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REPRESENTATIONS OF DEFINITE BINARY QUADRATIC
FORMS OVER Fq[t]

JEAN BUREAU AND JORGE MORALES

Abstract. In this paper, we prove that a binary definite qua-
dratic form over Fq[t], where q is odd, is completely determined

up to equivalence by the polynomials it represents up to degree

3m − 2, where m is the degree of its discriminant. We also char-
acterize, when q > 13, all the definite binary forms over Fq[t] that
have class number one.

1. Introduction

It is a natural question to ask whether binary definite quadratic forms over
the polynomial ring Fq[t] are determined, up to equivalence, by the set of
polynomials they represent. Here Fq is the finite field of order q and q is odd.

The analogous question over Z has been answered affirmatively – with the
notable exception of the forms X2 +3Y 2 and X2 +XY +Y 2, which have the
same representation set but are not equivalent—by Watson [13]. Several re-
lated results appear in the literature as far back as the mid-nineteenth century
(see [14]).

We begin with the easier question whether the discriminant of a binary
definite quadratic form over Fq[t] is determined by its representation set. In
the classical case over Z, Schering [11] showed that this is the case up to
powers of 2. The same type of ideas are used here to show in the polyno-
mial context that if Q and Q′ represent the same polynomials up to degree
3m − 2, where m = max{degdisc(Q),degdisc(Q′)}, then disc(Q) = disc(Q′)
(Proposition 3.5).

The main result of this paper is that if Q and Q′ have the same discrimi-
nant and represent the same polynomials up to degree equal to their second
successive minimum, then they are equivalent (Theorem 4.1). We show that if
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such forms were not equivalent, then there would be an elliptic curve over Fq

that has more rational points than allowed by Hasse’s bound. If the condition
on the discriminants is omitted, then having the same representation set up
to degree 3m − 2 is enough to conclude equivalence (Theorem 4.2).

The same questions can be asked for ternary definite quadratic forms. We
show that in this case, the representation sets (as opposed to the representa-
tion numbers), are not enough in general to determine the equivalence class.
We do so by constructing a family of counterexamples (Corollary 5.3). It turns
out, however, that the representation numbers, that is the number of times
that each polynomial is represented, are sufficient to determine the equiv-
alence class of a ternary form, as it will be showed in an upcoming paper
[2].

Finally, in Section 6, we show, assuming q > 13, that if a definite binary
quadratic form Q has class number one (i.e., its genus contains only one
equivalence class), then degdisc(Q) ≤ 2 (Theorem 6.2).

We are indebted to the referee for her/his useful remarks.

2. Notation and terminology

The following notation will be in force throughout the paper:
Fq : The finite field of order q. We always assume q odd.
A: The polynomial ring Fq[t].
K: The field of rational functions Fq(t).
δ: A fixed non-square of F×

q .
A quadratic form Q over A is a homogeneous polynomial

Q =
∑

1≤i,j≤n

mijXiXj ,

where M = (mij) is an n × n symmetric matrix with coefficients in A. The
group GLn(A) acts by linear change of variables on the set of such forms.
Two forms in the same GLn(A)-orbit are called equivalent. Two forms in the
same SLn(A)-orbit are called properly equivalent.

The discriminant of Q is defined by

disc(Q) = (−1)n(n−1)/2 det(M)

as an element of A/F×
q

2. This is an invariant of the equivalence class of Q.
The representation set of Q is the set of polynomials

V (Q) = {Q(x) : x ∈ An},

and the degree k representation set is

Vk(Q) = {Q(x) : x ∈ An,degQ(x) ≤ k}.

The form Q is definite if it is anisotropic over the field K∞ = Fq((1/t)).
This implies in particular that n ≤ 4.
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A definite quadratic form Q is reduced if degmii ≤ degmjj for i ≤ j and
degmij < degmii for i < j. Gerstein [5] showed that every definite quadratic
form is equivalent to a reduced form and that two reduced forms in the same
equivalence class differ at most by a transformation in GLn(Fq). In particular,
the increasing sequence of degrees of the diagonal terms of a reduced form

(degm11,degm22, . . . ,degmnn)

is an invariant of its equivalence class. This sequence is called the successive
minima of Q and will be denoted by (μ1(Q), μ2(Q), . . . , μn(Q)).

In the case of binary forms, which are the main topic of this paper, we will
often write

Q = (a, b, c)

for the quadratic form

Q = aX2 + 2bXY + cY 2.

