
Illinois Journal of Mathematics
Volume 53, Number 4, Winter 2009, Pages 1221–1235
S 0019-2082

ALMOST-EINSTEIN HYPERSURFACES IN
THE EUCLIDEAN SPACE

THEODOROS VLACHOS

Abstract. We show that almost-Einstein hypersurfaces in the
Euclidean space are homeomorphic to spheres. The proof relies

on universal lower bounds in terms of the Betti numbers for the
Ln/2-norms of the Ricci and traceless Ricci tensor of compact

oriented n-dimensional hypersurfaces. Certain examples show
that the assumption on the codimension is essential.

1. Introduction

One of the most fascinating problems in Riemannian geometry is to investi-
gate relationships between topology and curvature of Riemannian manifolds.
There are plenty of results in which certain restrictions on the curvatures of
the metric g of a compact n-dimensional Riemannian manifold (Mn, g) yield
information on the topology of Mn. The sphere theorem is an important re-
sult in this direction. The same problem can be raised from the point of view
of submanifold geometry.

The aim of this paper is to study this problem for hypersurfaces in the
Euclidean space. Let (Mn, g), n ≥ 3, be a compact n-dimensional Riemannian
manifold and let f : (Mn, g) −→ R

n+1 be an isometric immersion into the
Euclidean space R

n+1. It is well known (cf. [4], [9], [11]) that if (Mn, g) is
Einstein, then f(Mn) is a round sphere. Recall that (Mn, g) is Einstein if the
Ricci tensor satisfies Ricg = kg for some constant k. The following question
arises naturally: If (Mn, g) is almost-Einstein in the sense that Ricg − kg is
small in a suitable norm for a constant k, what can be said about the topology
of Mn?

This question was studied by Roth [7] for the L∞-norm of Ricg − kg, while
in [8] the same author deals with the weaker Lq-norm of Ricg − kg for spe-
cific k.
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In the present paper, we show that if the Ln/2-norm of the tensor Ricg − kg
is small, where k ≥ 0 is a constant, then Mn is homeomorphic to the sphere Sn.
Throughout the paper, all manifolds under consideration are assumed to be
connected, without boundary and oriented. More precisely, we prove the
following result.

Theorem 1. Let (Mn, g), n ≥ 3, be a compact, n-dimensional Riemannian
manifold with Ricci tensor Ricg and volume element dMg . For each constant
k ≥ 0, there exists a positive constant ε(n,k), depending only on n and k, such
that if (Mn, g) admits an isometric immersion into the Euclidean space Rn+1

and ∫
Mn

‖Ricg − kg‖ n
2 dMg < ε(n,k),

then Mn is homeomorphic to the sphere Sn.

Since the Einstein condition may be rewritten as Ricg = sg

n g, where sg

denotes the scalar curvature of g, the Ln/2-norm of the traceless Ricci tensor
Ricg − sg

n g may be viewed as a measure of how much a Riemannian manifold
deviates from being Einstein. We may now state the following result.

Theorem 2. Let (Mn, g), n ≥ 3, be a compact, n-dimensional Riemannian
manifold with Ricci tensor Ricg and scalar curvature sg ≥ 0 in the case where
n ≥ 4. There exists a positive constant b(n), depending only on n, such that
if (Mn, g) admits an isometric immersion into the Euclidean space R

n+1 and∫
Mn

∥∥∥∥Ricg − sg

n
g

∥∥∥∥
n
2

dMg < b(n),

then Mn is homeomorphic to the sphere Sn.

The idea for the proofs is to relate the Ln/2-norm of the tensors Ricg − kg
and Ricg − sg

n g with the Betti numbers using well-known results of Chern
and Lashof ([2], [3]). In fact, Theorems 1 and 2 follow immediately from the
subsequent results.

Theorem 3. Let (Mn, g), n ≥ 3, be a compact, n-dimensional Riemannian
manifold with Ricci tensor Ricg . There exists a positive constant a(n), de-
pending only on n, such that if (Mn, g) admits an isometric immersion into
the Euclidean space R

n+1, then∫
Mn

‖Ricg ‖ n
2 dMg ≥ a(n)

n∑
i=0

βi(Mn; F ),

where βi(Mn; F ) is the ith Betti number of Mn with respect to an arbitrary
coefficient field F . In particular, if∫

Mn

‖Ricg ‖ n
2 dMg < 3a(n),

then Mn is homeomorphic to the sphere Sn.
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Theorem 4. Let (Mn, g), n ≥ 3, be a compact, n-dimensional Riemannian
manifold with Ricci tensor Ricg . There exists a positive constant c(n), de-
pending only on n, such that if (Mn, g) admits an isometric immersion into
the Euclidean space R

n+1, then∫
Mn

‖Ricg − kg‖ n
2 dMg ≥ c(n)

n−1∑
i=1

βi(Mn; F )

for any constant k > 0 and any coefficient field F . Moreover, if∫
Mn

‖Ricg − kg‖ n
2 dMg < c(n),

then Mn is homeomorphic to the sphere Sn.

