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MAKANIN–RAZBOROV DIAGRAMS OVER FREE
PRODUCTS

ERIC JALIGOT AND ZLIL SELA

Abstract. This paper is the first in a sequence on the first order
theory of free products and further generalizations. In the first

paper, we generalize the analysis of systems of equations over

free and (torsion-free) hyperbolic groups, and analyze systems

of equations over free products. To do that we introduce limit

groups over the class of free products, and show that a finitely

presented group has a canonical (finite) collection of maximal

limit quotients. We further extend this finite collection and asso-
ciate a Makanin–Razborov diagram over free products with every

f.p. group. This MR diagram encodes all the quotients of a given

f.p. group that are free products, all its homomorphisms into free

products, and equivalently all the solutions to a given system of
equations over a free product.

Sets of solutions to equations defined over a free group have been studied
extensively. Considerable progress in the study of such sets of solutions was
made by G. S. Makanin, who constructed an algorithm that decides if a sys-
tem of equations defined over a free group has a solution [Ma], and showed
that the universal and positive theories of a free group are decidable. A. A.
Razborov was able to give a description of the entire set of solutions to a
system of equations defined over a free group [Ra2], a description that was
further developed by O. Kharlampovich and A. Myasnikov [Kh-My].

In [Se1], a geometric approach to the study of sets of solutions to systems
of equations over a free group is presented. This was generalized in [Se3] for
systems of equations over (torsion-free) hyperbolic groups, in [Al] to systems
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20 E. JALIGOT AND Z. SELA

of equations over limit groups, and in [Gro] to systems of equations over toral
relatively hyperbolic groups.

In this paper, we generalize part of the techniques and the results that were
obtained over free groups to study systems of equations over arbitrary free
products. Let Σ be a system of equations which is defined over a free product,
A ∗ B:

w1(x1, . . . , xn) = 1,

...
ws(x1, . . . , xn) = 1.

Following [Ra1], we set the associated f.p. group G(Σ) to be:

G(Σ) = 〈x1, . . . , xn|w1, . . . ,ws〉.
Clearly, every solution of the system Σ corresponds to a homomorphism
h : G(Σ) → A ∗ B, and every such homomorphism corresponds to a solution of
the system Σ. Therefore, the study of sets of solutions to systems of equations
over the free product A ∗ B is equivalent to the study of all the homomor-
phisms from a fixed f.p. group G into A ∗ B.

We further generalize our point of view, and instead of the set of homomor-
phisms from a given f.p. group G(Σ) into a particular free product, we study
the set of all the homomorphisms from the f.p. group G(Σ) into all possible
free products. By Kurosh subgroup theorem, this is equivalent to the study
of all the quotients of a given f.p. group, G(Σ), that are free products.

To analyze the set of free product quotients of a given f.p. group, we gen-
eralize the notion of limit groups (over free groups), and define limit groups
over free products. The definition over free products (Definition 1) is a gen-
eralization of the definition of limit groups over free groups, but with each
limit group over free products, L, there is an additional structure, a subset
of conjugacy classes in the limit group L, that are called elliptics, that are
forced to be mapped to conjugates of the factors in any homomorphism from
the limit group into a free product.

After proving some basic properties of limit groups over free products, we
associate with them a canonical virtually Abelian JSJ decomposition (Theo-
rem 11). Limit groups over free products do not satisfy the d.c.c. that hold for
limit groups over free and hyperbolic groups. Still, in Theorem 13, we prove a
basic d.c.c. that holds for such limit groups, and applies to descending chain
of limit groups over free products, in which the maps between successive limit
groups are proper epimorphisms that do not map nontrivial elliptic elements
to the identity element.

This d.c.c. allows us to associate a resolution with each limit group over
free products (Theorem 18). We further define a natural partial order on
the set of limit quotients over free products of a given f.p. group, and prove
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that there are finitely many (equivalence classes of) maximal limit quotients
(over free products) of a f.p. group. Finally, we extend each of the maximal
limit quotients with finitely many resolutions and obtain a Makanin–Razborov
diagram of a f.p. group over free products.

The diagram that we associate with a f.p. group encodes all the quotients of
the given f.p. group that are free products. Unfortunately, our construction is
not canonical, and we state a natural conjecture that if answered affirmatively
will enable one to construct a canonical diagram. Also, the construction uses
the finite presentability of the group in question in an essential way. Hence,
encoding the set of free product quotients of a f.g. group is left open.

The Makanin–Razborov diagram over free products is the first step towards
the analysis of the first order theory of free products that will appear in the
sequel. This study was motivated by a question of the first author on the
stability of a free product of stable groups, and we intend to address this
question in the next paper in the sequence. The diagram that we construct
provides the tools to deal with another well known and natural problem, the
question of an elementary equivalence between two free products, A1 ∗ A2

and B1 ∗ B2, assuming that Ai is elementarily equivalent to Bi, for i = 1,2
(where the Ai’s and the Bj ’s are arbitrary groups). We intend to address this
problem in the sequel as well.

We expect that some of the notions and constructions that appear in this
paper (and in the sequel) can be generalized to other classes of groups, for
example, acylindrical splittings of f.p. groups, and various classes of relatively
hyperbolic groups. In particular, we hope that some of our constructions will
serve as basic tools in constructing stable groups with various properties, for
example, divisible or torsion groups.

Finally, we would like to thank Chloe Perin and the referee, for their thor-
ough reading, and their long list of comments that improved the writing of
this paper considerably.

1. Limit groups over free products

We start the analysis of systems of equations over free products with the
definition of a limit group over the set of free products. The definition gen-
eralizes the corresponding ones for free, hyperbolic, and relatively hyperbolic
groups, but it associates with a limit group an additional structure—its col-
lection of conjugacy classes of elliptic elements. Also, note that unlike the
case of a free or a hyperbolic group, we consider limit groups over the entire
class of free products, and not necessarily over a given one.

Definition 1. Let {An} and {Bn} be two sequences of groups (not neces-
sarily finitely generated), and let G be a finitely generated group. We say that
a sequence of homomorphisms, {hn : G → An ∗ Bn}, is a convergent sequence,
if the following conditions hold:
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(i) For each g ∈ G there exists some index ng > 0, so that for every n > ng ,
hn(g) = 1, or for every n > ng , hn(g) �= 1.

(ii) For each g ∈ G there exists some index ne
g > 0, so that for every n > ne

g ,
hn(g) is elliptic in the free product An ∗ Bn (i.e., it is contained in a
conjugate of An or Bn), or for every n > ne

g , hn(g) is not elliptic in
An ∗ Bn.

With the convergent sequence, we associate its stable kernel that is defined
to be:

K = {g ∈ G| ∃ng ∀n > ng, hn(g) = 1}
and the associate limit group: L = G/K, which we call a limit group over
(the collection of) free products, and set η : G → L to be the natural quotient
map.

With the limit group L we associate an additional structure, its collection
of conjugacy classes that are stably elliptic, that is:

EL = {� ∈ L| ∃g ∈ G,η(g) = � ∃ng > 0 ∀n > ng, hn(g) is elliptic}
Note that by definition if η(g1) = η(g2), then g1 is stably elliptic iff g2 is
stably elliptic. Also, note that every f.g. group can be a limit group over free
products, as given a finitely generated group G, we can look at the free product
G ∗ B, for some nontrivial group B, with the fixed sequence of homomorphisms
that map G identically onto G in the free product G ∗ B. Note that in this
tautological case, the entire (limit) group G is set to be elliptic.

Given a convergent sequence of homomorphisms one can pass to a subse-
quence that converges into a (possibly trivial) action of the associated limit
group on some real tree.

Let A and B be nontrivial groups (not necessarily finitely generated). With
the free product, A ∗ B, we can naturally associate its Bass–Serre tree. Let G
be a f.g. group G = 〈g1, . . . , gm〉, let {An,Bn} be a sequence of pairs of non-
trivial groups, and let {hn : G → An ∗ Bn}, be a sequence of homomorphisms.

With the sequence of free products, {An ∗ Bn}, we naturally associate their
Bass–Serre trees that we denote, {Tn}, with a base point tn (which is one of
the vertices in Tn). Each homomorphism, hn : G → An ∗ Bn, gives rise to an
action λhn of the group G on the Bass–Serre tree Tn. For each index n, we fix
an element γn ∈ An ∗ Bn, so that the homomorphism γnhnγn

−1 has “minimal
displacement,” that is, the element γn satisfies the equality:

max
1≤u≤m

dTn(tn, γnhn(gu)γn
−1(tn)) = min

γ∈An ∗Bn

max
1≤u≤m

dTn(tn, γhn(gu)γ−1(tn)).

We further set μn to be:

μn = max
1≤u≤m

dTn(tn, γnhn(gu)γn
−1).

First, suppose that the sequence of integers, {μn}, is bounded. In that
case, we can extract a subsequence of the homomorphisms {hn} (still denoted



MAKANIN–RAZBOROV DIAGRAMS OVER FREE PRODUCTS 23

{hn}), that converges into a limit group (over free products) L, with an as-
sociated set of elliptics EL. Furthermore, the sequence of homomorphisms
γnhnγ−1

n converges into a faithful action of L on some simplicial tree with
trivial edge stabilizers, that we denote T . In that case either the entire group
L is elliptic (i.e., EL = L), or L is infinite cyclic, or it is freely decomposable
and the stabilizer of each vertex group in T is elliptic. In this case, the limit
group L is a free product of elliptic vertex groups (in T ) with a (possibly
trivial) free group.

Suppose that the sequence of integers, {μn}, does not contain a bounded
subsequence. We set {(Xn, xn)}∞

n=1 to be the pointed metric spaces obtained
by rescaling the metric on the Bass–Serre trees (Tn, tn), by μn. (Xn, xn) is en-
dowed with a left isometric action of our f.g. group G via the homomorphisms
γnhnγ−1

n . This sequence of actions of G on the metric spaces {(Xn, xn)}∞
n=1

allows us to obtain an action of G on a real tree by passing to a Gromov–
Hausdorff limit.

Proposition 2 ([Pa], Proposition 2.3). Let {Xn} ∞
n=1 be a sequence of

δn-hyperbolic spaces with δ∞ = lim δn = 0. Let H be a countable group iso-
metrically acting on Xn. Suppose there exists a base point xn in Xn such that
for every finite subset P of H , the sets of geodesics between the images of xn

under P form a sequence of totally bounded metric spaces. Then there is a
subsequence converging in the Gromov topology to a δ∞-hyperbolic space X∞
endowed with a left isometric action of H .

Our spaces {(Xn, xn)}∞
n=1 endowed with the left isometric action of G,

satisfy the assumptions of the proposition and they are all trees, so they are
0-hyperbolic. Hence, X∞ is a real tree endowed with an isometric action of
G. By construction, the action of G on the real tree X∞ is nontrivial. Let
{nj } ∞

j=1 be the subsequence for which {(Xnj , xnj )}∞
j=1 converges to the limit

real tree X∞, and let (Y, y0) denote this (pointed) limit real tree.
For convenience, for the rest of this section we (still) denote the homomor-

phism γnj hnj γnj
−1 : G → Anj ∗ Bnj , by hn. By passing to a further subse-

quence, we can assume that the sequence of homomorphisms {hn} converges
into a limit group (over free products) that we denote L, with elliptic elements
EL, and an associated quotient map, η : G → L, with kernel K. In the sequel,
we call a limit group over free products that is obtained from a sequence of
homomorphisms with unbounded stretching factors, a strict limit group over
free products.

Before stating the following lemma, which describes some simple facts on
the actions of strict limit groups over free products on real trees that are
obtained from convergent sequences of homomorphisms, we review the basic
notions of stable and super stable actions of groups on real trees. Recall
that an action of a group G on a real tree T is called stable, if given any
sequence of decreasing (closed) intervals, {Ij }, the increasing sequence of their
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(pointwise) stabilizers stabilize, that is, there exists some index j0 so that for
every j > j0, stab(Ij) = stab(Ij0). The action is called super stable if for any
interval I , for which stab(I) is nontrivial, and any nondegenerate subinterval,
J ⊂ I , stab(I) = stab(J) (for more details on the various stability properties
of actions of groups on real trees, see Guirardel’s paper [Gu]).

The following simple facts on the kernel of the action, K (see Definition 1),
and the (strict) limit group L are important observations, and their proof is
similar to the proof of Lemma 1.3 of [Se1].

Lemma 3.
(i) Elements in EL fix points in Y .
(ii) L is f.g.
(iii) If Y is isometric to a real line then the limit group L has a subgroup of

index at most 2, which is f.g. free Abelian.
(iv) If g ∈ G stabilizes a tripod in Y then for all but finitely many n’s,

g ∈ ker(hn) (recall that a tripod is a finite tree with 3 endpoints). In
particular, if g ∈ G stabilizes a tripod then g ∈ K.

(v) Let g ∈ G be an element which does not belong to K. Then for all but
finitely many n’s, g /∈ ker(hn).

(vi) Every torsion element in L is elliptic, that is, it is in EL.
(vii) Let [y1, y2] ⊂ [y3, y4] be a pair of nondegenerate segments of Y and as-

sume that the stabilizer of [y3, y4] in L, stab([y3, y4]), is nontrivial. Then
stab([y3, y4]) is an Abelian subgroup of L and:

stab([y1, y2]) = stab([y3, y4]).

Hence, the action of L on the real tree Y is (super) stable.
(viii) Let H < G be a f.g. subgroup and suppose that η(H) ⊂ EL. Then for all

but finitely many n’s, hn(H) is elliptic, that is, hn(H) is contained in
a conjugate of An or Bn.

Proof. Part (i) follows from the definition of the elliptic elements EL.
A limit group L is a quotient of a f.g. group, hence, it is finitely generated. If
Y is a real line, then L contains a subgroup of index at most 2 that acts on
the real line by isometries and preserves its orientation. Hence, this subgroup
must be f.g. Abelian, and it contains no elliptic elements, so it contains no
torsion. Therefore, L contains a f.g. Abelian subgroup of index at most 2.
(iv), (v), and (vii), follow by the same argument that is used in the case of
free and hyperbolic groups ([Se1], Lemma 1.3). Note that in analyzing limit
groups over free groups, the action of the coefficient free group on its Cayley
graph is trivial. Given a convergent sequence of homomorphisms into free
products, the action of the target groups of the homomorphisms, An ∗ Bn, on
their associated Bass–Serre trees is not free, but stabilizers of edges in these
trees are trivial. This is sufficient for the adapting the proof of Lemma 1.3 in
[Se1] to prove parts (iv), (v), and (vii).
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A torsion element in L is the image of an element g ∈ G, which is mapped to
a torsion element by all the homomorphisms, hn : G → An ∗ Bn, for large n.
Hence, hn(g) is contained in a conjugate of An or Bn for large n, so g is
mapped to an elliptic element in L, and (vi) follows. To prove (viii), let
H = 〈u1, . . . , um〉. Since H is contained in EL then there exists some n0

so that for all n > n0, all the elements u1, . . . , um and the products uiuj ,
i, j = 1, . . . ,m, are mapped to elliptic elements by the homomorphism hn.
Therefore, by a standard argument of Serre [Ser], for all n > n0, hn(H) is
elliptic, that is, contained in a conjugate of An or Bn. �

Recall that in limit groups over free and torsion-free hyperbolic groups,
every nontrivial Abelian subgroup is contained in a unique maximal Abelian
subgroup, and every maximal Abelian subgroup is f.g. and malnormal. This
is clearly not the case in limit groups over free products, as every f.g. group
is a limit group over free products. However, for the analysis of strict limit
groups over free products, we are really interested only in nonelliptic Abelian
subgroups, as only these occur as stabilizers of nondegenerate segments in
real trees on which the strict limit groups act faithfully, and so that these
real trees are obtained as a limit from a sequence of homomorphisms into free
products. Nonelliptic Abelian subgroups have similar properties as Abelian
subgroups in limit groups over free and torsion-free hyperbolic groups. The
proof is similar to the proof of Lemma 1.4 in [Se1].

Lemma 4. With the notation of Definition 1 let u1, u2, u3 be nontrivial
elements of L, and suppose that at least one of the elements, u1, u2, u3, is
nonelliptic (i.e., not in EL), and [u1, u2] = 1 and [u1, u3] = 1. Then:
(i) u1, u2, u3 are nonelliptic and [u2, u3] = 1.
(ii) Let A < L be a nonelliptic Abelian subgroup of L. Then A is contained in

a unique maximal Abelian subgroup in L, which is its centralizer, C(A).
The centralizer of A, C(A), intersects the set of elliptic elements, EL,
trivially.

