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CONFORMAL METRICS AND BOUNDARY ACCESSIBILITY

TOMI NIEMINEN

ABSTRACT. We study conformal metrics on the unit ball of Euc-
lidean space. We prove an extension of a theorem originally due
to Gerasch on the broadly accessibility of the boundary points
of a domain quasiconformally equivalent to a ball. We also show
that our result is close to optimal. Our abstract approach leads
to new results also for the boundary behavior of (quasi)conformal
mappings.

1. Introduction

We continue the study of conformal metrics on the unit ball B" of Euclidean
space. Thus, given a continuous density p: B"™ — R, , we define a conformal
metric d, by setting

length, () = [ p(a)/ds
2l
for a curve v in B", and

dp(w,y) = inflength,(v) for z,y € B",
B!

where the infimum is taken over all curves joining x and y in B™. We also
define a measure p, by setting

po(E) :/ p"dm, for a Borel set £ C B",
E

where m,, denotes the n-dimensional Lebesgue measure.
Further, we assume that the density p satisfies a Harnack inequality, i.e.,
there exists a constant A > 1 so that
1
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whenever z,y € B(z,3(1 — |z])) for some z € B". We also assume that the
density p satisfies a volume growth condition: there exists a constant B > 0
so that

wo(By(x,r)) < Br™  for all x € B™,r > 0.

Here, B,(z,r) denotes an open ball with center « and radius r in the met-
ric d,. The motivation for conformal metrics arises primarily from the theory
of (quasi)conformal mappings. Recall that the derivative |f'(z)| of a confor-
mal mapping f is a prime example of a density satisfying the above conditions,
see [2] for more information and examples.

In this paper, we study the accessibility of the boundary points £ € OB™ in
the d,-metric. Recall that a boundary point y of a domain 2 C R™ is called
broadly accessible, if there is a sequence of balls in {2, converging to y, so that
the center of each ball can be joined to y by an arc in 2 whose length is
only slightly larger than the radius of the ball. Gerasch [4] proved that for
almost every point £ € 9B? the radial limit f(¢) under a conformal mapping
f: B2 — f(B?) is a broadly accessible boundary point of the domain f(B?).
Martio and Nakki [10] then established the same result for quasiconformal
mappings f : B" — f(B™), n > 2. This result was further extended by Koskela
and Rohde [8, Theorem 4.1], who considered exceptional sets of smaller size.
The next theorem, which is a combination of Theorem 5.2 and Lemma 7.5
in [2], can be considered as a generalization of the results mentioned above to
the setting of conformal metrics.

THEOREM A ([2]). Let 0 < a<n—1. Then there exists a set E C OB"
with H*(E) =0 such that, for all £ € OB™ \ E, there is a sequence of points
(xx) — & (in the Euclidean sense) with
(1.1) fEBp(Z‘k,/\ngk)
for all k € N. Here, A=\ a,n) — oo as a — 0.

Here, we write 7, = p(2)(1 — |z]); recall that this quantity is comparable to
the p-distance of z to the boundary, see [2, Proposition 6.2]. We shall extend
Theorem A by further reducing the size of the exceptional set E.

THEOREM 1.1. Let s >1 and let

= esn( (1)),

Then there is a set E C OB™ with H¥(E) =0 such that, for all £ € OB™ \ E,
there is a sequence of points (xy) — & (in the Euclidean sense) so that

s—1
(1.2) £e B, <xk, Cry, (1og %) )

for all k eN. Here, C =C(A,n,s)>0. Moreover, the exponent s — 1 in (1.2)
is the best possible.
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As a corollary, we obtain the following result on the boundary behavior of
(quasi)conformal mappings. We denote by d(y) the Euclidean distance of a
point y € Q to the boundary 0f2.

COROLLARY 1.2. Let f: B" — Q CR" be a K-quasiconformal mapping.

Let s> 1 and let
1 1/s
o(t) —exp< (log t) >

Then there is a set E C OB™ with H?(E) =0 such that, for all £ € OB" \ E,
there is a sequence of points (yx) — f(&) in Q so that

(13) £(8) eB(yk,Cé(yk)(IOg @)::—1)

for all k e N. Here, C = C(K,n,s)>0. Moreover, the exponent s —1 in (1.3)
1s the best possible.

