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THE BEHAVIOUR IN SHORT INTERVALS OF
EXPONENTIAL SUMS OVER SIFTED INTEGERS

H. MAIER AND A. SANKARANARAYANAN

Abstract. We consider the Hardy–Littlewood approach to the
Twin prime problem, which uses a certain exponential sum over

prime numbers. We propose a conjecture on the behaviour of

the exponential sum in short intervals of the argument. We first

show that this conjecture implies the Twin prime conjecture. We

then prove that an analogous conjecture is true for exponential
sums over integers without small prime factors.

1. Introduction

Some of the famous unsolved problems in Analytic Number Theory are
the Goldbach Problem and the Twin prime problem. The ternary Goldbach
problem (see [3]), namely the representation of an odd integer N as a sum of
three primes:

N = p1 + p2 + p3(1.1)

has been treated successfully by Vinogradov. The method of approach (see [1])
is based on the exponential sum S(α) =

∑
p≤X e(pα) (where in this case choose

X = N ). The number r(N) of representations of N in the form (1.1) is given
by

r(N) =
∫ 1

0

S3(α)e(−Nα)dα.(1.2)

The evaluation of the integral (1.2) is done by evaluating the contribution
from the “major arcs,”

M =
⋃

q≤(logX)C

⋃
a;(a,q)=1

(
a

q
− δ0,

a

q
+ δ0

)
(1.3)
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(with δ0 = X−1(logX)A) asymptotically, whereas for the reminder of the unit
interval, one uses upper bounds for the exponential sum.

This approach has not been successful, so far, for the binary Goldbach
problem and the Twin prime problem. The number

π2(X) := #{p ≤ X − 2 : p and p + 2 both are primes}

is given by the integral:

π2(X) =
∫ 1

0

|S(α)|2e(−2α)dα.

From (1.3), we arrive at

S

(
a

q
+ η

)
� X

logX

μ(q)
φ(q)

∑
n≤X

e(nη)

and ∫
M

|S(α)|2e(−2α)dα =
X

(logX)2
ρ
(
1 + o(1)

)
,(1.4)

where ρ = 2
∏
p>2

(
1 − (p − 1)−2

)
∼ 1.320 · · · ,

with the “singular series”

ρ =
∞∑

q=1

μ2(q)
φ2(q)

cq(−2),

where cq being the Ramanujan sum

cq(m) =
∑

amod q,

(a,q)=1

e

(
am

q

)
.

If one had more detailed information on the behaviour of S(α) outside the
major arcs, this information together with (1.4) might imply the Twin prime
conjecture.

We expect the following statement to hold.

Short-interval Conjecture. There exist positive constants A,B,C,
and D such that:∫

I∩Mc

|S(α)|2 dα = C|I| X

logX

(
1 + O((logX)−A)

)
(1.5)

for each subinterval I ⊂ (0,1) of length |I| ≥ (logX)−B if we choose δ0 =
X−1(logX)D in (1.3).
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Remark 1. We first claim that (1.4) and (1.5) imply the Twin prime
conjecture. This can be proved as follows. From (1.4), we get

π2(X) =
∫

M

|S(α)|2e(−2α)dα +
∫

Mc

|S(α)|2e(−2α)dα(1.6)

=
X

(logX)2
ρ
(
1 + o(1)

)
+

∫
Mc

|S(α)|2e(−2α)dα.

We partition the interval [0,1] into [12 (logX)B ] abutting subintervals Il =
[al, bl] of equal length. We then have:∫

Il ∩Mc

|S(α)|2e(−2α)dα(1.7)

= e(−2al)
∫

Il ∩Mc

|S(α)|2 dα

+ O

(∫
Il ∩Mc

|S(α)|2|e(−2α) − e(−2al)| dα

)
.

For α ∈ Il, we have:

|e(−2α) − e(−2al)| � (logX)−B

and thus from the conjectural estimate (1.5)∫
Il ∩Mc

|S(α)|2|e(−2α) − e(−2al)| dα � |Il|X(logX)−(B+1).

From (1.7), summing over l and using the conjectural estimate (1.5), we obtain∫
Mc

|S(α)|2e(−2α)dα = |Il|
(∑

l

e(−2al)
)

C
X

logX
(1.8)

+ O(X(logX)−A−1).

We note that all the |Il| are equal, and hence independent of l. If we let
L = [ (logX)B

2 ], then al = l−1
L and the sum

∑
l e(−2al) is a complete geometric

sum. Therefore, we have∑
l

e(−2al) =
∑

lmodL

e

(
2 − 2l

L

)
= 0(1.9)

provided L ≥ 3.
From (1.6) to (1.9), we observe that

π2(X) =
X

(logX)2
ρ
(
1 + o(1)

)
+

∫
Mc

|S(α)|2e(−2α)dα(1.10)

=
X

(logX)2
ρ
(
1 + o(1)

)
+ O(X(logX)−A−1).

For example with A ≥ 2,B ≥ 2, the claim now follows.
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The purpose of this paper is to prove an analogue to (1.5) of the conjecture
which is obtained by replacing the prime numbers in the exponential sum by
integers without small prime factors. The precise result is stated in the next
section.