Theorem 5. Let (Mn, g), n ≥ 3, be a compact, n-dimensional Riemannian
manifold with Ricci tensor Ricg and scalar curvature sg ≥ 0 in the case where
n ≥ 4. There exists a positive constant b(n), depending only on n, such that if
(Mn, g) admits an isometric immersion into the Euclidean space Rn+1, then∫

Mn

∥∥∥∥Ricg − sg

n
g

∥∥∥∥
n
2

dMg ≥ b(n)
n−1∑
i=1

βi(Mn; F )

for any coefficient field F . Moreover, if∫
Mn

∥∥∥∥Ricg − sg

n
g

∥∥∥∥
n
2

dMg < b(n),

then Mn is homeomorphic to the sphere Sn.

We note that our main results are not, in general, valid for compact
Riemannian manifolds (Mn, g) that admit an isometric immersion into the
(n + m)-dimensional Euclidean space R

n+m with codimension m > 1.
In fact, we consider the standard immersion of the torus Mn(r) := S1(r) ×

Sn−1(
√

1 − r2),0 < r < 1, into the unit sphere Sn+1 ⊂ R
n+2, where Sk(r)

denotes the k-dimensional sphere of radius r. The principal curvatures of
Mn(r), with respect to some unit normal vector field in Sn+1, are

√
1 − r2/r

of multiplicity 1 and −r/
√

1 − r2 of multiplicity n − 1. A straightforward
computation shows that the Ricci tensor of Mn(r) satisfies∫

Mn(r)

‖Ric‖ n
2 dMn(r) =

αnr√
1 − r2

,

where αn is a positive constant depending only on n. Thus, the Ln/2-norm
of the Ricci tensor of Mn(r) is sufficiently close to zero, provided that r is
small enough. On the other hand, the kth Betti number of Mn(r) is equal to
one when k ∈ {0,1, n − 1, n} and zero, otherwise. Obviously, Mn(r) may be
viewed as a codimension 2 submanifold of R

n+2. This example ensures that
the assumption on the codimension in Theorem 1 is essential.
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Moreover, Wallach [12] constructed an isometric immersion of an n-dim-
ensional complex projective space CPn of constant holomorphic curvature
2n/(n + 1) into the sphere Sn(n+2)−1 ⊂ R

n(n+2). Since CPn is an Einstein
manifold, this example justifies the necessity of the assumption on the codi-
mension in Theorem 2.

We note that Shiohama and Xu [10] investigated the Ln/2-norm of the
curvature tensor.

2. Preliminaries

Let f : (Mn, g) −→ R
n+m be an isometric immersion of a compact, con-

nected, oriented n-dimensional Riemannian manifold (Mn, g) into the (n+m)-
dimensional Euclidean space R

n+m equipped with the usual Riemannian met-
ric 〈·, · 〉. The normal bundle of f is given by

Nf = {(p, ξ) ∈ f ∗(TR
n+m) : ξ ⊥ dfp(TpM

n)}

and the unit normal bundle of f is defined by

UN f = {(p, ξ) ∈ Nf : |ξ| = 1}.

The generalized Gauss map ν : UN f −→ Sn+m−1 is given by ν(p, ξ) = ξ,
where Sn+m−1 is the unit (n+m − 1)-sphere in Rn+m. For each u ∈ Sn+m−1,
we consider the height function hu : Mn −→ R defined by hu(p) = 〈f(p), u〉,
p ∈ Mn. Since hu has a degenerate critical point if and only if u is a critical
value of the generalized Gauss map, by Sard’s theorem there exists a subset
E ⊂ Sn+m−1 of zero measure such that hu is a Morse function for all u ∈
Sn+m−1 \ E. For every u ∈ Sn+m−1 \ E, we denote by μi(u) the number of
critical points of hu of index i. We also set μi(u) = 0 for any u ∈ E. According
to Kuiper [5], the total curvature of index i of f is given by

τi =
1

Vol(Sn+m−1)

∫
Sn+m−1

μi(u)dSn+m−1
u ,

where dSn+m−1 denotes the volume element of the sphere Sn+m−1.
Let F be a field and βi(Mn; F ) = dimHi(Mn; F ) be the ith Betti number

of Mn, where Hi(Mn; F ) is the ith homology group with coefficients in F .
From the weak Morse inequalities [6], we know that μi(u) ≥ βi(Mn; F ) for
every u ∈ Sn+m−1 such that hu is a Morse function. Integrating over Sn+m−1,
we obtain

(1) τi ≥ βi(Mn; F ).

