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PERIODIC GROUPS WITH NEARLY MODULAR
SUBGROUP LATTICE

M. DE FALCO, F. DE GIOVANNI, C. MUSELLA, AND Y. P. SYSAK

Abstract. A theorem of B.H. Neumann states that each subgroup of
a group G has finite index in a normal subgroup of G if and only if the

commutator subgroup G′ of G is finite, i.e., G is finite-by-abelian. As a
group lattice version of this theorem for a periodic group G, it is proved
that each subgroup of G has finite index in a modular subgroup of G if
and only if G is an extension of a finite group by a group with modular
subgroup lattice.

1. Introduction

A subgroup of a group G is called modular if it is a modular element of
the lattice L(G) of all subgroups of G. It is clear that every normal subgroup
of a group is modular, but arbitrary modular subgroups need not be normal;
thus modularity may be considered as a lattice generalization of normality.
Lattices in which all elements are modular are also called modular. Obviously,
the subgroup lattice of any abelian group is modular, and hence groups with
modular subgroup lattice naturally arise in the study of lattice isomorphisms
of abelian groups; in particular, Baer [2] determined all groups having the
same subgroup lattice as an abelian group of prime exponent. The structure
of groups with modular subgroup lattice has been completely described by
K. Iwasawa [8], [9] and R. Schmidt [12]. For a detailed account of results
concerning modular subgroups of groups, we refer the reader to [13].

A subgroup H of a group G is said to be nearly normal if it has finite
index in its normal closure HG. A relevant theorem of B.H. Neumann [10]
states that all subgroups of a group G are nearly normal if and only if the
commutator subgroup G′ of G is finite, i.e., if and only if G is a finite-by-
abelian group. If ϕ is a projectivity from a group G onto a group Ḡ (i.e., an
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isomorphism from the lattice L(G) onto the subgroup lattice L(Ḡ) of Ḡ), and
N is a normal subgroup of G, then the image Nϕ of N is a modular element
of the lattice L(Ḡ). Furthermore, if H and K are subgroups of G such that
H ≤ K and the index |K : H| is finite, then Hϕ has finite index in Kϕ (see
[13], Theorem 6.1.7). Thus the image of any nearly normal subgroup of G has
finite index in a modular subgroup of Ḡ.

We shall say that a subgroup H of a group G is nearly modular if it has
finite index in a modular subgroup of G. The definition of nearly modular
element can be given in an arbitrary lattice, and a lattice L will be called
nearly modular if all its elements are nearly modular. Thus every projective
image of a group whose subgroups are nearly normal is a group with nearly
modular subgroup lattice. It was proved in [6] that the commutator subgroup
of a locally graded group with this latter property is periodic, and that pe-
riodic locally graded groups with nearly modular subgroup lattice are locally
finite; in particular every torsion-free locally graded group whose subgroups
are nearly modular is abelian. (Here a group G is said to be locally graded if
every finitely generated non-trivial subgroup of G has a proper subgroup of
finite index.)

The aim of this article is to prove the following theorem, that provides a
lattice analog of the above quoted result of B.H. Neumann.

Theorem. A periodic group G has nearly modular subgroup lattice if and
only if there exists a finite normal subgroup N of G such that the subgroup
lattice L(G/N) is modular.

In our result the assumption that the group is periodic cannot be omitted.
In fact, there exists a torsion-free groupG = 〈a, b〉 such that Z(G) = 〈a〉∩〈b〉 is
infinite cyclic and G/Z(G) is a Tarski group (see [1], proof of Theorem 2); then
every non-trivial subgroup X of G has finite index in the modular subgroup
XZ(G), and hence the subgroup lattice L(G) is nearly modular.

It is well-known that a special role among modular subgroups is played by
permutable subgroups; a subgroup H of a group G is said to be permutable if
HK = KH for each subgroup K of G, and a group is called quasihamiltonian
if all its subgroups are permutable. It was proved in [3] that if every subgroup
of a periodic group G has finite index in a permutable subgroup, then G
contains a finite normal subgroup N such that G/N is a quasihamiltonian
group. This result will be relevant for our purposes.

Finally, we mention that a complete description of groups with the dual
property that every subgroup is modular in a subgroup of finite index has
recently been given in [7].