2. Notation, preliminaries and results

1. We write e(x) for e2πix.
2. ε, η and δ will denote arbitrarily small positive constants.
3. Let ‖x‖ denote the distance of x from the nearest integer, i.e., ‖x‖ =:

minn∈Z |x − n|.
4. Vinogradov’s notation f � g means that |f | < C|g| where C is a pos-

itive constant depending not on X and Y but at most on the functions
w1(X),w2(X) and the constants in our theorem.

5. The positive constants A,B,C, . . . need not be the same at each occur-
rence.

Definition. For 1 ≤ Y ≤ X , let

S(X,Y ) := {n ≤ X : p | n ⇒ p > Y },

and
S(X,Y,α) :=

∑
n∈S(X,Y )

e(nα).

For w0 > 0,Q > 0, we define the “set of Major arcs”:

M = M(w0,Q) =
⋃

q≤Q,amod q,

(a,q)=1

(
a

q
− w0,

a

q
+ w0

)
.

We shall prove the following theorem below.

Theorem. Let ε > 0 be arbitrarily small, A and C are arbitrarily large
positive numbers. Let w1,w2 : [1, ∞) → R

+ be any two functions with w1(X),
w2(X) → 0 for X → ∞,

(log logX)
5
3+ε ≤ logY ≤ w1(X)

logX

log logX
.

Let w0 = X−1(logX)A. Let V be determined by

(logY )(log logX) = (logV ) × w2(X)

and assume that
Q � min(XV −4, (logX)C).

Then for any interval I ⊂ (0,1) with

|I| ≥ max
(
Q−1(logX)

C
2 , (logX)− A

2
)
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we have ∫
I∩Mc

|S(X,Y,α)|2 dα = C∗ |I| X

logX

(
1 + O((logX)−B)

)
with

B = min
(

C

2
− 4,

A

2
− 4

)
and C∗ = C∗(Q,X,Y ) is a suitable positive quantity (independent of the in-
terval I).

Plan of the proof. In Section 3, using sieving formula, we reduce the prob-
lem to the estimation of certain Basic integrals. In subsequent sections, we
estimate these basic integrals for various cases. In the last section, we estab-
lish a good positive lower bound for the quantity C∗ and thus complete the
proof of the theorem. �

3. The Sieve formula and the function Ed

We set

P (Y ) =
∏
p≤Y

p, Ed = Ed(X,α) =
∑

n≤X,

n≡0(modd)

e(nα).

By the Sieve formula, we have

S(X,Y,α) =
∑
n≤X

e(nα)
∑
d|n,

d|P (Y )

μ(d)

=
∑

d|P (Y )

μ(d)
∑

n≤X,

n≡0(modd)

e(nα)

=
∑

d|P (Y )

μ(d)Ed(X,α).

We thus obtain:∫
I∩Mc

|S(X,Y,α)|2 dα(3.1)

=
∑

d1|P (Y ),d2|P (Y )

μ(d1)μ(d2)
∫

I∩Mc

Ed1(X,α)Ed2(X,α)dα.

The expressions
∫
(d1,d2)

:=
∫

I∩Mc Ed1(X,α)Ed2(X,α)dα are called the basic
integrals. Crucial for their discussion are the sizes of d1, d2 as well as the size
of D := gcd(d1, d2).
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In the subsequent sections, we treat the following cases:

I. The small case: both d1, d2 are ≤ V and D ≤ Q.
II. The intermediate case: both d1, d2 are ≤ V and Q < D.

III. The very large case: X ≥ d1 > V or X ≥ d2 > V .

4. The basic integrals—small case

We set d1 = Dd′
1, d2 = Dd′

2 where D := gcd(d1, d2) and thus we have gcd(d′
1, d

′
2) =

1. We partition the interval I into

|I|D + O(1)(4.1)

subintervals of the form ID,l = [lD−1, (l +1)D−1] and possibly a first and last
interval of length < D−1 each.

We have for each subinterval ID,l:∫
ID,l ∩Mc

|EDd′
1
(X,α)| |EDd′

2
(X,α)| dα(4.2)

=
∫ l+1

D −w0

l
D +w0

|EDd′
1
(X,α)| |EDd′

2
(X,α)| dα

=
1
D

∫ 1−Dw0

Dw0

∣∣∣∣Ed′
1

(
X

D
,β

)∣∣∣∣
∣∣∣∣Ed′

2

(
X

D
,β

)∣∣∣∣dβ.

We note that ∣∣∣∣Ed

(
X

D
,β

)∣∣∣∣ � min
([

X

Dd

]
, ‖dβ‖ −1

)
.(4.3)

We set X̃ = X
D and consider the system of inequalities:

‖d′
1β‖ ≤

[
X̃

d′
1

]−1

if Δ1 ≤
[

X̃

d′
1

]−1

(4.4)

and

Δ1 < ‖d′
1β‖ ≤ 2Δ1, Δ2 < ‖d′

2β‖ ≤ 2Δ2 if Δ1 >

[
X̃

d′
1

]−1

.(4.5)

We define the set,

ρ(Δ1,Δ2) = {β ∈ (0,1) : (4.4) or (4.5) hold}.