For each (p, ξ) ∈ UN f , we denote by Aξ the shape operator of f associated
with the direction ξ. There is a natural volume element dΣ on the unit
normal bundle UN f . In fact, if dV is a (m − 1)-form on UN f such that its
restriction to a fiber of the unit normal bundle at (p, ξ) is the volume element
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of the unit (m − 1)-sphere of the normal space of f at p, then dΣ = dM ∧ dV .
Furthermore, we have

ν∗(dSn+m−1) = G(p, ξ)dΣ = G(p, ξ)dM ∧ dV,

where G(p, ξ) := (−1)n detAξ is the Lipschitz–Killing curvature at (p, ξ) ∈
UN f .

A well-known formula due to Chern and Lashof [3] states that

(2)
∫
UN f

| detAξ | dΣ =
n∑

i=0

∫
Sn+m−1

μi(u)dSn+m−1
u .

The total absolute curvature τ(f) of f in the sense of Chern and Lashof is
defined by

τ(f) =
1

Vol(Sn+m−1)

∫
UN f

|ν∗(dSn+m−1)| =
1

Vol(Sn+m−1)

∫
UN f

| detAξ | dΣ.

The following result is due to Chern and Lashof ([2], [3]).

Theorem 6. Let f : (Mn, g) −→ R
n+m be an isometric immersion of a

compact, connected, oriented, n-dimensional Riemannian manifold (Mn, g)
into the Euclidean space R

n+m. Then the total absolute curvature of f satisfies
the inequality

τ(f) ≥
n∑

i=0

βi(Mn; F )

for any coefficient field F . Moreover, if τ(f) < 3, then Mn is homeomorphic
to Sn.

For each i ∈ {0, . . . , n}, we consider the subset U iNf of the unit normal
bundle of f defined by

U iNf = {(p, ξ) ∈ UN f : Aξ has exactly i negative eigenvalues}.

Shiohama and Xu [10, Lemma p. 381] refined formula (2) as follows

(3)
∫

UiNf

| detAξ | dΣ =
∫

Sn+m−1
μi(u)dSn+m−1

u .

We recall that the Ricci tensor of (Mn, g) is given by

(4) Ric(X,Y ) =
n+m∑

α=n+1

(
(trAα)g(AαX,Y ) − g(A2

αX,Y )
)
,

where X,Y are tangent vector fields of Mn, {en+1, . . . , en+m} is a local ortho-
normal frame field in the normal bundle of f and trAα stands for the trace of
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the shape operator Aα associated with eα. Furthermore, from (4), we easily
verify that the scalar curvature sg is given by

(5) sg =
n+m∑

α=n+1

(
(trAα)2 − tr(A2

α)
)
.

3. Auxiliary results

This section is devoted to some algebraic results that are crucial for the
proofs. For each real n × n matrix A we denote by ‖A‖ the norm of A, that
is, ‖A‖ =

√
tr(AAt).

Proposition 7. For each integer n ≥ 3, there exists a positive constant
c1(n), depending only on n, such that every real n × n symmetric matrix A
satisfies the inequality

‖(trA)A − A2‖2 ≥ c1(n)| detA| 4
n .

For the proof of Proposition 7, we need the following auxiliary result.

Lemma 8. Let n ≥ 3 be an integer. There exists a positive constant c1(n),
depending only on n, such that for all real numbers x1, . . . , xn the following
inequality holds

n∑
i=1

(
xi

n∑
j=1

xj − x2
i

)2

≥ c1(n)

∣∣∣∣∣
n∏

i=1

xi

∣∣∣∣∣
4
n

.

Proof. We consider the functions ϕ,ψ : R
n −→ R given by

ϕ(x) =
n∑

i=1

(
xi

n∑
j=1

xj − x2
i

)2

, ψ(x) =
n∏

i=1

xi, x = (x1, . . . , xn).