Most of our notation is standard and can be found in [11]. In particular,
for a subgroup H of a group G, the normal closure HG and the core HG of H
in G are defined as the smallest normal subgroup of G containing H and the
largest normal subgroup of G contained in H, respectively. Recall also that if
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G is any group, the finite residual of G is the intersection of all subgroups of
finite index of G and the locally finite radical of G is the largest locally finite
normal subgroup of G.

We shall use the monograph [13] as a general reference for results on sub-
group lattices.

The authors wish to thank the referee for his useful comments.

2. Some preliminaries

Let L be a lattice with least element 0 and greatest element I. Recall that
an element x of L is covered irreducibly by elements x1, . . . , xm of the interval
[x/0] if for each element y of [x/0] such that [y/0] is a distributive lattice
with the maximal condition, there is i ≤ m such that y ≤ xi, and the set
{x1, . . . , xm} is minimal with respect to such property. Clearly a subgroup
H of a group G is covered irreducibly in the lattice L(G) by its subgroups
H1, . . . ,Hm if and only if H is the set-theoretic union of H1, . . . ,Hm and none
of these subgroups can be omitted from the covering.

An element h of the lattice L is said to be cofinite if there exists a finite
chain in L

h = h0 < h1 < · · · < ht = I

such that, for every i = 0, 1, . . . , t− 1, hi is a maximal element of the lattice
[hi+1/0] and one of the following conditions is satisfied:

• hi+1 is covered irreducibly by finitely many elements k1, . . . , kni of L

such that k1 ∧ · · · ∧ kni ≤ hi;
• for every automorphism ϕ of the lattice [hi+1/0], the element hi ∧ hϕi

is modular in [hi+1/0] and the lattice [hi+1/hi ∧ hϕi ] is finite.

We shall say that an element a of L is nearly modular if there exists a
modular element h of L such that a ≤ h and a is a cofinite element of the
lattice [h/0]. The lattice L is called nearly modular if all its elements are
nearly modular.

A theorem of R. Schmidt yields that a subgroup H of a group G is cofinite
in the lattice L(G) if and only if H has finite index in G (see [13], Theorem
6.1.10). Therefore, a subgroup X of G is nearly modular if and only if it is
a nearly modular element of the lattice L(G), and hence the subject of this
article is the structure of groups with nearly modular subgroup lattice.

A group G is called a P ∗-group if it is the semidirect product of an abelian
normal subgroup A of prime exponent by a cyclic group 〈x〉 of prime-power
order such that x induces on A a power automorphism of prime order. (Recall
here that a power automorphism of a group G is an automorphism mapping
every subgroup of G onto itself.) It is easy to see that the subgroup lattice
of any P ∗-group is modular, and Iwasawa [8], [9] proved that a locally finite
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group has modular subgroup lattice if and only if it is a direct product

G = Dr
i∈I

Gi,

where each Gi is either a P ∗-group or a primary locally finite group with mod-
ular subgroup lattice, and elements of different factors have coprime orders.
Recall also that a group G is said to be a P -group if either it is abelian of
prime exponent or G = 〈x〉nA is a P ∗-group with the subgroup 〈x〉 of prime
order.

Finally, a subgroup H of a group G is said to be P -embedded in G if G/HG

is a periodic group, and the following conditions are satisfied:

• G/HG =
(

Dri∈I(Si/HG)
)
× L/HG, where each Si/HG is a non-

abelian P -group;
• in the above direct decomposition, elements from different factors have

coprime orders;
• H/HG =

(
Dri∈I(Qi/HG)

)
× ((H ∩ L)/HG), where each Qi/HG is a

non-normal Sylow subgroup of Si/HG;
• H ∩ L is a permutable subgroup of G.

All P -embedded subgroups are modular, and it can be proved that every
modular subgroup of a locally finite group is either permutable or P -embedded
(see [16], Theorem 3.2 and Theorem E).

3. Locally finite groups

It was proved by Stonehewer [14], [15] that a subgroup H of a group G is
permutable if and only if H is ascendant in G and it is a modular element of
the lattice L(G). It follows that modular subgroups coincide with permutable
subgroups in locally nilpotent groups. Therefore a locally nilpotent group
G has nearly modular subgroup lattice if and only if any subgroup H of
G has finite index in a permutable subgroup of G; in particular, periodic
locally nilpotent groups with nearly modular subgroup lattice must be finite-
by-quasihamiltonian (see [3]).

