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LINEAR MAPS PRESERVING REGULARITY
IN C∗-ALGEBRAS

ABDELLATIF BOURHIM AND MARÍA BURGOS

Abstract. Let A and B be unital C∗-algebras such that at least
one of them is of real rank zero. We investigate surjective linear

maps from A to B preserving the conorm, the (von Neumann)

regularity, the generalized spectrum, and their essential versions.

As a consequence, we recover results of Mbekhta, and Mbekhta

and Šemrl for L(H) when H is an infinite-dimensional complex
Hilbert space.

1. Introduction

Linear preserver problems deal with characterizations of linear maps on
matrix algebras, on operator algebras or more generally on Banach algebras,
that leave invariant certain functions, subsets, properties, or relations. In
particular, a substantial attention has been paid to the Kaplansky’s problem
of characterization of linear maps preserving invertibility, [20], and also to the
related question concerning spectrum preserving linear maps (see for instance
[2], [3], [7], [8], [13], [16], [21] and the references therein).

In [27], Mbekhta, Rodman, and Šemrl, treated the problem of describing
unital surjective linear maps on the algebra L(H), for an infinite-dimensional
separable complex Hilbert space, preserving generalized invertibility in both
directions. They showed that the ideal of all compact operators is invariant
under such a map and that the induced mapping into the Calkin algebra is ei-
ther an automorphism or an anti-automorphism. Later, in [28], Mbekhta and
Šemrl improved this result and provided a new proof relying on the fact that
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a unital surjective linear map on L(H), preserving generalized invertibility in
both directions, preserves semi-Fredholm operators in both directions.

Finally in [25], Mbekhta characterized surjective linear maps on L(H) pre-
serving the generalized spectrum, and described those unital that preserve
the reduced minimum modulus. He furthermore conjectured for the nonuni-
tal case that a surjective linear map ϕ : L(H) → L(H) preserves the reduced
minimum modulus if and only if there are unitary operators U,V ∈ L(H) such
that ϕ takes either the form ϕ(T ) = UTV , (T ∈ L(H)) or ϕ(T ) = UT trV ,
(T ∈ L(H)), where T tr denotes the transpose of T with respect to an arbi-
trary fixed orthonormal basis of H . It is well known that these forms describe
exactly surjective linear isometries on L(H). Thus, Mbekhta’s conjecture can
be rephrased by saying that a surjective linear map on L(H) preserves the
reduced minimum modulus if and only if it is an isometry.

The aim of the present paper is to extend results of Mbekhta, [25], and
Mbekhta and Šemrl, [28], by characterizing linear maps preserving generalized
invertibility, the generalized spectrum and the conorm on unital C∗-algebras
of real rank zero. Section 2 gathers all the preliminary results on regular,
Atkinson and Fredholm elements in unital C∗-algebras needed for the rest
of the paper. In Section 3, we study surjective linear maps between unital
C∗-algebras, one of them having real rank zero, that preserve the generalized
spectrum and the conorm. Section 4 is concerned with surjective linear maps
ϕ : A → B preserving generalized invertibility in both directions from a unital
C∗-algebra A of real rank zero to a unital C∗-algebra B. We perform this
task in two opposite settings: when A and B are prime with nonzero socle,
generalizing in this way [28, Theorem 1.1], and when A and B have zero socle.
The last part of this manuscript analyzes the essential version of the results
appearing in the preceding two sections.

2. Preliminaries and notation

Throughout this paper, the term Banach algebra means a unital complex
associative Banach algebra with unit 1, and a C∗-algebra means a unital
complex associative C∗-algebra.

Let A and B be Banach algebras. A linear map ϕ : A → B is called unital
if ϕ(1) = 1, and is said to be a Jordan homomorphism if ϕ(a2) = ϕ(a)2 for
all a ∈ A. Equivalently, the map ϕ is a Jordan homomorphism if and only if
ϕ(ab + ba) = ϕ(a)ϕ(b) + ϕ(b)ϕ(a) for all a and b in A. It is called a Jordan
isomorphism provided that it is a bijective Jordan homomorphism. Clearly,
every homomorphism and every anti-homomorphism is a Jordan homomor-
phism. It is well known that if ϕ : A → B is a Jordan homomorphism, then

(2.1) ϕ(aba) = ϕ(a)ϕ(b)ϕ(a)
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for all a, b ∈ A. Moreover, if ϕ is a Jordan isomorphism, then ϕ strongly
preserves invertibility, that is

(2.2) ϕ(a−1) = ϕ(a)−1

for all invertible elements a in A. If A and B are C∗-algebras, then the map
ϕ is said to be self-adjoint provided that ϕ(a∗) = ϕ(a)∗ for all a ∈ A.