(iii) Let A be a nonelliptic Abelian subgroup in L. Then the centralizer of A,
C(A), is almost malnormal in L. C(A) is of index at most 2 in N(A),
the normalizer of A, and for each element � ∈ L, � /∈ N(A), �C(A)�−1

intersects A trivially. Furthermore, if [N(A) : C(A)] = 2 then N(A) is
generated by C(A) and an elliptic element of order 2 that conjugates each
element in C(A) to its inverse.

Proof. Let g1, g2, g3 be elements of G that are mapped to u1, u2, u3. Since
[u1, u2] = 1 and [u1, u3] = 1, and the elements u1, u2, u3 are nontrivial, there
exists some n0, so that for all n > n0, [hn(g1), hn(g2)] = 1 and [hn(g1),
hn(g3)] = 1, and the elements, hn(g1), hn(g2), hn(g3), are nontrivial. Since
for some j, 1 ≤ j ≤ 3, uj is not elliptic, there exists some nj > n0, so that
for all n > nj , hn(gj) is a hyperbolic element. Since for n > nj , hn(g1) is
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nontrivial and commutes with hn(gj), hn(g1) is a hyperbolic element, and
by the same argument so are hn(g2) and hn(g3). Hence, all the 3 elements,
hn(g1), hn(g2), hn(g3), are hyperbolic and have the same axis, so they all com-
mute and [u2, u3] = 1.

By part (i) commutativity is transitive for nonelliptic elements of a limit
group over free products. Hence, a nonelliptic Abelian subgroup is contained
in a unique maximal Abelian subgroup, which is its centralizer, and the cen-
tralizer must be nonelliptic as well.

Let A < L be a nonelliptic Abelian subgroup. Let u ∈ N(A) \ C(A), and
let g ∈ G be an element that is mapped to u. Given a finite set of nontriv-
ial elements g1, . . . , gm that are mapped to C(A), there exists some integer
n0, so that for every n > n0, hn(gj) are hyperbolic, hn(gi) commutes with
hn(gj), and hn(g) does not commute with hn(gi), for all i, j = 1, . . . ,m, and
hn(g)hn(gj)hn(g)−1 commutes with all the elements hn(gi), for i, j = 1, . . . ,m.
This imply that the elements hn(gj) have the same axis in the Bass–Serre
tree that is associated with the free product An ∗ Bn, and the element hn(g)
preserves this axis setwise, and must be an elliptic element. Hence, hn(g)
is elliptic, and hn(g)hn(gj)hn(g)−1 = hn(gj)−1, j = 1, . . . ,m. Furthermore,
hn(g)2 is an elliptic element that preserves the axis of the elements hn(gj)
pointwise, so hn(g)2 = 1. It follows that ucu−1 = c−1 for every c ∈ C(A), and
u2 = 1. By the same argument if u1, u2 ∈ N(A) \ C(A), then u1u2 ∈ C(A),
hence, [N(A) : C(A)] = 2.

Let � /∈ N(A), and let t ∈ G be an element that is mapped to �. Then
there exists some index n1, so that for all n > n1, hn(t) maps the axis of
hn(g1), . . . , hn(gm) to a different axis that intersects the original axis in a
bounded (or empty) set. Hence, �C(A)�−1 intersects C(A) trivially. �

Lemma 3 shows that the action of L on the real tree Y is (super) stable.
The original analysis of stable actions of groups on real trees applies to f.p.
groups [Be-Fe], and the limit group L is only known to be f.g. by part (i) of
Lemma 3. Still, given the basic properties of the action of L on the real tree
Y that we already know, we are able to apply a generalization of Rips’ work
to f.g. groups obtained in [Se4] and [Gu]. In [Se4] and [Gu], the real tree Y
is divided into distinct components, where on each component a subgroup of
L acts according to one of several canonical types of actions. The theorem
from [Se4] that we present, that was later corrected in [Gu], is going to be
used extensively and its statement uses the notions and basic definitions that
appear in the appendix of [Ri-Se1]. Hence, we refer a reader who is not yet
familiar with these notions to that appendix and to [Be-Fe], [Be], and [Gu].

Note that the statement of Theorem 5 slightly generalizes Theorem 3.1 in
[Se4], and also generalizes a special case of Theorem 5.1 in [Gu]. It does not
require that the f.g. group G that acts on a real tree is freely indecompos-
able, but it rather associates with G a collection of conjugacy classes, that
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we denote U , the elements in U are assumed to fix points when acting on the
real tree, and we further assume that G admits no nontrivial free decompo-
sition in which the elements in U can be conjugated into the factors. It is
fairly straightforward to see that under the assumptions of trivial stabilizers
of tripods, and the action of G being superstable, the proofs of Theorem 3.1
in [Se4] and that of Theorem 5.1 in [Gu], generalize to get the same conclusion
under our assumptions.

Theorem 5 (cf. [Se4], Theorem 3.1, [Gu], Theorem 5.1). Let G be a f.g.
group, let U be a collection of conjugacy classes in G, and suppose that G
cannot be presented as a nontrivial free product in which the elements in U
can be conjugated into the factors. Let G admits a super stable isometric
action on a real tree Y , so that the elements in the collection U fix points
in Y . Assume that the stabilizer of each tripod in Y is trivial.
(1) There exist canonical orbits of subtrees of Y : Y1, . . . , Yk with the following

properties:
(i) gYi intersects Yj at most in one point if i �= j.
(ii) gYi is either identical with Yi or it intersects it at most in one point.
(iii) The action of stab(Yi) on Yi is either discrete or it is of axial type

or IET type.
(2) G is the fundamental group of a graph of groups with:

(i) Vertices corresponding to orbits of branching points with nontrivial
stabilizer in Y .

(ii) Vertices corresponding to the orbits of the canonical subtrees Y1, . . . ,
Yk which are of axial or IET type. The groups associated with
these vertices are conjugates of the stabilizers of these components.
To a stabilizer of an IET component is an associated 2-orbifold.
All boundary components and branching points in this associated 2-
orbifold stabilize points in Y . For each such stabilizer, we add edges
that connect the vertex stabilized by it and the vertices stabilized by
its boundary components and branching points.

(iii) Edges corresponding to orbits of edges between branching points with
nontrivial stabilizer in the discrete part of Y with edge groups which
are conjugates of the stabilizers of these edges.

(iv) Edges corresponding to orbits of points of intersection between the
orbits of Y1, . . . , Yk.

Before concluding our preliminary study of limit groups over free prod-
ucts that appear as limits of sequences of homomorphisms with unbounded
stretching factors {μn}, and their actions on the limit real tree, we present
the following basic facts that are necessary in the sequel.

Proposition 6. Suppose that L is a (strict) limit group over free prod-
ucts, that is obtained as a limit of homomorphisms into free products with
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unbounded stretching factors {μn}. EL is its set of elliptic elements, and the
limit real tree on which L acts that is obtained from this sequence of homo-
morphisms is (Y, y0). Suppose further that L does not admit a nontrivial free
decomposition in which all the elements in the set EL can be conjugated into
the various factors. Then:
(i) Stabilizers of nondegenerate segments which lie in the complement of the

discrete and axial parts of Y are trivial in L.
(ii) The (set) stabilizer of an axial component in Y is either a maximal

Abelian subgroup in L, or it contains a maximal Abelian subgroup in
L as a subgroup of index 2.

(iii) Let A be the maximal Abelian subgroup that is contained in the set sta-
bilizer of an axial component in Y . A can be presented as a direct sum
A = A1 + A2, where A1 is the (possibly trivial) point stabilizer of the ax-
ial component, and A2 is a f.g free Abelian group that acts freely on the
axial component, and A2 has rank at least 2.

Proof. Since the elements in EL fix points in the limit tree Y (part (i)
in Lemma 3), the action of L on the real tree Y satisfies the conclusion of
Theorem 5. Hence, the stabilizer of a segment in an IET component in Y fixes
the entire IET component, and in particular it fixes a tripod. By part (iv)
of Lemma 3 a stabilizer of a tripod is trivial, hence, so is the stabilizer of a
nondegenerate segment in an IET component in Y .

Let Ax be an axis of an axial component in Y , and let stab(Ax) be its set
stabilizer. Let stab+(Ax) be the subgroup of stab(Ax) that preserve the ori-
entation of Ax. By the same argument that was used in the proof of Lemma 4,
stab+(Ax), is Abelian. Since stab(Ax) normalizes stab+(Ax), Lemma 4 im-
plies that the index of stab+(Ax) in stab(Ax) is bounded by 2.

Let A = stab+(Ax), and let A1 < A be the point stabilizer of Ax. Then,
by Theorem 5 (the structure of an axial component) there exists a short
exact sequence: 1 → A1 → A → B → 1, where B is a f.g. free Abelian group.
Since A is Abelian and B is free Abelian, the short exact sequence splits, and
A = A1 +A2, where A2 is isomorphic to B, hence, A2 is f.g. free Abelian. �

By Theorem 5 and Proposition 6, a nontrivial strict limit group over free
products, which is not a cyclic group, admits a nontrivial virtually Abelian
decomposition (i.e., a graph of groups with virtually Abelian edge groups).
To further study the algebraic structure of a strict limit group, we need to
construct its canonical virtually Abelian JSJ decomposition. However, unlike
the case of limit groups over free and hyperbolic groups, in constructing the
virtually Abelian JSJ decomposition of a strict limit group over free products,
we will not be interested in all the virtually Abelian decompositions of L, but
only in its admissible ones. Admissible virtually Abelian decompositions of
a limit group over free products L, are those virtually Abelian decomposi-
tions in which all the elements in EL are elliptic (i.e., can be conjugated into



MAKANIN–RAZBOROV DIAGRAMS OVER FREE PRODUCTS 29

nonvirtually-Abelian, non-QH vertex groups), and for which the nontrivial
elements in the (nontrivial) maximal Abelian subgroups that are contained in
the virtually Abelian edge groups are not in EL. Note that since a nontrivial
strict limit group over free products admits a virtually Abelian decomposi-
tion in which the elements EL can be conjugated into non-QH, nonvirtually-
Abelian vertex groups, and the (nontrivial) maximal Abelian subgroups of
edge groups are not in EL (except for the identity element), if a strict limit
group over free products is not virtually Abelian nor a Fuchsian group, it
admits an admissible (virtually Abelian) decomposition, hence, its (virtually)
Abelian JSJ decomposition is nontrivial.

To construct the virtually Abelian JSJ decomposition of a strict limit group
over free products, we need to study some basic properties of admissible split-
tings. We start with the following lemma, which is identical to Lemma 2.1 in
[Se1] (the proofs are identical as well).

Lemma 7. Let L be a strict limit group over free products with set of
elliptics EL, and suppose that L admits no free product in which the elements
in EL can be conjugated into the various factors. Let A be a nonelliptic
Abelian subgroup in L, and let M be the normalizer of A in L. Suppose that
M is Abelian. Then:
(i) If L = U ∗A V , and the elements in EL can be conjugated into U and V ,

and M is not cyclic, then M can be conjugated into either U or V .
(ii) If L = U ∗A, and the elements in EL can be conjugated into U , and M is

not cyclic, then either M can be conjugated into U , or M can be conju-
gated onto M ′, so that L = U ∗A M ′.

Unlike limit groups over free and torsion-free hyperbolic groups in which
normalizers of nontrivial Abelian subgroups are Abelian, by Proposition 6
the normalizers of nonelliptic Abelian subgroups in L are either Abelian or
virtually Abelian, and if they are not Abelian, the Abelian centralizers of
these (nonelliptic) Abelian subgroups are contained in their normalizers as
subgroups of index 2. Lemma 7 deals with the case in which the normalizer of
such an Abelian subgroup is Abelian. To construct the JSJ decomposition of
limit groups over free products, we still need to analyze splittings over nonel-
liptic Abelian subgroups with virtually Abelian, non-Abelian normalizers.

Lemma 8. Let L be a limit group over free products, and let A be a nonel-
liptic Abelian subgroup in L. Let EL be the set of elliptics in L, and suppose
that L admits no free product decomposition in which the elements of EL can
be conjugated into the factors. Let C(A) be the centralizer of A, let M be the
normalizer of A, and suppose that [M : C(A)] = 2. Then:
(i) If L = U ∗A V , and all the elements in EL can be conjugated into U or

V , then either M can be conjugated into either U or V , or M can be
conjugated onto M ′, and M ′ inherits an Abelian amalgamation: M ′ =
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U1 ∗A V1, where U1 < U , V1 < V , [U1 : A] = [V1 : A] = 2, and both U1 and
V1 are generated by A and an element of order 2. In this case, M is
the semidirect product of A with an infinite dihedral group. In this case,
we can modify the given Abelian decomposition, and obtain a virtually
Abelian decomposition, L = U ∗U1 M ′ ∗V1 V .

(ii) If L = U ∗A, and the elements in EL can be conjugated into U , then ei-
ther M can be conjugated into U , or M can be conjugated onto M ′, and
M ′ inherits an Abelian amalgamation: M ′ = U1 ∗A V1, where U1 < U ,
V1 < tUt−1, where t is a Bass–Serre generator that is associated with
the splitting, L = U ∗A. [U1 : A] = [V1 : A] = 2, and both U1 and V1 are
generated by A and an element of order 2. In this case, M is the semi-
direct product of A with an infinite dihedral group. In the HNN case,
L = U ∗A, we can modify the given Abelian decomposition, and obtain a
virtually Abelian decomposition, L = (U ∗U1 M ′)∗V1 , where with V1 there
are two associated embeddings, one into M ′ and one into tUt−1. The
graph of groups that is associated with this decomposition contains two
vertices (with vertex groups, U and M ′), and two edges with edge groups,
U1 and V1.

Proof. Let L = U ∗A V and suppose that M , the normalizer of A, that
contains the centralizer of A as a subgroup of index 2, is not elliptic. Then
M preserves (setwise) an axis in the Bass–Serre tree that is associated with
the amalgamated product U ∗A V . Since A preserves this axis pointwise, and
M contains an (elliptic) element that acts on the axis as an inversion, M/A
acts on the axis as an infinite dihedral group. Hence, it inherits from it a
splitting: M = U1 ∗A V1, where U1 and V1 contain A as a subgroup of index
2, and they are both obtained from A by adding to it an elliptic element of
order 2. If we start with the Bass–Serre tree that is associated with U ∗A V ,
add a vertex in the middle of the edge that is stabilized by A and connected
to the vertices that are stabilized by U and V , and then fold the couple of
edges that are stabilized by A and associated with the elements of order 2 in
U1 and V1, we obtain the splitting: L = U ∗U1 M ′ ∗V1 V , that is, a splitting of
L with 3 vertex groups U , V , and M ′, and two edge groups, U1 and V1.

Let L = U ∗A. The argument that we use in this case is similar. Suppose
that M , the normalizer of A, is not elliptic. In this case, M preserves (setwise)
an axis in the Bass–Serre tree that is associated with the HNN extension U ∗A.
A preserves this axis pointwise, and M contains an (elliptic) element that acts
on the axis as an inversion, hence, M/A acts on the axis as an infinite dihedral
group. Therefore, as in the amalgamated product case, M inherits from this
action a splitting: M = U1 ∗A V1, where U1 and V1 contain A as a subgroup
of index 2, and they are both obtained from A by adding to it an elliptic
element of order 2. U1 < U , and V1 < tUt−1, for an appropriate Bass–Serre
generator t. If we start with the Bass–Serre tree that is associated with U ∗A,
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add a vertex in the middle of the edge that is stabilized by A and connects the
vertices that are stabilized by U and tUt−1, and then fold the couple of edges
that are stabilized by A and associated with the elements of order 2 in U1 and
V1, we obtain the splitting: L = (U ∗U1 M ′)∗V1 , where V1 embeds into V1 and
into tUt−1, that is, the limit group L admits a graph of groups decomposition
with two vertex groups, stabilized by U and M ′, and two edges in between
these two vertices, one edge is stabilized by U1 and the second by V1. �

According to Lemma 7, we replace each Abelian splitting of L of the form
L = U ∗A, in which all the elements in EL can be conjugated into U , A is
a nonelliptic Abelian subgroup in L, and the centralizer of A which is also
its normalizer is denoted by M , and M cannot be conjugated into U , by
the amalgamated product L = U ∗A M ′ (where M ′ is a conjugate of M ).
According to part (i) of Lemma 8, we replace each Abelian splitting of L of
the form L = U ∗A V , in which all the elements in EL can be conjugated into U
and V , A is a nonelliptic subgroup in L, and M , the normalizer of A, contains
the centralizer of A as a subgroup of index 2, and M cannot be conjugated
into U nor V , by the amalgamated product L = U ∗U1 M ′ ∗V1 V , where M ′ is a
conjugate of M . If L = U ∗A, the elements in EL can be conjugated into U , A
is nonelliptic in L, the normalizer M of A in L contains the centralizer of A as
a subgroup of index 2, and M cannot be conjugated into U , then we replace
the given HNN extension by a graph of groups with two vertices and two
edges between them, according to part (ii) of Lemma 8, L = (U ∗U1 M ′)∗V1 .

