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SUBLINEAR TIME ALGORITHMS IN THE THEORY OF
GROUPS AND SEMIGROUPS
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Dedicated to Paul Schupp in appreciation of his contributions to
mathematics and computer science.

Abstract. Sublinear time algorithms represent a new paradigm
in computing, where an algorithm must give some sort of an an-
swer after inspecting only a small portion of the input. The most

typical situation where sublinear time algorithms are considered

is property testing. There are several interesting contexts where

one can test properties in sublinear time. A canonical example is

graph colorability. To tell that a given graph is not k-colorable, it

is often sufficient to inspect just one vertex with incident edges:

if the degree of a vertex is greater than k, then the graph is not
k-colorable.

It is a challenging and interesting task to find algebraic prop-
erties that could be tested in sublinear time. In this paper, we

address several algorithmic problems in the theory of groups and

semigroups that may admit sublinear time solution, at least for
“most” inputs.

1. Introduction

Typically, to give some information about an input, an algorithm should
at least “read” the entire input, which takes linear time in “length”, or com-
plexity, of the latter. Thus, linear time was usually considered the “golden
standard” of achievement in computational complexity theory.

Sublinear time algorithms represent a new paradigm in computing, where
an algorithm must give some sort of an answer after inspecting only a small
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portion of the input. Given that reading some data takes too long, it is natural
to ask what properties of the data can be detected by sublinear time algo-
rithms that read only a small portion of the data. Sublinear time algorithms
for decision problems are examples of property testing algorithms.

In broad terms, property testing is the study of the following class of prob-
lems:

Given the ability to perform local queries concerning a particular object (e.g.,

a graph, or a group element), the task is to determine whether or not the
object has a specific property. The task should be performed by inspecting
only a small (possibly randomly selected) part of the whole object.

Often, a small probability of failure is allowed, especially when efficiency is
more important than accuracy; this makes a difference with “usual” decision
algorithms that have to give correct answers for all inputs. (By “failure” here
we mean a situation where an algorithm cannot give a conclusive answer, but
we do not allow an algorithm to give a wrong answer.) In this sense, one of
the ideas behind using sublinear time algorithms is similar to that of using
genericity, that is, assessing complexity of an algorithm on “most” inputs,
see, for example, [9], [10], [11].

Property testing algorithms offer several benefits: they save time, are good
in settings where some errors are tolerable and where the data is constantly
changing, and can also provide a fast check to rule out bad inputs. An addi-
tional motivation for studying property testing is that this area is abundant
with fascinating combinatorial problems. Property testing has recently be-
come an active research area; a good recent survey is [17].

In this paper, we address several algorithmic problems in the theory of
groups and semigroups that may admit sublinear time solution, at least for
“most” inputs. One of these problems is a special case of the well-known
Whitehead’s problem: given two elements of a free group F , find out whether
or not one of them can be taken to the other by an automorphism of F . This
problem was solved long time ago by Whitehead himself, but the complexity
of the solution is still a subject of active research. It is not hard to show,
for example, that those elements (represented by freely reduced words) which
cannot be taken to a free generator (i.e., nonprimitive elements) can be de-
tected by a sublinear (with respect to the length of an input element) time
algorithm with a negligible probability of failure; see our Section 2.

Another problem that we consider is the word problem. It is fairly easy to
show that testing sublinear-length subwords of a given (freely reduced) word
g cannot help in deciding whether or not g = 1 in G unless G is a free group
because one has to at least test a subword of length about 1

2 |g|. However, with
semigroups the situation is different, so we want to find (natural) examples
of semigroups where the word problem admits a sublinear time solution for
“most” inputs. One potential source of such examples is “positive monoids”
associated with groups, that is, monoids generated by group generators, but
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not their inverses. We address this problem in Section 4 for positive monoids
associated with free nilpotent group, with Thompson’s group F , and with
braid groups. It turns out that of these positive monoids, only those associated
with braid groups admit sublinear-time detecting of inequality at least for
some pairs of words.

2. Background: Sublinear time algorithms in graph theory

There are several interesting contexts where one can test properties in sub-
linear time. For example, in [7], the authors focused their attention on testing
various properties of graphs and other combinatorial objects. In particular,
they considered the property of k-colorability. This property is NP-complete
to determine precisely but it is easily testable; more specifically, one can
distinguish k-colorable graphs from those that are ε-far from k-colorable in
constant time. (Two graphs G and H on n vertices are ε-close if at most εn2

edges need to be modified (inserted or deleted) to turn G into H . Otherwise,
G and H are ε-far.)