Let A be a Banach algebra, and let A−1 denote the group of all invertible
elements of A. For an element a in A, let σ(a), ∂σ(a) and r(a) denote the
spectrum, the boundary of the spectrum and the spectral radius of a, respec-
tively. A map Λ from A to the closed subsets of C is called a ∂-spectrum if
∂σ(a) ⊆ Λ(a) ⊆ σ(a) for all a ∈ A.

The next result shows that a surjective ∂-spectra preserving linear maps
between two semisimple Banach algebras, one of them is a C∗-algebra of real
rank zero, is a Jordan isomorphism. Recall that a C∗-algebra A has real
rank zero if the set of all real linear combinations of orthogonal projections is
dense in the set of all hermitian elements of A (see [9]). Notice that every von
Neumann algebra and, in particular, the algebra L(H) of all bounded linear
operators on a complex Hilbert space H , have real rank zero. Other examples
of this kind of algebra include Bunce-Deddens algebras, Cuntz algebras, AF-
algebras, and irrational rotation algebras (see [14]).

Theorem 2.1 ([6]). Let A be a C∗-algebra of real rank zero and B be
a semisimple Banach algebra. Let Λ be a ∂-spectrum in A and B, and let
ϕ : A → B be a surjective linear map. If Λ(ϕ(a)) ⊆ Λ(a) for all a ∈ A, then ϕ
is a continuous unital Jordan homomorphism. Moreover, if Λ(ϕ(a)) = Λ(a),
for all a ∈ A, then ϕ is a Jordan isomorphism.

2.1. Von Neumann regularity in Banach algebras. Let L(X) be the
algebra of all bounded linear operators on an infinite dimensional complex
Banach space X . For an operator T ∈ L(X), we denote its kernel and its
range by ker(T ) and ran(T ), respectively. The reduced minimum modulus of
T is given by

γ(T ) :=

{
inf{ ‖T (x)‖ : dist(x,ker(T )) ≥ 1}, if T �= 0,

∞, if T = 0.

It is well known that γ(T ) > 0 if and only if ran(T ) is closed.
Let A be a Banach algebra. An element a ∈ A is called (von Neumann)

regular if it has a generalized inverse, that is, if there exists b ∈ A such that
a = aba and b = bab. Observe that the first equality a = aba is enough to
ensure that a is regular because if a = aba then b′ = bab is a generalized inverse
of a. In particular, the generalized inverse of a regular element a is not unique.
In fact, if a = aba and b = bab, for every x ∈ A, choosing y = b+x − baxab, we
get a = aya, and thus yay is a generalized inverse of a.
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Also note that, if a has a generalized inverse b, then p = ab and q = ba are
idempotents in A satisfying aA = pA and Aa = Aq.

Obviously, if a is regular, then so are the left and right multiplication
operators by a, La : x 	→ ax and Ra : x 	→ xa. Hence, their ranges aA = La(A)
and Aa = Ra(A) are both closed.

Let us denote by Ar the set of all regular elements in A. Following [12],
we say that an element a ∈ A is persistently regular (or of persistently closed
range) if all the elements in a neighborhood of a are regular. The set of
persistently regular elements in A will be denoted by Apr .

The conorm or the reduced minimum modulus of an element a ∈ A is given
by

γ(a) := γ(La) =

{
inf{ ‖ax‖ : dist(x,ker(La)) ≥ 1}, if a �= 0,

∞, if a = 0.

If b is a generalized inverse of a, with a �= 0, then

(2.3) ‖b‖ −1 ≤ γ(a) ≤ ‖ba‖ ‖ab‖‖b‖ −1

(see [17, Theorem 2]). Regular elements in C*-algebras were studied by Harte
and Mbekhta in [17] and [18]. They proved that a is a regular element in a
C∗-algebra A if and only if aA is closed, or equivalently γ(a) > 0, and that

(2.4) γ(a)2 = γ(a∗a) = inf{λ : λ ∈ σ(a∗a) \ {0}} = γ(a∗)2.

Furthermore, they showed that if a is a regular element, then

(2.5) γ(a) = ‖a† ‖ −1,

where a† is the Moore–Penrose inverse of a, that is, the unique element b ∈ A
for which a = aba, b = bab and the associated idempotents ab and ba are
self-adjoint (see [18, Theorem 2]).

For an element a in a Banach algebra A, denote by reg(a) the regular set
of a, that is, the set of all λ ∈ C such that there exists a neighborhood Uλ of λ,
and an analytic function b : Uλ → A, such that b(μ) is a generalized inverse of
a − μ for any μ ∈ Uλ. The generalized spectrum (also called Saphar spectrum)
of a is given by σg(a) := C \ reg(a), and the Kato spectrum of a is defined as

σK(a) :=
{

λ ∈ C : lim
μ→λ

γ(a − μ) = 0
}

.