In the sequel, we write (Dw0,1 − Dw0) as a union of sets ρ(Δ1,Δ2) (there
could be some overlaps of these sets, however as far as upper bounds are
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concerned it does not matter). We may also assume that

Δ1(d′
1)

−1 ≤ Δ2(d′
2)

−1,

(
k − 1

2

)
≤ βd′

1 ≤
(

k +
1
2

)
,(4.6) (

j − 1
2

)
≤ βd′

2 ≤
(

j +
1
2

)
.

If (4.6) is satisfied for the pair (k, j) = (0,0), then β ∈ J := [0, 1
2 min((d′

1)
−1,

(d′
2)

−1)]. We have by (4.3),∫
J,β≥Dw0

|Ed′
1
(X̃, β)| |Ed′

2
(X̃, β)| dβ � D−1(d′

1d
′
2)

−1w−1
0 .(4.7)

The same estimate is satisfied in the case of the pair (k, j) = (d′
1, d

′
2) for which

we have β ∈ [1 − 1
2 min((d′

1)
−1, (d′

2)
−1),1]. In the sequel, we estimate∫

β∈(0,1),

‖β‖ ≥ 1
2 (d′

1d′
2)

−1

|Ed′
1
(X̃, β)| |Ed′

2
(X̃, β)| dβ

and we may assume that (k, j) = (0,0), (d′
1, d

′
2).

Then the distance between any two distinct of the six points (k − 1)(d′
1)

−1,
k(d′

1)
−1, (k + 1)(d′

1)
−1, (j − 1)(d′

2)
−1, j(d′

2)
−1, (j + 1)(d′

2)
−1 is at least

|k(d′
1)

−1 − j(d′
2)

−1| =
|kd′

2 − jd′
1|

d′
1d

′
2

≥ 1
d′
1d

′
2

.(4.8)

Thus, it follows that

Δ2(d′
2)

−1 ≥ 1
2
(d′

1d
′
2)

−1.(4.9)

Thus, {β ∈ (0,1) : ‖β‖ ≥ 1
2 min((d′

1)
−1, (d′

2)
−1)} is a union of the sets ρ(Δ1,

Δ2), where

Δ1 =
[

X̃

d′
1

]−1

, or Δ1 = 2r1−1

[
X̃

d′
1

]−1

,(4.10)

Δ2 = 2r2−2(d′
1d

′
2)

−1; r1, r2 ∈ N.

For given s, the equation

k(d′
1)

−1 − j(d′
2)

−1 = s(d′
1d

′
2)

−1

has at most one solution (k, j). Thus, for given r2, there are � 2r2 pairs (k, j)
such that for Δ2 = 2r2(d′

1d
′
2)

−1, we have:

Δ2 ≤ |k(d′
1)

−1 − j(d′
2)

−1| ≤ 2Δ2.(4.11)

For β ∈ ρ(Δ1,Δ2) we must have:

|β − k(d′
1)

−1| ≤ 2Δ1(4.12)
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for a value k belonging to some of these pairs. Thus, we have

measρ(Δ1,Δ2) � 2r2Δ1.(4.13)

Since for β ∈ ρ(Δ1,Δ2), we have

|Ed′
1
(X̃, β)| ≤ Δ−1

1 , |Ed′
2
(X̃, β)| ≤ Δ−1

2(4.14)

we now obtain (with Δ2 = 2r2(d′
1d

′
2)

−1)∫
ρ(Δ1,Δ2)

|Ed′
1
(X̃, β)Ed′

2
(X̃, β)| dβ � (Δ−1

1 Δ−1
2 ) × (2r2Δ1) � d′

1d
′
2.(4.15)

Since there are � (logX)2 sets ρ(Δ1,Δ2), we get∫
β∈(0,1),

‖β‖ ≥ 1
2 (d′

1d′
2)

−1

|Ed′
1
(X̃, β)| |Ed′

2
(X̃, β)| dβ � d′

1 d′
2(logX)2.(4.16)

From (4.2), (4.7), and (4.16), we get∫
ID,l ∩Mc

|EDd′
1
(X,α)EDd′

2
(X,α)| dα

� d′
1d

′
2

D
(logX)2 + D−2(d′

1d
′
2)

−1w−1
0 .

This estimate also holds for the first and last subinterval of I . From (4.1), we
get ∫

(d1,d2)

� d1d2(logX)2 + X(logX)−A(d′
1d

′
2)

−1(4.17)

+ |I|X(logX)−AD−1(d′
1d

′
2)

−1.

We observe that (4.17) contributes to (3.1) an error which is in absolute value

� (logX)2
(∑

d≤V

d

)2

+ X(logX)−A

(∑
d≤V

1
d

)2

(4.18)

+ |I|X(logX)−A

(∑
d≤V

1
d

)3

� V 4(logX)2 + X(logX)2−A + |I|X(logX)3−A

� XQ−1(logX)2 + X(logX)2−A + |I|X(logX)3−A,

since Q � X
V 4 .
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5. The basic integrals—the intermediate case

As in Section 4, we set d1 = Dd′
1, d2 = Dd′

2 where D := gcd(d1, d2), and
thus we have gcd(d′

1, d
′
2) = 1. We partition the interval I into

|I|D + O(1)(5.1)

subintervals of the form ID,l = [lD−1, (l +1)D−1] and possibly a first and last
interval of length < D−1 each.

