give a proof of this theorem which differs from the one
given by Magnus. We note that at this point all we can assert is that the free
groups in rT are the quotients F/γω(F ) where F is a free group. Similarly,
the free groups in Tc are the quotients (F/γc+1(F ))/ tor(F/γc+1(F )).

4. Our first proof of Magnus’ theorem that free groups are
residually torsion-free nilpotent

Here, we describe our first, direct proof that free groups are residually
torsion-free nilpotent.

The proof uses the trick that Magnus introduced in his proof of the Fre-
heitssatz [10] and a small variation of the idea used in the paper [4].
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4.1. The start of the proof. We shall have need of a variation of a family
of torsion-free nilpotent groups H(Y,n, c) introduced in [2] which have to be
adjusted for the purposes that we have in mind here.

4.2. The groups H(Y,n, c). The groups H(Y,n, c) are infinite cyclic exten-
sions of a family of groups N = N(Y,n, c) which depend on three parameters,
a set Y and two positive integers n and c. The groups N = N(Y,n, c) are free
in the class Tc, freely generated by a set

{y1, . . . , yn | y ∈ Y }
indexed by the integers {1, . . . , n} and the elements y ∈ Y . We will need the
following lemma.

Lemma 4. Let N be as above and for each y ∈ Y , let

z(y,1) = y1y2, z(y,2) = y2y3, . . . ,

z(y,n − 1) = yn−1yn, z(y,n) = yn.

Then
z(y,1), . . . , z(y,n)

freely generate the group N , viewed as a free group in the class Tc.

In order to prove the lemma, we note that any set of elements of a nilpo-
tent group which generates it modulo its derived group, generates the whole
group. Since the elements z(y,h) generate N modulo its derived group, they
generate N . So the map which sends yh to z(y,h) for y ∈ Y and h = 1, . . . , n,
defines an epimorphism μ of N . Notice that μ then induces an epimorphism of
gp(y1, . . . , yn) and since finitely generated nilpotent groups are hopfian, μ is
monic on gp(y1, . . . , yn(y ∈ Y )). Hence, μ is an automorphism of N which
suffices to prove the lemma.

We come now to the definition of the groups H(Y,n, c). Each of them is
an extension of the corresponding group N = N(Y,n, c) by the infinite cyclic
group generated by t which acts on N by μ:

t−1y1t = y1y2, . . . , t−1yn−1t = yn−1yn, t−1ynt = yn

for y ∈ Y . So

[t, y1] = y2, [t, y2] = y3, . . . , [t, yn−1] = yn, [t, yn] = 1.

It follows readily from these relations, that modulo γ2(N), H(Y,n, c) is nilpo-
tent of class n. Hence, by a theorem of P. Hall [7], H(Y,n, c) is also nilpotent.
It is clearly torsion-free. So we have proved the following.

Lemma 5. The groups H(Y,n, c) are torsion-free nilpotent groups for every
choice of Y , n and c.

We shall have need of the following observation about the conjugates of the
elements yi of H(Y,n, c):
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Lemma 6. The conjugates

t−1y1t, t−2y1t
2, . . . , t−ny1t

n

are linearly independent modulo the derived group of N(Y,n, c) for each y ∈ Y .

Each of the conjugates t−iy1t
i can be expressed, modulo the derived group

of N , as a product wiyi, where wi is a word in y1, . . . , yi−1 for i = 0, . . . , n.
This suffices to prove the lemma.

4.3. The end of the direct proof of Magnus’ theorem. Let F be the
free group, freely generated by the set X and let f ∈ F be a nontrivial element
of F . We need to prove that there exists a normal subgroup K of F such that
f /∈ K with F/K torsion-free nilpotent. The proof is by induction on the
length � of f . We can assume that f ∈ F ′, the derived group of F for if
f /∈ F ′, then we can take K = F ′.

It follows that we can assume that one of the elements of X , say s, occurs
with exponent sum 0 in f . Let P be the normal closure in F of X ′ = X − {s}.
Then P is freely generated by the elements

xi = s−ixsi (x ∈ X ′, i ∈ Z).

Notice that f ∈ P . Therefore, on replacing f by a conjugate by si if necessary,
f can expressed as a word f ′ in the generators

xi = s−ixsi (x ∈ X ′, i ∈ {1, . . . , n}).

We observe that the length of f ′ is at most � − 2, since s occurs in f with
exponent sum 0. So, inductively, we can find c > 0 such that

f /∈ γc+1(P ).

We now choose the set Y introduced previously to have the same car-
dinality as X ′ equipped with a matching φ : X ′ −→ Y . We now define a
homomorphism μ of F onto H(Y,n, c) as follows:

μ : s 	→ t, x 	→ xφ (x ∈ X ′).

μ induces a surjection

μ∗ : F/γc+1(P ) −→ H(Y,n, c)

which maps xiγc+1(P ) onto (xφ)i for i = 1, . . . , n and x ∈ X ′. The restriction
of μ∗ to

gp(xiγc+1(P ) | i = 1, . . . , n, x ∈ X ′),
is an isomorphism between

gp(xiγc+1(P ) | i = 1, . . . , n, x ∈ X ′),

and N(Y,n, c) by Lemma 6. Hence,

fμ = f ′μ∗ �= 1.
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So if K is the kernel of μ, F/K is torsion-free and nilpotent and f /∈ K. This
completes the proof of the theorem.