The following properties of the generalized spectrum and the Kato spectrum
are well known (see [24], [26] and [29, Sections 12 and 13]):

(1) 0 /∈ σg(a) if and only if a is regular and ker(La) ⊆
⋂

n≥1 anA.
(2) 0 /∈ σK(a) if and only if aA is closed and ker(La) ⊆

⋂
n≥1 anA.

(3) ∂σ(a) ⊆ σK(a) ⊆ σg(a) ⊆ σ(a).
(4) If A is a C∗-algebra, then σg(a∗) = σg(a), and σg(a) = σK(a) for all a ∈ A.
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2.2. Fredholm theory. Let A be a C∗-algebra. An element x of A is said to
be finite, respectively compact, in A, if the wedge operator x ∧ x : A → A, given
by x ∧ x(a) = xax (a ∈ A), is a finite rank, respectively compact, operator
on A. It is known that the ideal F (A) of finite rank elements in A coincides
with the socle of A, soc(A), that is, the sum of all minimal right (equivalently
left) ideals of A, and that K(A) = soc(A) is the ideal of all compact elements
in A (see [4]). We call C(A) := A

K(A) the generalized Calkin algebra of A.
An element a ∈ A is called Fredholm if it is invertible modulo F (A) and is

called Atkinson if it is left or right invertible modulo F (A). Denote by Φ(A)
and A(A) the set of Fredholm and Atkinson elements in A, respectively.

It is known that (left, right) invertibility modulo F (A) is equivalent to (left,
right) invertibility modulo K(A). As the latter is a closed ideal of A, Φ(A) and
A(A) are open multiplicative semigroups of A that are stable under compact
perturbations. Note that for a complex Hilbert space H , F (L(H)) = F (H)
is the ideal of all finite rank operators on H , K(L(H)) = K(H) is the closed
ideal of all compact operators on H , Φ(L(H)) = Φ(H) is the set of Fredholm
operators on H , and A(L(H)) = S F (H) is the set of semi-Fredholm operators
on H .

Finally, let us recall that if A is a primitive C∗-algebra with nonzero socle
and e is a minimal projection in A, the minimal left ideal Ae can be endowed
with an inner product given by 〈x, y〉e = y∗x for all x, y ∈ Ae, under which Ae
becomes a Hilbert space in the algebra norm and the left regular represen-
tation ρ : A → L(Ae), defined as ρ(a)(x) = ax for all x ∈ Ae, is an isometric
irreducible ∗-representation, satisfying

ρ(F (A)) = F (Ae),(2.6)
ρ(K(A)) = K(Ae),(2.7)
ρ(Φ(A)) = Φ(Ae) ∩ ρ(A),(2.8)

ρ((A)) = S F (Ae) ∩ ρ(A).(2.9)

(See [4] and [32, Theorem 7.2]). Atkinson and Fredholm theory in general
Banach algebras is developed in [4], [22], and [32].

3. Linear maps preserving the reduced minimum modulus

In this section, we consider the extension of Mbekhta’s conjecture to the
setting of C∗-algebras and we provide a positive answer under some additional
conditions. The arguments of the proofs are inspired in the arguments used
in [6].

Conjecture 3.1. Let A and B be C∗-algebras, and let ϕ be a linear map
from A onto B. The following statements are equivalent.
(i) The equality γ(ϕ(a)) = γ(a) holds for all a ∈ A.
(ii) The map ϕ is an isometry.
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In his celebrated paper [19], Kadison proved that a surjective linear map
between two C∗-algebras A and B is an isometry if and only it is a selfadjoint
Jordan isomorphism multiplied by a unitary element in B. This together with
the following lemma show that the implication (ii) ⇒ (i) always holds. Notice
that, if u is a unitary element in B, then γ(ux) = γ(x) for all x ∈ B.

Lemma 3.2. Let A and B be two C∗-algebras. If ϕ : A → B is a Jordan
isomorphism, then

(3.1) ‖ϕ‖−1
γ(a) ≤ γ(ϕ(a)) ≤ ‖ϕ−1‖γ(a)

for all a ∈ A.

Proof. Since the first inequality of (3.1) applied to ϕ−1 yields the second,
we only need to show that γ(a) ≤ ‖ϕ‖γ(ϕ(a)) for all a ∈ A.

By (2.1), we know that an element x ∈ A has a generalized inverse y if and
only if ϕ(y) is a generalized inverse of ϕ(x). This implies, in particular, that
for an element x ∈ A, γ(x) = 0 if and only if γ(ϕ(x)) = 0. Hence, we only
need to prove that the above inequality holds for all regular elements a ∈ A.
So take a regular element a ∈ A, and note that ϕ(a†) is a generalized inverse
of ϕ(a). By the left inequality of (2.3), we have

γ(ϕ(a))−1 ≤ ‖ϕ(a†)‖ ≤ ‖ϕ‖ ‖a† ‖ = ‖ϕ‖γ(a)−1
.