The work of [7] sparked a flurry of other results; in particular, an interesting
line of work was initiated in [1], where the authors showed that the property
of a graph being H-free (that is, the graph does not contain any copy of H
as a subgraph) is easily testable for any constant sized graph H .

In general, the area of property testing has been very active, with a number
of property testers suggested for graphs and other combinatorial objects, as
well as matrices, strings, metric spaces, etc.

In this paper, we discuss sublinear time property testing in the context of
some particular problems in combinatorial theory of groups and semigroups.
Testing some of these properties amounts to testing a graph (e.g., the White-
head graph of a free group element), and therefore fits in with the original
ideas of sublinear time property testing that come from graph theory. To give
an example, we describe here a particular property of a free group element
that can be tested in sublinear time in the length of the input element.

3. Testing primitivity in a free group

Let Fr be a free group of rank r ≥ 2 with a fixed finite basis X = {x1,
. . . , xr }. An element g ∈ Fr is called primitive if it is a member of some free
basis of Fr. Or, equivalently, if there is an automorphism of Fr that takes g
to x1.

A natural property of a given element u ∈ Fr one might want to test is
whether or not u is primitive. We show that for “most” inputs, this can
be done in time sublinear in the length of u. We have to note one subtle
distinction between what we are going to show here and what was established
in [11]. From the results of [11], it follows that a “generic” element u ∈ Fr is
not primitive (moreover, its length cannot be decreased by any automorphism
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of Fr). However, these results are only applicable if u was chosen uniformly
randomly from the set of all (freely reduced) words of length ≤ N , for some N .
Furthermore, given a particular element u ∈ Fr, the results of [11] do not allow
one to check (in linear time, say) that u is, indeed, nonprimitive.

What we are going to show here is that, after testing a small part of a cycli-
cally reduced word u, one can, for a “generic” freely reduced u, tell for sure
(i.e., with a rigorous proof) that u is not primitive. To explain this, we have
to introduce the Whitehead graph first.

The Whitehead graph Wh(u) of a (cyclically reduced) word u ∈ Fr is ob-
tained as follows. The vertices of this graph correspond to the elements of the
free generating set X and their inverses. For each occurrence of a subword
xixj in the word u, there is an edge in Wh(u) that connects the vertex xi to
the vertex x−1

j ; if u has a subword xix
−1
j , then there is an edge connecting

xi to xj , etc. There is one more edge (the external edge) included in the
definition of the Whitehead graph: this is the edge that connects the vertex
corresponding to the last letter of u to the vertex corresponding to the inverse
of the first letter.

It was observed by Whitehead himself (see also [20]) that the Whitehead
graph of any cyclically reduced primitive element of length > 2 has either an
isolated edge or a cut vertex, i.e., a vertex that, having been removed from
the graph together with all incident edges, increases the number of connected
components of the graph. Obviously, if the Whitehead graph has a Hamil-
tonian circuit (i.e., a circuit that contains all vertices of the graph), then it
cannot have a cut vertex. Our test is therefore pretty simple: pick a random
subword v of u, of length sublinear in |u|, say, of length |u|δ for some 0 < δ < 1.
It follows from results of [11] that all possible 2-letter subwords are going to
be present in v with overwhelming probability. Having checked that (which
takes linear time in |v|, and therefore sublinear time in |u|), we conclude that
the Whitehead graph of v is complete, hence the Whitehead graph of u has a
Hamiltonian circuit, whence u is not primitive.

We note, in passing, that the problem of detecting a Hamiltonian circuit in
an arbitrary given graph is well known to be computationally hard (in fact,
NP-complete) in the worst case [6], but it is also known to be easy for “most”
graphs (it is even easy “on average”, see [8]).

It is an interesting question whether sublinear time algorithms can be found
for other instances of the Whitehead problem (= automorphic conjugacy prob-
lem) in a free group, so we ask the following problem.

Problem 1. Let v ∈ Fr be arbitrary but fixed. Is there a generic subset
S (see our Section 4, Definition 4.2) of Fr and an algorithm Av such that for
any u ∈ S, the algorithm Av is able to detect, in time sublinear in the length
of u, that u cannot be taken to v by any automorphism of Fr?
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4. The word problem in semigroups

If a group (or a semigroup) G is given by a recursive presentation in terms
of generators and defining relators:

G = 〈x1, x2, . . . , xn | r1, r2, . . . 〉,

then the word problem for G is: given a word g = g(x1, x2, . . . , xn), find out
whether or not g = 1 in G. The word problem is known to have linear time
solution for hyperbolic groups.