We have ∫
ID,l

EDd′
1
(X,α)EDd′

2
(X,α)dα(5.2)

=
1
D

∫ 1

0

Ed′
1

(
X

D
,β

)
Ed′

2

(
X

D
,β

)
dβ

=
1
D

∣∣∣∣
{

n ≤ X

D
: n ≡ 0(modd′

1), n ≡ 0(modd′
2)

}∣∣∣∣
=

1
D

[
X

Dd′
1d

′
2

]
.

Let I
(1)
D be the first subinterval (if it exists). With X̃ = X

D we have:

∫
I
(1)
D

|EDd′
1
(X,α)EDd′

2
(X,α)| dα � 1

D

∫ 1
2

0

|Ed′
1
(X̃, β)Ed′

2
(X̃, β)| dβ.

Again applying (4.3), we have:

∫ X̃−1

0

|Ed′
1
(X̃, β)Ed′

2
(X̃, β)| dβ � X̃

d′
1d

′
2

,

and ∫ 1
2 (d′

1d′
2)

−1

X̃−1
|Ed′

1
(X̃, β)Ed′

2
(X̃, β)| dβ � (d′

1d
′
2)

−1

∫ ∞

X̃−1
β−2 dβ � X̃

d′
1d

′
2

.

By (4.16), we have

∫ 1
2

1
2 (d′

1d′
2)

−1
|Ed′

1
(X̃, β)Ed′

2
(X̃, β)| dβ � d′

1d
′
2(logX)2.

Thus we get∫
I
(1)
D

|EDd′
1
(X,α)EDd′

2
(X,α)| dα � X

D2d′
1d

′
2

+
d′
1d

′
2

D
(logX)2.(5.3)
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The same estimate holds for the last subinterval too. From (5.1), (5.2), and
(5.3), we obtain∫

(d1,d2)

=
∫

I∩Mc

Ed1(X,α)Ed2(X,α)dα(5.4)

=
∫

I∩Mc

EDd′
1
(X,α)EDd′

2
(X,α)dα

=
(

|I|D + O(1)
)

×
(

X

D2d′
1d

′
2

+ O

(
1
D

))

+ O

(
X

D2d′
1d

′
2

)
+ O

(
d′
1d

′
2

D
(logX)2

)

= |I| X

Dd′
1d

′
2

+ O

(
X

D2d′
1d

′
2

)

+ O(|I|) + O

(
1
D

)
+ O(d1d2(logX)2)

= |I| XD

d1d2
+ +O

(
X

D2d′
1d

′
2

)
+ O(|I|)

+ O

(
1
D

)
+ O(d1d2(logX)2)

= |I| XD

d1d2
+ +O

(
X

D2d′
1d

′
2

)
+ O(d1d2(logX)2).

We note that (since d′
1 ≤ V,d′

2 ≤ V,D ≤ V )

X

D2d′
1d

′
2

≥ X

V 4
� 1;

X

D2d′
1d

′
2

≥ 1
D

X

V 3
� 1

D
.

We observe that (5.4) contributes to (3.1), the main term C∗ |I| X
log X with

C∗ = (logX)
∑

d1≤V,d1|P (Y );

d2≤V,d2|P (Y );

D=gcd(d1,d2)>Q

Dμ(d1)μ(d2)
d1d2

and an error which is in absolute value

� XQ−1(logX)2 + V 4(logX)2 � XQ−1(logX)2,

since Q � min(XV −4, (logX)C).

6. The basic integrals—the very large case

In this connection, we need several definitions and results related to smooth
numbers.
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Definition. For an integer n, we denote by P+(n) the largest prime factor
of n.

We call n, Y -smooth if P+(n) ≤ Y . Let Ψ(X,Y ) be the number of Y -
smooth integers ≤ X , i.e.,

Ψ(X,Y ) = #{n ≤ X : P+(n) ≤ Y }.

We shall need the following results.
Let u = log X

log Y . It is known from the result of Hildebrand (see [2]) that

Ψ(X,Y ) � X exp(−u logu) for u ≤ Y 1−ε with u → ∞, i.e. Y ≥ (logX)1+ε.

A result of Xuan (see [4]), which can be found in [5] as a Corollary A says
that:

Let ε > 0 be fixed, exp{(log logX)
5
3+ε} ≤ Y ≤ X . We write u = log X

log Y . Then
uniformly in X and Y , we have∑

d≤X

P+(d)≤Y

τ(d) = 2u+O( u
log u )Ψ(X,Y ) logY.

We first prove two lemmas below (which are necessary to deal this case).

Lemma 6.1. Let n be a Y -smooth integer, Y < n
1
8 . Then n has a Y -smooth

divisor d satisfying

n
1
4 Y −1 < d ≤ n

1
4 .(6.1)

Proof. Let d1 be the largest divisor of n with d1 ≤ n
1
4 . Let p be a prime

divisor of n such that p|( n
d1

). By definition, d1p > n
1
4 . Since p ≤ Y , we have

d1 > n
1
4 Y −1. This proves the lemma. �

Lemma 6.2. Let n be a positive integer, Z ≥ 100, and set Y :=
exp(Z−1 logn). Assume that

τ(n) ≥ exp(Z log 2).(6.2)

Then either: (i) n has a Y -smooth divisor d with

n
1
32 ≤ d ≤ n

1
4(6.3)

or (ii) we have the estimate

τ(n) ≤ 2Z+2

( ∑
t|n

t≤n1/4

1
)

.(6.4)

Proof. Let Ω(n) be the total number of prime divisors of n and let n =
p1p2 · · · pΩ(n) with p1 ≤ p2 ≤ · · · ≤ pΩ(n). Then, τ(n) ≤ 2Ω(n). From (6.2), it
follows that Ω(n) ≥ Z. Let Ω1 := Ω(n) − [Z] − 1. Then we have

pZ
Ω1

≤ pΩ1+1 · · · pΩ(n) ≤ n
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and thus

log pΩ1 ≤ logn

Z
= logY.