Note that if f: B2 — Q c R? in Corollary 1.2 is a conformal mapping, then
one can even use the internal metric in the image domain 2 instead of the
Euclidean metric, see [2, p. 639].

In the next theorem, we consider exceptional sets of even smaller scale.
Again, the result contains new information even in the classical setting of
(quasi)conformal mappings of the unit ball.

THEOREM 1.3. Let s >n —1 and let
1
o) = 1
(log §)*

Then there is a set E C OB™ with H?(E) =0 such that, for all £ € OB" \ E,
there is a sequence of points (xy) — & (in the FEuclidean sense) so that

(1.4) feBp(xk,Crfk)

s—(n—1
for all k €N. Here, C = C(A,n,s) >0 and § < =071

This result is optimal at least asymptotically: if s <n—1, then the assertion
of Theorem 1.3 can fail with any positive exponent 3. Moreover, in the case
n =2 and s > 1, the assertion of Theorem 1.3 can fail if 5> (s —1)/s. See
Section 3 for a more detailed discussion on the sharpness of Theorems 1.1
and 1.3.

In this paper, we use the generalized Hausdorff p-measure, denoted by H?,
to estimate the size of sets. Recall that this measure is defined by

H?(E) = lim (inf{z p(diam B;) : E C | J B;, diam(B;) < r})

where the dimension gauge function ¢ is required to be continuous and in-
creasing with ¢(0) =0. In particular, if ¢(t) =t* with some « > 0, then H?
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is the usual a-dimensional Hausdorff measure denoted also by H*. See [13]
or [3] for more information on the generalized Hausdorft measure.

Throughout the paper, we will assume that the gauge function ¢ is a dou-
bling weight function satisfying

1/(n-1)
(1.5) / % dt < co.
0

This condition turns out to be the critical one for the results of this paper.
This is related to the fact that if H?(F) =0 with a dimension gauge ¢ failing
to satisfy (1.5), then E has zero conformal (n-)capacity, see [1].

The Theorems 1.1 and 1.3 are consequences of our more general main
theorem formulated below (Theorem 1.5). For the proof of this theorem, we
will need the next lemma, which is perhaps of some interest on its own.

LEMMA 1.4. Let ¢ be a doubling weight function satisfying (1.5) and let ¢
be a function satisfying

n-1
(1.6) (/T wds) t= O((r)) asr—0.
Then there is a seot E C 0B™ with H?(E) =0 such that, for all £ € OB\ E,
there exists a sequence (tr) — 1 so that
(1.7) length,([tx€,€)) < (1 —tx)
for all k € N.

In the following, we shall assume in addition to (1.6), that for all sufficiently

small ¢ > 0, ¢(t) > t is an increasing and differentiable weight function, so that
foru=1"1,

4
(1.8) 5’((75) is increasing
and

1 1
1.9 log— <cl
(1.9) &) = B uin

with some constant ¢ > 0 depending only on . Note that these technical
assumptions are harmless in the sense that in all interesting situations we can
choose 9 so that these conditions are satisfied. See for example the proofs of
the Theorems 1.1 and 1.3 below. Our main result is the following.

THEOREM 1.5. Let ¢ be a doubling weight function satisfying (1.5). Let
¥ be a weight function satisfying (1.6) in addition to the technical assump-
tions (1.8) and (1.9), and denote u=1"1. Then there is a set E C OB"™ with
H?(E) =0 such that, for all £ € OB™ \ E, there exists a sequence of points
(xg) — & (in the Euclidean sense) so that

€€ B,(xr, CiA(re,))
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for all k € N. Here X is the inverse function of Cau(t)/u'(t) and C1,Cy >0
depend only on the given data A,n and .

Observe that Theorem 1.5 is sharp at least in the following sense: if the
dimension gauge ¢ fails to satisfy (1.5), then there may exist a set E C OB"
so that H¥(E) > 0 and length ,([0,&)) = oo for all { € E, see [6, Section 3] for
an example of such a situation in the plane. This implies by the Gehring—
Hayman theorem [2, Theorem 3.1] that the condition (1.5) is crucial for any
result of this kind to hold: if it fails, then the assertion of Theorem 1.5 can
fail with any (finite) function A. Consequently, the condition s >n — 1 in
Theorem 1.3 is also critical in this sense.