As we have mentioned in the Introduction, it is fairly easy to show that
testing sublinear-length subwords of a given word g cannot help in deciding
whether or not g = 1 in a group G unless G is free and g is freely reduced.
Indeed, suppose generators of G satisfy a relation r = r(x1, . . . , xn) = 1. Then,
given a (freely reduced) word g of length m, the initial segment of g of length ≤
m
2 will have r as a subword with probability converging to 1 exponentially
fast as m → ∞. Since any cyclic shift of a word representing the identity also
represents the identity, we may assume, without loss of generality, that our
initial segment of g of length ≤ m

2 ends with r, that is, it is of the form ur.
Then, if g is of the form urr′u−1, where r′ is any relator in G, it represents
the identity. Therefore, examining a subword of length ≤ m

2 of a generic word
of length m cannot possibly help to guarantee that g 	= 1 in G.

However, with semigroups the situation is different, so we address here the
following, perhaps somewhat vague, problem.

Problem 4.1. Are there natural examples of semigroups given by gener-
ators and defining relators, where the word problem admits a sublinear time
solution for “most” inputs?

Note that the word problem for semigroups has a slightly different wording
(excuse the pun): given two words g,h in generators of a semigroup G, find
out whether or not g = h in G. Of course, if an algorithm for a sublinear time
solution of the word problem exists, it will only give “negative” answers, that
is, g 	= h in G. This is similar to results of [9], where (generically) linear time
solution of the word problem was offered for several large classes of groups;
their solution, too, gives only “negative” answers.

First, we have to clarify the meaning of “most” inputs in this context. To
that end, we recall the definition of a generic set from [9]. The most general
and straightforward definition is based on the notion of asymptotic density.

Definition 4.2. Suppose that T is a countable set and that � : T → N

is a function (referred to as length) such that for every n ∈ N the set {x ∈
T : �(x) ≤ n} is finite. If X ⊆ T and n ≥ 0, we denote ρ�(n,X) := #{x ∈
X : �(x) ≤ n} and γ�(n,X) = #{x ∈ X : �(x) = n}.
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Let S ⊆ T . The asymptotic density of S in T is

ρT,�(S) := limsup
n→∞

#{x ∈ S : �(x) ≤ n}
#{x ∈ T : �(x) ≤ n} = limsup

n→∞

ρ�(n,S)
ρ�(n,T )

,

where we treat a fraction 0
0 , if it occurs, as 0.

If the actual limit exists, we denote it by ρT,�(S) and call this limit the
strict asymptotic density of S in T . We say that S is generic in T with respect
to � if ρT,�(S) = 1.

In our situation, T is the set of all words in a given (finite) alphabet X =
{x1, x2, . . . , xn}, and �(w),w ∈ T , is the usual lexicographic length of w that
we often denote simply by |w|. Thus, given a semigroup G generated by X ,
we are looking for a generic set S ⊆ T of words such that for any g,h ∈ S,
there is a sublinear time in n = |g| + |h| (probabilistic) algorithm proving that
g 	= h in G with probability 1 − ε(n), where ε(n) → 0 as n → ∞.

As we have pointed out in the Introduction, one potential source of semi-
groups with the property in question is “positive monoids” associated with
groups, that is, monoids generated by group generators, but not their inverses.
For some particular groups, for example, for braid groups, Thompson’s group,
these monoids have been extensively studied, and because of very nontrivial
combinatorics involved in these studies, it would be quite interesting to ei-
ther obtain a sublinear time algorithm for solving the word problem in these
monoids or prove that none exists. Negative results would be interesting, too,
because lower bounds on complexity are always valuable.

Another important class of positive monoids is associated with free nilpo-
tent groups; these monoids have a special name of strictly nilpotent semi-
groups, see [19]. They are called strictly nilpotent because there are several
other definitions of nilpotency for semigroups; for a survey on these and on
how they are related to strictly nilpotent semigroups we refer to [18] or [19].
Here we just say that nilpotent semigroups, under various definitions, have
been extensively studied from many different perspectives (see, e.g., [12] or
[18]).