The first result of this section shows in particular that if G is a locally
finite group with nearly modular subgroup lattice and R is the Hirsch-Plotkin
radical of G, then all Sylow subgroups of G/R are finite.

Lemma 3.1. Let G be a locally finite group, and let S be a Sylow p-sub-
group of G. If S is nearly modular in G, then S/Op(G) is finite.

Proof. If the subgroup S is nearly permutable inG, the statement is already
known (see [3], Lemma 3.1). Suppose now that S is not nearly permutable in
G, and let X be a modular subgroup of G containing S such that the index
|X : S| is finite. Then X is not permutable in G, and so it is a P -embedded
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subgroup of G (see [13], Theorem 6.2.17). As the set of primes π(X) is finite,
we have in particular that

X/XG = E/XG × Y/XG,

where the factors are coprime, E/XG is finite and Y is permutable in G.
Clearly S is not contained in Y , and hence it is a subgroup of E. It follows
that S ∩XG has finite index in S, and so also in X. Thus the core (S ∩XG)X
is a subnormal p-subgroup of G and the index |S : (S ∩ XG)X | is finite, so
that S/Op(G) is also finite. �

Lemma 3.2. Let G be a group, and let (En)n∈N be a sequence of periodic
subgroups of G such that all subgroups of En+1 are normalized by 〈E1, . . . , En〉
for each positive integer n and π(Em) ∩ π(En) = ∅ if m 6= n. If every En
contains a finite non-modular subgroup Hn, then the subgroup H = 〈Hn | n ∈
N〉 is not nearly modular in G.

Proof. Assume by contradiction that H has finite index in a modular sub-
group X of G. Clearly H is locally finite, so that also X is locally finite and
there exists a positive integer n such that X∩En is contained in H. Therefore
X∩En = H∩En = Hn, contradicting the assumption that Hn is not modular
in En. �

The following easy lemma suggests that properties of power automorphisms
can be used in the study of groups with nearly modular subgroup lattice.

Lemma 3.3. Let G be a group, and let X be a modular subgroup of G. If
K is a normal subgroup of G such that X ∩K = {1}, then every subgroup of
K is normalized by X.

Proof. Let y be any element of K. Then 〈y〉 = 〈y,X〉 ∩ K is a normal
subgroup of 〈y,X〉, and hence X normalizes all subgroups of K. �

The next two lemmas will be essential for proving the theorem in the case
of locally finite groups.

Lemma 3.4. Let G be a locally finite group with nearly modular subgroup
lattice. Then there exist normal subgroups N and M of G such that N ≤M ,
N and G/M are finite, and the subgroup lattice L(M/N) is modular.

Proof. Let R be the Hirsch-Plotkin radical of G, and suppose first that
the factor group G/R is countable. Assume by contradiction that G does not
contain any finite normal subgroup N such that the factor group G/N is a
finite extension of a group with modular subgroup lattice. Let n be a positive
integer for which n finite subgroups E1, . . . , En of G with pairwise coprime
orders have been chosen such that every subgroup of Ei+1 is normalized by
〈E1, . . . , Ei〉 for all i < n and the lattices L(E1), . . . ,L(En) are not modular.
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Since 〈E1, . . . , En〉 is nearly modular in G, there exists a finite modular sub-
group E of G containing 〈E1, . . . , En〉. Let π be the set of all prime numbers
dividing the order of E, and consider the largest π-subgroup Rπ of R. As the
Sylow subgroups of G/R are finite by Lemma 3.1, the index |G/R : Oπ′(G/R)|
is finite (see [4], Theorem 3.5.15 and Corollary 2.5.13), and hence there exists
a π′-subgroup L1 of G such that K = L1Rπ is a normal subgroup of finite
index of G (see [4], Theorem 2.4.5). Moreover, the subgroup Rπ is finite-
by-quasihamiltonian (see [3]), and it is also finite-by-abelian-by-finite because
the set π is finite. It follows that the subgroup F , consisting of all elements
of Rπ having finitely many conjugates in Rπ, has finite index in Rπ, so that
the subgroup H1 = L1F has finite index in G. Put H = (H1)G, so that G/H
is finite and H = LF , where L = L1 ∩H.