Therefore, d(n) := p1 · · · pΩ1 is Y -smooth. If d(n) ≥ n
1
4 , then by Lemma 6.1,

d(n) has a Y -smooth divisor d with(
d(n)

) 1
8 ≤ d ≤

(
d(n)

) 1
4

and hence we have (i) n
1
32 ≤ d ≤ n

1
4 .

Now, we assume that d(n) < n
1
4 . Let Ω2 be the largest integer such that

pΩ2 < pΩ1 (possibly Ω2 = 0) and Ω3 be the smallest integer such that pΩ3 > pΩ1

(Ω3 does not exist if pj = pΩ1 for all j > Ω2). Let κ be the exact power of pΩ1

such that pκ
Ω1

divides n. Let κ1 be chosen such that

p1 · · · pΩ2p
κ1
Ω1

≤ n
1
4 , but p1 · · · pΩ2p

κ1+1
Ω1

> n
1
4 .

We thus can write,
n =

∏
1

∏
2

∏
3

with∏
1

= p1 · · · pΩ2

(∏
1

= 1 if Ω2 = 0
)

;
∏
2

= pκ
Ω1

with κ ≥ κ1;

∏
3

= pΩ3 · · · pΩ(n).

(We note that
∏

3 = 1 if Ω3 does not exist.) Then we factor each divisor of
t|n as t = t1t2t3 with tj |

∏
j (j = 1,2,3). We have:

∑
t|n

t≤n1/4

1 ≥ τ

(∏
1

)
(κ1 + 1)(6.5)

and

τ(n) ≤ τ

(∏
1

)
(κ + 1)2[Z]+1−(κ−κ1).(6.6)

If κ = κ1, then (ii) follows immediately from (6.5) and (6.6). Now, if κ > κ1

(> 0), we have κ+1 = κ1 +1+(κ − κ1) ≤ 2(κ1 +1)(κ − κ1) ≤ 2(κ1 +1)2(κ−κ1).
Now, again (ii) follows from (6.5) and (6.6). �

We start with the representation of the characteristic function of I by a
Fourier-series. Let

χI(α) =

{
1 if α ∈ I,

0 otherwise.
(6.7)
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Then we have for all α ∈ (0,1) (except for the end points of I):

χI(α) =
∑
m

ame(mα)(6.8)

with

am =
∫

I

e(−mα)dα � min(|I|,m−1).(6.9)

We replace χI(α) by the approximation

χ
(1)
I (α) =

1√
π

X4

∫ ∞

− ∞
χI(α + u) exp(−X8u2)du.(6.10)

We have
1√
π

X4

∫ ∞

− ∞
exp(−X8u2)du = 1.(6.11)

First, we consider α ∈ (0,1), whose distance to any of the end points of I is
≥ X−3. Then χI(α) = χI(α + u) for |u| < X−3 and

|χI(α + u) − χI(α)| ≤ 1 (for all u).(6.12)

Therefore, we get∣∣χ(1)
I (α) − χI(α)

∣∣ =
∣∣∣∣ 1√

π
X4

∫ ∞

− ∞

(
χI(α + u) − χI(α)

)
exp(−X8u2)du

∣∣∣∣
≤ 1√

π
X4

∫
|u|≥X−3

exp(−X8u2)du

� exp
(

− 1
2
X2

)
.

For the other α, we have because of (6.11) and (6.12)∣∣χ(1)
I (α) − χI(α)

∣∣ ≤ 1.

Now, we have
χ

(1)
I (α) =

∑
m

a(1)
m e(mα)

with the Fourier coefficients

a(1)
m =

X4

√
π

∫ ∞

− ∞
e(−mα)

(∑
m

ame
(
m(α + u)

))
exp(−X8u2)du

= am
X4

√
π

∫ ∞

− ∞
e(mu) exp(−X8u2)du

= am exp(−π2m2X−8) (by substituting v = X4u).

We have

a(1)
m � min(|I|,m−1 exp(−π2m2 X−8)).(6.13)
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We set

χ
(2)
I (α) =

∑
|m|≤X5

a(1)
m e(mα).(6.14)

We have ∣∣χI(α) − χ
(2)
I (α)

∣∣ � X−3

except for α from neighbourhoods of length X−3 of the two end points of I .
For these α, |χI(α) − χ

(2)
I (α)| � 1. We obtain∫

(d1,d2)

=
∫ 1

0

χ
(2)
I (α)Ed1(X,α)Ed2(X,α)dα(6.15)

−
∫

I∩M

Ed1(X,α)Ed2(X,α)dα + O

(
X−1

d1d2

)
.