By performing these replacements, we get that every nonelliptic Abelian
subgroup of L with a noncyclic centralizer is contained in a vertex group in
all the admissible virtually Abelian splittings of L, that is, splittings in which
edge groups are nonelliptic Abelian, or edge groups that contain nonelliptic
Abelian subgroups as subgroups of index 2, and all the elements in EL can
be conjugated into the vertex groups. This will allow us to use acylindrical
accessibility in analyzing all the Abelian splittings of the limit group over free
products L that are obtained from converging sequences of homomorphisms
into free products.

Definition 9 ([Se4], [De], [We]). A splitting of a group H is called k-
acylindrical if for every element h ∈ H which is not the identity, the fixed set
of h when acting on the Bass–Serre tree corresponding to the splitting has
diameter at most k. Following Delzant [De], and Weidmann [We], we say that
a splitting of H is (k,C)-acylindrical if the stabilizer of a path of length bigger
than k in the Bass–Serre tree corresponding to the splitting has stabilizer of
cardinality at most C.

If a strict limit group over free products L can be written in the form
L = V1 ∗A1 V2 ∗A2 V3 ∗A3 V4, where A1,A2,A3 are subgroups of a maximal
Abelian subgroup M , which is its own normalizer, and M is a subgroup
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of V1, then one can modify the corresponding graph of groups to a tripod
of groups with V1 in the center, and V2, V3, V4 at the 3 roots. Similarly if
A1,A2,A3 are subgroups of a maximal Abelian subgroup, which is of index 2
in its normalizer M , then if M is contained in one of the vertex groups Vi,
i = 1, . . . ,4, then one can modify the corresponding graph of groups to a tripod
of groups in the same way. If M is not contained in one of the vertex groups,
Vi, i = 1, . . . ,4, then one can modify the given splitting to a virtually Abelian
splitting which is a tree with one root and 4 vertices connected to it, where
M is placed at the root, and the subgroups Vi, i = 1, . . . ,4, are placed at the
vertices that are adjacent to the root.

Since by Lemma 4 the centralizer of a nonelliptic Abelian subgroup is
almost malnormal, the Bass–Serre trees corresponding to these tripods and
quadruple of groups are (2,2)-acylindrical. This folding and sliding operation
generalizes to an arbitrary (finite) virtually Abelian splitting of a limit group
over free products over normalizers of nonelliptic Abelian subgroups, where
all the elements in EL can be conjugated into non-Abelian, non-QH vertex
groups.

Lemma 10. Let L be a limit group over free products that does not admit a
free splitting in which all the elements in EL can be conjugated into the various
factors. A splitting of L, in which all the edge groups are nonelliptic Abelian
subgroups in L, and in which all the elements in EL can be conjugated into
non-QH, non-Abelian vertex groups, can be modified using Lemmas 7 and 8 to
a virtually Abelian splitting (of L) in which all the normalizers of nonelliptic
Abelian subgroups with noncyclic centralizers can be conjugated into non-QH
vertex groups, and so that the obtained virtually Abelian splitting is (2,2)-
acylindrical.

Proof. Let L be a limit group over free products that admits no free fac-
torization in which the elements of EL can be conjugated into the factors. Let
Λ be a graph of groups with fundamental group L with nonelliptic Abelian
edge groups. If the normalizer of an Abelian edge group in Λ cannot be con-
jugated into a vertex group in Λ, we perform the modification that appears
in part (ii) of Lemma 7 in case the normalizer of an edge group is Abelian,
and the modification of parts (i) and (ii) in Lemma 8 in case the normalizer of
an edge group is not Abelian, where these modifications are applicable. After
performing these modifications, and sliding operations, so that the fixed set
of a nonelliptic Abelian subgroup is star-like, we obtain a graph of groups
Λ′, with virtually Abelian edge groups, in which every nonelliptic Abelian
subgroup with noncyclic centralizer can be conjugated into a non-QH vertex
group. In the Bass–Serre tree that corresponds to Λ′ the fixed set of every
nonelliptic element has diameter bounded by 2. Since the centralizers of
nonelliptic Abelian subgroups are almost malnormal, the stabilizers of paths
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of length 3 in Λ′ are either trivial, or a cyclic subgroup of order 2. Hence, Λ′

is (2,2)-acylindrical. �

Lemma 10 shows that if in all the admissible virtually Abelian splittings of
L, all the normalizers of noncyclic Abelian subgroups can be conjugated into
vertex groups, these virtually Abelian splittings are (2,2)-acylindrical. This
acylindricity finally enables one to construct the canonical virtually Abelian
JSJ decomposition of a strict limit group over free products (see Section 2 of
[Se1]).

Theorem 11 (cf. [Se1], Theorem 2.7). Suppose that L is a strict limit
group over free products with set of elliptics EL, so that L admits no free
decomposition in which the elements in EL can be conjugated into the various
factors. There exists a reduced unfolded splitting of L with virtually Abelian
edge groups, which we call the virtually Abelian JSJ (Jaco–Shalen–Johannson)
decomposition of L, with the following properties:

(i) Every canonical maximal QH subgroup (CMQ) of L is conjugate to a
vertex group in the JSJ decomposition. Every QH subgroup of L, in
which all the elements in EL can be conjugated into vertex groups that
are adjacent to the QH subgroup or into torsion elements in the QH
subgroup, can be conjugated into one of the CMQ subgroups of L. Every
vertex group in the JSJ decomposition which is not a CMQ subgroup of
L is elliptic in any Abelian splitting of L under consideration.

(ii) Every CMQ subgroup is a Fuchsian group (in general, with torsion),
where all its torsion elements are elliptic in L. The edge groups that are
connected to a CMQ subgroup, that are all cyclic, may be elliptic.

(iii) Every edge group that is not connected to a CMQ vertex group in the JSJ
decomposition, or an edge group that is connected to a virtually Abelian
vertex group, contains an Abelian subgroup of index at most 2, and this
Abelian subgroup is nonelliptic.

(iv) A one edge admissible Abelian splitting L = D ∗A E or L = D∗A (i.e.,
a splitting in which A is a nonelliptic Abelian subgroup, and all the el-
ements in EL can be conjugated into D or E), which is hyperbolic in
another such elementary admissible Abelian splitting, is obtained from
the virtually Abelian JSJ decomposition of L by cutting a 2-orbifold cor-
responding to a CMQ subgroup of L along a weakly essential s.c.c.

(v) Let Θ be a one edge admissible splitting of L along a nonelliptic Abelian
subgroup, L = D ∗A E or L = D∗A. Suppose that the given elementary
admissible splitting is elliptic with respect to any other such elementary
admissible Abelian splitting of L. Then Θ is obtained from the JSJ de-
composition of L by a sequence of collapsings, foldings, conjugations, and
finally possibly unfoldings that reverse the foldings that are performed ac-
cording to part (i) of Lemma 7 and parts (i) and (ii) of Lemma 8.
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(vi) If JSJ 1 is another JSJ decomposition of L, then JSJ 1 is obtained from
the JSJ decomposition by a sequence of slidings, conjugations and modify-
ing boundary monomorphisms by conjugations (see Section 1 of [Ri-Se2]
for these notions).

Proof. By Lemma 10, the admissible splittings of the ambient limit group
(over free products) L that we consider, have the property that all the el-
liptic elements EL in L can be conjugated into non-QH, non-Abelian vertex
groups, and every noncyclic, nonelliptic Abelian subgroup of L can also be
conjugated into a non-QH vertex group. Since L admits no free decomposi-
tions in which the elements EL can be conjugated into the factors, there is
no pair of admissible elliptic-hyperbolic splittings, that is, all the admissible
splittings along noncyclic, nonelliptic Abelian groups that we consider, are
elliptic-elliptic with respect to all the admissible splittings along nonelliptic
Abelian groups that we consider.

Since the modifications of admissible Abelian splittings along nonelliptic
Abelian subgroups that are performed according to Lemmas 7 and 8, are per-
formed only in case the centralizers of (nonelliptic) edge groups are noncyclic,
in case centralizers of nonelliptic edge groups are (infinite) cyclic, we consider
only cyclic edge groups (and not dihedral ones). Hence, the only admissi-
ble hyperbolic–hyperbolic splittings along nonelliptic Abelian edge groups are
pairs of splittings along infinite cyclic groups. For these, we can apply [Ri-Se2]
(this part of [Ri-Se2], the construction of the quadratic part (Section 5 in the
paper), applies to f.g. groups, and not only to f.p. ones), that produces a finite
collection of CMQ subgroups of L, and a quadratic decomposition of L with
the CMQ subgroups as part of the vertex groups, so that every admissible
splitting of L along a nonelliptic cyclic group, so that this admissible splitting
is hyperbolic with respect to another admissible splitting, is obtained from the
quadratic decomposition of L by cutting one of the CMQ subgroups along a
s.c.c. and possibly collapsing the rest of the splitting.

Given the quadratic decomposition of L, to complete the construction of
the (virtually Abelian) JSJ decomposition of L, we successively refine the qua-
dratic decomposition using admissible splittings that are elliptic with respect
to it. This refinement process terminates after finitely many steps, since all
the obtained splittings are (2,2) acylindrical, and by [We] this implies a bound
on the combinatorial complexity of the obtained splitting. All the properties
of the obtained (virtually) Abelian JSJ decomposition of L follow in the same
way as in Section 7 of [Ri-Se2]. �

2. A descending chain condition

In Section 4 of [Se1], we were able to use the cyclic JSJ decomposition of a
(Fk) limit group, in order to show that (Fk) limit groups are f.p. and that a
f.g. group is a limit group if and only if it is ω-residually free. For limit groups
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over a torsion-free hyperbolic group, we were able to prove similar d.c.c. and
a.c.c. as in the case of a free group, even though a limit group over hyperbolic
groups need not be finitely presented.

As every f.g. group can be a limit group over free products (where the
ambient group is elliptic), limit groups over free products do not satisfy the
d.c.c. and a.c.c. conditions that limit groups over free and hyperbolic groups
do satisfy. However, weaker principles do hold for these limit groups, and
these are enough to construct Makanin–Razborov diagrams, that encode sets
of solutions to systems of equations over free products. As we will see one
of the keys to formulate and prove the d.c.c. and a.c.c. principles that we
present for limit groups over free products, is our consideration of limit groups
over the entire class of free products, and not over a given one.

We start with a d.c.c. for limit groups over free products which is a key to
our entire approach. It uses the techniques that were used to prove a general
d.c.c. for limit groups over hyperbolic groups, but it is not as general as in
the case of limit groups over free and hyperbolic groups.

Definition 12. Let G be a f.g. group. On the set of limit groups over free
products that are quotients of G, together with the quotient maps from G to
these limit groups, we define a partial order. Let L1,L2 be two limit groups
over free products that are quotients of G, with sets of elliptics, EL1 ,EL2 , in
correspondence, and with prescribed quotient maps ηi : G → Li, i = 1,2. We
write that (L1, η1) > (L2, η2), if there exists an epimorphism: τ : L1 → L2,
that maps the elliptics in L1 into the elliptics of L2, τ(EL1) ⊂ EL2 , and for
which τ : L1 → L2 satisfies either:

(1) τ has a nontrivial kernel.
(2) τ is an isomorphism, and τ(EL1) is a proper subset of EL2 .

If there exists an isomorphism τ : L1 → L2 that maps the elliptics in L1

onto the elliptics in L2, and for which: η2 = τ ◦ η1, we say that (L1, η1) is in
the same equivalence class as (L2, η2). Note that the relation that is defined
on the limit quotients (over free products) of a f.g. group is a partial order.

Theorem 13. Let G a f.g. group. Every strictly decreasing sequence of
limit groups over free products that are quotients of G:

(L1, η1) > (L2, η2) > (L3, η3) > · · ·

for which:

(1) the maps: τi : Li → Li+1, that satisfy: ηi+1 = τi ◦ ηi, are proper quotient
maps (i.e., have nontrivial kernels)

(2) the maps τi do not map nontrivial elements in ELi to the identity element
in Li+1

terminates after finitely many steps.
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Proof. The argument that we use is a modification of the argument that is
used to prove Theorem 1.12 in [Se3]. Suppose that there exists a f.g. group
G for which there exists an infinite decreasing sequence of limit groups over
free products that are quotients of G: L1 > L2 > L3 > · · · that satisfy the
conditions of the theorem. W.l.o.g. we may assume that the f.g. group G
is a free group Fd, for some integer d. We fix Fd, where d is the minimal
positive integer for which there exists an infinite descending chain of limit
groups over free products so that consecutive quotient maps, τi : Li → Li+1,
have nontrivial kernels and do not map nontrivial elliptic elements to the
identity element, and fix a free basis for Fd, Fd = 〈f1, . . . , fd〉. We set C to
be the Cayley graph of Fd with respect to the given generating set, and look
at an infinite decreasing sequence constructed in the following way. We set
R1 to be a limit group over free products, which is a quotient of Fd, with the
following properties:
(1) R1 is a proper quotient of Fd.
(2) R1 can be extended to an infinite decreasing sequence of limit groups

over free groups: R1 > L2 > L3 > · · · , that satisfy the conditions of the
theorem.

(3) The map η1 : Fd → R1 maps to the identity the maximal number of ele-
ments in the ball of radius 1 in the Cayley graph C, among all possible
maps from Fd to a limit group over free products L, that satisfy properties
(1) and (2).

We continue iteratively. At step n, given the finite decreasing sequence R1 >
R2 > · · · > Rn−1, we choose the limit group over free products, Rn, to satisfy:
(1) Rn is a proper quotient of Rn−1.
(2) The finite decreasing sequence of limit groups over free products: R1 >

R2 > · · · > Rn can be extended to an infinite decreasing sequence that
satisfies the conditions of the theorem.

(3) The map ηn : Fd → Rn (that is obtained as a composition of the map
Fd → R1 with the sequence of proper epimorphisms: Ri → Ri+1, i =
1, . . . , n − 1), maps to the identity the maximal number of elements in the
ball of radius n in the Cayley graph C, among all the possible maps from
Fd to a limit group over free products, Ln, that satisfy the properties (1)
and (2).

To prove Theorem 13, we will show that the last descending sequence we
constructed terminates after finitely many steps. With the decreasing se-
quence R1 > R2 > · · · we associate a sequence of homomorphisms into free
products: {hn : Fd → An ∗ Bn}. For each index n, Rn is a quotient of Fd,
hence, Rn is generated by d elements that are the image of the fixed generators
of Fd under the quotient map ηn.

Rn is a limit group over free products. Hence, Rn, with its set of elliptics
ERn , is obtained from a convergent sequence of homomorphisms {us : Gn →
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Cs ∗ Ds}, where Gn is a f.g. group. Since Rn is generated by the image of
the elements f1, . . . , fd under the quotient map ηn, for large enough s, the
images us(Gn) are d-generated groups, and furthermore, they are generated
by the images of d elements in the f.g. group Gn, that are mapped by the
quotient map νn : Gn → Rn onto the elements ηn(f1), . . . , ηn(fd). Hence, we
may assume that the limit groups over free products, Rn, are obtained as
limit groups from a sequence of homomorphisms {vs : Fd → Cs ∗ Ds}, and the
image of the fixed generating set of the free group Fd, is the set of elements
ηn(f1), . . . , ηn(fd).