In the following three subsections, we are going to show that of the three
kinds of positive monoids (associated with free nilpotent groups, with Thomp-
son’s group F , and with braid groups), only those associated with braid groups
admit sublinear-time detecting of inequality at least for some pairs of words.

4.1. Positive monoid of a free nilpotent group. Positive monoids of free
nilpotent groups are called strictly nilpotent semigroups, see [19]. We have to
give some background here because properties of free nilpotent groups are not
as well known these days as properties of braid groups or Thompson’s group
are.

Magnus [14] considered the embedding of the free group F with a free
generator set X into the power series ring with the same set X of generators
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and proved that a group element which belongs to γc(F ), the cth term of
the lower central series of the group F , is mapped to a power series without
nonconstant terms of degree less than c. The converse result (i.e., that any
group element which does not belong to γc(F ), is mapped to a power series
with some nonconstant terms of degree less than c) appeared to be quite
difficult to prove. Probably the first full and correct proof was given by Chen,
Fox and Lyndon in [5]. They considered the free group ring instead of the
power series ring and proved that

γc(F ) = (Δc
F + 1) ∩ F,

where ΔF is the augmentation ideal of the free group ring ZF , that is, the
kernel of the natural “augmentation” homomorphism εF : ZF → Z that takes
all elements of F to 1.

Now let Mc denote the positive monoid of the free nilpotent group
F/γc+1(F ) of class c, where F is a free group of rank r ≥ 2 with a free
generator set X . We do not include the rank r in the notation because our
results in this section are independent of r. We have the following lemma.

Lemma 1 ([19]). Elements of Mc satisfy all identities of the form ac = bc,
where ac and bc are words in X such that (ac − bc) ∈ Δc+1.

To prove the main result of this section, we will need to combine this lemma
with the following result due to A. I. Mal’cev [15] and, independently, to B.
Neumann and T. Taylor [16]. To better tailor (no pun intended) this result
to our needs, we give it here in a weaker form.

Lemma 2. Let

u0 = x, v0 = y;
un+1 = unvn, vn+1 = vnun,

where x, y are arbitrary elements of a free group F . Then uc = vc modulo
γc+1(F ).

By combining Lemmas 1 and 2, we get the following proposition.

Proposition 4.1. For any two positive words w1 and w2 of length n in an
alphabet X , there are positive words z1 and z2 of lengths ≤ (n − 1) · 2c such
that w1z1 = w2z2 in Mc.

In particular, given two positive words of length L one cannot tell that they
are not equal in Mc by just inspecting the prefixes of length ≤ L

2c , that is,
there is at least no obvious sublinear time algorithm for detecting inequality
in Mc.

Proof of Proposition 4.1. Construct the Mal’cev–Neumann–Taylor se-
quence of words starting with u0 = w1, v0 = w2. Then uc has w1 as a pre-
fix, vc has w2 as a prefix, uc = vc in Mc, and the length of both uc and vc is
n · 2c. �
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4.2. Positive monoid of Thompson’s group F . Thompson’s group F is
well known in many areas of mathematics, including algebra, geometry, and
analysis. For a survey on various properties of Thompson’s group, we refer
to [4]. This group has the following nice presentation in terms of generators
and defining relations:

F = 〈x0, x1, x2, . . . | xkxi = xixk+1 (k > i)〉.
Since all defining relators in this presentation are pairs of positive words,

we can consider the positive monoid associated with this presentation; denote
it by F+.

We note that the above (infinite) presentation allows for a convenient nor-
mal form. We do not really need it in this paper, but we describe it here
anyway. The classical normal form of an element of Thompson’s group is a
word of the form

xi1 . . . xisx
−1
jt

. . . x−1
j1

,

such that the following two conditions are satisfied:
(NF1) i1 ≤ · · · ≤ is and j1 ≤ · · · ≤ jt

(NF2) if both xi and x−1
i occur, then either xi+1 or x−1

i+1 occurs, too.
Now we get to the point of this section.

Proposition 4.2. For any two positive words w1 and w2 of lengths m
and n, respectively, in the alphabet X = {x0, x1, x2, . . .}, there are positive
words z1 and z2 of lengths n and m, respectively, such that w1z1 = w2z2 in
Thompson’s group F .

The following elegant and simple proof is due to Victor Guba.

Proof of Proposition 4.2. Construct the following van Kampen diagram
(see, e.g., [13] for the definition of a van Kampen diagram). On a square
lattice, mark one point as the origin. Starting at the origin and going to the
right, write the word w1 by marking edges of the lattice by the letters of w1,
read left to right. Then, starting at the origin and going up, write the word
w2 by marking edges of the lattice by the letters of w2, read left to right.