For binary forms, it is easy to see that being definite means simply that
disc(Q) = b2 − ac has either odd degree or has even degree and nonsquare
leading coefficient. Also, Q reduced translates into the condition

(2.1) deg b < dega ≤ deg c.

If Q = (a, b, c) is definite and reduced, then

(2.2) degQ(x, y) = max{2degx + μ1,2deg y + μ2}

for all x, y ∈ A, where μ1 and μ2 are the successive minima. When μ1 and μ2

have distinct parity, the equality (2.2) follows immediately from (2.1). When
μ1 and μ2 have the same parity, (2.2) follows from (2.1) together with the
fact that the leading coefficient of −ac is a non-square by definiteness.

3. Successive minima and discriminant

Lemma 3.1. Let Q = (a, b, c) be a definite reduced form with successive
minima μ1 < μ2. If f ∈ A is represented by Q and μ1 ≤ deg f < μ2, then
f = r2a for some r ∈ A.

Proof. Write f = ar2 + 2brs + cs2, with r, s ∈ A. If deg f < μ2, then by
(2.2) we must have s = 0, that is f = r2a. �

Lemma 3.2. Let Q and Q′ be definite binary forms over A with discrimi-
nants d and d′ respectively. Let m = max{degd,degd′ }. If Vm(Q) = Vm(Q′),
then μi(Q′) = μi(Q) (i = 1,2) and degd = degd′. Moreover, there are reduced
bases in which the diagonal entries of the matrices of Q and Q′ have the same
leading coefficients.
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Proof. Let Q = (a, b, c) and Q′ = (a′, b′, c′) be in reduced form. Let μi =
μi(Q) and μ′

i = μ′
i(Q) (i = 1,2). Since a is represented by Q′, we clearly have

μ′
1 ≤ μ1. If μ′

2 > μ2, then

μ′
1 ≤ μ1 ≤ μ2 < μ′

2,

and applying Lemma 3.1 to Q′, we get a = a′r2 and c = a′s2 for some s, r ∈ A.
In particular, μ1 ≡ μ2 (mod 2). Let k = (μ2 − μ1)/2 and consider the expres-
sion

Q(tkx, y) = t2kax2 + 2tkbxy + cy2

with x, y ∈ Fq . Using the inequality (2.1), we see that the coefficient of degree
μ2 of Q(tkx, y) is

(3.1) aμ1x
2 + cμ2y

2,

where aμ1 and cμ2 are the leading coefficients of a and c, respectively. Since
aμ1cμ2 �= 0, the quadratic form (3.1) is nondegenerate over Fq , and therefore
represents all elements of F×

q . If we choose in particular x, y so that (3.1) is
not in the square class of a′

μ′
1
, then Q(tkx, y) cannot be represented by Q′,

since otherwise it would be of the form r2a′ by Lemma 3.1. Hence μ′
2 ≤ μ2,

and by symmetry μ1 = μ′
1 and μ2 = μ′

2. The equality degd = degd′ follows
immediately.

We can assume without loss of generality that a = a′. It remains to see
that the leading coefficients of c and c′ are in the same square class. When
μ1 ≡ μ2 (mod 2), the leading coefficients of c and of c′ are both in the square
class of −δaμ1 , where δ ∈ Fq is a nonsquare. When μ1 �≡ μ2 (mod 2), the
leading coefficient of any element in V (Q′) whose degree has the same parity
as μ2 must be in the same square class as the leading coefficient of c′. This
applies in particular to c. �

Lemma 3.3. Let Q be a primitive definite binary quadratic form over A
with discriminant d and let p be an irreducible factor of d. Then Q represents
a polynomial not divisible by p of degree < degd.

Proof. Write Q in reduced form Q = (a, b, c). Clearly either a or c satisfies
the condition. �

Lemma 3.4. Let Q be a primitive definite binary quadratic form over A
with discriminant d. Let p ∈ A. Then each element of V (Q) is congruent
modulo p to an element in V2deg p+deg d−2(Q).

Proof. Let {e1, e2} be a reduced basis for Q. Each element of V (Q) is
congruent modulo p to an element of the form Q(x1e1 + x2e2) with degxi ≤
deg p − 1. Clearly degQ(x1e1 + x2e2) ≤ 2(deg p − 1) + μ2(Q) ≤ 2(deg p − 1) +
degd. �
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Corollary 3.5. Let Q and Q′ be definite binary quadratic form over
A with discriminants d, d′, respectively. Let m = max{degd,degd′ }. If
V3m−2(Q) = V3m−2(Q′), then d′ ∈ d F×2

q .