We have ∑
X≥d1>V,

P+(d1)≤Y

∑
d2≤X

∫
(d1,d2)

� |S1| + |S2| + O
(
X− 1

2
)

where

S1 =
∑

X≥d1>V,

P+(d1)≤Y

∑
d2≤X

∫ 1

0

χ
(2)
I (α)Ed1(X,α)Ed2(X,α)dα,

S2 =
∑

X≥d1>V,

P+(d1)≤Y

∑
d2≤X

∫
I∩M

Ed1(X,α)Ed2(X,α)dα.

By (6.14) and (6.15), we have

|S1| =
∣∣∣∣ ∑

|m|≤X5

a(1)
m

∑
(d1,d2,n1,n2)

X≥d1>V,P+(d1)≤Y

d2≤X,d1n1≤X,d2n2≤X

∫ 1

0

e
(
(m + d1n1 − d2n2)α

)
dα

∣∣∣∣(6.16)

=
∣∣∣∣ ∑

|m|≤X5

a(1)
m

∑
X≥d1>V

P+(d1)≤Y

∑
d2≤X

∑
n1,n2,

d2n2−d1n1=m
d1n1≤X,d2n2≤X

1
∣∣∣∣

≤
∑

|m|≤X5

∣∣a(1)
m

∣∣ ∑
X≥d1>V

P+(d1)≤Y

∑
n1≤[X/d1]

τ ∗(m + d1n1).
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Here τ ∗ denotes the function

τ ∗(w) =

{
τ(w) i.e. the number of divisors of w if w > 0,

0 if w ≤ 0.

We now estimate the sum in (6.16). We break it up into � (logX)2 subsums
of the form

S3 :=
∑

M<|m|≤M ′

∣∣a(1)
m

∣∣ ∑
D<d1<D′

P+(d1)≤Y

∑
n1≤[X/d1]

τ ∗(m + d1n1)(6.17)

≤
(

max
M<m≤2M

|am|
)( ∑

M<|m|≤2M

∑
D<d1<D′

P+(d1)≤Y

∑
n1≤[X/d1]

τ ∗(m + d1n1)
)

≤
(

max
M<m≤2M

|am|
)(∑

(M,D)
)

(say).

Case (i). M ≤ X .
We have m + d1n1 ≤ 2X . We partition the sum

∑
(M,D) into subsums

according to the value of τ ∗(m + d1n1). For μ ∈ {0} ∪ N, we set:

Zμ := 2μ logV

logY
; Yμ := exp((Zμ)−1(log(2X)))(6.18)

and define

∑
0

=
(0)∑

(n1,d1,m)

τ ∗(m + d1n1),(6.19)

where we sum over all triplets (n1, d1,m) with

τ ∗(m + d1n1) ≤ exp(Z0), M < |m| ≤ 2M,(6.20)
D < d1 ≤ 2D, P+(d1) ≤ Y

and for μ ≥ 1,

∑
μ

=
(μ)∑

(n1,d1,m)

τ ∗(m + d1n1),(6.21)

where we sum over all triplets (n1, d1,m) with

exp(Zμ) < τ ∗(m + d1n1) ≤ exp(2Zμ).(6.22)

For μ ≥ 1, we apply Lemma 6.2 with Z = Zμ. At least one of the following
two situations must occur:

(i) m + d1n1 has a Yμ-smooth divisor d with X
1
32 ≤ d ≤ 2X

1
4 .

(ii) τ ∗(m + d1n1) ≤ 2Zμ+2(
∑

t|(m+d1n1),t≤2X
1
4

1).
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We have

∑
(M,D) ≤

∑
0

+
∞∑

μ=1

∑
μ,1

+
∑
(2)

,(6.23)

where ∑
μ,1

=
∑

(n1,d1,m)

1(6.24)

and here we sum over all triplets with

M < m ≤ 2M, D < d1 ≤ 2D, P+(d1) ≤ Y,

exp(Zμ) < τ ∗(m + d1n1) ≤ exp(Zμ+1),

m + d1n1 has a Yμ-smooth divisor s satisfying

X
1
32 ≤ s ≤ 2X

1
4 .

In
∑

(2), we sum over all triplets where the condition (ii) is satisfied with
μ = 0.

Estimation of
∑

0:
To estimate

∑
0, we use the result of [2] and partial summation. Thus we

get: ∑
0

� exp(Z0)
∑

M<|m|≤2M

∑
D<d1≤2D

P+(d1)≤Y

∑
n1≤[X/d1]

1

� XM exp
(

logV

logY

) ∑
D<d1≤2D

P+(d1)≤Y

1
d1

� XM exp
(

logV

logY
− logV

logY
log

(
logV

logY

))
.

Estimation of
∑

μ,1:
We have:∑

μ,1

� exp(Zμ+1)(6.25)

×
∑

M<|m|≤2M

∑
D<d1≤2D,

P+(d1)≤Y

∑
X1/32<s≤2X1/4,

P+(s)≤Yμ

∑
n1d1≤X,

n1d1≡ −m(mods)

1.

Let g = gcd(d1, s). Then the congruence d1n1 ≡ −m(mod s) is equivalent to
d1
g n1 ≡ − m

g (mod s
g ). For given d1, g,m, the integer n1 is uniquely determined
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mod s
g . Thus if we write s = gs′, d1 = gd′

1, then the sum in (6.25) is bounded
by ∑

g≤X1/4

P+(g)≤Yμ

1
g

∑
M<|m|≤2M

m≡0(modg)

∑
X1/32g−1≤s′ ≤2X1/4g−1

P+(s′)≤Yμ

∑
Dg−1≤d′

1≤2Dg−1

P+(d′
1)≤Yμ

X

s′d′
1

(6.26)

:=
∑

(μ,M,D) (say).