Thus, γ(a) ≤ ‖ϕ‖γ(ϕ(a)); as desired. �

Before stating the main results of this section, we need to recall some
concepts from nonassociative algebras. Following [34], a Jordan algebra J is
a commutative algebra satisfying the Jordan identity (xy)x2 = x(yx2) for all
x, y ∈ J . For an element x in a Jordan algebra J , denote by Ux the mapping
given by Ux(y) := 2x(xy) − x2y for all y ∈ J . If A is an associative algebra,
then the algebra A+, consisting on the underlying vector space of A and the
product

x ◦ y :=
1
2
(xy + yx) (x, y ∈ A),

becomes a Jordan algebra. Clearly, a linear map ϕ : A → B between Ba-
nach algebras is a Jordan homomorphism if and only if ϕ : A+ → B+ is a
homomorphism.

By a JB ∗-algebra we mean a complete normed complex Jordan algebra, J ,
endowed with a conjugate-linear algebra involution ∗ satisfying ‖Ux(x∗)‖ =
‖x‖3 for every x ∈ J (see [31], [35], [36]). It is easy to prove that, if A is a
C∗-algebra, then A+, with the norm and involution of A, becomes a JB ∗-
algebra. In [31, Theorem 2], Rodŕıguez showed that the converse is also true,
that is, if A is an associative complex algebra such that A+ is a JB ∗-algebra
for some norm and involution, then A with the same norm and involution is
a C∗-algebra.
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Theorem 3.3. Let A be a C∗-algebra with real rank zero and B be a semi-
simple Banach algebra. For a unital surjective linear map ϕ : A → B, the
following statements are equivalent.
(i) γ(ϕ(x)) = γ(x) for all x ∈ A.
(ii) γ(x) ≤ γ(ϕ(x)) for all x ∈ A, and ϕ is injective.
(iii) B (with its norm and some involution) is a C∗-algebra, and ϕ is an

isometric Jordan isomorphism.

Proof. It is clear that (iii) ⇒ (i).
If γ(ϕ(x)) = γ(x) for all x ∈ A, then σK(ϕ(x)) = σK(x) for all x ∈ A. From

Theorem 2.1 we deduce, in particular, that ϕ is injective. This shows that
(i) ⇒ (ii).

Assume that γ(x) ≤ γ(ϕ(x)) for all x ∈ A, and that ϕ is injective. It follows
that σK(ϕ(x)) ⊆ σK(x) for all x ∈ A. By Theorem 2.1, the mapping ϕ is a
continuous Jordan isomorphism, and by (2.2) and (2.5), ‖ϕ(x)‖ ≤ ‖x‖ for
all invertible elements x ∈ A. This together with [33, Corollary 1] proves
that ‖ϕ‖ = 1, and that ‖ϕ(x)‖ ≤ ‖x‖ for all x ∈ A. Now, as the mapping
x 	→ ‖ϕ(x)‖ is an algebra norm on the JB ∗-algebra A+, and every JB ∗-algebra
has minimality of the norm (see [30, Proposition 11]), we deduce that ϕ is in
fact isometric. Since ϕ is a Jordan isomorphism,

ϕ
(
(x ◦ y)∗)

= ϕ(x∗ ◦ y∗) = ϕ(x∗) ◦ ϕ(y∗)

holds for all x, y ∈ A. By (2.1)∥∥Uϕ(x)(ϕ(x∗))
∥∥ = ‖ϕ(x)ϕ(x∗)ϕ(x)‖ = ‖ϕ(xx∗x)‖

= ‖xx∗x‖ = ‖x‖3 = ‖ϕ(x)‖3

for all x ∈ A. Hence, the mapping ϕ(x) 	→ ϕ(x∗) defines a JB ∗-involution
in B+. By [31, Theorem 2], B with its norm and this involution is a C∗-
algebra. Clearly, ϕ : A → B is selfadjoint, and the implication (ii) ⇒ (iii)
holds. �

One can switch the conditions on A and B in the last theorem. However,
the resulting assertion is slightly different mainly because the injectivity is
already implicit in (ii).

Theorem 3.4. Let B be a C∗-algebra with real rank zero and A be a semi-
simple Banach algebra. For a unital surjective linear map ϕ from A to B, the
following statements are equivalent.
(i) γ(ϕ(x)) = γ(x) for all x ∈ A.
(ii) γ(ϕ(x)) ≤ γ(x) for all x ∈ A.
(iii) A (with its norm and some involution) is a C∗-algebra, and ϕ is an

isometric Jordan isomorphism.