We shall prove that ϕ attains a positive minimum on the level set S = {x ∈
R

n : ψ(x) = ε}, where ε = ±1. Since ϕ(S) is bounded from below by zero,
there exists a sequence {xm} of points in S such that

lim
m→∞

ϕ(xm) = inf ϕ(S).

Then we may write xm = ρmam, where ρm := |xm| > 0 and am lies in the unit
(n − 1)-sphere Sn−1 ⊂ R

n.
We claim that the sequence {xm} is bounded. Assume to the contrary

that there exists a subsequence of {xm}, which is denoted again by {xm}
for the sake of simplicity of notation, such that limm→∞ ρm = +∞. Since
the sequence {am} is bounded, it converges to some a ∈ Sn−1 by taking a
subsequence if necessary. Using the fact that ψ is homogeneous of degree n
and since {xm} ∈ S, we get

(6) ρm =
1

|ψ(am)|1/n
.
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Bearing in mind the fact that ϕ is homogeneous of degree 4, we obviously have
ϕ(am) = ϕ(xm)/ρ4

m. Thus, we obtain limm→∞ ϕ(am) = 0 and consequently a
is a zero of ϕ. Therefore, at most one of the coordinates of a is nonzero. Since
a ∈ Sn−1, without loss of generality, we may suppose that a = (ε,0, . . . ,0),
where ε = ±1. We set am = (a1,m, . . . , an,m). Using (6), we obtain

ϕ(xm) = a
2− 4

n
1,m

(
∑n

i=2 ai,m)2

|
∏n

i=2 ai,m|4/n
+

∑n
i=2 a2

i,m(
∑

j �=i aj,m)2

|a1,m|4/n|
∏n

i=2 ai,m|4/n
.

From this we obviously get the inequality

ϕ(xm) ≥
∑n

i=2 a2
i,m(

∑
j �=i aj,m)2

|a1,m|4/n|
∏n

i=2 ai,m|4/n
.(7)

Now we set

ηm :=

(
n∑

i=2

a2
i,m

) 1
2

.

Since ψ(am) = 0, we may write (a2,m, . . . , an,m) = ηmθm, where

θm = (θ2,m, . . . , θn,m)

lies in the unit (n − 2)-sphere Sn−2 ⊂ Rn−1. By passing if necessary to a
subsequence, we may assume that limm→∞ θm = (θ2, . . . , θn) ∈ Sn−2. Observe
that (7) becomes

ϕ(xm) ≥
∑n

i=2 θ2
i,m(

∑
j �=i aj,m)2

|a1,m|4/nη
2(n−2)/n
m |

∏n
i=2 θi,m|4/n

.(8)

Using the fact that limm→∞ a1,m = ε, limm→∞ ai,m = 0, limm→∞ θi,m = θi for
any i ∈ {2, . . . , n} and (θ2, . . . , θn) ∈ Sn−2, we immediately get

lim
m→∞

n∑
i=2

θ2
i,m

(∑
j �=i

aj,m

)2

=
n∑

i=2

θ
2

i = 1.

Thus, by virtue of limm→∞ ηm = 0, we obtain

lim
m→∞

∑n
i=2 θ2

i,m(
∑

j �=i aj,m)2

|a1,m|4/nη
2(n−2)/n
m |

∏n
i=2 θi,m|4/n

= +∞.

This contradicts (8), since limm→∞ ϕ(xm) = inf ϕ(S) ∈ R.
Consequently our claim is proved, that is, the sequence {xm} is bounded.

Thus, there exits a convergent subsequence {xkm } of {xm}. We set x0 =
limm→∞ xkm . Then we have inf ϕ(S) = limm→∞ ϕ(xkm) = ϕ(x0). Obviously,
x0 ∈ S. This means that ϕ attains a minimum c1(n) on S which obviously
depends only on n. We recall the fact that the zeros of ϕ are precisely the
points where at most one of its coordinates is nonzero. Since x0 ∈ S, we
obviously have c1(n) = ϕ(x0) > 0.
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Now let x ∈ R
n. Assume that ψ(x) = 0 and set x̃ = x/|ψ(x)| 1

n . Clearly,
x̃ ∈ S and consequently ϕ(x̃) ≥ c1(n). Then the desired inequality follows
from the fact that ϕ is homogeneous of degree 4. In the case where ψ(x) = 0,
the inequality holds trivially. �

Proof of Proposition 7. Let A be a real n × n symmetric matrix. There ex-
ists an orthogonal matrix P such that A = P tDP , where D = diag(λ1, . . . , λn)
is diagonal and λ1, . . . , λn are the eigenvalues of A. Since