For each index n, we pick hn to be a homomorphism hn : Fd → An ∗ Bn,
so that hn is a homomorphism vs : Fd → Cs ∗ Ds for some large index s, so
that hn satisfies the following two conditions:

(i) Every element in the ball of radius n of C, the Cayley graph of Fd, that
is mapped by the quotient map ηn : Fd → Rn to the trivial element, is
mapped by hn to the trivial element in An ∗ Bn. Every such element that
is mapped to a nontrivial element by ηn, is mapped by hn to a nontrivial
element in An ∗ Bn.

(ii) Every element in the ball of radius n of C, the Cayley graph of Fd, that
is mapped by the quotient map ηn : Fd → Rn to an elliptic element, is
mapped by hn to an elliptic element in An ∗ Bn. Every such element that
is mapped to a nonelliptic element by ηn, is mapped by hn to a nonelliptic
element in An ∗ Bn.

From the sequence {hn}, we can extract a subsequence that converges into
a limit group over free products, that we denote R∞. By construction, the
limit group R∞ is the direct limit of the sequence of (proper) epimorphisms:

Fd → R1 → R2 → · · · .

Let η∞ : Fd → R∞ be the canonical quotient map. Our approach towards
proving the termination of given descending chains of limit groups over free
products is based on studying the structure of the limit group R∞, and its
associated quotient map η∞. We start this study by listing some basic prop-
erties of them.

Lemma 14.

(i) R∞ is not finitely presented.
(ii) R∞ cannot be presented as the free product of a f.p. group and elliptic

subgroups (factors).
(iii) Let R∞ = U1 ∗ · · · ∗ Ut ∗ F be the most refined (Grushko) free decomposi-

tion of R∞ in which the elliptic elements in R∞, ER∞ , can be conjugated
into the various factors, and F is a f.g. free group. Then there exists an
index j, 1 ≤ j ≤ t, for which:
(1) Uj is not finitely presented nor elliptic.
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(2) If B is a f.g. subgroup of Fd for which η∞(B) = Uj , then Uj is a
strict limit group over free products of a subsequence of the restricted
homomorphisms, hn|B .

Proof. To prove part (i), suppose that R∞ is f.p., that is:

R∞ = 〈g1, . . . , gd|r1, . . . , rs〉.
Then for some index n0, and every index n > n0, hn(rj) = 1 for j = 1, . . . , s.
This implies that for some index n1 > n0, and every index n > n1, each of the
groups Rn is a quotient of R∞, by a quotient map that send the generating
set g1, . . . , gd of R∞ to the elements ηn(f1), . . . , ηn(fd), a contradiction.

Suppose that R∞ = V1 ∗ · · · ∗ Vt ∗ M where M is f.p. and each of the fac-
tors Vj is elliptic. Let B1, . . . ,Bt and D be f.g. subgroups of Fd, for which
η∞(Bj) = Vj for j = 1, . . . , t, and η∞(D) = M . W.l.o.g. we may assume that
the free group Fd is generated by the collection of the subgroups B1, . . . ,Bt,D.

Since the factors Vj , j = 1, . . . , t, are elliptic, and since the subgroups, Bj ,
j = 1, . . . , t, are f.g. for every index j, j = 1, . . . , t, there exists an index nj ,
so that for every index n > nj , the image ηn(Bj) is elliptic. Since the maps
τi : Ri → Ri+1 do not map nontrivial elliptic elements (in ERi) to the identity
element, ηn(Bj) is isomorphic to η∞(Bj) = Vj via the map η∞ ◦ η−1

n .
The factor M is assumed f.p., hence, if D = 〈d1, . . . , ds〉, then M = 〈d1, . . . ,

ds|r1, . . . , ru〉. There exists an index n0, for which for every index n > n0,
ηn(ri) = 1, for i = 1, . . . , u.

Let m0 > nj for j = 0, . . . , t. By our arguments, from the universality of free
products, all the relations that hold in R∞ hold in ηm0(Fd) = Rm0 . Hence,
Rm0 is a quotient of R∞, where the quotient map maps the prescribed genera-
tors of R∞ to the prescribed generators of Rm0 (i.e., the corresponding images
of the given set of generators Fd = 〈f1, . . . , fd〉). Since Rm0+1 is a proper quo-
tient of Rm0 , this implies that Rm0+1 is a proper quotient of R∞, again by a
map that maps the prescribed set of generators of R∞ to the prescribed set
of generators of Rm0+1, which clearly contradicts our assumptions that the
sequence of limit groups {Rj } is strictly decreasing with Ri+1 being a proper
quotient of Ri for every index i, and the limit group R∞ is the direct limit of
this decreasing sequence. This concludes the proof of part (ii).

To prove part (iii), note that (1) in part (iii) follows from part (ii). Every
factor Uj of the limit group L that is not elliptic is a strict limit group that
is obtained from a sequence of homomorphisms of some f.g subgroup of Fd,
and (2) follows. �

R∞ is a limit group over free products which is a (proper) quotient of
all the limit groups over free products, {Rn}. For each index n, the limit
group Rn was chosen to maximize the number of elements that are mapped
to the identity in the ball of radius n of Fd by the quotient map ηn : Fd → Rn,
among all the proper limit (over free products) quotients of Rn−1 that admit
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an infinite descending chain of limit groups over free products that satisfy the
conditions of Theorem 13. If R∞ admits an infinite descending chain of limit
groups over free products:

R∞ → L1 → L2 → · · ·

that satisfy the properties in Theorem 13, then the limit group (over free
products) L1 admits an infinite descending chain of limit groups that satisfy
the conditions of Theorem 13, and since it is a proper quotient of R∞, for
large enough index n, the quotient map νn : Fd → L1 maps to the identity
strictly more elements of the ball of radius n in the Cayley graph of Fd, than
the map ηn : Fd → Rn, a contradiction. Hence, R∞ does not admit an infinite
descending chain of limit groups over free products that satisfy the conditions
of Theorem 13.

To continue the proof of Theorem 13, that is, to contradict the existence
of the infinite descending chain of limit groups over free products that satis-
fies the conditions of the theorem, we need a modification of the shortening
procedure that was used in [Se1] for (Fk) limit groups, and in [Se3] for limit
groups over hyperbolic groups. Since the description of the shortening pro-
cedure is rather long and involved, we prefer not to repeat it, and refer the
interested reader to Section 3 of [Se1]. The same construction that appears
in [Se1] applies to (strict) limit groups over free products.

Given a f.g. group G, and a sequence of homomorphisms into free prod-
ucts: {us : G → As ∗ Bs}, that converges into a (strict) limit group over free
products, L, the shortening procedure constructs another (sub) sequence of
homomorphisms from a free group Fd (where the f.g. group G is generated
by d elements), {vsn : Fd → Asn ∗ Bsn }, so that the sequence of homomor-
phisms vsn converges to a limit group over free products SQ , and there exists
a natural epimorphism L → SQ , that maps the elliptic elements in L, EL,
into the elliptic elements in SQ , ESQ . Furthermore, although the map from
L to SQ is not a monomorphism in general, no nontrivial elliptic element in
EL is mapped to the identity element in SQ .

Definition 15. We call the limit group over free products, SQ , that is
obtained by the shortening procedure, a shortening quotient of the limit group
(over free products) L.

By construction, a shortening quotient of a limit group over free products
is, in particular, a quotient of that limit group. In the case of freely indecom-
posable Fk-limit groups, a shortening quotient is always a proper quotient
([Se1], Claim 5.3). In the case of (strict) limit groups over free products the
natural epimorphism from a limit group onto its shortening quotient may be
an isomorphism, for example, if the limit group is a free product of elliptic
factors.
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If the limit group over free products that we start with, L, is strict, non-
cyclic and admits no free decomposition in which the elements of EL can be
conjugated into the factors, a shortening quotient of L is a proper quotient of
it. More generally, we have the following.

Proposition 16. Let G be a f.g. group, and let {us : G → As ∗ Bs} be
a sequence of homomorphisms that converges into an action of a noncyclic,
strict limit group over free products, L, on some real tree Y , where L admits
a (possibly trivial) free decomposition in which the elliptic elements, EL, can
be conjugated into the factors, and so that there exists at least one factor in
this free decomposition, which is strict, noncyclic, and freely indecomposable
relative to its intersection with EL. Then every shortening quotient of L,
obtained from the sequence {us}, is a proper quotient of L (in which nontrivial
elliptic elements in L are not mapped to nontrivial elliptic elements of the
shortening quotient).

Proof. Suppose that the f.g. group G is generated by d elements. A short-
ening quotient SQ of L is obtained from a sequence of homomorphisms {vsn :
Fd → Asn ∗ Bsn } that converges into SQ . Let L1 be a factor in a (possibly
trivial) free decomposition of L, in which all the elements EL can be con-
jugated into the various factors, so that the factor L1 is a noncyclic strict
limit group (over free products), which is freely indecomposable relative to its
intersection with EL.

Let SQ1 be the image of L1 in the shortening quotient SQ . Note that
SQ1 is a shortening quotient of L1. By construction, the shortening quotient
SQ1 is a quotient of the noncyclic, strict limit group over free products L1,
which is freely indecomposable relative to its elliptic elements, EL1 . If the
sequence of homomorphisms {vsn }, restricted to some f.g. preimage of L1,
has bounded stretching factors, that is, if the shortening quotient SQ1 is not
strict, SQ1 cannot be (entirely) elliptic, hence, it must be freely decomposable
or cyclic, so it is a proper quotient of L1. If SQ1 is a strict limit group over
free products, then the shortening quotient SQ1 is a proper quotient of L1 by
the shortening argument that is used in the proof of Claim 5.3 in [Se1]. �

The shortening procedure, and Proposition 16, enable us to obtain a reso-
lution of the limit group R∞, with which we can associate a completion, into
which R∞ embeds. This completion enables us to present R∞ as a f.g. group
which is finitely presented over some of its elliptic subgroups. Since Theo-
rem 13 assumes that the successive maps along the infinite descending chains
under consideration, τi, do not map nontrivial elliptic elements to the iden-
tity element, it is implied that elliptic subgroups embed along the sequences
under consideration. This implies that for large enough n, Rn is a proper
quotient of R∞, which contradicts the fact that R∞ is a proper quotient of
all the limit groups (over free products), {Rn}, that appear in the infinite
descending chain we constructed. We now explain this reasoning in detail.
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Proposition 17. Let R∞ be the direct limit of the sequence, {Rn}, of
limit groups over free products (that were constructed in order to prove Theo-
rem 13). Then there exists a finite sequence of limit groups over free products:

R∞ → L1 → L2 → · · · → Ls

for which:

(i) L1 is a shortening quotient of R∞, and Li+1 is a shortening quotient of
Li, for i = 1, . . . , s − 1.

(ii) The epimorphisms along the sequence are proper epimorphisms, and non-
trivial elliptic elements in Li are mapped to nontrivial elliptic elements
in Li+1.

(iii) Ls = H1 ∗ · · · ∗ Hr ∗ Ft where the factors, H1, . . . ,Hr, are elliptic, and the
entire elliptic set, ELs , is the union of the conjugates of H1, . . . ,Hr. Ft

is a (possibly trivial) free group.
(iv) The resolution: R∞ → L1 → L2 → · · · → Ls is a strict resolution ([Se1],

Section 5), that is, in each level non-QH, nonvirtually-Abelian vertex
groups in the virtually Abelian JSJ decomposition are mapped monomor-
phically into the limit group in the next level, and QH vertex groups are
mapped into nonvirtually-Abelian, nonelliptic subgroups.

(v) The Abelian edge groups in the virtually Abelian JSJ decompositions
(over free products) of the limit groups, L1, . . . ,Ls−1, are f.g. and torsion-
free.

(vi) The constructed resolution is well-structured (see Definition 1.11 in [Se2]
for a well-structured resolution).

Proof. By Lemma 14 and Proposition 16, a shortening quotient of R∞ is
a proper quotient of it. Furthermore, nontrivial elliptic elements in R∞ are
mapped to nontrivial elliptic elements in the shortening quotient. Hence, we
set L1 to be a shortening quotient of R∞. If from the sequence of (short-
ened) homomorphisms that was used to construct L1, it’s possible to extract
a subsequence that satisfy the properties of Lemma 14, we continue with this
subsequence, and use it to get a shortening quotient L2 of L1, which by Propo-
sition 16 is a proper quotient of L1. Continuing this process iteratively, and
recalling that every descending chain of limit groups over free products that
starts with R∞ and satisfies the assumptions of the statement of Theorem 13,
terminates after finitely many steps, we finally get the sequence of proper
epimorphisms:

R∞ → L1 → L2 → · · · → Ls.

Parts (i) and (ii) follow immediately from the construction of the descend-
ing finite sequence of shortening quotients, and part (iii) follows, since by
Lemma 14 and Proposition 16, the descending sequence of shortening quo-
tients terminates, precisely when the obtained limit group is the free product



42 E. JALIGOT AND Z. SELA

of elliptic factors and a free group. Part (iv) follows from the way homo-
morphisms are shortened along the shortening procedure. Each shortening
quotient in the sequence is constructed from a sequence of (shortened) homo-
morphisms, which are obtained from the sequence of homomorphisms that
converge into the previous limit group in the resolution. The homomor-
phisms that converge into the previous limit group in the resolution, are
modified (shortened), keeping the images of non-QH, nonvirtually-Abelian
vertex groups, in the virtually Abelian JSJ decomposition of the previous
limit group (in the resolution), conjugate to their images under the original
homomorphisms. Hence, these vertex groups are embedded into the shorten-
ing quotient (that appears) in the next level of the resolution. The same argu-
ment explains why the images of QH vertex groups are nonvirtually-Abelian
in that shortening quotient.

The virtually Abelian JSJ decomposition (over free products) of the vari-
ous factors in Ls is trivial, since they are elliptic. Since the edge groups in
the virtually Abelian JSJ decomposition (over free products) of Ls−1 are em-
bedded into Ls, by part (iv), and they are nonelliptic, they must be infinite
cyclic, as these are the only nonelliptic Abelian subgroups in Ls. Continuing
this argument by climbing along the levels of the resolution proves that every
nonelliptic Abelian subgroup in one of the limit groups, L1, . . . ,Ls, is f.g. and
is necessarily torsion-free, which implies part (v). Part (vi) follows since like
in the case of free and hyperbolic groups, every strict Makanin–Razborov res-
olution, that is, a resolution that is obtained from a sequence of shortening
quotients, is well-structured (see Definition 1.11 in [Se2]). �

Proposition 17 constructs from a subsequence of the homomorphisms, {hn :
Fd → An ∗ Bn}, a well-structured resolution of the limit group over free prod-
ucts, R∞, that terminates in a limit group Ls, which is a free product of
elliptic subgroups and a (possibly trivial) free group. In Section 1 of [Se2], a
completion is constructed from a given well-structured resolution (see Defi-
nition 1.11 in [Se2] for a well-structured resolution). This construction that
generalizes in a straightforward way to well-structured resolutions of limit
groups over torsion-free hyperbolic groups in [Se3], generalizes in a straight-
forward way to well-structured resolutions of limit groups over free products.
For the detailed construction of the completion, see Definition 1.12 in [Se2].

We denote the completion of the well-structured resolution that is con-
structed in Proposition 17, Comp(Res). By Definition 1.12 and Lemma 1.13
in [Se2], each of the limit groups, R∞,L1, . . . ,Ls is embedded into the com-
pletion of the constructed resolution, Comp(Res). All the (virtually Abelian)
edge groups that are not connected to boundary elements of QH vertex groups
(edge groups that are connected to QH vertex groups are always cyclic), and
all the virtually Abelian vertex groups, contain Abelian subgroups as sub-
groups of index at most 2. Furthermore, these Abelian groups are nonelliptic



MAKANIN–RAZBOROV DIAGRAMS OVER FREE PRODUCTS 43

subgroups of the associated limit groups, R∞,L1, . . . ,Ls. Since the only nonel-
liptic Abelian subgroups of the terminal limit group, Ls, are infinite cyclic,
all the edge groups, and all the vertex groups, that appear in all the levels
of the completion, Comp(Res), are finitely generated. In particular, all the
edge groups and all the vertex groups that appear in the virtually Abelian
JSJ decompositions of the limit groups over free products, R∞,L1, . . . ,Ls, are
finitely generated.