Let us also point out that if p(¢) =t* with 0 < o« <n —1, then we can take
A to be a linear function, and thus we recover Theorem A.

2. Proofs of the results

The results of this paper can not be obtained simply by refining the classical
proofs. Namely, by extending [2, Theorem 5.2] one can only obtain

(t€) =(%) ast 1,

for H?-a.e. & € OB™, which implies a considerably weaker integrability of p
on the radii than Lemma 1.4.

Instead, our proof of Lemma 1.4 follows the ideas of [6] and [12] with some
modifications. In the proof of Theorem 1.5, we will apply an efficient method
of counting Whitney cubes in an averaged sense. A similar technique was
used also in [11] as a tool for establishing a sharp dimension estimate for the
boundaries of generalized Holder domains and John domains.

Proof of Lemma 1.4. Let W be a Whitney decomposition of B™, i.e., W
is a collection of closed dyadic cubes @@ C B™ with pairwise disjoint interiors

such that
U o=
Qew

and that diam(Q) < dist(Q,9B") < 4diam(Q). See [14] for the existence of
such a decomposition. Further, for a point & € 0B™ and a number i € N
let W;(§) consist of all the cubes @ € W which intersect the radial segment
[(1—27%)¢,€). Finally, denote by W; the ith generation of Whitney cubes,
i.e. all the cubes Q € W with side length 27%.

Let us write E,, = {£ € dB" : length ([0,£)) = co}. Then cap,(Fx)=0
and, moreover, H¥(E,) = 0 because of the condition (1.5), see e.g., [12,
Remark 1.3].
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For j,k € N, define G; = {£ € 9B : length ([0,£)) < j} and

FF= U U{Q EWp(€) : diam(Q) <27%}

§€G;

and write Fj = F). Then Fj is open and diam,(F}) < oo by the Harnack in-
equality. Thus, also p,(F;) < co by the volume growth condition, and more-
over,

(2.1) Mp(Ff) —0 ask—oo.

Let E consist of all the points £ € 9B™ for which the assertion (1.7) fails
and write E; = ENG;. Thus,

Ej ={{€Gj: length ([t§,&)) > (1 —t) for all t > t¢},
where t¢ < 1 depends on the point . Then define for each k € N a set
EF ={¢€G;: length,([t£,£)) > (1 —t) for all t > 1 —27F},

Observe that Ef C B2 C E? C---, and E; = |J, Ej’C Also note that E =
EoU Uj E; and hence, by the subadditivity of the Hausdorff measure, it
suffices to show that H¥(E;) =0 for all j € N in order to prove the theorem.

Fix j € N. Let us assume towards a contradiction that H¥(E;) > 0. Then,
by the subadditivity of the Hausdorff measure, H¥ (E;“’) > 0 for some ko € N.
Thus H*"(E]’-“) > 0 for all k> kg since Ej]-CO C E]k Hence, by Frostman’s lemma
[9, Theorem 8.8], for each k > k¢ there exists a Radon measure v supported
in E¥ so that v(B(x,r)) < ¢(r) for all z € dB" and r > 0 and that

(2.2) v(EY) > CHE (EF) > CHE (EF) > 0.

Here H&(Ej’?) = inf{}_, p(diam(B;)) : EJk C UU; Bi} is the usual Hausdorff
p-content of E]k and the constant C' > 0 depends only on n.

Let us define u;j(z) = p(x)" for x € F; and u;(z) = 0 elsewhere. We denote
by S(Q) the “shadow” of a cube @ € W, i.e., S(Q) consists of all points
§ € OB™ for which the radius [0,) intersects the cube Q. Since length,,([(1 —
27F)¢,€)) > p(27F) for all £ € EF, we deduce by the inequalities of Harnack
and Holder that

(2.3) v(Ef)p(27F) < /aw length, ([(1 — 27 %)z, 2)) dy

S/aman Z diam,(Q) dyx

QEW (:L’)

< Y v(S(Q) diam,(Q)

{QeW;:i>k}



CONFORMAL METRICS AND BOUNDARY ACCESSIBILITY 31

<o Y ws)( Lo dm)l/n

{QeW;:i>k}

1/n
< co< Z U dm>

(Qew;:i>k} 7 @

(¥ ws@ye)

{QeW;:i>k}

n—1

< ot ()" ”(Z 2 v(s@))n”l) "

i>k QEW;