‖(trA)A − A2‖2 =
n∑

i=1

(
λi

n∑
j=1

λj − λ2
i

)2

,

the desired inequality follows immediately from Lemma 8. �

Proposition 9. For each integer n ≥ 3, there exists a positive constant
c2(n), depending only on n, such that every real n × n symmetric matrix A
satisfies the inequality∥∥∥∥(trA)A − A2 − 2

n
σ2(A)In

∥∥∥∥
2

≥ c2(n)| detA| 4
n ,

where In is the n × n identity matrix, provided that the eigenvalues of A are
not all of the same sign and the second elementary symmetric function σ2(A)
of the eigenvalues of A satisfies σ2(A) ≥ 0. Moreover, for n = 3 the above
inequality holds under the single assumption that the eigenvalues of A are not
all of the same sign.

The proof of this proposition relies on the following result.

Lemma 10. Let n ≥ 3 be an integer. There exists a positive constant c2(n),
depending only on n, such that the following inequality holds

n∑
i=1

x2
i

(∑
j �=i

xj

)2

− 1
n

(∑
i �=j

xixj

)2

≥ c2(n)

∣∣∣∣∣
n∏

i=1

xi

∣∣∣∣∣
4
n

,

provided that
∑

i<j xixj ≥ 0 in the case where n ≥ 4, and x1, . . . , xn are not
all of the same sign.

Proof. We define the functions ϕ,ψ : R
n −→ R given by

ϕ(x) =
n∑

i=1

x2
i

(∑
j �=i

xj

)2

− 1
n

(∑
i �=j

xixj

)2

, ψ(x) =
n∏

i=1

xi, x = (x1, . . . , xn)

and set Un = R
n \ (−∞,0)n ∪ (0,+∞)n, Dn = {(x1, . . . , xn) ∈ Un :∑

i<j xixj ≥ 0} for n ≥ 4 and Dn = Un for n = 3. We shall prove that ϕ
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attains a positive minimum on the level set S = {x ∈ Dn : ψ(x) = ε}, where
ε = ±1. An easy computation shows that

(9) ϕ(x) =
n∑

i=1

(
xi

n∑
j=1

xj − x2
i − 1

n

∑
r �=s

xrxs

)2

,

from which we see that ϕ(S) is bounded from below by zero. So there exists
a sequence {xm} of points in S such that

lim
m→∞

ϕ(xm) = inf ϕ(S).

Then we may write xm = ρmam, where

ρm := |xm| > 0 and am = (a1,m, . . . , an,m)

lies in the unit (n − 1)-sphere Sn−1 ⊂ R
n.

We claim that the sequence {xm} is bounded. Assume to the contrary
that there exists a subsequence of {xm}, which by abuse of notation is de-
noted again by {xm}, such that limm→∞ ρm = +∞. Since the sequence
{am} is bounded, we may assume by taking a subsequence if necessary that
limm→∞ am = a ∈ Sn−1. Using the fact that ψ is homogeneous of degree n
and since {xm} ∈ S, we get

(10) ρm =
1

|ψ(am)|1/n
.

Due to the fact that ϕ is homogeneous of degree 4, we obviously have ϕ(am) =
ϕ(xm)/ρ4

m. Thus, we find limm→∞ ϕ(am) = 0 and consequently a = (a1,
. . . , an) is a zero of ϕ.

Using (9), we deduce that the zeros of ϕ are precisely the points x =
(x1, . . . , xn) such that each of x1, . . . , xn is a root of the quadratic equation
t2 − S1t + 2

nS2 = 0, where S1 =
∑n

i=1 xi and S2 =
∑

i<j xixj . This shows that
at most two of x1, . . . , xn are distinct. Hence, either x1 = · · · = xn or, after an
eventual re-enumeration, x1 = · · · = xp, xp+1 = · · · = xn, x1 = xn,1 ≤ p ≤ n − 1.
Moreover, in the latter case, from the quadratic equation we get x1 +xn = S1,
that is, (p − 1)x1 + (n − p − 1)xn = 0.

Therefore, either all coordinates of a are equal, that is, a1 = · · · = an or, af-
ter an eventual re-enumeration, a1 = · · · = ap, ap+1 = · · · = an, a1 = an, where

(11) (p − 1)a1 + (n − p − 1)an = 0, 1 ≤ p ≤ n − 1.

We distinguish two cases.
Case 1. Assume that a1 = · · · = an. Using the fact that a ∈ Sn−1, we

have a1 = · · · = an = ±1/
√

n. Letting m go to infinity in (10), we reach a
contradiction since by our assumption limm→∞ ρm = +∞.