We break up
∑

(μ,M,D) into two subsums:∑
(μ,M,D) =

∑
1

(μ,M,D) +
∑
2

(μ,M,D),(6.27)

where in
∑

1(μ,M,D), the summation is over all g with 1 ≤ g ≤ X
1
64 and

in
∑

2(μ,M,D) over those g with X
1
64 ≤ g ≤ 2X

1
4 . For the estimate of∑

1(μ,M,D), we write again d1 = gd′
1 and obtain∑

1

(μ,M,D) � X
∑

M<|m|≤2M

∑
X1/64≤s′ ≤X1/4

P+(s′)≤Yμ

1
s′

∑
D<d1≤2D

P+(d1)≤Y

τ(d1)
d1

.(6.28)

For the estimate of the inner sum in (6.28), we use the result of Xuan men-
tioned before and obtain:∑

d≤X

P+(d)≤Y

τ(d) = 2u+O( u
log u )Ψ(X,Y ) logY(6.29)

� X(logX) exp
(

− logX

logY
log

(
logX

logY

))
.

From (6.28) and (6.29) we get∑
1

(μ,M,D) � XM(logX)2 exp
(

− 2μ

64
logX

logZ0
log

(
logX

logZ0

))
(6.30)

× exp
(

− 1
4

logV

logY
log

(
logV

logY

))
.

The sum
∑

2(μ,M,D) appears only for g ≥ X
1
64 . We obtain:∑

2

(μ,M,D)(6.31)

� X
∑

X1/64≤g≤2X1/4

∑
M<|m|≤2M

m≡0(modg)

∑
X1/64≤s′ ≤X1/4

1
s′

∑
D<d1≤2D

P+(d1)≤Y

τ(d1)
d1

� XM(logX)3 exp
(

− 1
64

logX

logY
log

(
logX

logY

))
.
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Thus, in total we obtain:∑
μ,1

� XM(logX)3 exp
(

2μ+2(log 2)
logV

logY

)
(6.32)

× exp
(

− 2μ

64
logX

logZ0
log

(
logX

logZ0

))

× exp
(

− 1
4

logV

logY
log

(
logV

logY

))
.

We now estimate
∑

(2). We have∑
(2)

� X2Z0+2
∑

M<|m|≤2M

∑
D<d1≤2D

P+(d1)≤Y

∑
n1d1≤X

∑
t|(m+n1d1)

t≤2X1/4

1(6.33)

� XM2Z0+2
∑

D<d1≤2D

P+(d1)≤Y

∑
t≤2X1/4

∑
n1d1≤X

n1d1≡ −m(mod t)

1.

Writing t = gt′, d1 = gd′
1 and reasoning as above, we get:∑

(2)

� XM2Z0+2
∑

D<d1≤2D

P+(d1)≤Y

∑
1≤g≤2X1/4

∑
1≤t≤2X1/4

1
gd1t

(6.34)

� XM2Z0+2(logX)3 exp
(

− 1
4

logV

logY
log

(
logV

logY

))

� XM exp
(

− 1
8

logV

logY
log

(
logV

logY

))
.

From (6.23), (6.32), and (6.34), we obtain

∑
(M,D) � XM exp

(
− 1

8
logV

logY
log

(
logV

logY

))
.

Case (ii). M > X .
For the sum

∑
(M,D) in (6.17), by Lemma 6.1, we have the bound∑

(M,D) �
∑

t≤4M

∑
D1/4Y −1<d1≤2D1/4

P+(d1)≤Y

∑
n1≤X/d1

∑
M<|m|≤2M

m≡ −d1n1(mod t)

1

� XM(logX)2
∑

D1/4Y −1<d1≤2D1/4

P+(d1)≤Y

1
d1

� XM(logX)2 exp
(

− 1
4

logV

logY
log

(
logV

logY

))
.



BEHAVIOUR IN SHORT INTERVALS 129

We return to the sum in (6.16). We observe that |a(1)
m | � |I| for |m| ≤ |I| −1

and |a(1)
m | � |m| −1 for |m| ≥ |I| −1. From (6.17), we obtain,

S1 � X exp
(

− 1
16

logV

logY
log

(
logV

logY

))
.

We now treat S2. We note that

meas(M) � Q2X−1(logX)A

and thus we have

S2 �
∑

X≥d1>V

P+(d1)≤Y

∑
d2≤X

∫
I∩M

|Ed1(X,α)Ed2(X,α)| dα

� XQ2(logX)A
∑

X≥d1>V

P+(d1)≤Y

∑
d2≤X

1
d1d2

� X exp
(

− 1
2

logV

logY
log

(
logV

logY

))
,

by the result of [2] mentioned earlier. Thus we finally get

∑
X≥d1>V

P+(d1)≤Y

∑
d2≤X

∫
(d1,d2)

� X exp
(

− 1
16

logV

logY
log

(
logV

logY

))
.(6.35)

The theorem now follows from (3.1), (4.18), (5.4) and (6.35) provided we
establish a good positive lower bound for the quantity C∗ (this is done in the
next section).