Proof. It is clear that (iii) ⇒ (i) ⇒ (ii). Suppose that γ(ϕ(x)) ≤ γ(x) for
all x ∈ A. We have σK(x) ⊆ σK(ϕ(x)) for all x ∈ A. As the Kato spectrum
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is a ∂-spectrum, it follows that r(x) ≤ r(ϕ(x)), for all x ∈ A. Following the
arguments in [6], we show next that ϕ is injective. Let a0 ∈ A be such that
ϕ(a0) = 0, and pick a ∈ A. For every λ ∈ C, we have

r(λa0 + a) ≤ r
(
ϕ(λa0 + a)

)
= r(ϕ(a)).

As λ 	→ r(λa0 +a) is a subharmonic function on C, Liouville’s theorem implies
that r(λa0 + a) = r(a) for all λ ∈ C. Because a is an arbitrary element of A,
the spectral characterization of the radical, together with the semisimplicity
of A imply that a0 = 0, and hence ϕ is injective. The proof now concludes by
applying (ii) ⇒ (iii) in the preceding theorem to the mapping ϕ−1. �

A similar proof to the one of Theorems 3.3 and 3.4 yields the next result
that generalizes [25, Theorem 3.1]. The details are left to the reader.

Theorem 3.5. Let A and B be two C∗-algebras such that at least one of
them is of real rank zero. For a unital surjective linear map ϕ : A → B, the
following conditions are equivalent.
(i) There exists α > 0 such that αγ(x) ≤ γ(ϕ(x)) for all x ∈ A, and ϕ is

injective.
(ii) There exists β > 0 such that γ(ϕ(x)) ≤ βγ(x) for all x ∈ A.
(iii) There exist α,β > 0 such that αγ(x) ≤ γ(ϕ(x)) ≤ βγ(x) for all x ∈ A.
(iv) σg(ϕ(x)) = σg(x) for all x ∈ A.
(v) ϕ is a continuous Jordan isomorphism.

We close this section with a characterization of inner maps that preserve
the reduced minimum modulus.

Theorem 3.6. Let A be a C∗-algebra, and let a, b ∈ A−1. If ϕ is the map
that takes either the form ϕ(x) := axb for all x ∈ A, or ϕ(x) := ax∗b for all
x ∈ A, then the following statements are equivalent.
(i) The element ab is unitary, and |a| is central in A.
(ii) The map ϕ is an isometry.
(iii) The equality γ(x) = γ(ϕ(x)) holds for all x ∈ A.

Proof. We first treat the case ϕ(x) = axb, for all x ∈ A.
Assume that ab is a unitary element and that |a| is central in A. For every

x ∈ A, we have

‖ϕ(x)‖ = ‖axa−1‖ = ‖ |a|x|a| −1‖ = ‖x‖.

Hence, ϕ is an isometry, and (i) ⇒ (ii) holds.
The implication (ii) ⇒ (iii) follows directly from Lemma 3.2.
Now, suppose that γ(x) = γ(ϕ(x)) for all x ∈ A. For every x ∈ A−1, we

have

‖b−1x−1a−1‖ −1 = ‖ϕ(x)−1‖ −1 = γ(ϕ(x)) = γ(x) = ‖x−1‖ −1.

This shows that the map ψ : A → A, defined by ψ(x) := b−1xa−1, is an isom-
etry on the group of invertible elements of A. Again [33, Corollary 1] shows
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that ψ is an isometry on A. Thus, ψ(1) = b−1a−1 is unitary (and hence ab is
unitary as well), and the linear map φ := abψ, is an isometry. In particular,
φ is selfadjoint, and thus

axa−1 = φ(x) = φ(x∗)∗ = a∗ −1xa∗

for all x ∈ A. This proves that |a|2x = x|a|2 for all x ∈ A. As |a| can be
approximated by polynomials in |a|2, it follows that |a|x = x|a| for all x ∈ A.
Therefore, (iii) ⇒ (i) holds.

Finally, assume that ϕ is given by ϕ(x) = ax∗b for all x ∈ A. The first case
just proved applied to the linear map χ : A → A defined by χ(x) := ϕ(x)∗ =
b∗xa∗, together with (2.4), give the desired conclusion. �

As an immediate consequence of the previous theorem, we obtain the fol-
lowing characterization of unitary elements in C∗-algebras with trivial center.

Corollary 3.7. Let A be a C∗-algebra with trivial center, and let a ∈ A−1.
The following statements are equivalent.
(i) The element a is a scalar multiple of a unitary element of A.
(ii) The identity γ(x) = γ(axa−1) holds for all x ∈ A.