Here and throughout the proof, we denote by ¢; positive constants depending
at most on A,n and the doubling constant of .
On the other hand, we have that

(2.4) (;QXVZV/V(S(Q))TL)T
< <Z>k&% V(S(Q))T Q;Vi ) (5(@))

Moreover, since v(S(Q)) < p(diam(S(Q))) and diam(S(Q)) < C27 for each
Q@ € W; with some constant C' > 0 depending only on n, it follows that

v(S(Q)) < p(C27") < c2p(27)
for all cubes @ € W;, where the last inequality follows from the doubling
condition of ¢. By combining this with (2.3) and (2.4), we obtain

n—1

(2.5) V(Ef)l/nw@_k)<C3ﬂp(F]k)1/n<Zg0(2_i)nl1) n

i>k

27k 1 —
§)n—1 n
Sc4lup(F]k>1/n</0 SD( ) d8> )

We now conclude by the estimates (2.5), (2.1), and the assumption (1.6) that
V(Ef) tends to zero as k tends to infinity, but this is a contradiction with (2.2).
It follows that H¥(E;) =0 and thus also H?(E) =0 by the subadditivity of
the Hausdorff measure. (]

Proof of Theorem 1.5. Let W be a Whitney decomposition of B™. Let
E C OB™ be as in Lemma 1.4 and let £ € 9B™ \ E. For an integer i € N,
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denote by 7;(§) the line segment [a&,b€), where length,([a&,£)) =27""! and
length ,([b€,€)) = 27", Then define x;(§) =1 if there exist at most
2—iu/(2—i)
cru(27t)
Whitney cubes @ € W intersecting the line segment v;(£), and x;(£) =0 oth-
erwise.

We show first that with a small enough constant ¢; > 0 there is an increas-
ing sequence of integers (i) — oo such that y;, (§) =1 for all k € N. To that
end, suppose that this assertion fails. Thus, x;(£) =0 for all i > j, with some
integer jo.

Recall that the quasihyperbolic distance kg (xo,2z1) between two points
xg,x1 € B™ is defined by

inf / 7d8

7 Uy d(z,0B")’
where the infimum is taken over all rectifiable curves joining xg to x1 in B™.
Notice that, for g =0 and z; = t£ sufficiently close to the boundary, the
quasihyperbolic distance kg~ (0,t£) = log ﬁ is comparable to the number of
Whitney cubes intersecting the line segment [0,¢£]. Hence, for sufficiently

large j € N and t € v;(§), we have that
1 /27 (270)
2.6 1 >C —=—-1).
(26) 1= ZJ ( cau(271) )
i=jo

On the other hand, by Lemma 1.4, we know that there is a sequence (tg) —
1 so that

length, ([tx€,€)) < ¥ (1 —tk)
for all k£ € N. This implies that

277 <p(1—ty)
or equivalently
(2.7) u(2779) <1ty

for ti, € v;(£). By combining (2.6) and (2.7), we obtain the following chain of
inequalities for an arbitrarily large integer j:

1 12 (270)
a8 g 2O (e )

C 2w

1 Jasr u(t)
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But since ¢(t) >t for small ¢, then ¢ > u(t) for u= ! and it follows that

u(277)
for sufficiently large j. Hence, by the assumption (1.9), the inequality (2.8) is
a contradiction when we choose j large enough and the constant ¢; > 0 small
enough depending on ¢ and n. Thus, we conclude that there is an increasing
sequence of integers (i) — oo so that x;, (§) =1 for all £k € N.

Let us then consider a line segment v, with x,(§) =1. We deduce that

j<Clog

since length,,(yx(€)) = 27% and there are no more than % Whitney
cubes intersecting the segment 7 (§), some of these cubes must have a large
p-diameter. More precisely, denote by Wi, (€) all the Whitney cubes intersect-

ing v, (€) and observe that if all the cubes Q € Wi (§) satisfy

ciu(27F)

dlamp(Q) < m,

then

length, (v:(€)) < ) diam,(Q) <
QEW(S)

27k (27F) ' cu(27F)

=27k
au(2=k)  u/(27F) ’

which is a contradiction. Therefore, there is at least one cube Qi € W(§)
satisfying
. cu(27F)
dia >
1 mﬂ(Qk‘) = ’U/(2_k)
By the Harnack inequality, we know that diam,(Q%) is comparable to r5,,
where xj, is the center of Q. Thus,