Case 2. Assume that a1 = · · · = ap, ap+1 = · · · = an, a1 = an, where 1 ≤ p ≤
n − 1. In this case, we have either a1 = 0 and p = n − 1 or an = 0 and p = 1. In
fact, for n = 3, (11) immediately yields a1 = 0 and p = 2 or a3 = 0 and p = 1.
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For n ≥ 4, since {xm} ∈ Dn, we obtain
∑

i<j ai,maj,m ≥ 0 and consequently,
passing to the limit, we get

∑
i<j aiaj ≥ 0. This together with (11) shows that

either a1 = 0 and p = n − 1 or an = 0 and p = 1. Without loss of generality,
we suppose that an = 0 and p = 1. Then a1 = ε = ±1, since a ∈ Sn−1. Taking
(10) into account, from (9) we obtain

ϕ(xm) =
1

|
∏n

i=1 ai,m|4/n

(
a1,m

n∑
j=2

aj,m − 1
n

∑
r �=s

ar,mas,m

)2

+
1

|
∏n

i=1 ai,m|4/n

n∑
i=2

(
ai,m

∑
j �=i

aj,m − 1
n

∑
r �=s

ar,mas,m

)2

.

From this, we obviously get the inequality

(12) ϕ(xm) ≥ 1
|
∏n

i=1 ai,m|4/n

n∑
i=2

(
ai,m

∑
j �=i

aj,m − 1
n

∑
r �=s

ar,mas,m

)2

.

Now, we set

ηm :=

(
n∑

i=2

a2
i,m

) 1
2

.

Since ψ(am) = 0, we may write (a2,m, . . . , an,m) = ηmθm, where

θm = (θ2,m, . . . , θn,m)

lies in the unit (n − 2)-sphere Sn−2 ⊂ R
n−1. By taking a subsequence if

necessary, we may assume that limm→∞ θm = (θ2, . . . , θn) ∈ Sn−2. Observe
that (12) becomes

(13) ϕ(xm) ≥ δm,

where the sequence {δm} is given by

δm =

∑n
i=2

[
θi,m

∑
j �=i aj,m − 1

n (2a1,m

∑n
r=2 θr,m + ηm

∑
r �=s≥2 θr,mθs,m)

]2
|a1,m|4/n

η
2(n−2)/n
m |

∏n
i=2 θi,m|4/n

.

Using the fact that limm→∞ a1,m = ε, limm→∞ ai,m = 0, limm→∞ θi,m = θi for
any i ∈ {2, . . . , n} and limm→∞ ηm = 0, we immediately get

lim
m→∞

n∑
i=2

[
θi,m

∑
j �=i

aj,m − 1
n

(
2a1,m

n∑
r=2

θr,m + ηm

∑
r,s≥2,r �=s

θr,mθs,m

)]2

=
n∑

i=2

(
εθi − 2ε

n

n∑
r=2

θr

)2

> 0,

since (θ2, . . . , θn) ∈ Sn−2. Therefore, we find limm→∞ δm = +∞. This contra-
dicts (13), since limm→∞ ϕ(xm) = inf ϕ(S) ∈ R.
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Since Dn is closed, we easily deduce that x0 ∈ S. Hence, ϕ attains a
minimum c2(n) on S which depends only on n. We recall that the zeros of ϕ
are precisely the points x = (x1, . . . , xn) where either x1 = · · · = xn or, after an
eventual re-enumeration, x1 = · · · = xp, xp+1 = · · · = xn, x1 = xn,1 ≤ p ≤ n − 1
and (p − 1)x1 + (n − p − 1)xn = 0. It is clear that the zeros of ϕ do not lie
in Dn. Since x0 ∈ S, we obviously have c2(n) = ϕ(x0) > 0.

Now let x ∈ Dn. Assume that ψ(x) = 0 and set x̃ = x/|ψ(x)| 1
n . Clearly

x̃ ∈ S, and consequently ϕ(x̃) ≥ c2(n). Since ϕ is homogeneous of degree 4,
the desired inequality is obviously fulfilled. In the case where ψ(x) = 0, the
inequality is trivial. �

Proof of Proposition 9. Let A be a real n × n symmetric matrix. There ex-
ists an orthogonal matrix P such that A = P tDP , where D = diag(λ1, . . . , λn)
is diagonal and λ1, . . . , λn are the eigenvalues of A. Furthermore, we have
σ2(A) =

∑
i<j λiλj . Then a straightforward computation shows that∥∥∥∥(trA)A − A2 − 2

n
σ2(A)In

∥∥∥∥
2

=
n∑

i=1

λ2
i

(∑
j �=i

λj

)2

− 1
n

(∑
i �=j

λiλj

)2

.