Let ρ : R∞ → Comp(Res) be the embedding of the limit group over free
products, R∞, into the completion of the constructed resolution: R∞ → L1 →
· · · → Ls. ρ(R∞) being a f.g. subgroup of Comp(Res) inherits a (finite) virtu-
ally Abelian decomposition from the virtually Abelian decomposition that is
associated with the top level of Comp(Res). The edge groups in that inherited
(finite) virtually Abelian decomposition are subgroups of f.g. virtually Abelian
groups, hence, f.g. virtually Abelian groups. The vertex groups in that virtu-
ally Abelian decomposition can either be conjugated into subgroups of a lower
level of the completion, or they can be conjugated into QH groups or into f.g.
virtually Abelian groups. f.g. subgroups of virtually Abelian groups are again
f.g. virtually Abelian. f.g. subgroups of Fuchsian groups are free products
of f.g. Fuchsian groups and f.g. virtually free groups. Hence, R∞ can be re-
constructed from finitely many f.g. groups that can be conjugated into lower
level of the completion, Comp(Res), and finitely many f.g. Fuchsian groups,
f.g. virtually free groups, and f.g. virtually Abelian groups, by performing free
products and free products with amalgamation and HNN extensions along f.g.
virtually Abelian groups.

Continuing with this decomposition procedure along the lower levels of the
completion, Comp(Res), we get that the subgroup ρ(R∞) (that is isomorphic
to R∞) can be reconstructed from finitely many f.g. elliptic subgroups in
Comp(R∞), and finitely many f.g. Fuchsian groups, f.g. virtually free groups,
and f.g. virtually Abelian groups, by performing finitely many operations of
free products and free products with amalgamation and HNN extensions along
f.g. virtually Abelian groups. In particular, R∞ is obtained from finitely many
elliptic subgroups of R∞ by adding finitely many generators and relations.

By construction, the limit group (over free products), R∞, is the direct
limit of the decreasing sequence of limit groups, {Rn}, which are all quotients
of some free group, Fd. Every f.g. subgroup of Fd that is mapped to an ellip-
tic subgroup in R∞, is mapped to elliptic subgroups in all the limit groups,
Rn, for all n > n0 for some index n0. R∞ is generated by finitely many f.g.
elliptic subgroups and finitely many virtually Abelian, virtually free, and f.g.
Fuchsian groups together with finitely many Bass–Serre generators that are
added in each of the performed HNN extensions (along f.g. virtually Abelian
subgroups). Since these last groups are all f.p. and elliptic subgroups in each
of the limit groups Rn are mapped monomorphically into R∞ by our assump-
tions on the decreasing sequence, {Rn}, there exists some index n1, so that



44 E. JALIGOT AND Z. SELA

for all n > n1, the limit group Rn is generated by finitely many elements that
are mapped to the Bass–Serre elements that are used in constructing R∞,
finitely many subgroups that are isomorphic to the f.g. virtually Abelian, f.g.
virtually free, and f.g. Fuchsian groups, and finitely many elliptic subgroups
that are isomorphic to the f.g. elliptic subgroups that altogether generate R∞.
Since R∞ is generated by these subgroups and the Bass–Serre elements by
imposing finitely many relations, there exists some index n2, so that for every
n > n2 these relations hold in Rn, which implies that Rn is a quotient of R∞
using a quotient map that maps the fixed generating set of R∞ (the images
of a fixed basis of Fd) to the fixed generating set of Rn. This implies that
Rn+1 is a proper quotient of R∞ by a quotient map that maps the fixed
generating set of R∞ to the fixed generating set of Rn+1, which contradicts
the construction of R∞ as the direct limit of the decreasing sequence of limit
groups over free products, {Rn}. This finally implies the d.c.c. that is stated
in Theorem 13. �

Theorem 13 proves a basic d.c.c. that holds for limit groups over free
products. This d.c.c. is weaker than the ones proved for limit groups over free
and hyperbolic groups ([Se1], [Se3]). Indeed, it is stated only for decreasing
sequences of limit groups over free products for which the successive maps
do not map nontrivial elliptic elements to the identity. Still, this d.c.c. is the
basis for our analysis of limit groups over free products, and for the analysis
of solutions to systems of equations over free products.

We start with the following theorem, which is a rather immediate corollary
of the d.c.c. that is stated in Theorem 13, that associates a resolution with a
given limit group over free products, a resolution that has similar properties
to the resolution described in Proposition 17.

Theorem 18. Let L be a limit group over free products. Then there exists
a finite sequence of limit groups over free products:

L → L1 → L2 → · · · → Ls

for which:

(i) L1 is a shortening quotient of L, and Li+1 is a shortening quotient of
Li, for i = 1, . . . , s − 1. In particular, elliptic elements in Li are mapped
monomorphically to elliptic elements in Li+1.

(ii) The epimorphisms along the sequence are proper epimorphisms.
(iii) Ls = H1 ∗ · · · ∗ Hr ∗ Ft where the factors, H1, . . . ,Hr, are elliptic, and the

entire elliptic set, ELs , is the union of the conjugates of H1, . . . ,Hr. Ft

is a (possibly trivial) free group.
(iv) The resolution: L → L1 → L2 → · · · → Ls is a strict resolution ([Se1],

Section 5), i.e., in each level non-QH, nonvirtually-Abelian vertex groups
and edge groups in the virtually Abelian JSJ decomposition are mapped
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monomorphically into the limit group in the next level, and QH vertex
groups are mapped into nonvirtually-Abelian, nonelliptic subgroups.

(v) The Abelian edge groups in the virtually Abelian JSJ decompositions
(over free products) of the limit groups, L1, . . . ,Ls−1, are f.g. and torsion-
free.

(vi) The constructed resolution is well-structured (see Definition 1.11 in [Se2]
for a well-structured resolution). As a corollary, the limit group (over
free products) L is embedded into the completion of the well-structured
resolution:

L → L1 → L2 → · · · → Ls

so that all the elliptic elements in L are mapped into conjugates of the
elliptic subgroups, H1, . . . ,Hr, of Ls.

Proof. Theorem 18 generalizes the resolution that was constructed for the
limit group (over free products) R∞, to general limit groups over free products.
To prove Proposition 17 we used the d.c.c. for resolutions of R∞ for which
the epimorphisms that are associated with them do not map nontrivial elliptic
elements to the identity element, that follows from the construction of R∞.
Theorem 13 proves that such a d.c.c. holds for resolutions of an arbitrary
limit group over free products, for which the associated epimorphisms do not
map nontrivial elliptic elements to the identity element. With this general
d.c.c., the proof of Proposition 17 generalizes to general limit groups over free
products. �

3. Finitely presented groups

Theorem 13 proves the basic d.c.c. for limit groups over free products,
and Theorem 18 associates a resolution with each such limit group, hence,
it embeds each limit group over free products into a completion, where this
completion is a tower over a limit group which is a free product of a (possi-
bly trivial) free group with a (possibly empty) finite collection of f.g. elliptic
subgroups.

When considering limit groups over free products we analyzed sequences
of homomorphisms from a f.g. group into free products. Since our goal is to
obtain a structure theory for sets of solutions to systems of equations, and the
group that is associated formally with a finite system of equations is f.p. and
not only f.g., we may assume that the limit groups over free products that we
are considering are obtained from sequences of homomorphisms from a f.p.
group into free products (and not only from a f.g. one).

As we will see in the sequel, if we attempt to construct a Makanin–Razborov
diagram that is associated with a f.p. group, we will need to consider only f.g.
limit groups over free products that are recursively presented, that is, limit
groups that can be embedded into f.p. groups. A modification or a strengthen-
ing of the existence of such an embedding is a key for obtaining further d.c.c.
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that will eventually allow the construction of a Makanin–Razborov diagram
over free products for a given f.p. group. We start with the following simple
observation.

Proposition 19. Let G be a f.p. group, and let L be a limit group over
free products which is a quotient of G. Then there exists a limit group over
free products L̂ with the following properties:

(1) There is a f.p. completion, Comp, which is a tower over a free product of
finitely many f.p. elliptic subgroups and a free group, so that L̂ embeds into
Comp, and the elliptic elements in L̂ are mapped into conjugates of the
finitely many elliptic factors in the free decomposition that is associated
with the limit group that appears in the terminal level of the completion
Comp.

(2) Either L̂ = L or L̂ > L (see Definition 12 for the relation > on limit
groups over free products).

Proof. By Theorem 18, the limit group (over free products) L admits a
well-structured resolution:

L → L1 → L2 → · · · → Ls

and Ls admits a free product decomposition: Ls = H1 ∗ · · · ∗ Hr ∗ Ft where the
factors, H1, . . . ,Hr, are elliptic, and the entire elliptic set, ELs , is the union
of the conjugates of H1, . . . ,Hr. Ft is a (possibly trivial) free group.

Furthermore, with this resolution it is possible to associate a completion,
Comp1, and the limit group L embeds into this completion, so that all the
elliptic elements in L are mapped into conjugates of the elliptic subgroups,
H1, . . . ,Hr, of Ls (the groups L1, . . . ,Ls admit natural embeddings into the
various levels of the completion, Comp1, and the elliptics in each of these limit
groups are mapped into conjugates of H1, . . . ,Hr in the completion Comp1).

Since L is embedded into the completion Comp1, G is naturally mapped
into Comp1. By construction, the completion Comp1 is built as a tower over
the terminal limit group Ls. If Comp1 is f.p., we obtained the conclusion of the
proposition, as we can take L̂ = L, and L̂ is embedded into the f.p. completion
Comp1. Hence, we may assume that Comp1 is not finitely presented, i.e., at
least one of the factors, H1, . . . ,Hr, is not finitely presented. In that case, we
gradually replace Comp1 by a f.p. completion into which G is mapped.

Each of the factors of Ls, H1, . . . ,Hr, is f.g. so it is a quotient of some f.g.
free group. Let F 1, . . . , F r be f.g. free groups that H1, . . . ,Hr are quotients of.
We start the construction of a f.p. completion that replaces the completion
Comp1, with a tower T2 that has in its base level the free group F 1 ∗ · · · ∗
F r ∗ Ft, and the next (upper) levels are connected to the lower levels of the
constructed tower, precisely as they are connected in the completion, Comp1,
that is, using the same graphs of groups, just that the group that is associated
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with the lowest level in Comp1, which is Ls = H1 ∗ · · · ∗ Hr ∗ Ft, is replaced
by the free group, F 1 ∗ · · · ∗ F r ∗ Ft.

Note that T2 is a tower, but it is not necessarily a completion (see Defini-
tion 1.12 in [Se2]), as in general there are no retractions from a group that is
associated with a certain level onto the group that is associated with the level
below it. Each of the levels above the base level in T2 is constructed using
a (finite) graph of groups, in which some vertex groups are the groups that
are associated with the lower level in T2. Hence, the group that is associated
with a level above the base level, is obtained from a free product of the group
that is associated with the lower level with a f.p. group by imposing finitely
many relations. Furthermore, the graphs of groups that are associated with
the different levels in T2 are similar to the graphs of groups that are associ-
ated with the corresponding levels in the completion Comp1, and differ from
Comp1 only in the groups that are associated with the base level.

Since each of the groups that are associated with the upper levels in T2

is obtained from a free product with a f.p. group by imposing finitely many
relations, and since the graphs of groups that are associated with the upper
levels have similar structure as the corresponding graphs of groups that are
associated with the levels of the completion Comp1, and these graphs of groups
differ only in the structure of the group that is associated with the base level,
it is enough to impose only finitely many relations from the defining relations
of the various factors of the limit groups that is associated with the base
level of Comp1, Ls, H1, . . . ,Hr, on the associated free groups, F 1, . . . , F r,
so that if we replace the group that is associated with the base level of T2,
F 1 ∗ · · · ∗ F r ∗ Ft, with the obtained f.p. quotient, V1 ∗ · · · ∗ Vr ∗ Ft, and construct
from it a tower, T3, by imitating the construction of Comp1 and T2 (i.e., with
similar graphs of groups in all the upper levels), T3 will be a completion.

T3 is a completion, but it may be that the f.p. group G is not mapped
into it. G is mapped into the completion Comp1. Hence, once again, since
G is f.p. it is enough to impose only finitely many relations from the defining
relations of the various factors, H1, . . . ,Hr, on the factors, V1, . . . , Vr, so that
if we replace the group that is associated with the base level in T3 with the
obtained f.p. quotient, M1 ∗ · · · ∗ Mr ∗ Ft, and construct from it a tower T4

by imitating the construction of the towers Comp1, T2, and T3, T4 is a f.p.
completion, and G maps into it.

Furthermore, the map from G into the completion Comp1, is a composition
of the maps from G to T4, composed with the natural quotient map from T4

to Comp1. Hence, if we denote the image of G in T4 by L̂, then L̂ is a
limit group over free products, its set of elliptics is precisely the intersection
of L̂ with the set of conjugates of M1, . . . ,Mr, and either L̂ is isomorphic
to L and the natural isomorphism from L̂ onto L maps the elliptics in L̂
monomorphically onto the elliptics in L, or the natural epimorphism from L̂
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onto L has a nontrivial kernel, and this epimorphism maps the elliptics in L̂
onto the elliptics in L, in which case L̂ > L. �

Proposition 19, the d.c.c. proved in Theorem 13, and the resolution that
is associated with a limit group over free products in Theorem 18, enable us
to prove that there are maximal elements in the set of all limit groups over
free products that are all quotients of a (fixed) f.p. group G, and that there
are only finitely many equivalence classes of such maximal elements. The
existence of maximal elements in the set of limit quotients is valid even for
f.g. groups.

Proposition 20. Let G be a f.g. group. Let R1,R2, . . . be a sequence of
limit groups over free products that are all quotients of the f.g. group G, and
for which:

R1 < R2 < · · · .

Then there exists a limit group over free products R that is a quotient of G,
so that for every index m, R > Rm.

Proof. Identical to the proof in the free and hyperbolic groups cases (see
Proposition 1.20 in [Se3]). �

Proposition 20 proves that given an ascending chain of limit quotients (over
free products) of a f.g. group G, there exists a limit quotient of G that bounds
all the limit groups in the sequence. Hence, we can apply Zorn’s lemma (it
is enough to consider countable ascending chains in case of quotients of a f.g.
group), and obtain maximal limit quotients (over free products) of any given
f.g. group, and every limit quotient of a f.g. group is dominated by a maximal
limit quotient of that group.

Proposition 19 proves that if G is in addition f.p. then if R is a limit
quotient of G (over free products), then there exists a limit group over free
products L, that is either isomorphic to R or L > R, so that L embeds in a
f.p. completion. Hence, if we are interested in maximal limit quotients (over
free products) of a f.p. group G, it is enough to consider limit quotients of G
that embed in f.p. completions, and there are clearly at most countably many
such limit quotients.

In case a group G is f.p. the existence of maximal limit quotients, and the
existence of an embedding of maximal limit quotients of a f.p. group G into
f.p. completions, imply the finiteness of the (equivalence classes of) maximal
limit quotients (over free products) of a f.p. group.

Theorem 21. Let G be a f.p. group. Then there are only finitely many
equivalence classes of maximal elements in the set of limit quotients (over
free products) of G, and each of these maximal elements embeds in a f.p.
completion.
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Proof. Let G be a f.p. group. Since all its maximal limit quotients over
free products can be embedded into f.p. completions, there are at most count-
ably many maximal limit quotients of G (over free products). Suppose that
there are infinitely many nonequivalent maximal limit quotients of G, and
let R1,R2, . . . be the infinite sequence of (non-equivalent) maximal limit quo-
tients (over free products) of G. Each Ri is equipped with a given quotient
map ηi : G → Ri, hence, fixing a generating set for G, we fix a generating set
in each of the Ri’s, that is, we have maps νi : Fd → Ri (assuming G has rank
d), that factor through the epimorphism Fd → G.

For each index i, we look at the collection of words of length 1 in Fd that
are mapped to the identity, and those that are mapped to elliptic elements
by νi. There is a subsequence of the Ri’s for which this (finite) collection
of words is identical. Starting with this subsequence, for each Ri (from the
subsequence) we look at the collection of words of length 2 in Fd that are
mapped to the identity and those that are mapped to elliptic elements by νi,
and again there is a subsequence for which this (finite) collection is identical.
We continue with this process for all lengths � of words in Fd, and look at the
diagonal sequence (that we denote Ri1 ,Ri2 , . . .).