—k
with ¢y > 0 depending only on A,n and ¢. Hence by choosing Cs = co, we
obtain
Arg, ) >27F,
because A is increasing by (1.8). It follows from the Harnack inequality that
£ € By(vk,Ci1\(r2,))

when C7 > 0 is chosen large enough depending only on A and n. Clearly
() — £ in the Euclidean sense, and thus the proof is complete. o

REMARK 2.1. Note that the only place in the proofs, where we used the
volume growth condition, was in the beginning of the proof of Lemma 1.4,
where we deduced that H¥(Es) =0 and p,(F;) < co. Very recently it was
shown that these are true even with a relaxed volume growth assumption
[12]. Hence, by applying the results of [12], one can show that Lemma 1.4 and
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Theorem 1.5 also hold with a weaker volume growth condition depending on
the dimension gauge .

Proof of Theorem 1.1. For the convenience of the reader, we shall write the
detailed calculations. Here, we denote by ¢; positive constants depending at
most on A,n, and s. Notice that ¢ satisfies the condition (1.5), and we may

take
1/s
P(t) =exp (—% <log %) )

for all sufficiently small ¢ > 0, whence 1 is increasing and differentiable for all
small ¢ and it also satisfies the condition (1.6). Then we have that

u(t) =171 (t) =exp <—01 <log %) S>

u(t) t
= (C: s
H(log )+
and thus the conditions (1.8) and (1.9) are also satisfied. The inverse of
Cou(t)/u/(t) at r is at most

1 s—1
A(r) =car <1og r>

for all sufficiently small r > 0. The claim now follows by Theorem 1.5. The sec-
ond part of the theorem (the sharpness of the exponent s — 1) follows from
Theorem 3.1 below. O

and

Proof of Theorem 1.3. Notice that we may take

ot = ([ E0 ) ”
- (/ot W dr) o

s—(n—1)

N\
=C (1og ¥>

for all sufficiently small ¢ > 0, whence 1 is increasing and differentiable for all
small ¢ and it obviously satisfies the condition (1.6). Moreover,

u(t) = dfl(t) = eXp(fcgt_ﬁ)

and
u(t)

G
— (-~ s—(n—1
’U/(t) C3 )
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and thus the conditions (1.8) and (1.9) are satisfied. Hence, by Theorem 1.5,
we can take A to be the inverse of Cou(t)/u/(t) or

s—(n—1)
A(r) =eqr s+

3. Sharpness of the results

In this section, we show the essential sharpness of the Theorems 1.1 and 1.3
in the plane. Recall that if f: B2 — f(B?) = Q C R? is a conformal mapping,
then p(z) = |f/(x)| is a continuous density satisfying the Harnack inequality
and the volume growth condition, see [2, p. 639]. In this case, d, corresponds
to the internal Euclidean metric in the image domain . Moreover, the quan-
tity r, = p(2)(1 — |z|) for a point 2 € B? is comparable to dist(f(z),d€) by an
absolute constant. Hence, it suffices for us to give an example of a conformal
mapping f, which maps a set £ C OB? of positive p-measure to a “sufficiently
inaccessible” set on the boundary of €.

More precisely, we prove the following theorems.

THEOREM 3.1. Let s >1 and let

- en((12) ")

There exists a set E C OB? and a conformal mapping f : B? — Q C R? so that
H?(E) >0 and for any f <s—1 and C >0 we have for all £ € E that

B
. 1
f(§)¢B <y7 C dist(y, 09) <log ohst(y,@ﬂ)) )
for all y € Q sufficiently close to the radial limit f(£) € 09Q.

THEOREM 3.2. Let s >1 and let

o(t) = —

(log §)*
There exists a set E C OB? and a conformal mapping f : B2 — Q C R? so that
H?(E)>0 and for any 8> % and C >0 we have for all £ € E that

(3.1) £(€) & B(y, C dist(y,00)")
for all y € Q sufficiently close to the radial limit f(£) € 09Q.