In view of our assumption, and appealing to Lemma 10, we immediately get
the desired inequality. �

Proposition 11. For each integer n ≥ 3, there exists a positive constant
c3(n), depending only on n, such that every real n × n symmetric matrix A
satisfies the inequality

‖(trA)A − A2 − kIn‖2 ≥ c3(n)| detA| 4
n

for any constant k > 0, provided that the eigenvalues of A are not all of the
same sign.

Proof. We easily verify that

‖(trA)A − A2 − kIn‖2(14)

=
∥∥∥∥(trA)A − A2 − 2

n
σ2(A)In

∥∥∥∥
2

+
1
n

(
2σ2(A) − nk

)2
.

If σ2(A) ≥ 0, then by virtue of Proposition 9 and (14) we get

‖(trA)A − A2 − kIn‖2 ≥ c2(n)| detA| 4
n .

If nk2 ≤ 1
4 ‖(trA)A − A2‖2, then

‖(trA)A − A2 − kIn‖2 ≥ 1
2

‖(trA)A − A2‖2 − nk2

≥ 1
4

‖(trA)A − A2‖2
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and appealing to Proposition 7, we immediately get

‖(trA)A − A2 − kIn‖2 ≥ 1
4
c1(n)| detA| 4

n .

If σ2(A) ≤ 0 and 1
4 ‖(trA)A − A2‖2 ≤ nk2, then in view of (14), we have

‖(trA)A − A2 − kIn‖2 ≥ 1
n

(
2σ2(A) − nk

)2 ≥ nk2 ≥ 1
4

‖(trA)A − A2‖2

and the desired inequality follows from Proposition 7. Obviously, the constant
c3(n) is given by c3(n) = min{c2(n), 1

4c1(n)}. �

Remark 1. It is worth noticing that the assumptions in Propositions 9
and 11 are essential. In fact, it is easy to see that the inequality in Propo-
sition 9 is not fulfilled for A = λIn, λ ∈ R \ {0}, or A = diag(λ1, . . . , λp, λp+1,
. . . , λn), where λ1 = · · · = λp, λp+1 = · · · = λn,1 ≤ p ≤ n − 1, λ1, λn ∈ R \ {0}
and (p − 1)λ1 + (n − p − 1)λn = 0. Moreover, the inequality in Proposition 11

does not hold for the matrix A =
√

k
n−1In.

Remark 2. The constant c1(n) that appears in Proposition 7 is not com-
puted explicitly here, although one can apply the Lagrange multiplier method
to compute c1(n). In fact, from the proof of Lemma 8, we know that c1(n) is
the minimum of the function ϕ : R

n −→ R given by

ϕ(x) =
n∑

i=1

(
xi

n∑
j=1

xj − x2
i

)2

, x = (x1, . . . , xn),

subject to the constraint
∏n

i=1 xi = ε, where ε = ±1. For example, the La-
grange multiplier method, after some tedious computations, yields c1(3) =
3 3
√

3/2 and c1(4) = 4. In a similar way, one can compute the constant c2(n).
For example, the Lagrange multiplier method for n = 3 yields c2(3) = 3/ 3

√
2.

4. Proofs

We are now ready to give the proofs of the main results.

Proof of Theorem 3. Let f : (Mn, g) −→ R
n+1 be an isometric immersion

with shape operator A with respect to a global unit normal vector field and
unit normal bundle UN f = {(p, ξ) ∈ Nf : |ξ| = 1}. According to (4), the Ricci
tensor of (Mn, g) is given by

Ric(X,Y ) = (trA)g(AX,Y ) − g(A2X,Y ),

where X,Y are arbitrary tangent vector fields of Mn. Appealing to Proposi-
tion 7, we have

‖Ricg ‖ n
2 ≥ (c1(n))

n
4 | detA|.
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Integrating over Mn, we obtain∫
Mn

‖Ricg ‖ n
2 dMg ≥ (c1(n))

n
4

∫
Mn

| detA| dMg.

Bearing in mind the definition of the total absolute curvature and the fact
that ∫

Mn

| detA| dMg =
1
2

∫
UN f

| detAξ | dΣ,

we finally get

(15)
∫

Mn

‖Ricg ‖ n
2 dMg ≥ a(n)τ(f),

where τ(f) is the total absolute curvature of f and a(n) := 1
2 (c1(n))

n
4 Vol(Sn).