We choose homomorphisms hj : Fd → Aj ∗ Bj , that factor through the map
Fd → G, so that for words w of length at most j, hj(w) = 1 iff νij (w) = 1, and
hj(w) is elliptic iff νij (w) is elliptic (we can choose such homomorphisms since
Rij is a limit quotient of G). After passing to a subsequence, the homomor-
phisms hj converge into a limit group over free products M , which is a limit
quotient of G. Note that in the (canonical) map Fd → M , the elements of
length at most j that are mapped to the identity, and those that are mapped
to be elliptic, are precisely those that are mapped to the identity and those
that are mapped to be elliptic by the map νij : Fd → Rij .

R1,R2, . . . form the entire list of maximal limit quotients of G over free
products. We construct a new sequence of homomorphisms: fj : Fd → Cj ∗ Dj

that factor through the quotient map Fd → G. First, fj has the same property
as hj , i.e., the elements of length at most j that are mapped to the identity
by fj are precisely those that are mapped to the identity by νij : Fd → Rij ,
and the elements of length at most j that are mapped to be elliptic by fj are
precisely those that are mapped to be elliptic by νij : Fd → Rij . Second, since
Rij is maximal and is not equivalent to R1, . . . ,Rij −1, there must exist some
elements u1, . . . , uij −1 ∈ Fd so that for each index s, 1 ≤ s ≤ ij − 1, either us

is mapped to the identity in Rs, but us is mapped to a nontrivial element in
Rij by νij , or us is mapped to an elliptic element in Rs, but us is mapped to a
nonelliptic element in Rij by νij . If the first holds, we require that fj(us) �= 1,
and if the second holds we require that fj(us) is not elliptic.

The sequence of homomorphisms, {fj }, converges into the limit group (over
free products) M . We look at a subsequence of the homomorphisms {fj }, so
that the subsequence and its shortenings converge into a resolution of M that
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satisfy the properties that are listed in Theorem 18, M → L1 → L2 → · · · → Ls

(we still denote the subsequence {fj }).
With the resolution M → L1 → L2 → · · · → Ls, which is a well-structured

resolution by construction, we can naturally associate a completion. Let Comp
be this completion. Since G is naturally mapped onto the limit group M , there
exists a natural map, ρ : G → Comp, that factors through the map G → M .

Note that by construction, the completion Comp is obtained from the ter-
minal limit group, Ls, of the given resolution of M , by adding finitely many
generators and relations. Since the group G is f.p. we can repeat the argument
that was used to prove Proposition 19, and replace the terminal limit group
Ls with a (possibly the same) f.p. group L1

s that maps onto Ls, and starting
with L1

s construct a completion, Comp1, that has the same structure as the
completion Comp, except that the terminal limit group (over free products)
of Comp1 is L1

s, whereas the terminal limit group of the completion Comp is
Ls. Furthermore, the group G maps into Comp1, and since Comp1 is finitely
presented, there exists a subsequence of the sequence of homomorphisms {fj },
that factor through the completion Comp1.

Let M1 be the image of G in Comp1. M1 is a limit quotient of G (over
free products), so there must exist some maximal limit quotient of G, that
we denote Rb, so that Rb is either equivalent to M1 or Rb > M1. Now, there
exists a subsequence of the homomorphisms {fj } that factor through the
limit group M1, hence, this subsequence of homomorphisms factor through
the maximal limit quotient Rb. By construction, each of the homomorphisms
fj does not factor through any of the maximal limit groups, R1, . . . ,Rij −1.
Hence, for large enough j, none of the homomorphisms fj factor through the
maximal limit quotient Rb, a contradiction. Therefore, G admits only finitely
many maximal limit quotients (over free products), and by Proposition 19,
each of the maximal limit quotients of G embeds into a f.p. completion. �

Theorem 21 proves the existence of finitely many limit quotients of a given
f.p. group. Hence, it gives the first level of a Makanin–Razborov diagram of
a f.p. group over free products, and it proves that the groups that appear
in the first level of the Makanin–Razborov diagram of a f.p. group over free
products are canonical (i.e., they are an invariant of the f.p. group). Still, the
construction of maximal limit groups over free products, and the proof that
there are only finitely many (equivalence classes of) maximal quotients of a
f.p. group (over free products), does not generalize in a straightforward way to
allow the construction of the next levels in the Makanin–Razborov diagram.

Furthermore, Theorem 13 proves the basic d.c.c. that is required for an-
alyzing limit groups over free products. However, it is not sufficient for the
construction of a Makanin–Razborov diagram as it guarantees the termina-
tion of strict resolutions, but not of general resolutions in the diagram (if we
try to imitate the construction over free and hyperbolic groups). Hence, to
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construct a finite Makanin–Razborov diagram we will need to construct the
next levels in the diagram, and in addition to prove an additional d.c.c. that
will guarantee the termination of the construction after finitely many steps.

Let G be a f.p. group. We start the construction of the Makanin–Razborov
diagram over free products of G with the finite collection of (equivalence
classes of) maximal limit quotients of G, according to Theorem 21. We con-
tinue by studying the homomorphisms of each of the maximal limit quotients
of G into free products. As in the construction of Makanin–Razborov dia-
grams over free and hyperbolic groups, we continue by modifying (shortening)
these homomorphisms using the modular groups that are associated with the
maximal limit quotients (over free products) of the given f.p. group G.

Recall that the group of modular automorphisms that is associated with a
limit group (over free products), is the group of automorphisms that includes
inner automorphisms in addition to those automorphisms that are encoded
by the virtual Abelian JSJ decomposition (over free products). That is, Dehn
twists along edges in the JSJ, elements from the Teichmuller modular groups
of the QH vertex groups, and subgroups of the general linear group that act
on (virtual) Abelian vertex groups and for each virtually Abelian vertex group
preserve the subgroup that is generated by the edge groups that are connected
to the vertex group (see Definition 5.2 in [Se1]).

Let L be one of the maximal limit quotients (over free products) of G,
and let EL be its set of elliptics. First, we factor L into its most refined
free decomposition in which the elements in EL are elliptic (i.e., contained
in conjugates of the factors), L = U1 ∗ · · · ∗ Um ∗ Ft, where Ft is a (possibly
trivial free group, and the elements in EL can be conjugated into the various
factors, U1, . . . ,Um.

(L,EL) is a (maximal) limit quotient of G (over free products), hence,
L is obtained as a limit of a sequence of homomorphisms {hn : G → An ∗
Bn}. G is f.p. and is mapped onto L, and L admits the free decomposition,
L = U1 ∗ · · · ∗ Um ∗ Ft, where the elliptic elements in EL can be embedded
into the various factors U1, . . . ,Um. By the argument that is used to prove
Proposition 19, there exist finitely presented groups M1, . . . ,Mm so that the
map G → L factors as:

G → M1 ∗ · · · ∗ Mm ∗ Ft → U1 ∗ · · · ∗ Um ∗ Ft,

where the two maps are onto, and for each index i, 1 ≤ i ≤ m, Mi is mapped
onto Ui. Since the sequence of homomorphisms {hn} of G converges into
(L,EL), and the group M1 ∗ · · · ∗ Mm ∗ Ft is f.p. and the map from G to L fac-
tors through it, for large enough n the homomorphisms {hn} factor through
the map G → M1 ∗ · · · ∗ Mm ∗ Ft. Now, if we apply the proof of Proposi-
tion 19, it follows that there are m f.p. completions (over free products),
Comp1, . . . ,Compm, so that each of the factors Ui is embedded into the com-
pletion Compi so that the elliptics in Ui are mapped into elliptics in Compi
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(and only elliptics in Ui are mapped into elliptics in Compi), and there exist
maps:

M1 ∗ · · · ∗ Mm ∗ Ft → U1 ∗ · · · ∗ Um ∗ Ft → Comp1 ∗ · · · ∗ Compm ∗ Ft

that extend the embeddings from Ui to Compi, for 1 ≤ i ≤ m.
Hence, we may continue with each of the factors Ui of L in parallel. Ui

is a maximal limit quotient (over free products) of the f.p. group Mi, and by
Proposition 21 it is embedded into a f.p. completion Compi.

Therefore, we may assume that in the sequel, we are given a f.p. group G,
and a maximal limit quotient of it, that we still denote, (L,EL), and the limit
quotient L is freely indecomposable relative to the elliptic subset EL (i.e., L
admits no nontrivial free decomposition in which the elements in EL can be
conjugated into the factors).

With (the factor) L and EL, we naturally associate its virtually Abelian
JSJ decomposition over free products (Theorem 11). We also associate with
(L,EL) the collection of homomorphisms of G into free products that factor
through (L,EL).

Fixing a (finite) generating set of a limit group (over free products) L, and
given a homomorphism h : L → A ∗ B, we look at a shortest homomorphism
among those that are obtained by precomposing h with a modular automor-
phism of L that is contained in the modular group of automorphisms of L that
is associated with the virtually Abelian JSJ decomposition over free products
of L (relative to EL). A limit group over free products that is the limit of
a sequence of such shortest homomorphisms is called a shortening quotient,
and denoted SQ . Note that this definition of a shortening quotient is dif-
ferent than the more restricted one given in Definition 15, as in particular,
the natural map from a limit group over free products, L, onto a shortening
quotient SQ of L, is not always monomorphic on the set of elliptic elements
in L, EL. Still, like in Proposition 16, if a shortening quotient is not elliptic
it is a proper quotient of the limit group L.

Lemma 22 (cf. Proposition 16). Let L be a limit group over free products,
and let EL be its set of elliptics. Suppose that L admits no free decompositions
in which the elements in EL can be conjugated into the factors. Then every
shortening quotient of L which is not (entirely) elliptic is a proper quotient
of it.

Proof. Identical to the proof of Proposition 16. �

Like limit quotients (over free products) of a f.g. group, every ascending
sequence of shortening quotient of a limit group over free products is bounded
by a shortening quotient of that limit group. The proof is identical to the proof
of Proposition 20.
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Lemma 23. Let L be a f.g. limit group over free products. Let SQ1,SQ2, . . .
be a sequence of shortening quotients of L, for which:

SQ1 < SQ2 < · · · .

Then there exists a shortening quotient SQ of L, so that for every index m,
SQ > SQm.

By Zorn’s lemma and Lemma 23, it follows that there are maximal elements
in the set of shortening quotients of a f.g. limit group over free products. We
call such a maximal element, a maximal shortening quotient. By Lemma 22,
if the limit group (over free products) L does not admit a free product in
which the elliptic elements in L, EL, can be conjugated into the factors,
every maximal shortening quotient of L that is not entirely elliptic is a proper
quotient of L.

4. Covers of limit quotients and their resolutions

The first level in the Makanin–Razborov diagram over free products of
a f.p. group G consists of the finitely many maximal limit quotients of G
(Theorem 21). Over free and hyperbolic groups, we continued to the next
level in the diagram by proving that there are only finitely many (equivalence
classes of) maximal shortening quotients. Over free product, we need to prove
a finiteness result for shortening quotients and their (strict) resolutions, that
will enable us to continue to the next level, and so that the next levels will be
constructed in a way for which a termination can be proved.

In order to prove that there are only finitely many maximal limit quotients
over free products of a f.p. group over free products (Theorem 21), we first
showed that any maximal limit quotient can be embedded into a f.p. comple-
tion (Proposition 19). For maximal shortening quotients of a f.g. limit group
over free products, we were not able to prove such a statement. For the con-
tinuation of the diagram, we first prove an observation that holds for all the
(proper) limit quotients of a given limit group over free products, that still
allows us to construct the Makanin–Razborov diagram over free products for
a f.p. group, although we lose some of the canonical properties of the diagrams
over free and hyperbolic groups.

Given a limit group over free products, L, and a limit quotient M of L,
Theorem 24 associates a cover, CM , with M . CM is a limit quotient of L, if
L > M , then L > CM and M is a limit quotient of CM . The main property
of the cover CM that is used in the sequel (and is not always true for M ) is
that CM can be embedded into a completion, CompCM , and CompCM is f.p.
relative to the elliptic subgroups of the given limit group L, that is, CompCM is
generated from the elliptic subgroups in L by adding finitely many generators
and relations. In particular, this implies that if L is recursively presented so
is the cover CM .
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Theorem 24. Let L be a f.g. limit group over free products, and let EL be
its set of elliptics. Let M be a limit quotient of L (over free products), with
set of elliptics, EM , and with a quotient map, η : L → M that maps EL into
EM .

Suppose that L > M , that is, that the map η has a nontrivial kernel, or that
there exists a nonelliptic element in L that is mapped to an elliptic element
in M by η.

Let M → M1 → · · · → Ms be a (well-structured) resolution of M , that is, a
resolution of M that satisfies the properties of the resolution that is associated
with a limit group over free products in Theorem 18. Then there exists a f.g.
limit quotient of L, CM , with a set of elliptics, ECM , and a well-structured
resolution of CM , CM → CM 1 → · · · → CM s, that satisfies the properties of
the resolutions in Theorem 18, and a quotient map: τ : L → CM , that maps
EL into ECM , so that:

(1) There exists a quotient map: ν : CM → M , that maps ECM onto EM , so
that η = ν ◦ τ .

(2) If η : L → M has a nontrivial kernel, then τ : L → CM has a nontrivial
kernel. If there exists a nonelliptic element in L that is mapped to an
elliptic element in M by η, then there exists a nonelliptic element in L
that is mapped to an elliptic element in CM by τ . If Mi+1 is a proper
quotient of Mi, then CM i+1 is a proper quotient of CM i.

(3) If η maps an elliptic element in L to the identity, then τ maps an elliptic
element in L to the identity.

(4) If M is a free product of finitely many elliptic subgroups and a free group,
so is CM . More generally, CM j is mapped onto Mj , 1 ≤ j ≤ s, where
elliptics in CM j are mapped onto elliptics in Mj .

(5) All the homomorphisms of the given limit group L that factor through
the given well-structured resolution of M , factor through the resolution
CM → CM 1 → · · · → CM s.

(6) With the given well-structured resolution, M → M1 → · · · → Ms, we can
naturally associate a completion, CompM (see Definition 1.12 in [Se2]),
and with the resolution CM → CM 1 → · · · → CM s we can naturally as-
sociate a completion, CompCM . CM is embedded into CompCM , and the
elliptic elements in CM are mapped into the terminal limit group CM s.

(7) By Theorem 18, the elliptic elements, EL, in the limit group L are con-
jugates of finitely many (possibly none) f.g. subgroups, E1, . . . ,Er in L.
Then the completion, CompCM , is obtained from (copies of the subgroups)
E1, . . . ,Er by adding finitely many generators and relations, i.e., CompCM

is f.p. relative to the subgroups E1, . . . ,Er.
(8) If M admits a free decomposition, M = V1 ∗ · · · ∗ Vu ∗ Ft, where Ft is a free

group, and this free decomposition is respected by the given resolution of
M , then CM has a similar free decomposition, CM = CV 1 ∗ · · · ∗ CV u ∗
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Ft, which is respected by the constructed resolution of CM , where the
map ν respects this free decomposition, i.e., ν(CV i) = Vi, i = 1, . . . , u, and
ν(Ft) = Ft. In particular, the completion, CompCM , admits a similar free
decomposition, CompCM = Comp1 ∗ · · · ∗ Compu ∗ Ft, where CV i embeds
into Compi.

Proof. Let L be a limit group over free products, with set of elliptics EL.
By Theorem 18, there are finitely many subgroups, E1, . . . ,Er, in L, so that
the set of elliptic elements in L, EL, is the union of the conjugacy classes of
E1, . . . ,Er. Let M be a limit quotient of L, and let M → M1 → · · · → Ms be
a well-structured resolution of M , where Ms is a free product of finitely many
elliptic factors and a possibly trivial free group.

With the given well-structured resolution of M we associate a completion,
CompM . M is a limit quotient of L, and M is a subgroup of the completion,
CompM , so L is mapped into CompM . Hence, the elliptic subgroups in L,
E1, . . . ,Er, are mapped into conjugates of the elliptic subgroups, that are
factors in the terminal limit group Ms, in CompM . If the terminal limit
group Ms is f.p. relative to the subgroups, E1, . . . ,Er, the theorem follows
(by taking the cover CM to be M and CompCM to be CompM ). Otherwise,
we modify the argument that was used to prove Proposition 19.