Proof of Theorem 3.1. Let us first construct a simply connected domain
Q2 C R? in the following way. Let ¢ <1 and set a(0) = £ and

2
a(i) = min{ci512i, ;}
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I

FIGURE 1.

for i € N. Starting with the open unit square Qg = (0,1)2?, remove a closed
vertical line segment Tp; of length «(0) standing at the point (271,0). We
set Q1 = Qo \ To1. We then iterate this process: given a domain ; for i € N,
remove 2¢ closed vertical line segments Ty, k = 1,...,2% of length (i) so that
Tix stands at the point (2771 + (K —1)27¢,0). We define

i
Qiy1= Qz\ U Tik
k=1
and -
=%
i=1

Then 2 is a simply connected domain and there exists a conformal mapping
f:B? — Q. See Figure 1 for an illustration of the domain .
Let 5 <s—1, C >0 and choose xg = (%7 %) Observe that every point
€ (0,1) x {0} belongs to the boundary of £ and also the internal distance
between x and x is finite. Moreover,

r¢ B <y C dist(y, 09) (log m> ﬂ)

for all y € Q sufficiently close to x. Thus, it only remains to estimate the size
of the set E C dB? of points ¢ for which the radial limit f(¢) belongs to the
segment (0,1) x {0}.

Denote by kq the quasihyperbolic metric in Q. A straightforward calcula-
tion shows that ) satisfies the growth condition

dist(zg,00)\
& dist(x, 09)

for all x € Q) sufficiently close to the boundary, where C; depends only on
c and s. In particular, we can make Cy arbitrarily small by choosing ¢

(3.2) ka(z,z9) < Cy (lo
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small enough in the construction of Q. Now, by [5, Theorem 1.2], we know
that f is uniformly continuous with a modulus of continuity ¥(t) =
Coexp(—C3(log 1)1/#). Here C3 = C4Cf1/s, and hence, we can take C3 =1
by choosing ¢ small enough in the construction of Q2. Thus, we have that

1/s
33 1@ )< Cew(~(lw =) ) =Caplla )
for all z,y € B2 sufficiently close to each other.

Observe that since the internal diameter of € is finite, the radial limit
of f exists for all points ¢ € OB2. This follows from the Gehring-Hayman
theorem (cf. [2, Remark 4.5]). Let E consist of those points & € 9B? for
which the radial limit f(&) belongs to the segment (0,1) x {0}. Suppose that
H¥?(E)=0. Then for any € > 0 there is a collection of balls B; such that E C
U; Bi and ), ¢(diam(B;)) < ¢/Cs. But now the union |J; f(B;) covers the
segment (0,1) x {0} and the diameter of f(B;) is at most Cs¢(diam(B;)) by
the inequality (3.3). Hence H'((0,1) x {0}) < 3", Cs¢p(diam(B;)) < &, but this
is a contradiction. It follows that H?(F) > 0 and the proof is complete. O

Proof of Theorem 3.2. The proof is similar to the one of Theorem 3.1, but
the situation is more delicate. Namely, the modulus of continuity of f implied
by [5, Theorem 1.2] is no longer good enough. Indeed, we must equip 2 with
the internal metric instead of the Euclidean metric and use [7, Theorem 1.1]
in order to obtain the asymptotically sharp estimate of Theorem 3.2.

In the construction of €2, we now choose p = ‘9;1 and

ali) :min{crf”', g}

for i € N. Then we choose 3 > p. It follows that any f(£) on the line segment
(0,1) x {0} satisfies (3.1) for all y € Q sufficiently close to f(£).
On the other hand, Q2 now satisfies the growth condition

dist(zq, 00) top
dist(z, 09Q)

for all = € Q sufficiently close to the boundary with a constant C7 > 0 depend-
ing on ¢ and s. By [7, Theorem 1.1], this implies that

kQ(.T,.T()) < Cl (

(3.4) 6Q<f<x>,f<y>>scz(log )_”—cwm—yw

for all z,y € B? sufficiently close to each other. Here dq(f(x), f(y)) denotes
the internal distance of f(z) and f(y) in €, i.e., the infimum of the lengths
of curves in 2 joining f(x) and f(y). The assertion H¥(E) > 0 now follows
essentially as in the proof of Theorem 3.1 above. However, one needs to use
(3.4) to estimate the internal diameter of the sets f(B;) in Q. The claim

|z —y|
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then follows by observing that the internal Hausdorff dimension (i.e., the
Hausdorff dimension with respect to the metric dg) of the set (0,1) x {0} is
at least 1/p. O
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