5. A family of residually torsion-free nilpotent one-relator groups

We arrive finally at the proof of Theorem 1, which is modeled on the
argument described in Section 4, and should be compared with the work of
P. C. Wong in [18].

5.1. The groups J = J(Y +, n, c,w). We will need a slight variation of
the groups H(Y,n, c) introduced in Section 4. We label these groups J =
J(Y +, n, c,w), where here w is an arbitrary word in the generators Y . The
groups J are infinite cyclic extensions of a corresponding family of groups
O = O(Y +, n, c,w). The groups O are free nilpotent of class c freely generated
by the elements

{a} ∪ {y1, . . . , yn | y ∈ Y }
indexed as before by the integers {1, . . . , n}, the elements y ∈ Y and a single
extra element a.

Each of the groups J is an extension of the corresponding group O by the
infinite cyclic group generated by an element t acting on O as follows:

t−1at = aw, t−1y1t = y1y2, . . . ,

t−1yn−1t = yn−1yn, t−1ynt = yn

for y ∈ Y . It follows from these relations that modulo γ2(O), J is nilpotent
of class at most c + 1—we have only to compute its upper centrals series.
Hence, again using the theorem of P. Hall [7], J is also nilpotent. It is clearly
torsion-free. So we have proved the following lemma.

Lemma 7. The groups J(Y +, n, c,w) are torsion-free nilpotent groups for
every choice of Y , n, c and w.

Notice again as before, that the following lemma holds.

Lemma 8. The elements

t−1y1t, t−2y1t
2, . . . , t−ny1t

n (y ∈ Y )

together with a are linearly independent modulo the derived group of O.

5.2. The proof of Theorem 1. We are now in position to prove Theorem 1.
To this end consider the normal closure L in G of the elements in the set
{a} ∪ Y . Now t−1at = aw in G, where w ∈ gp(Y ). It follows from Magnus’
proof of his Freiheitsatz that L is a free group, freely generated by a together
with the conjugates yi = t−iyti of the elements y ∈ Y .

We have to prove that if u is a non-trivial element of G then there is a
homomorphism of G onto a torsion-free nilpotent group for which the image
of u is nontrivial. If u /∈ L, we can take G/L to be that torsion-free nilpotent
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group. So we can restrict attention to the case where u ∈ L. Replacing
u by a suitable conjugate of u by a power of t allows us to assume that
u ∈ gp({y0, y1, . . . , yn (y ∈ Y )}). Choose c so that u /∈ γc+1(L). Now let ρ
be the homomorphism of G onto J(Y +, n, c,w) which maps t, a and the
elements of Y to their correspondingly named images in J . Since the elements
a, y1, . . . , yn are linearly independent modulo the derived group of O, u maps
onto a nontrivial element of O, which completes the proof of Theorem 1.

6. Proving free groups residually torsion-free nilpotent using
wreath products

6.1. Using Lichtmans’s theorem. If one strips away some of the technical-
ities, there is a very simple proof that free groups are residually torsion-free.
To this end, we will need the following theorem of A. I. Lichtman [9]: if
F is a free group, if R � F and if F/R is residually torsion-free nilpotent,
then F/[R,R] is also residually torsion-free nilpotent. We choose R = γω(F ).
Notice that R is the smallest normal subgroup of F with residually torsion-
free nilpotent quotient. We claim that R = 1. Suppose the contrary. Then
by Lichtman’s theorem, F/[R,R] is residually torsion-free nilpotent. But
[R,R] < γω(F ), which is not possible. This completes the proof.

6.2. Where do wreath products come into play and can they be
used in the case of Q-groups? We recall first the definition of a wreath
product. Suppose that A and T are subgroups of the group W . If A and T
generate W and if the conjugates At of A by the elements t ∈ T are distinct
and generate their direct product, then W is termed the wreath product of A
by T and denoted A � T . Magnus [12] proved that if F is a free group, if R�F
and if A = R/[R,R], T = F/R, then F/[R,R] can be embedded in W = A � T .
The residual torsion-free nilpotence of W follows from the residual nilpotence
of the rational group algebra of F/R. This outline provides a blueprint for
proving free Q-groups residually torsion-free nilpotent. One of the key steps
needed then is a theorem of S. V. Polin [16] who has proved that Q-subgroups
of free Q-groups are again free. So what remains is finding an analogue of
Magnus’ theorem for Q-groups. Now given a group G together with a normal
subgroup H of G, the right-regular representation of G on the cosets of H
gives rise to an embedding of G into the so-called unrestricted wreath product
of H by G/N . An inspection of this observation can then be used to prove
Magnus’ theorem. Perhaps the same approach can be taken in the case of
Q-groups.

7. Final reflections

It seems to be difficult to find conditions that ensure that a given one-
relator group is residually torsion-free nilpotent. The only result of a similar
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kind is that a one-relator group defined by a positive word is residually solv-
able [3]. Whether there are algorithms to decide if a one-relator group is
residually torsion-free nilpotent or residually nilpotent or residually solvable
are intriguing open problems The recent book by Mikhailov and Passi [14]
contains a wealth of information and a number of interesting results which
seem to be relevant but do not exactly fit into this line of investigation.

The proof in [2] that adjoining an nth root to an element in a free group
which is not a proper power gives rise to a residually torsion-free nilpotent
group involves understanding the kernel of a homomorphism onto an infinite
cyclic group. The relevance of our approach here is that it suggests that this
kernel can be approximated by a very special torsion-free nilpotent group and
so can be generalized to handle more than a single adjunction.
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