Since M is embedded into the completion CompM , L is naturally mapped
into CompM . Each of the factors of the terminal limit group of CompM ,
Ms, is f.g. so it is a quotient of some conjugates of (copies of) the elliptic
subgroups of L, E1, . . . ,Er and a f.g. free group. We start the construction of
a the completion Comp that covers the completion CompM , with a tower T1

that has in its base level the free product of a free group (isomorphic to the free
factor in the free decomposition of Ms), the free products of corresponding
conjugates of E1, . . . ,Er with free groups (so that each of the factors of Ms

is a quotient of each of these free products). The next (upper) levels are
connected to the lower levels of the constructed tower T1, precisely as they
are connected in the completion, CompM , that is, using the same graphs of
groups, just that the group that is associated with the lowest level in CompM ,
which is Ms, is replaced by the prescribed free products.

T1 is a tower, but it is not necessarily a completion (see Definition 1.12 in
[Se2]), as in general there are no retractions from a group that is associated
with a certain level onto the group that is associated with the level below it.
Each of the levels above the base level in T1 is constructed using a (finite)
graph of groups, in which some vertex groups are the groups that are asso-
ciated with the lower level in T1. Hence, the group that is associated with a
level above the base level, is obtained from a free product of the group that
is associated with the lower level with a f.p. group by imposing finitely many
relations. Furthermore, the graphs of groups that are associated with the dif-
ferent levels in T1 are similar to the graphs of groups that are associated with
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the corresponding levels in the completion CompM , and differ from CompM

only in the groups that are associated with the base level.
Each of the groups that are associated with the upper levels in T1 is ob-

tained from the groups that appear in the lower level of T1 by a free product
with a f.g. free group and further imposing finitely many relations. The graphs
of groups that are associated with the upper levels in T1 have similar structure
as the corresponding graphs of groups that are associated with the levels of
the completion CompM , that is, the graphs of groups differ only in the ver-
tex groups that are associated with lower levels. Furthermore, these vertex
groups differ only in the groups that are associated with the base levels of T1

and CompM . Hence, it is enough to impose only finitely many (additional)
relations from the defining relations of the various factors of the limit groups
that is associated with the base level of CompM , Ms, on the subgroup that
is associated with the base level of T1. This means imposing finitely many
(additional) relations on the associated free products of free groups and con-
jugates of (copies of) the subgroups, E1, . . . ,Er, that form the group which
is associated with the base level of T1, so that if we replace the group that is
associated with the base level of T1, with the obtained quotient, and construct
from the obtained base subgroup a tower, T2, by imitating the construction
of CompM and T1 (that is, with similar graphs of groups in all the upper
levels), T2 will be a completion (that is, it is a tower with retractions between
consecutive levels).

T2 is a completion, but it may be that the limit group L is not mapped
into it. L is mapped into the completion CompM , and as a limit group it is
finitely presented relative to its elliptic subgroups. Hence, once again, it is
enough to impose only finitely many relations from the defining relations of
the various factors of Ms, so that if we replace the group that is associated
with the base level in T2 with the obtained quotient, and construct from it a
tower T3 by imitating the construction of the towers CompM , T1, and T2, T3

is a completion, it is f.p. relative to the elliptic subgroups, E1, . . . ,Er, and L
maps into it.

We denote the images of the limit group L into the various levels of the
completion T3, by CM ,CM 1, . . . ,CM s. By imposing finitely many additional
relations on the base subgroup of T3 from the relations of the base subgroup
of CompM , Ms, one can further guarantee that if M is a proper quotient of L,
then CM is a proper quotient of L, if L > M then L > CM , and similarly, if
Mj+1 is a proper quotient of Mj then CM j+1 is a proper quotient of CM j , and
if Mj+1 > Mj then CM j+1 > CM j . We denote the obtained completion by
CompCM and its associated resolution as the resolution that is associated with
CM (the obtained resolution is a well-structured resolution by construction).
All the other properties of the limit groups, and the associated resolution and
completion, CompCM , that are listed in the statement of the theorem follow
easily from the construction. �
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Given a f.g. limit group over free products L, and its limit quotient M with
an associated well-structured resolution, M → M1 → · · · → Ms, that satisfy
the assumptions of Theorem 24, and for which L > M , we call a limit quotient
CM of L, that satisfies the conclusion of the theorem, a cover of the limit
quotient M , its associated well-structured resolution, CM → CM 1 → · · · →
CM s, a cover of the given resolution of M , and the associated completion,
Comp, into which CM is embedded, that was constructed from the given
well-structured resolution of M , a cover completion.

In constructing the Makanin–Razborov diagrams of a f.p. or a f.g. group
over a free or a hyperbolic group, we were able to show that the set of short-
ening quotients of a limit group over these groups contain finitely many equiv-
alence classes of maximal shortening quotients. In studying limit groups over
free products, we are not able to prove a similar theorem. Over free products,
we prove that given a limit group L, and fixing a cover for each pair of a
shortening quotient and its associated well-structured resolution, there exists
a finite subcollection of covers which is good for all the shortening quotients
of L. As we will see in the sequel, a similar statement on the existence of a
finite subcollection of cover completions (with a similar proof) is sufficient for
the construction of the Makanin–Razborov diagram over free products.

Theorem 25. Let L be a f.g. limit group over free products, suppose that
L is not (entirely) elliptic and that L admits no free product decomposition in
which the elliptic elements in L, EL, can be conjugated into the factors.

With each pair of a shortening quotient M of L, and a well-structured
resolution of M , there is an associated quotient map, ηM : L → M , that sat-
isfies the assumptions of Theorem 24. Hence, by the conclusion of Theo-
rem 24, for each pair of a shortening quotient M of L, and its associated
well-structured resolution we can choose a cover CM (M ) together with a com-
pletion, CompCM , into which CM embeds.

From the entire collection of covers of shortening quotients of L and their
associated well-structured resolutions, it is possible to choose a finite subcollec-
tion of covers, CM 1, . . . ,CM e, so that for every maximal shortening quotient
M , there exists an index i, 1 ≤ i ≤ e, for which the quotient map, η : L → M ,
is a composition of the two quotient maps: L → CM i → M (where elliptics
are mapped to elliptics in these two maps).

Proof. The argument that we use is similar to the proof of the finiteness
of the number of equivalence classes of maximal shortening quotients (over
free products) of a f.p. group. Let L be a f.g. limit group. By Theorem 24,
given a shortening quotient of it, M , and a well-structured resolution of that
shortening quotient, there exists a cover CM of M , and CM can be embedded
into a completion, Comp, that is obtained from the finitely many (conjugates
of) elliptic subgroups of L, by adding finitely many generators and relations.
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Therefore, there are at most countably many such completions, Comp, and
hence, at most countably many such covers, CM .

Note that by Lemma 22 each shortening quotient M of L is either entirely
elliptic, or it is a proper quotient of L. In case the shortening quotient M is
not entirely elliptic, it follows by Theorem 24, that the associated cover, CM
is a proper quotient of L (like the shortening quotient M ).

Suppose that the countable collection of covers does not contain a finite
subcover, that is, there is no finite subcollection of the constructed covers,
CM 1, . . . ,CM e, so that for every shortening quotient M , the quotient map
L → M factors as a composition of quotient maps of limit groups over free
products: L → CM i → M , for some index i, 1 ≤ i ≤ e.

To contradict the lack of a finite subcover, we start by ordering the col-
lection of covers, CM 1,CM 2, . . . . Since there is no finite subcover, there
must be a sequence of indices, i1, i2, . . . , so that a shortening quotient, Mij ,
which is covered by CM ij , is not covered by any of the previous covers,
CM 1, . . . ,CM ij −1.

For each index j, the shortening quotient Mij is a limit of shortest homo-
morphisms, and it is not covered by any of the covers, CM 1, . . . ,CM ij −1.
Hence, for each index j, there exists a shortest homomorphism hj : L →
Aj ∗ Bj , that does not factor through any of the covers, CM 1, . . . ,CM ij −1.

We look at the sequence of homomorphisms {hj }. A subsequence of this
sequence converges into a limit group (over free products) R, which is a quo-
tient of the limit group L. Unless the limit group R is the (possibly trivial)
free product of finitely many elliptic factors and a (possibly trivial) free group,
a subsequence of the shortenings of these homomorphisms converges into a
shortening quotient R1 of R, where the elliptics in R are mapped monomor-
phically into the elliptics in R1, and R1 is a proper quotient of R. By con-
tinuing iteratively and applying the d.c.c. for decreasing sequences of limit
groups over free products (Theorem 13), we obtain a finite (strict) resolution
R → R1 → · · · → Rs, where Rs is a free product of finitely many f.g. elliptic
subgroups and a (possibly trivial) free group. For brevity, we still denote the
obtained subsequence of shortest homomorphisms, {hj }.

The pair of the shortening quotient R, and its (strict) resolution, R → R1 →
· · · → Rs, is one of the pairs of a shortening quotient of the limit group L,
and its associated strict resolutions, with which we have associated the covers,
CM 1,CM 2, . . . . Hence, one of these covers, CM r, is a cover that is associated
with this pair. Since a cover completion is finitely presented relative to the
elliptic subgroups of L, for large enough indices j, the homomorphisms {hj }
factor through cover completion and hence factor through the cover CM r.
That contradicts the choice of the homomorphisms {hj }, as for large j, hj is
supposed not to factor through the covers, CM 1, . . . ,CM j−1. �



MAKANIN–RAZBOROV DIAGRAMS OVER FREE PRODUCTS 59

Theorem 25 proves that given a f.g. limit group L that admits no free
decomposition in which the elliptic elements, EL, can be conjugated into the
factors, it is possible to find finitely many limit quotients of L, one which
is isomorphic to L and is entirely elliptic, and the rest which are proper
quotients of L, that cover all its shortening quotients. This finite collection
of covers is not canonical, but in principle it can be taken as the next step in
the Makanin–Razborov diagram. Except for the entirely elliptic cover that is
isomorphic to L, the other covers that are associated with L are all proper
quotients of it, hence, in principle, we can continue with the construction
iteratively. However, the d.c.c. that we proved is valid only for sequences of
strictly decreasing limit quotients, for which the quotients are proper and are
monomorphic when restricted to elliptic elements (Theorem 13).

Therefore, to complete the construction of the Makanin–Razborov diagram
of a f.p. group over free products, we use a different approach. Instead of
constructing a finite cover of all the shortening quotients of a given limit group
(over free products), we construct a finite cover for all the (strict) resolutions of
the given limit group. With each strict resolution of the given limit group, we
associate a cover of that resolution (which is a resolution by itself), and there
are only countably many such covers, as the completion that is associated with
the cover resolution is f.p. relative to the elliptic subgroups of the original limit
group. Then we use a similar argument to the one that was used in proving
Theorem 25 to prove that there exists a finite subcollection of the collection of
cover resolutions, that is, that there exists a finite subcollection so that every
homomorphisms of the given limit group into free products factors through at
least one of the resolutions from the finite subcollection of cover resolutions.

Theorem 26. Let L be a f.g. limit group over free products. Then there
exist finitely many well-structured resolutions of quotients of L, so that every
homomorphism from L into a free product factors through at least one of these
well-structured resolutions. Furthermore, with each of these (finitely many)
well-structured resolutions we can naturally associate a completion, and these
completions are f.p. relative to the (finitely many) elliptic subgroups in the
given limit group L.

Proof. The proof is similar to the proof of Theorem 25. First, we factor
the limit group over free products L into a maximal free decomposition in
which the elliptic elements of L, EL, can be conjugated into the factors. We
continue with each of the factors separately. Hence, we may assume that
the limit group L is freely indecomposable with respect to its set of elliptics,
EL. By Theorem 24, given a limit quotient of L, that we denote T , and
a well-structured resolution of T , T → T1 → · · · → Ts, that is obtained by
taking successive shortening quotients (see Theorem 18), there exists a cover
of T , that we denote CT , which is a limit quotient of L, and a cover of the
resolution that is associated with T , which is a well-structured resolution,
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with an associated cover completion, CompCT , that is obtained from the
finitely many (conjugates of) elliptic subgroups of L, by adding finitely many
generators and relations. Therefore, there are at most countably many such
triples of a cover of a limit quotient, an associated (well-structured) cover
resolution, and the corresponding cover completion.

Suppose that the countable collection of cover resolutions does not contain
a finite subcover, that is, there is no finite subcollection of the constructed
covers, CT 1, . . . ,CT e, with associated cover completions, Comp1, . . . ,Compe,
so that for each homomorphism h of L into a free product (that maps the ellip-
tics in L, EL, into elliptic elements), the homomorphism h factors through at
least one of the cover resolutions that is associated with the cover completions,
Comp1, . . . ,Compe.

To obtain a contradiction to the lack of finiteness of covering resolutions, we
start by ordering the collection of covering completions and their associated
resolutions, Comp1,Comp2, . . . . Since there is no finite subcover for the entire
collection of homomorphisms of the given limit group L into free products,
for each index i, there exists a homomorphism, hi : L → Ai ∗ Bi, that does
not factor through the resolutions that are associated with the completions,
Comp1, . . . ,Compi−1.

Like in the proof of Theorem 25, a subsequence of the sequence of homo-
morphisms, {hi}, converges into a limit group (over free products) R, which
is a quotient of the limit group L. Unless R is a (possibly trivial) free product
of elliptic subgroups and a (possibly trivial) free group, a subsequence of the
shortenings of these homomorphisms converges into a shortening quotient R1

of R, where the elliptics in R are mapped monomorphically into the elliptics in
R1, and R1 is a proper quotient of R. By continuing iteratively and applying
the d.c.c. for decreasing sequences of limit groups over free products (The-
orem 13), we obtain a finite well-structured resolution R → R1 → · · · → Rs,
where Rs is a free product of finitely many f.g. elliptic subgroups and a (pos-
sibly trivial) free group. For brevity, we still denote the obtained subsequence
of shortest homomorphisms, {hi}.

The pair of the limit quotient R of the given limit group (over free products)
L, and its (well-structured) resolution, R → R1 → · · · → Rs, is one of the pairs
of a limit quotient of L, and its associated well-structured resolutions, with
which we have associated the covers, Comp1,Comp2, . . . . Hence, one of these
completions, Compr, is a cover that is associated with this pair. Therefore,
for large enough index i, the homomorphism {hi} factors through the cover
resolution that is associated with the completion, Compr. That contradicts
the choice of the homomorphisms {hi}, as for each i, hi is supposed not to
factor through the cover resolutions that are associated with the completions,
Comp1, . . . ,Compi−1. �
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5. Makanin–Razborov diagrams of finitely presented groups

Theorem 21 on the finiteness of the number of equivalence classes of max-
imal limit quotients (over free products) of a f.p. group, together with Theo-
rem 26 on the existence of finitely many (cover) resolutions of some quotients
of a given f.g. limit group over free products, so that every homomorphism
of the given f.g. limit group into free products factors through at least one of
the resolutions, allow us to construct a Makanin–Razborov diagram of a f.p.
group over free products.

Given a f.p. group G, we start with its (canonical) finite collection of max-
imal limit quotients over free products (Theorem 21). With each maximal
limit quotient, we associate a finite collection of well-structured resolutions
of it (according to Theorem 26), so that each homomorphism of the original
maximal limit quotient into free products, factors through at least one of its
associated resolutions. We construct the diagram by mapping the given f.p.
group G into the f.g. limit group that appears in the top level of each of the
(finitely many) well-structured resolutions that are associated with its collec-
tion of maximal limit quotients (in parallel). Since every homomorphism of G
into free products, factors through at least one of its maximal limit quotients,
every homomorphism of G into free products factors through at least one of
the resolutions in its Makanin–Razborov diagram over free products. That is
for every homomorphism of the f.p. group G, there exists at least one reso-
lution in the Makanin–Razborov diagram, so that the homomorphism can be
written as a successive composition of the epimorphisms between the groups
that appear in the various levels of the resolutions, modular automorphisms
of the limit groups that appear in the various levels (that are encoded by the
virtually Abelian decompositions that are associated with these groups), and
finally a homomorphism from the terminal group of the resolution (which is
a free product of elliptic factors and a free group), that sends every elliptic
factor into a conjugate of a factor in the image free product.