Proof. The statement is trivial if m = 0, so we shall assume through the
proof that m ≥ 1.

Notice that the equality of representation sets is preserved by scaling; hence
Q and Q′ may be assumed primitive.

We shall prove that for each irreducible polynomial p ∈ A:

V3m−2(Q) ⊂ V3m−2(Q′) implies vp(d′) ≤ vp(d),

where vp(·) denotes the p-adic valuation. This will show that d = ud′, where
u ∈ F×

q , and Lemma 3.2 shows that u must be a square.
Let n = vp(d) and n′ = vp(d′). If deg(p) > m, then trivially n = n′ = 0, so

we may assume deg p ≤ m.
Let L be the A-lattice on which Q is defined and let M = (pnL�) ∩ L, where

L� is the dual lattice with respect to Q. Then it is easy to see that the form
Q0 = p−nQ|M is integral and primitive and has discriminant d. By Lemma 3.3,
Q0 represents a polynomial u relatively prime to p with degu ≤ m − 1. It
follows that pnu is represented by Q and since deg pnu ≤ 2m − 1 ≤ 3m − 2
it must also be represented by Q′. In particular, pnu must be represented
p-adically by Q′. Over Ap, the form Q′ is equivalent to a diagonal form
(a,0, pn′

b) where a, b are p-adic units. Then there exist x, y ∈ Ap such that

(3.2) pnu = ax2 + pn′
by2.

It follows from (3.2) that if n′ > n, then n = vp(ax2) ≡ 0 (mod 2). Consider
now the lattice N = (pn/2L�) ∩ L and let Q1 = p−nQ|N . One sees immediately
that Q1 is primitive, integral and disc(Q1) = p−nd, so Q1 is p-unimodular and
thus V (Q1) contains representatives of all classes modulo p. In particular, Q1

represents a polynomial w that is relatively prime to p and is in a different
square class modulo p as a. Furthermore, by Lemma 3.4, w can be chosen so
that degw ≤ 2deg p + deg(p−nd) − 2.

The polynomial f = pnw is obviously represented by Q and has degree
≤ 2deg p+degd − 2 ≤ 3m − 2, so it is also represented by Q′. Writing f as in
(3.2) and dividing by pn we see that w is in the same square class as a, which
is a contradiction. Hence, n′ ≤ n. �

4. Forms with the same representation sets in small degree

Theorem 4.1. Assume q > 3. Let Q and Q′ be two binary definite posi-
tive binary quadratic forms over A with the same discriminant and the same
successive minima sequence (μ1, μ2). Suppose that Vμ2(Q) = Vμ2(Q

′). Then
Q and Q′ are equivalent.
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Proof. Let Q = (a, b, c) and Q′ = (a′, b′, c′) be reduced forms. There is no
loss of generality in making the following assumptions: a = a′ is monic and
c, c′ have same leading coefficients. When μ1 ≡ μ2 (mod 2), the leading coef-
ficients of c and c′ can be assumed to be equal to −δ, for the fixed nonsquare
δ ∈ Fq .

1. Suppose that μ1 �≡ μ2 (mod 2). Since c is also represented by Q, it is
represented by Q′; hence, there are f ∈ A and β inFq such that c = af2 +
2b′fβ + c′β2. The different parity of the successive minima implies that β =
±1. By changing b′ into −b′ if necessary, we can assume that β = 1. Let
ϕ =

(
1 f
0 1

)
∈ GL2(Fq). Then Q′ ′ := Q ◦ ϕ = (a, b′ ′, c′), for some b′ ′ ∈ A. Since

det(ϕ) = 1, it follows that disc(Q′ ′) = disc(Q) = disc(Q′); hence, ac′ − b′ ′2 =
ac′ − b′2. This leads to b′ ′ = ±b′.

2. Suppose that μ1 ≡ μ2 (mod 2) and that μ1 < μ2. It follows from the
equality of the discriminants that deg(c′ − c) < max{deg b,deg b′ } < dega.

If b = b′ = 0, we conclude immediately that c = c′ by the equality of the
discriminants. So we may assume b �= 0.