7. The size of C∗

We have

C∗ = (logX)
∑

d1≤V,d1|P (Y )

d2≤V,d2|P (Y )

D=gcd(d1,d2)>Q

Dμ(d1)μ(d2)
d1d2

.(7.1)

We write d1 = Dd′
1, d2 = Dd′

2 and obtain

C∗ = (logX)
∑

D|P (Y )

Q<D≤V

1
D

∑
d′
1≤ V

D ,d′
1| P (Y )

D

d′
2≤ V

D ,d′
2| P (Y )

D

μ(d′
1)μ(d′

2)
d′
1d

′
2

∑
t| gcd(d′

1,d′
2)

μ(t).(7.2)
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We set d′
1 = d′ ′

1 t, d′
2 = d′ ′

2 t and obtain

C∗ = (logX)
∑

D|P (Y )

Q<D≤V

1
D

∑
t| P (Y )

D ,

t≤V D−1

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

.(7.3)

We split the D-sum into

∑
D|P (Y )

Q<D≤V

1
D

{· · · } =
∑

D|P (Y )

Q<D≤V 1/2

1
D

{· · · } +
∑

D|P (Y )

V 1/2<D≤V

1
D

{ · · · }(7.4)

=
∑

I

+
∑
II

(say).

Again, we split
∑

I into

∑
I

=
∑

D|P (Y )

Q<D≤V 1/2

1
D

∑
t| P (Y )

D ,

t≤V D−1

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

(7.5)

=
∑

D|P (Y )

Q<D≤V 1/2

1
D

∑
t| P (Y )

D ,

t≤V 1/4

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

+
∑

D|P (Y )

Q<D≤V 1/2

1
D

∑
t| P (Y )

D ,

V 1/4<t≤V D−1

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

=
∑
I,1

+
∑
I,2

(say).

We have

∑
I,1

=
∑

D|P (Y )

Q<D≤V 1/2

1
D

∑
t| P (Y )

D ,

t≤V 1/4

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

.(7.6)

From the result of Hildebrand [2] mentioned earlier, we have∣∣∣∣ ∑
d′ ′ | P (Y )

(Dt) ,

d′ ′>V (Dt)−1

μ(d′ ′)
d′ ′

∣∣∣∣ ≤
∑

d′ ′ |P (Y ),

d′ ′>V 1/4

1
d′ ′ � exp

(
− 1

8
logV

logY
log

(
logV

logY

))
.(7.7)
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Therefore, for the t-sum in (7.6), we have

St :=
∑

t| P (Y )
D ,

t≤V 1/4

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

(7.8)

=
∑

t| P (Y )
D ,

t≤V 1/4

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

μ(d′ ′)
d′ ′ + O

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′>V (Dt)−1

μ(d′ ′)
d′ ′

))2

=
∑

t| P (Y )
D ,

t≤V 1/4

μ(t)
t2

( ∏
p≤Y,

p�(Dt)

(
1 − 1

p

)

+ O

(
exp

(
− 1

8
logV

logY
log

(
logV

logY

))))2

.

We thus have

∑
I,1

=
∑

D|P (Y )

Q<D≤V 1/2

1
D

∑
t| P (Y )

D ,

t≤V 1/4

μ(t)
t2

(( ∏
p≤Y,

p�(Dt)

(
1 − 1

p

))2

(7.9)

+ O

(
exp

(
− 1

8
logV

logY
log

(
logV

logY

))))

=
∑

D|P (Y )

Q<D≤V 1/2

1
D

∑
t| P (Y )

D

μ(t)
t2

( ∏
p≤Y,

p�(Dt)

(
1 − 1

p

)2

+ O

(
exp

(
− 1

8
logV

logY
log

(
logV

logY

))))
+ O(V −1/4(logX))

=
∑

D|P (Y )

Q<D≤V 1/2

1
D

∏
p≤Y,

p�D

(
1 − 1

p2

)( ∏
p≤Y,

p�(Dt)

(
1 − 1

p

))2

+ O

(
exp

(
− 1

8
logV

logY
log

(
logV

logY

)))
+ O

(
V −1/4(logX)

)
.

Therefore, we have the lower bound

∑
I,1

�
log(Y

Q )

(logY )2
.(7.10)
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For
∑

I,2, we get the upper bound:

∑
I,2

=
∑

D|P (Y )

Q<D≤V 1/2

1
D

∑
t|P (Y )

t>V 1/4

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

(7.11)

� V −1/4(logX)3.

For
∑

II , we get the upper bound:

∑
II

=
∑

D|P (Y )

V 1/2<D≤V

1
D

∑
t| P (Y )

D

t≤V D−1

μ(t)
t2

( ∑
d′ ′ | P (Y )

(Dt)

d′ ′ ≤V (Dt)−1

μ(d′ ′)
d′ ′

)2

(7.12)

� (logX)2
∑

D|P (Y )

V 1/2<D≤V

1
D

� exp
(

− 1
4

logV

logY
log

(
logV

logY

))

by the result of Hildebrand [2]. From (7.10), (7.11), and (7.12), we obtain

C∗ � logX

(logY )2
.

This completes the proof of the theorem.
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