At this stage, we slightly improve the diagram. The virtually Abelian
decompositions that are associated with each of the limit groups that appear in
the various levels of the well-structured resolutions in the Makanin–Razborov
diagrams, are decompositions that are inherited from the free and virtually
Abelian JSJ decompositions of the limit groups that appear along the well-
structured resolutions that the resolutions in the Makanin–Razborov diagram
cover, according to the construction that appears in Theorem 24. However,
these may not be the Grushko and virtually Abelian decompositions of the
limit groups in the Makanin–Razborov diagram themselves. To fix that, and
make sure that all the decompositions in the limit groups that appear in the
Makanin–Razborov diagram are indeed Grushko and virtually Abelian JSJ
decompositions (over free products), we slightly modify the construction of a
cover.
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Theorem 27. Let L be a f.g. limit group over free products, let M be a limit
quotient of L, and let M → M1 → · · · → Ms, be a well-structured resolution
of M , so that Ms is a free product of finitely many elliptic factors and a
possibly trivial free group. Suppose that the free products that are associated
with the various limit groups along the resolution, M,M1, . . . ,Ms, are their
Grushko free decompositions with respect to their elliptic subgroups (i.e., the
resolution respects the Grushko free decompositions of the groups along it),
and that the virtually Abelian decompositions that are associated with the limit
groups M,M1, . . . ,Ms are their virtually Abelian JSJ decompositions over free
products.

Then there exists a cover CM of M , with a cover resolution, CM → CM 1 →
· · · → CM s, that satisfies the properties of a cover that are listed in Theo-
rem 24, and for which the free decompositions along the cover resolution are
the Grushko free decompositions of the limit groups, CM ,CM 1, . . . ,CM s, and
the virtually Abelian JSJ decompositions of these groups over free products
have the same structure as the virtually Abelian decompositions that are as-
sociated with them along the resolution, that is, the same structure as the
virtually Abelian JSJ decompositions of the limit groups, M,M1, . . . ,Ms.

Proof. The proof that we use is a modification of the argument that we
used to prove Theorem 24. Let L be a limit group over free products, with
a set of elliptics EL. Recall that by Theorem 18, the set of elliptics EL is
the union of conjugates of some (elliptic) subgroups, E1, . . . ,Er, in L. Let M

be a limit quotient of L, and let M → M1 → · · · → Ms be a well-structured
resolution of M , where Ms is a free product of finitely many elliptic factors
and a possibly trivial free group.

With the given well-structured resolution of M , we associate a comple-
tion, CompM . Given the well-structured resolution of M , and its associated
completion, CompM , we use the construction that was used in proving Theo-
rem 24, and construct a completion, Comp, which is f.p. relative to the elliptic
subgroups, E1, . . . ,Er, and for which the images of the limit group L into the
various levels of Comp, that were denoted, CM ,CM 1, . . . ,CM s, satisfy the
list of properties that is presented in Theorem 24.

By adding finitely many relations to the base subgroup of Comp from the
set of relations that are defined on the base subgroup, Ms, of the completion
CompM , we may assume that the Abelian decompositions that are inherited
by the subgroups, CM ,CM 1, . . . ,CM s, from the Abelian decompositions that
are associated with the various levels of the completion Comp, are similar to
the Abelian decompositions that are inherited by the various Abelian decom-
positions of the subgroups, M1, . . . ,Ms from the Abelian decompositions that
are associated with the various levels of CompM .



MAKANIN–RAZBOROV DIAGRAMS OVER FREE PRODUCTS 63

Suppose that the Grushko free decomposition of the limit group M with
respect to its elliptic subgroups is M = M1 ∗ · · · ∗ M b ∗ Fv , and this free de-
composition together with the virtually Abelian JSJ decompositions of the
factors, M j , over free products with respect to the elliptic subgroups of M ,
give rise to an Abelian decomposition, ΔM . Note that by our assumptions, the
completion, CompM , respects the Grushko free decomposition of M , and the
Abelian decompositions that are associated with the various levels of CompM

are the virtually Abelian JSJ decompositions over free products of the sub-
groups, M,M1, . . . ,Ms−1.

We order the relations that the terminal limit group Ms of CompM satisfy,
and sequentially impose them on the terminal limit group of the completion,
Comp. We claim that after adding finitely many of these relations, the free
product decomposition, and the virtually Abelian JSJ decomposition of the
corresponding subgroup CM (after adding the relations) will be similar to
those of the subgroup M .

The cover CM , which is the image of the limit group L in the completion,
Comp, admits a free decomposition CM = CM 1 ∗ · · · ∗ CM b ∗ Fv , in which
the elliptic subgroups in CM can be conjugated into the factors. This free
decomposition is inherited from the structure of the completion, Comp, as
the completions Comp and CompM have the same structure, and CompM

respects the Grushko decomposition (relative to elliptic subgroups) of the
limit quotient M , M = M1 ∗ · · · ∗ M b ∗ Fv .

Let CM (n) be the image of L in the completion, Comp(n), that is obtained
from Comp by imposing on the terminal level in Comp the first n relations in
Ms, the terminal limit group in CompM . CM (n) inherits a free decomposition
from Comp(n), CM (n) = CM (n)1 ∗ · · · ∗ CM (n)b ∗ Fv , a free decomposition
in which the elliptic subgroups in CM (n) can be conjugated into the factors
(note that the elliptic subgroups in CM (n) can be conjugated into the factors
of the terminal limit group of Comp(n)). If this free decomposition is not the
Grushko free decomposition of CM (n) with respect to its elliptic subgroups,
then at least one of the factors admits a further nontrivial free decomposition
with respect to the elliptic subgroups.

Suppose that there exists a sequence of indices (still denoted n) for which
the free decomposition of CM (n) that is inherited from Comp(n) is not the
Grushko free decomposition of CM (n) with respect to the elliptic subgroups
in CM (n). By passing to a subsequence (still denoted n) we may assume that
one of the factors, w.l.o.g. CM (n)1 admits a nontrivial free decomposition
CM (n)1 = An ∗ Bn, where each of the elliptic subgroups in CM (n) can be
conjugated into one of the other factors in the given free decomposition of
CM (n), to An or to Bn.

In that case, we look at the actions of the groups CM (n)1 on the (pointed)
Bass–Serre trees, (Tn, tn), that correspond to the (nontrivial) free products,
An ∗ Bn. Note that these actions are faithful actions of the groups, CM (n)1,
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that the elliptic subgroups in CM (n) that can be conjugated into CM (n)1 can
be conjugated into An or Bn, and that by construction, the direct limit of the
groups, CM (n)1, is the factor M1 of the limit group M which is assumed to
be freely indecomposable relative to its elliptic subgroups.

CM 1 is f.g. so we fix a generating set for it, 〈g1, . . . , gd〉, and since the
groups CM (n)1 are (limit) quotients of CM 1, it gives us a generating set for
each of the groups, CM (n)1. Given the action of CM (n)1 on the Bass–Serre
tree, (Tn, tn), we precompose this action with a (modular) automorphism φn

of CM (n)1, that is, an automorphism that can be expressed as a composition
of an automorphism that comes from the virtually Abelian decomposition that
CM (n)1 inherits from the virtually Abelian decomposition that is associated
with the top level in Comp(n) and an inner automorphism, so that the max-
imal displacement of the base point tn by the action of the tuple of elements,
φn(g1), . . . , φn(gd), is minimal among all such (modular) automorphisms φ.

Since we modify the actions of the groups, CM (n)1, by precomposing them
with (modular) automorphisms, and since the actions are all faithful, there
is a subsequence of twisted actions that converge into an action of the direct
limit of the groups, CM (n)1, that is, the factor M1 of M , on a real tree. Since
the automorphisms φn were chosen to minimize the displacement of the base
points under the corresponding twisted actions, and since the virtual Abelian
JSJ decomposition of the limit group M1 has the same structure as the vir-
tually Abelian decomposition that is inherited by CM (n)1 from the virtually
Abelian decomposition that is associated with the top level of the comple-
tions, Comp(n), the set of displacements of the base points under the twisted
actions has to be bounded. Hence, the factor M1 of M inherits a nontrivial
free decomposition from the limit action, a free decomposition in which all
the elliptic subgroups in M1 can be conjugated into the factors. This contra-
dicts the assumption that M1 admits no such nontrivial free decomposition.
Therefore, there must exist some index n0, so that for all n > n0, the limit
groups CM (n)1 admit no free decomposition in which the elliptic subgroups
of CM (n)1 can be conjugated into the factors.

By passing to a subsequence, we may assume that all the factors in the free
decomposition of the limit groups, CM (n), are freely indecomposable relative
to their elliptic subgroups. Suppose that there exists a sequence of indices
(still denoted n) for which the virtually Abelian decomposition that at least
one of the factors of the the groups, CM (n), CM (n)1, . . . ,CM (n)b, inherits
from the virtually Abelian decomposition that is associated with the top level
of the completion, Comp(n), is not the virtually Abelian JSJ decomposition
over free products of that factor. Wlog we may assume that this factor is
CM (n)1.

Let Δ(n) be the virtually Abelian decomposition that CM (n)1 inherits
from the virtually Abelian decomposition that is associated with the top level
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of the completion Comp(n). Let JSJ(n) be the virtually Abelian JSJ decom-
position over free products of CM (n)1, and let ΔM be the virtually Abelian
decomposition that M inherits from the virtually Abelian decomposition that
is associated with the top level of the completion, CompM , which by our
assumptions is the virtually Abelian JSJ decomposition of M over free prod-
ucts. Since we assumed that the virtually Abelian decompositions, Δ(n), are
not identical to the virtually Abelian decompositions, JSJ(n), the virtually
Abelian JSJ decompositions, JSJ(n), must be proper refinements of the vir-
tually Abelian decompositions, Δ(n). Note that the structure of the virtually
Abelian decompositions, Δ(n), is similar to that of the Abelian decomposi-
tion, ΔM .

For every index n, the virtually Abelian JSJ decomposition JSJ(n) is a
proper refinement of the virtually Abelian decomposition Δ(n). Hence, if
needed we can cut some of the QH subgroups in JSJ(n) along s.c.c. and
obtain a new decomposition, Θ(n), of CM (n)1 that refines Δ(n), in which
all the edge groups and all the QH vertex groups in Δ(n) are elliptic, and
at least one of the non-QH nonvirtually-Abelian vertex groups in Δ(n) is
not elliptic. Hence, at least one of these vertex groups inherits a nontrivial
virtually Abelian decomposition from Θ(n), a decomposition in which all the
edge groups that are connected to that vertex group are elliptic.

By passing to a further subsequence (still denoted n), we may assume that
the vertex group that inherits a nontrivial virtually Abelian decomposition
from Θ(n) is a vertex group V (n) in Δ(n) that is mapped to the same vertex
group V in ΔM , the virtually Abelian JSJ decomposition of the limit group
M .

We fix a free group Fr, where r is the rank of the limit group CM , and an
epimorphism, τ : Fr → CM . We fix a finite generating set for Fr. We may
assume that this generating set contains elements that are mapped to elements
that generate the edge groups and the vertex groups in the virtually Abelian
decomposition of CM that is inherited from the top level of the completion,
Comp.

For each index n, we look at a homomorphism hn : Fr → An ∗ Bn that
approximates the limit group CM (n). This means that hn maps each element
in the ball of radius n in the Cayley graph of Fr (with respect to the given
set of generators), to an elliptic element or to a trivial element if and only
if the element is trivial or elliptic in CM (n). It maps the elements from the
generating sets that are mapped to the edge groups in Δ(n) to nonelliptic
elements. Furthermore, let S < Fr be the subgroup that is generated by
those elements in the fixed generating set of Fr whose image generate the
vertex group in the virtually Abelian decomposition of CM that is mapped
to the vertex group V in ΔM , and the edge groups that are connected to
that vertex group. The vertex group V (n) is not elliptic in the virtually
Abelian decomposition of the factor CM (n)1, Θ(n), and the edge groups that
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are connected to V (n) in Δ(n) are elliptic in Θ(n). Hence, we may further
modify each of the homomorphisms hn, by precomposing each of them with
Dehn twists along edge groups that lie in the graph of groups that is inherited
by V (n) from the graph of groups Θ(n). We apply this modification, so that
for the obtained homomorphism, ĥn, when restricted to the subgroup S < Fr

(which is mapped onto V (n)), ĥn : S → An ∗ Bn, the minimal displacement
of a point in the Bass–Serre tree, that is associated with the free product
An ∗ Bn, under the action of the fixed set of generators of S, will be at least
n times larger than the minimal displacement of a point in that Bass–Serre
tree, under the action of the fixed set of generators that are mapped to any
given edge group that is connected to V (n) in Δ(n).

By construction, the homomorphisms, {ĥn : S → An ∗ Bn}, converge into
a nontrivial action of the vertex group V in ΔM on some real tree (where
the convergence is into V as a limit group over free products). All the edge
groups that are connected to V in ΔM fix points in that real tree and they
are all nonelliptic subgroups (i.e., each element in these groups is mapped to
nonelliptic element in An ∗ Bn for large n). With this action, it is possible to
associate a nontrivial graph of groups decomposition of V , with Abelian edge
groups, in which all the edge groups that are connected to V are contained in
vertex groups in that graph of groups decomposition. Hence, using this graph
of groups decomposition it is possible to further refine the graph of groups,
ΔM , and this clearly contradict the assumption that ΔM is the virtually
Abelian JSJ decomposition of the limit group M .

Therefore, for large n, the Abelian decompositions, Δ(n), are the virtually
Abelian JSJ decompositions of the limit groups over free products, CM (n).
The same argument implies the same results for the next limit groups in the
constructed resolution, CM 1(n), . . . ,CM s−1(n), and the theorem follows. �

The Makanin–Razborov diagram of a f.p. group G over free products is
uniform, that is, it encodes all the homomorphisms from G into arbitrary free
products. Equivalently, it encodes all the quotients of a f.p. group that are
free products. As we will see in the sequel, the Makanin–Razborov diagram
that we constructed suffices in order to modify the results and the techniques
that were used to study the first order theory of a free or a hyperbolic group,
in order to study the first order theory of a free product. We also believe
that modifications of it can be applied for studying homomorphisms of a f.p.
group into groups with more general splittings (notably k-acylindrical split-
tings), and probably homomorphisms into (some classes of) relative hyperbolic
groups.

Unfortunately, the diagram that we constructed is not canonical, as it uses
finite covers (Theorems 25 and 26), and these are not unique. To construct a
canonical diagram, we believe that it’s better to study only maximal homo-
morphisms into free products.
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Definition 28. Let G be a f.g. group. On the set of homomorphisms of G
into free products, we define a partial order. Let hi : G → Ai ∗ Bi, i = 1,2, be
two homomorphisms. Note that the images of the homomorphisms hi inherit
(possibly trivial) free products from the free product decompositions Ai ∗ Bi,
i = 1,2. We write that h1 > h2, if there exists an epimorphism with nontrivial
kernel: τ : h1(G) → h2(G), that maps the elliptics in h1(G) into the elliptics
in h2(G), so that for every g ∈ G, h2(g) = τ(h1(g)).

If τ is an isomorphism and it maps the elliptics in h1(G) onto the elliptics
in h2(G), and for every g ∈ G, h2(g) = τ(h1(g)), we say that h1 is in the same
equivalence class as h2.

Note that this relation on homomorphisms into free products, which is a
partial order on homomorphisms, is a special case of the partial order that
was defined in Definition 12 for limit groups over free products.

To construct a canonical Makanin–Razborov diagram, it seems that one
needs to prove the existence of maximal homomorphisms with respect to the
above partial order. The existence of maximal homomorphisms allows one
to construct a canonical (finite) collection of maximal shortening quotients
of a f.g. limit group over free products, and then prove a d.c.c. that allows
the termination of the construction of a diagram, using somewhat similar
construction to the one used over free and hyperbolic groups. To prove the
existence of maximal homomorphisms (with respect to the prescribed partial
order), one needs to prove the following natural conjecture:

Conjecture. Let G be a f.g. group. Let h1, h2, . . . be a sequence of homo-
morphisms of G into free products, for which:

h1 < h2 < · · · .

Then there exists a homomorphism h from G into a free product, so that
for every index m, h > hm (one may even assume that the homomorphisms,
{hm}, do not factor through an epimorphism onto a group of the form M ∗ F
for some nontrivial free group F ).

Finally, we note that the Makanin–Razborov diagram over free products
that we constructed is associated with a f.p. group. Some of our arguments are
not valid for f.g. groups. In particular, although there exist maximal elements
in the set of limit quotients over free products of a f.g. group, it is not clear if
there are only finitely many maximal limit quotients. Therefore, the problem
of the existence of a Makanin–Razborov diagram that describes the collection
of homomorphisms from a given f.g. group (and not only a f.p. one) into free
products remains open.
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