Consider all the elements au2+2bu+c ∈ V (Q) with u ∈ Fq . By assumption,
the equation

(4.1) au2 + 2bu + c = ax2 + 2b′xy + c′y2

is always solvable for some x = xktk + xk−1t
k−1 + · · · + x0 ∈ A, where k =

(μ2 − μ1)/2, and y ∈ Fq .
Notice that for degree reasons, the polynomials a, b and c are linearly

independent over Fq (recall that we are assuming b �= 0), hence the left hand
side of (4.1) takes exactly q values as u runs over Fq . The equality of the
leading coefficients in (4.1) gives

(4.2) −δ = x2
k − δy2.

It is a standard fact that the number of pairs (xk, y) satisfying (4.2) is q +1
(see e.g., [6, Theorem 2.59]). Notice that if (xk, y) is a solution of (4.2), then
so is (−xk, y), thus the number of possible y’s appearing in a solution of (4.2)
is (q − 1)/2 + 2 = (q + 3)/2.

Since q > (q + 3)/2 by hypothesis, there must be two different values of u
on the left-hand side of (4.1) with the same y on the right-hand side. In other
words, there exist u, v ∈ Fq , u �= v, such that the system

(4.3)

{
au2 + 2bu + c = ax2 + 2b′xy + c′y2,

av2 + 2bv + c = az2 + 2b′zy + c′y2

has a solution (x, y, z), with x, z ∈ A and y ∈ Fq . By subtracting the two lines
of (4.3), we get

a(u2 − v2) + 2b(u − v) = a(x2 − z2) + 2b′(x − z)y.
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By degree considerations x2 − z2 = u2 − v2 and hence x and z are constant.
In particular xk = 0 (since k = (μ2 − μ1)/2 > 0) and hence, by (4.2), we have
y2 = 1.

Going back to (4.1), we get

a(u2 − x2) + 2(bu − b′xy) = c′ − c.

As observed earlier, deg(c′ − c) < max{deg b,deg b′ } < dega. Thus, the
above equality implies u2 = x2. Thus, 2(bu − b′xy) = 2u(b ± b′) = c′ − c. Re-
placing b′ by −b′ if necessary, we can assume 2u(b + b′) = c′ − c. Multiplying
by b − b′ gives 2ua(c − c′) = 2u(b2 − b′2) = (c′ − c)(b − b′) by the equality of
the discriminants. Degree considerations again imply c = c′ and b = ±b′.

3. Suppose that μ1 = μ2 = n. Write

a = tn + an−1t
n−1 + · · · + a0,

c = −δtn + cn−1t
n−1 + · · · + c0,

c′ = −δtn + c′
n−1t

n−1 + · · · + c′
0,

b = bktk + · · · + b0,

b′ = b′
ktk + · · · + b′

0,

where k = max{deg b,deg b′ }. If b = b′ = 0, we are done, so we may assume
k ≥ 0 and b′

k �= 0. Note that since disc(Q) = disc(Q′), we have deg(c − c′) < k
as in the previous case.

Since Vn(Q) = Vn(Q′), for any pair (u, v) ∈ F2
q , there exists a pair (x, y) ∈

F2
q such that

(4.4) Q(u, v) = Q′(x, y).

Taking the coefficients of tn and tk in the above polynomials, we get the
system of quadrics:

(4.5)

{
u2 − δv2 = x2 − δy2,

aku2 + 2bkuv + ckv2 = akx2 + 2b′
kxy + cky2,

which defines an algebraic curve E in P3. For every (u, v) ∈ F2
q \ {0}, there

is (x, y) ∈ F2
q \ {0} satisfying (4.5). Notice also that if a quadruplet (u, v,x, y)

satisfies (4.5), so does (u, v, −x, −y) and that the two sides of the first equation
are forms anisotropic over Fq , so |E(Fq)| ≥ 2(q + 1).

If the curve E given by (4.5) were smooth, then it would be an elliptic
curve and by the Hasse estimate [12, Chapter V] we would have |E(Fq)| ≤
2

√
q + q + 1, which would contradict the above count. Thus, E cannot be a

smooth curve.
It is also known that the intersection of two quadric hypersurfaces, say

Q1 = 0,Q2 = 0, in Pm is a smooth variety of codimension 2 if and only if the
binary form det(XQ1 +Y Q2) of degree m+1 has no multiple factor (see e.g.,
[4, Remark 1.13.1] or [7, Chapter XIII, Section 11]). In the case of our system
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(4.5), by computing explicitly the discriminant of det(XQ1 + Y Q2), where
Q1, Q2 are the two quaternary quadratic forms of (4.5), we get the condition

(4.6) δ4(bk − b′
k)4(bk + b′

k)4
(
(akδ + ck)2 − 4δb′2

k

)(
(akδ + ck)2 − 4δb2

k

)
= 0.