Now start marking edges of the lattice inside the rectangle built on segments
of length m (horizontally) and n (vertically) corresponding to the words w1

and w2, as follows. All horizontal edges in the lattice are directed from left to
right, and all vertical edges are directed from bottom to top. Then, suppose
a single square cell of the lattice has:
• xi on the lower edge and xi on the left edge. Then we mark the upper edge

and the right edge of this cell with the same xi. This cell now corresponds
to the relation xixi = xixi.

• xi on the lower edge and xj on the left edge, where i < j. Then we mark
the upper edge of this cell with xi, and the right edge with xj+1. This cell
now corresponds to the relation xjxix

−1
j+1x

−1
i = 1, or xjxi = xixj+1.
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• xi on the lower edge and xj on the left edge, where i > j. Then we mark
the upper edge of this cell with xi+1, and the right edge with xj . This cell
now corresponds to the relation xjxi+1x

−1
j x−1

i = 1, or xjxi+1 = xixj .
After all edges of the rectangle built on segments corresponding to the

words w1 and w2 are marked, we read a relation of the form w2u1u
−1
2 w−1

1 = 1,
or w2u1 = w1u2, off the edges of this rectangle. Here the length of u1 is m
and the length of u2 is n. This completes the proof. �

Example 1. If w1 = x1x2 and w2 = x3x5, this method gives w1x5x7 =
w2x1x2.

Proposition 4.2 implies, in particular, that it is impossible to tell that two
positive words of length L in the alphabet X = {x0, x1, x2, . . .} are not equal
in Thompson’s group F by inspecting their initial segments of length ≤ L

2 ,
that is, there is at least no such straightforward sublinear time algorithm for
detecting inequality in F+.

4.3. Positive braid monoids. Braid groups need no introduction; we just
refer to the monograph [3] for background. Some notation has to be recalled
though. We denote the braid group on n strands by Bn; this group has
a standard presentation

〈σ1, . . . , σn−1|σiσj = σjσi if |i − j| > 1;
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 2〉.

We shall call elements of Bn braids, as opposed to braid words that are ele-
ments of the ambient free group on σ1, . . . , σn−1.

Since all defining relators of a braid group are positive words, we can con-
sider the positive braid monoid; denote it by B+

n .
It turns out that, in contrast to the situation with positive monoids Mc

and F+ considered in two previous sections of this paper, for at least some
pairs of positive words in B+

n there is a sublinear time test for inequality. The
following proposition follows from the results of [2]; in particular, from the
proof of their Proposition 2.9.

Proposition 4.3. Let w1 = σ1σ3 · · · σ2m−1, w2 = σ2mσ2m−2 · · · σ2. Sup-
pose w1u = w2v for some u, v ∈ B+

n , n ≥ 2m. Then |u|, |v| = 2m2.

Thus, in particular, if one has two positive braid words of length L, where
one of them starts with σ1σ3 · · · σ2k−1, the other one starts with
σ2kσ2k−2 · · · σ2, and k ≥

√
L, then these braid words are not equal in B+

n , n ≥
2k.

Of course, this is just a very special example where a sublinear time algo-
rithm can detect inequality of two words in B+

n , so the interesting question is
whether examples of this sort are “generic”. We therefore ask the following
problem.
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Problem 2. Is there a generic subset S (in the sense of Definition 4.2)
of B+

n and a number ε > 0 such that for any two words w1,w2 of length
k representing elements of S, the minimum length of words u, v such that
w1u = w2v, is greater than k(1+ε)?

Acknowledgments. The author is grateful to Victor Guba and Patrick De-
hornoy for helpful discussions.

References

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs,
Combinatorica 20 (2000), 451–476. MR 1804820

[2] M. Autord and P. Dehornoy, On the distance between the expressions of a permutation,
preprint. MR 2673022

[3] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, vol. 82,
Princeton University Press, 1974. MR 0375281

[4] J. W. Cannon, W. J. Floyd and W. R. Parry, Introductory notes on Richard Thomp-
son’s groups, L’Enseignement Mathematique (2) 42 (1996), 215–256. MR 1426438

[5] K. T. Chen, R. H. Fox and R. C. Lyndon, Free differential calculus. IV. The quotient
groups of the lower central series, Ann. of Math. (2) 68 (1958), 81–95. MR 0102539

[6] M. Garey and J. Johnson, Computers and intractability, a guide to NP-completelness,
W. H. Freeman, 1979. MR 0519066

[7] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learn-
ing and approximation, J. ACM 45 (1998), 653–750. MR 1675099

[8] Yu. Gurevich and S. Shelah, Expected computation time for Hamiltonian Path Prob-
lem, SIAM J. Comput. 16 (1987), 486–502. MR 0889404

[9] I. Kapovich, A. Myasnikov, P. Schupp and V. Shpilrain, Generic-case complexity,
decision problems in group theory and random walks, J. Algebra 264 (2003), 665–694.