Thus, part (i) of the theorem follows immediately from inequality (15) and
Theorem 6.

Now assume that
∫

Mn ‖Ricg ‖ n
2 dMg < 3a(n). Then, (15) yields τ(f) < 3

and consequently, by virtue of Theorem 6, Mn is homeomorphic to the
sphere Sn. �

Proof of Theorem 4. Let f : (Mn, g) −→ Rn+1 be an isometric immersion
with unit normal bundle UN f and shape operator Aξ with respect to ξ, where
(p, ξ) ∈ UN f . Bearing in mind (4), we deduce that

‖Ricg − kg‖2(p) = ‖(trAξ)Aξ − A2
ξ − kI‖2, (p, ξ) ∈ UN f ,

where I denotes the identity transformation. In view of our assumption and
appealing to Proposition 11, we have

(16) ‖Ricg − kg‖ n
2 (p) ≥ (c3(n))

n
4 | detAξ |

for all (p, ξ) ∈ U iNf where

U iNf = {(p, ξ) ∈ UN f : Aξ has exactly i negative eigenvalues}
and 1 ≤ i ≤ n − 1. Integrating (16) over UN f , we obtain∫

UN f

‖Ricg − kg‖ n
2 dΣ ≥ (c3(n))

n
4

n−1∑
i=1

∫
UiNf

| detAξ | dΣ.

Bearing in mind (3) and the definition of the total curvature of index i, we
get ∫

UN f

‖Ricg − kg‖ n
2 dΣ ≥ (c3(n))

n
4 Vol(Sn)

n−1∑
i=1

τi.

On the other hand, observe that∫
Mn

‖Ricg − kg‖ n
2 dMg =

1
2

∫
UN f

‖Ricg − kg‖ n
2 dΣ.
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Then by virtue of (1), we finally have

(17)
∫

Mn

‖Ricg − kg‖ n
2 dMg ≥ c(n)

n−1∑
i=1

τi ≥ c(n)
n−1∑
i=1

βi(Mn; F ),

where the constant c(n) is given by c(n) := 1
2 (c3(n))

n
4 Vol(Sn). This completes

the proof of part (i) of the theorem.
Now suppose that ∫

Mn

‖Ricg − kg‖ n
2 dMg < c(n).

Then in view of (17), we conclude that
∑n−1

i=1 τi < 1. Thus, there exists u ∈ Sn

such that the height function hu : Mn −→ R is a Morse function whose number
of critical points of index i satisfies μi(u) = 0 for any 1 ≤ i ≤ n − 1. This means
that the index of each critical point of hu is either zero or n. Appealing to [1,
Lemma 4.11(2)], we deduce that hu has at most one critical point of index zero,
i.e., μ0(u) ≤ 1. Moreover, from the weak Morse inequalities we have μ0(u) ≥
β0(Mn; F ) and μn(u) ≥ βn(Mn; F ). Since Mn is connected and oriented, we
infer that μ0(u) = μn(u) = 1. Therefore, the Morse function hu has only two
critical points. According to Reeb’s theorem, Mn is homeomorphic to Sn. �

Proof of Theorem 5. Let f : (Mn, g) −→ R
n+1 be an isometric immersion

with unit normal bundle UN f and shape operator Aξ with respect to ξ, where
(p, ξ) ∈ UN f . Bearing in mind (4) and (5), we deduce that the squared length
of the traceless Ricci tensor of (Mn, g) is given by∥∥∥∥Ricg − sg

n
g

∥∥∥∥
2

(p) =
∥∥∥∥(trAξ)Aξ − A2

ξ − 2
n

σ2(Aξ)I
∥∥∥∥

2

, (p, ξ) ∈ UN f ,

where I denotes the identity transformation. In view of our assumption and
appealing to Proposition 9, we have

(18)
∥∥∥∥Ricg − sg

n
g

∥∥∥∥
n
2

(p) ≥ (c2(n))
n
4 | detAξ |

for all (p, ξ) ∈ U iNf , 1 ≤ i ≤ n − 1. The rest of the proof is almost verbatim
the same as the proof of Theorem 4, apart from the fact that the constant
b(n) is given by b(n) := 1

2 (c2(n))
n
4 Vol(Sn). �

Now Theorem 1 follows from Theorems 3 and 4, where ε(n,k) = 3a(n) if
k = 0 and ε(n,k) = c(n) if k > 0, while Theorem 2 is part of Theorem 5.
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