Since δ is not a square in Fq and b′
k �= 0 by assumption, we must have either

bk = ±b′
k or bk = 0 and akδ + ck = 0. We shall rule out the second possibility.

Since Vn(Q) = Vn(Q′), these sets span the same Fq -subspace of A; in
particular b′ must be an Fq -linear combination of a, b and c. Write

b′ = αa + βb + γc,

with α,β, γ ∈ Fq . Taking terms of degree n gives

0 = α − δγ,

which implies
b′ = γ(δa + c) + βb.

Taking now terms of degree k we get

b′
k = γ(δak + ck) + βbk.

If bk = 0 and akδ + ck = 0, then b′
k = 0, which is a contradiction with our

assumption.
Thus, bk = ±b′

k is the only possibility. Replacing b by −b if needed, we
shall assume bk = b′

k.
We shall now show that b = b′. Suppose by contradiction that b �= b′ and

let m = deg(b − b′) < k. Then, by the equality of the discriminants, deg(b2 −
b′2) = m+k = n+deg(c − c′), which implies deg(c − c′) < m and in particular
cm = c′

m.
Exactly the same argument that showed b2

k = b′2
k (just replace k by m in

(4.5)) shows that b2
m = b′2

m. Now consider the system

(4.7)

{
amu2 + 2bmuv + cmv2 = amx2 + 2b′

mxy + cmy2,

aku2 + 2bkuv + ckv2 = akx2 + 2b′
kxy + cky2.

Adding the two equations and combining the result with the first equation in
(4.5) we get the system

(4.8)

⎧⎪⎨
⎪⎩

u2 − δv2 = x2 − δy2,

(ak + am)u2 + 2(bk + bm)uv + (ck + cm)v2

= (ak + am)x2 + 2(b′
k + b′

m)xy + (ck + cm)y2,

Applying one more time the rational-point counting argument, this time to
the above system, we conclude that (bm − bk)2 = (b′

m − b′
k)2, which yields

bmbk = b′
mb′

k. Since bk = b′
k �= 0, we conclude bm = b′

m, which contradicts the
hypothesis that m = deg(b − b′). Hence, b = b′ as claimed. �

Finally, putting together Proposition 3.5, Lemma 3.2, and Theorem 4.1,
we get our main result.
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Theorem 4.2. Assume q > 3. Let Q and Q′ be definite binary quadratic
forms over A with discriminants d and d′ respectively. Let m =
max{degd,degd′ }. If V3m−2(Q) = V3m−2(Q′), then Q and Q′ are equivalent.

5. The Ternary case

In this section, we give an example showing that in the case of ternary
definite forms over A, the representation sets in general do not determine the
discriminant, much less the equivalence class of the form.1

Lemma 5.1. Let Qa = X2 + tY 2 − δ(t + a2)Z2, where a ∈ F×
q . Then a

polynomial f ∈ A is represented by Qa over A if and only if it is represented
by Qa over A(t) = Fq[[t]].

Proof. By [3, Theorem 3.5], the form Qa has class number one, so a poly-
nomial f ∈ A is represented by Qa over A if and only if it is represented locally
everywhere. At primes p not dividing disc(Qa) = δt(t + a2), Qa is unimodu-
lar and isotropic, hence represents everything. At p = (t + a2), since t ≡ −a2

(mod p), Qa is equivalent to X2 − Y 2 − δ(t + a2)Z2 which also represents
everything since X2 − Y 2 already does so. Thus, the only condition is at the
prime p = (t) (the condition at ∞ is automatic by reciprocity). �

Corollary 5.2. For each a ∈ F×
q , let Qa be as in Lemma 5.1. The repre-

sentation set V (Qa) does not depend upon the choice of a.

Proof. By virtue of Lemma 5.1, it is enough to notice that Qa is equivalent
to X2 + tY 2 − δZ2 over Fq[[t]], which is independent of a. �

Corollary 5.3. Assume q ≥ 5 and choose a, b ∈ F×
q such that a2 �= b2.