4. Linear maps preserving regularity

Let A and B be C*-algebras. A linear map ϕ : A → B preserves regularity
if ϕ(a) ∈ Br whenever a ∈ Ar. We say that ϕ : A → B preserves regularity
in both directions if a ∈ Ar if and only if ϕ(a) ∈ Br. The map ϕ is called
surjective up to finite rank (respectively, compact) elements if B = ϕ(A) +

F (B) (respectively, B = ϕ(A) + K(B)).
The maps considered in the previous section preserve regularity in one or

both directions, and satisfy some additional conditions on norm preserving.
In this section, we study those surjective up to finite rank elements linear
maps, between C∗-algebras of real rank zero, that preserve regularity in one or
both directions. Notice that, if A and B are C∗-algebras with nonzero socle,
and ψ : A → F (B) is a linear map, every linear map ϕ : A → B preserves
generalized invertibility in both directions if and only if ϕ + ψ does. We
show in the next result that when A and B are prime, and A is of real
rank zero, every surjective up to finite rank elements linear map ϕ : A → B
preserving generalized invertibility in both directions factorizes as a Jordan
homomorphism through the generalized Calkin algebras.

Theorem 4.1. Let A and B be prime C∗-algebras with nonzero socle such
that at least one of them has real rank zero. Let ϕ : A → B be a surjective
up to finite rank elements linear map. If ϕ preserves regularity in both di-
rections, then ϕ(F (A)) ⊆ F (B), ϕ(K(A)) ⊆ K(B) and the induced mapping
ϕ̂ : C(A) → C(B), defined by ϕ̂(a+ K(A)) = ϕ(a)+ K(B), is a Jordan isomor-
phism multiplied by an invertible element in C(B).
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The proof of this result uses some auxiliary lemmas. The first of them
provides an interesting characterization of persistently regular elements in a
prime C∗-algebra with nonzero socle.

Lemma 4.2. Let A be a prime C∗-algebra with nonzero socle. For an
element a ∈ A, the following assertions are equivalent.
(i) a is persistently regular.
(ii) For every b ∈ A, there exists δ > 0 such that a+λb ∈ Ar for every λ ∈ C,

satisfying |λ| < δ.
(iii) a is Atkinson.
(iv) a + k ∈ Ar for all k ∈ K(A).

Proof. It is obvious that (i) ⇒ (ii). Assume that the second statement
holds, and let us show that a is Atkinson. For b = 0, the hypothesis implies
that a ∈ Ar. Now, suppose to the contrary that a is not Atkinson. Notice that,
since A is a prime C∗-algebra with nonzero socle, A is primitive (see [23]). Let
e be a minimal projection in A and ρ : A → Ae the left regular representation
introduced in Section 2.2. By (2.9), ρ(a) is regular and not semi-Fredholm
on Ae. In view of [15, Theorem V.2.6], there exists K ∈ K(Ae) such that
ρ(a) + λK /∈ L(Ae)r for every λ ∈ C \ {0}. By (2.6), there exists k ∈ K(A)
(ρ(k) = K) such that a + λk /∈ Ar for every λ ∈ C \ {0}. This contradicts the
second statement and establishes (ii) ⇒ (i).

The implication (iii) ⇒ (i) also holds trivially taking into account that
the set A(A) of Atkinson elements is an open semigroup contained in Ar.
Moreover, if a is Atkinson and k is compact, it is clear that a + k is also
Atkinson and, in particular, has a generalized inverse. Hence, we get that
(iii) ⇒ (iv).

Finally, assume that fourth statement holds, and note that a+λk ∈ Ar for
all k ∈ K(A) and all λ ∈ C. The same argument used to prove (ii) ⇒ (iii)
shows that a is necessarily Atkinson, and hence the implication (iv) ⇒ (iii)
holds. �

By particularizing [5, Lemma 3.2] to the setting of C∗-algebras, we obtain
the following result.

Lemma 4.3. If A is a C∗-algebra with nonzero socle, then

K(A) = {a ∈ A : a + A(A) ⊆ A(A)}.

It is well known that every element in the socle of a semisimple Banach
algebra has generalized inverse. In the next result, we show that for a prime
C∗-algebra its socle is exactly the perturbation class of its set of regular ele-
ments.

Lemma 4.4. If A is a prime C∗-algebra with nonzero socle, then

F (A) = {a ∈ A : a + Ar ⊆ Ar }.
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Proof. First, let a ∈ A and note that if aba − a is regular, for some b in A,
then a is itself regular. Indeed, if (aba − a)x(aba − a) = aba − a, then a =
a(b + (1 − ba)x(1 − ab))a, which shows that a is regular. Thus, for a ∈ F (A)
and x ∈ Ar with generalized inverse y, the element (a+x) − (a+x)y(a+x) lies
in F (A), and hence it is regular. Therefore, a + x is also regular. Conversely,
we need to prove that every element a ∈ A satisfying a + Ar ⊆ Ar is of finite
rank. As such an element is regular, it suffices to show that it is compact (see
[22, Theorem 6]), or equivalently, by the preceding lemma, that a+ y ∈ A(A),
for every y ∈ A(A). Given y ∈ A(A) and z ∈ K(A), from (iii) ⇒ (iv) of
Lemma 4.2, y + z ∈ Ar, and thus, by hypothesis, a + y + z ∈ Ar. Finally,
(iv) ⇒ (iii) of Lemma 4.2, shows that a + y ∈ A(A), as desired. �

Proof of Theorem 4.1. Lemma 4.4 shows that ϕ(F (A)) ⊆ F (B). From
Lemmas 4.2 and 4.4 it follows that ϕ preserves the set of Atkinson elements
in both directions, that is, a ∈ A is Atkinson if and only if ϕ(a) so is. Now,
[5, Corollary 3.5] entails the desired conclusion. �

Remark 4.5. By considering A = L(H) and B = L(K), with H and K
infinite dimensional complex Hilbert spaces, from Theorem 4.1, we obtain
[28, Theorem 1.1] and [27, Theorem 3.1]. Observe that, in this last paper, we
can replace the separability of the Hilbert space by the assumption that the
map is unital (see [28, Theorem 4.1]).

In view of Theorem 4.1, one might wonder what happens if the algebras A
and B have zero socle. We focus now on this problem. First, let us recall
some additional concepts and results.

Let A be a C∗-algebra. Let BA denote the closed unit ball of A and E (A)
the set of extreme points of BA, that is, the partial isometries v ∈ A such that
(1 − v∗v)A(1 − vv∗) = {0}. In [10], [11], the elements belonging to the open
set A−1

q = A−1E (A)A−1 are called quasi-invertible. Note that in the particular
case where A is a prime C∗-algebra, A−1

q coincides with the set of one-sided
invertible elements.

For an element a ∈ A, the set

σq(a) = {λ ∈ C : a − λ1 is not quasi-invertible}
is the quasi-spectrum of a (see [11]).

Every quasi-invertible element is persistently regular and moreover from
[12, Theorem 7.7] it follows that Apr = A−1

q + F (A). In particular, if F (A) =
{0} we get that the only persistently regular elements in A are the quasi-
invertible elements.

Theorem 4.6. Let A and B be C∗-algebras. Suppose that A has real
rank zero and that F (B) = {0}. Let ϕ : A → B be a unital surjective linear
map. Then, ϕ preserves regularity if and only if ϕ is a continuous Jordan
homomorphism.
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Proof. The sufficiency follows from (2.1). We only have to prove that if
ϕ preserves regularity, then ϕ is a continuous Jordan homomorphism. So,
assume that ϕ preserves regularity, and note that ϕ(a) is persistently regular
whenever a is. Moreover, since F (B) = {0}, we have Bpr = B−1

q , and thus
ϕ(a) is quasi-invertible, for all persistently regular elements a ∈ A. This shows,
in particular, that σq(ϕ(a)) ⊆ σq(a), for all a ∈ A. From Theorem 2.1 and [11,
Theorem 1.4], ϕ is a continuous Jordan homomorphism. �

Corollary 4.7. Let A and B be C*-algebras having zero socle. Suppose
that A or B has real rank zero. Let ϕ : A → B be a unital surjective linear
map. Then ϕ preserves regularity in both directions if and only if ϕ is a
continuous Jordan isomorphism.

5. Essential regularity and generalized essential spectrum

In this section, we analyze the essential version of the results appearing in
the last two sections.

All C∗-algebras appearing here are supposed to have nonzero socle. Let A
be a C∗-algebra, and let π : A → C(A) be the natural quotient homomorphism.
An element a in A is said to be essentially regular if π(a) is regular. Note that
a is essentially regular if and only if its essential conorm, γe(a) := γ(π(a)), is
positive. Let Ar

ess denote the set of essentially regular elements of A. Observe
that for k ∈ K(A), a ∈ Ar

ess if and only if a+k ∈ Ar
ess . In the following lemma

we show that, in fact, this property characterizes the compact elements in a
(von Neumann) factor.

Lemma 5.1. Let A be a factor. Then

K(A) = {k ∈ A : k + Ar
ess ⊆ Ar

ess }.

Proof. It is clear that

K(A) ⊆ {k ∈ A : k + Ar
ess ⊆ Ar

ess }.

Conversely, let k ∈ A be such that k + Ar
ess ⊆ Ar

ess . This means that, π(k) +
C(A)r ⊆ C(A)r , and thus, π(k) + C(A)pr ⊆ C(A)pr . As F (C(A)) = {0} (see
[23, Proposition 2.3]), C(A)pr = C(A)−1

q . Hence,

π(k) + C(A)−1
q ⊆ C(A)−1

q ,

which shows that
σq

(
π(k) + π(x)

)
⊆ σq(π(x))

for all x ∈ A. Finally, as σq(.) is a ∂-spectrum, for every quasinilpotent element
π(x) ∈ C(A), we have

∂σ
(
π(k) + π(x)

)
⊆ σq

(
π(k) + π(x)

)
⊆ σq(π(x)) ⊆ σ(π(x)) = {0}.