MR 1981427

[10] I. Kapovich and P. Schupp, Genericity, the Arzhantseva–Ol’shanskii method and

the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), 1–19.
MR 2107437

[11] I. Kapovich, P. Schupp and V. Shpilrain, Generic properties of Whitehead’s algorithm
and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006),

113–140. MR 2221020

[12] O. Kharlampovich and M. Sapir, Algorithmic problems in varieties, Internat. J. Alge-

bra Comput. 5 (1995), 379–602. MR 1361261

[13] R. Lyndon and P. Schupp, Combinatorial group theory, Classics in Mathematics,

Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024

[14] W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring,

Math. Ann. 111 (1935), 259–280. MR 1512992

[15] A. I. Mal’cev, Nilpotent semigroups, Uchen. Zapiski Ivanovsk. Ped. Inst. 4 (1953),

107–111 (Russian). MR 0075959

[16] B. H. Neumann and T. Taylor, Subsemigroups of nilpotent groups, Proc. Roy. Soc.

Ser. A 274 (1963), 1–4. MR 0159884

[17] R. Rubinfeld, Sublinear time algorithms, ICM 2006, invited talk; available at http://

theory.lcs.mit.edu/~ronitt/papers/icm.ps. MR 2275720

[18] L. Shneerson, Relatively free semigroups of intermediate growth, J. Algebra 235 (2001),

484–546. MR 1805469

[19] V. Shpilrain, Magnus embeddings for semigroups, Internat. J. Algebra Comput. 6

(1996), 155–163. MR 1386072

http://www.ams.org/mathscinet-getitem?mr=1804820
http://www.ams.org/mathscinet-getitem?mr=2673022
http://www.ams.org/mathscinet-getitem?mr=0375281
http://www.ams.org/mathscinet-getitem?mr=1426438
http://www.ams.org/mathscinet-getitem?mr=0102539
http://www.ams.org/mathscinet-getitem?mr=0519066
http://www.ams.org/mathscinet-getitem?mr=1675099
http://www.ams.org/mathscinet-getitem?mr=0889404
http://www.ams.org/mathscinet-getitem?mr=1981427
http://www.ams.org/mathscinet-getitem?mr=2107437
http://www.ams.org/mathscinet-getitem?mr=2221020
http://www.ams.org/mathscinet-getitem?mr=1361261
http://www.ams.org/mathscinet-getitem?mr=1812024
http://www.ams.org/mathscinet-getitem?mr=1512992
http://www.ams.org/mathscinet-getitem?mr=0075959
http://www.ams.org/mathscinet-getitem?mr=0159884
http://theory.lcs.mit.edu/~ronitt/papers/icm.ps
http://www.ams.org/mathscinet-getitem?mr=2275720
http://www.ams.org/mathscinet-getitem?mr=1805469
http://www.ams.org/mathscinet-getitem?mr=1386072
http://theory.lcs.mit.edu/~ronitt/papers/icm.ps


SUBLINEAR TIME ALGORITHMS 197

[20] J. R. Stallings, Whitehead graphs on handlebodies, Geometric group theory down under
(Canberra, 1996), de Gruyter, Berlin, 1999, pp. 317–330. MR 1714852

Vladimir Shpilrain, Department of Mathematics, The City College of New

York, New York, NY 10031, USA

E-mail address: shpil@groups.sci.ccny.cuny.edu

http://www.ams.org/mathscinet-getitem?mr=1714852
mailto:shpil@groups.sci.ccny.cuny.edu

	Introduction
	Background: Sublinear time algorithms in graph theory
	Testing primitivity in a free group
	The word problem in semigroups
	Positive monoid of a free nilpotent group
	Positive monoid of Thompson's group F
	Positive braid monoids

	Acknowledgments
	References
	Author's Addresses