Then V (Qa) = V (Qb) but disc(Qa) �= disc(Qb).

Proof. Clear by Corollary 5.2. �

6. Primitive binary forms of class number one

In this section, we characterize primitive binary quadratic forms over A =
Fq[t] of class number one. Although it should be possible, in principle, to
deduce the results below from general formulas such as the ones in [9], we
prefer to give here a direct argument.

We begin by a statement on orders in quadratic extensions of K = Fq(t).

Corollary 6.1. Let D = f2D0 ∈ A, where D0 is a square-free polynomial
of either odd degree or of even degree and nonsquare leading coefficient, and
f ∈ A is a monic polynomial. Let B = A[

√
D]. Assume that Pic(B) is an

Abelian 2-group and has at most one cyclic component of order 4 and all
other components of order 2. Then

1 However, the representation numbers do determine the equivalence class of such forms

as showed in [1], [2].
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(1) If degD0 > 0 and q > 13, then D is square-free (i.e., f = 1) and degD ≤
2.

(2) If degD0 = 0 and q > 5, then degD ≤ 2.

Proof. Let O = A[
√

D0]. Notice that O is the maximal A-order in the field
E = K(

√
D0) and that f is the conductor of B in O.

There is an exact sequence

(6.1) 1 −→ O×

B× −→ (O/fO)×

(A/fA)× −→ Pic(B) −→ Pic(O) −→ 1.

1. Assume degD0 > 0. Then O× = B× = F×
q and we get a shorter exact

sequence

(6.2) 1 −→ (O/fO)×

(A/fA)× −→ Pic(B) −→ Pic(O) −→ 1.

Let h be the radical of f (i.e., the product of all irreducible monic divisors
of f ). The subgroup (1 + hO/fO)/(1 + hA/fA) of (O/fO)×/(A/fA)× has
order qdeg f −deg h and is a 2-group by the exact sequence (6.2), so we must
have f = h, i.e., f is square-free.

Let π be an irreducible factor of f of degree d. Then (O/πO)×/(A/πA)×

is a direct factor of (O/fO)×/(A/fA)× and is cyclic of order qd − 1 or qd + 1
(according to whether π is split or inert in E) or is isomorphic to the additive
group Fqd when π is ramified. Clearly, the latter case is impossible since q

is odd and in the first two cases we must have qd ± 1 = 2 or 4, which is also
impossible when q > 5. Hence, f = 1, D is square-free and B = O.

Let r be the number of irreducible factors of D. It is well known that the
2-rank of Pic(O) is r − 1. Hence, under our present hypotheses, |Pic(O)| ≤ 2r.
The order of Pic(O) is essentially the class number hE of E; more precisely
|Pic(O)| = hE if degD is odd and |Pic(O)| = 2hE if degD is even [10, Propo-
sition 14.7].

Using the lower bound for hE given by the Riemann Hypothesis [10, Propo-
sition 5.11], we get(√

q − 1
)deg D−1 ≤ 2r if deg is odd;(√

q − 1
)deg D−2 ≤ 2r−1 if degD is even.

When degD ≥ 3, using the above inequalities and the obvious fact that r ≤
degD, we get easily the inequality log2(

√
q − 1) ≤ 3/2, which is impossible if

q > 13.
2. Assume degD0 = 0 and deg f > 0. Then O = Fq2 [t], so Pic(O) = {1},

O× = F×
q2 and B× = F×

q . The exact sequence (6.1) becomes

(6.3) 1 −→
F×

q2

F×
q

−→ (O/fO)×

(A/fA)× −→ Pic(B) −→ 1.
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Let p be the characteristic of Fq . Taking p-parts in the sequence above
(i.e., tensoring by Zp), we get [(O/fO)×/((A/fA)×)]p = 0. Exactly the same
argument as in Case 1 shows that f must be square-free. Hence,

(6.4)
(O/fO)×

(A/fA)× =
∏
π|f

(O/πO)×

(A/πA)× ,

where π runs over all irreducible monic divisors of f .
Notice that the factors on the right-hand side of (6.4) are cyclic of order

qdegπ + 1 if degπ is odd, and qdeg π − 1 if degπ is even.
Let π be an irreducible factor of f of even degree, say degπ = 2m, then by

the exact sequence (6.3), (q2m − 1)/(q + 1) must be a 2-power ≤ 4. This is
possible only when m = 1 and q = 3 or q = 5. Similarly, if degπ is odd, say
degπ = 2m + 1, then (q2m+1 + 1)/(q + 1) must be a 2-power, but it is always
an odd number, so the only possibility is m = 0, i.e. degπ = 1. Thus, when
q > 5, f is a product of linear factors.