This proves that σ(π(k) + π(x)) = {0}, for all quasinilpotent element π(x) ∈
C(A). By the Zémanek spectral characterization of the radical, [1, Theo-
rem 5.3.1], and the semisimplicity of C(A), it follows that k ∈ K(A). �
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For A and B prime C∗-algebras, one of them of real rank zero, we deduce
from Theorem 4.1 that a unital surjective up to finite rank elements linear
map, ϕ : A → B, preserving regularity in both directions induces a continu-
ous Jordan isomorphism between their generalized Calkin algebras. In the
next result, we shows that the same holds for surjective up to compact el-
ements linear maps between factors preserving essential regularity in both
directions.

Theorem 5.2. Let A and B be factors, and let ϕ : A → B be a surjective
up to compact elements linear map such that ϕ(1) − 1 ∈ K(B). The map ϕ
preserves essential regularity in both directions if and only if ϕ(K(A)) ⊆ K(B)
and the induced mapping ϕ̂ : C(A) → C(B) is a continuous Jordan isomor-
phism.

Proof. The sufficiency condition is trivially true since every Jordan isomor-
phism strongly preserves regularity. Now assume that ϕ preserves essential
regularity in both directions, and let us first show that ϕ(K(A)) ⊆ K(B).
Fix an arbitrary element b ∈ Br

ess . As ϕ is surjective up to compact el-
ements, there exist x ∈ A and k ∈ K(B) such that b = ϕ(x) + k. Then
ϕ(x) = b − k ∈ Br

ess, and thus, by hypothesis, x ∈ Ar
ess . Given a ∈ K(A),

we have that a + x ∈ Ar
ess . Therefore, ϕ(a) + b = ϕ(a + x) + k ∈ Br

ess . By the
preceding lemma, ϕ(a) ∈ K(B).

The induced mapping ϕ̂ : C(A) → C(B), is a unital surjective linear map
that preserves regularity in both directions. Moreover C(A) and C(B) have
zero socle (because A and B are factors) and thus, by Theorem 4.7, ϕ̂ is a
continuous Jordan isomorphism. �

For an element a in a C∗-algebra A, the essential spectrum of a, denoted
by σe(a), is defined as

σe(a) := σ(π(a)) = {λ ∈ C : a − λ is not Fredholm},

and the generalized essential spectrum is given by σge(a) := σg(π(a)). It
is clear that σge(a) = {λ ∈ C : limμ→λ γe(a − μ) = 0}, and that ∂σe(a) ⊆
σge(a) ⊆ σe(a). For a surjective up to compact elements linear map ϕ : A → B
between C∗-algebras A and B, let us show that if ϕ is σge -preserving, then
ϕ(K(A)) ⊆ K(B). Choose a ∈ K(A) and y ∈ B. There exist x ∈ A and
k ∈ K(B) such that y = ϕ(x) + k. Then

σg

(
π(ϕ(a)) + π(y)

)
= σge

(
ϕ(a) + y

)
= σge

(
ϕ(a + x)

)
= σge(a + x) = σge(x) = σge(ϕ(x))
= σge(y) = σg(π(y)).

Since, σg(·) is a ∂-spectrum, arguing as in the proof of Lemma 5.1, we conclude
that ϕ(a) ∈ K(B).

Taking into account the above comments and Theorems 3.3, 3.4, and 3.5,
the following corollaries are straightforward to prove.
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Corollary 5.3. Let A and B be C∗-algebras, one of them having real
rank zero. Let ϕ : A → B be a surjective up to compact elements linear map
such that 1 − ϕ(1) ∈ K(B). The following conditions are equivalent.
(i) There exist α,β > 0 such that αγe(x) ≤ γe(ϕ(x)) ≤ βγe(x), for all x ∈ A.
(ii) σge(ϕ(x)) = σge(x), for all x ∈ A.
(iii) ϕ(K(A)) ⊆ ϕ(K(B)), and the induced mapping ϕ̂ : C(A) → C(B) is a con-

tinuous Jordan isomorphism.

Corollary 5.4. Let A be C∗-algebra of real rank zero and let B be a
factor. Let ϕ : A → B be a surjective up to compact elements linear map such
that 1 − ϕ(1) ∈ K(B). The following conditions are equivalent.
(i) γe(ϕ(a)) = γe(a), for all a ∈ A.
(ii) ϕ(K(A)) ⊆ ϕ(K(B)), and the induced mapping ϕ̂ : C(A) → C(B) is an

isometric Jordan isomorphism.

Note added in proof

The Conjecture 3.1 has been affirmatively solved in [A. Bourhim, M. Bur-
gos and V.S. Shulman, Linear maps preserving the minimum and reduced
minimum moduli, J. Functional Analysis, 258 (2010) 50–66].
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