If q+1 is divisible by an odd prime �, then, since Pic(B) is a 2-group, taking
�-parts in (6.3) shows that there must be only one factor in the decomposition
(6.4), i.e., f is irreducible (necessarily linear as shown above).

The only case left is when q + 1 is a 2-power. Notice that the factors on
the right-hand side of (6.4) are all cyclic of order q + 1, since all the π’s are
linear. By the hypothesis on Pic(B), if there is more than one factor in (6.4),
then q + 1 is a 2-power ≤ 4. This is impossible if q > 3. Thus, also in this
case, f has only one irreducible, necessarily linear, factor. �

Let (V,Q) be a quadratic space over the field K = Fq(t). Let L ⊂ V be
an A-lattice and let Gen(L) be the set of lattices of V in the genus of L.
The orthogonal group O(V,Q) acts on Gen(L,Q) and the number of orbits
(which is well known to be finite) is called the class number of L and will be
denoted by h(L,Q), or simply h(Q) when the underlying lattice is obvious.
The number of orbits of the action of the subgroup SO(V,Q) on Gen(L,Q)
will be denoted by h+(L,Q). Since SO(V,Q) has index 2 in O(V,Q), we have
h+(L,Q) ≤ 2h(L,Q).

If (L,Q) is primitive of rank 2, then h+(L,Q) depends only on D = disc(L,
Q). Indeed, let GD be the set of classes of primitive binary quadratic forms
of discriminant D up to orientation-preserving (i.e., of determinant 1) linear
transformation. This set is a group for Gaussian composition [8] and there is
a natural exact sequence relating GD and Pic(B), where B = A[

√
D], (see [8,

Section 6]), which in our situation is

(6.5) 1 −→ F×
q /F×

q
2 −→ GD −→ Pic(B) → 1.

The principal genus consists of forms in the genus of the norm form X2 − DY 2

of B, and their classes in GD form a subgroup G0
D. The different genera are

cosets for this subgroup and hence they have all the same number of classes,
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i.e. h+(L,Q) = |G0
D | for all primitive quadratic lattices (L,Q) of discriminant

D. It is also well known (and easy to see) that GD/G0
D is 2-elementary.

Theorem 6.2. Let Q be a definite primitive binary quadratic form over A,
where q > 13. If h(Q) = 1, then degdisc(Q) ≤ 2.

Proof. If h(Q) = 1, then h+(Q) = |G0
D | ≤ 2 and by the remarks above GD

is an Abelian 2-group with at most one cyclic component of order 4 and all
others of order 2. So is Pic(B) by the exact sequence (6.5), and we conclude
by Proposition 6.1. �

Remark. Theorem 6.2 is incorrect without the assumption q > 13. Here
is a counterexample for q = 13.

Let D = t(t2 − 1) and let E be the elliptic curve over F13 given by the
equation s2 = D. Let B = A[

√
D]. Then Pic(B) = E(F13) ∼= Z/2Z ⊕ Z/4Z.

It is easy to see that the exact sequence (6.5) is split in this case, so G0
D =

2GD = 2E(F13) ∼= Z/2Z. Let Q0 be a form whose class [Q0] generates G0
D.

Then the genus of any form Q of discriminant D consists of the classes [Q]
and [Q′] = [Q] + [Q0] in GD . If [Q] has order 4, then [Q′] = −[Q] i.e., Q and
Q′ are (improperly) equivalent, and thus h(Q) = 1. An explicit example is
Q = (t − 5,4, −(t2 + 5t + 11)), which corresponds to the point P = (5,4) of
order 4 in E(F13).

Theorem 6.2 gives a converse of a result of Chan–Daniels [3]. We summarize
this in the following statement.

Corollary 6.3. Assume q > 13. A binary definite quadratic form Q over
A of discriminant D has class number one if and only if it satisfies one of the
following conditions:

(1) degD ≤ 1.
(2) degD = 2 and μ1(Q) = 1.
(3) degD = 2, μ1(Q) = 0 and D is reducible.

Proof. The “if” part follows from [3, Lemma 3.7] and the ensuing remark.
The “only if” part is a consequence of Theorem 6.2. �
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