Let X be a modular subgroup of H containing L such that the index |X : L|
is finite, so that X = L(X ∩ F ), where X ∩ F is finite. Clearly the product
(X∩F )F ′ is a normal subgroup of H, and hence N = ((X∩F )F ′)G is a finite
normal subgroup of G. Put Ḡ = G/N , so that H̄ = H/N is a normal subgroup
of finite index of Ḡ and L̄ = LN/N = XN/N is a modular subgroup of H̄;
in particular, L̄ acts as a group of power automorphisms on F̄ and hence
L̄/CL̄(F̄ ) is finite. It follows that CH̄(F̄ ) = CL̄(F̄ ) × F̄ is a subgroup of
finite index of Ḡ, so that the normal subgroup CL̄(F̄ ) of Ḡ is not a finite
extension of a group with modular subgroup lattice. Put C = CL(F/N), so
that CL̄(F̄ ) = CN/N , and CN is a normal subgroup of G which is not a finite
extension of a group with modular subgroup lattice. As C is a π′-subgroup of
finite index of CN , the subgroup Oπ′(CN) has finite index in CN , so that the
lattice L(Oπ′(CN)) is not modular and there exists a finite subgroup En+1 of
Oπ′(CN) whose subgroup lattice is not modular. As Oπ′(CN) is normal in G,
it follows from Lemma 3.3 that E acts as a group of power automorphisms on
Oπ′(CN) and hence also on En+1. Therefore there exists a sequence (En)n∈N
of finite subgroups of G satisfying the hypotheses of Lemma 3.2, and hence G
contains a subgroup which is not nearly modular. This contradiction proves
the statement when G/R is countable.

We will now prove that the group G/R must be countable. Let V/R be
any countable subgroup of G/R. It follows from the first part of the proof
that V contains a finite normal subgroup W such that the factor group V/W
is a finite extension of a group with modular subgroup lattice, so that in par-
ticular V is finite-by-(metabelian-by-finite) and so also soluble-by-finite. On
the other hand, the class of soluble-by-finite groups is countably recognizable
(see [5], Proposition 2.6), and hence G itself is soluble-by-finite. As the Sylow
subgroups of G/R are finite, it follows that G/R is countable. The lemma is
proved. �
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Lemma 3.5. Let the locally finite group G = AE be the product of a normal
subgroup A and a finite modular subgroup E. If A has modular subgroup
lattice, then G = M ×K, where L(M) is a modular lattice, the set of primes
π(K) is finite and π(M) ∩ π(K) = ∅.

Proof. It can obviously be assumed that the set of primes π(A) is infinite,
so that

A = Dr
n∈N

An,

where each An is either a non-trivial primary group with modular subgroup
lattice or a P ∗-group, and elements of different factors have relatively prime
orders (see [13], Theorem 2.4.13). For each positive integer n put

Bn = Dr
k≥n

Ak.

Clearly there exists m such that π(Bm) ∩ π(E) = ∅, and we claim that
[Bn, E] = {1} for some integer n ≥ m. If E is permutable in BmE, then E is
normal in BmE and so [Bm, E] = {1}. Therefore without loss of generality it
can be assumed that E is not permutable in BmE, so that E is P -embedded
in BmE (see [13], Theorem 6.2.17). The centralizer C = CE(Bm) is the core
of E in BmE. Hence

BmE/C = S1/C × · · · × St/C × L/C,
where each Si/C is a non-abelian P -group and elements from different factors
have coprime orders,

E/C = Q1/C × · · · ×Qt/C × (E ∩ L)/C,

each Qi/C is a non-normal Sylow subgroup of Si/C and E∩L is a permutable
subgroup of BmE. In particular, [Bm, E∩L] = {1}. Put S = 〈S1, . . . , St〉. As
the set π(S) is finite, there exists an integer n ≥ m such that Bn is contained
in L. Then

[Bn, E ∩ S] ≤ Bn ∩ C = {1},
and hence

[Bn, E] = [Bn, (E ∩ S)(E ∩ L)] = {1}.
Put

M = Bn and K = (
n−1

Dr
k=1

Ak)E.

Then K is normal in G = MK, the set of primes π(K) is finite and
π(M) ∩ π(K) = ∅. The lemma is proved. �

We can now prove the main result of this section.

Theorem 3.6. Let G be a periodic locally graded group. Then L(G) is a
nearly modular lattice if and only if G contains a finite normal subgroup N
such that the subgroup lattice L(G/N) is modular.
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Proof. The condition of the statement is obviously sufficient. Conversely,
suppose that G has nearly modular subgroup lattice, so that it is locally finite
(see [6], Theorem 5), and by Lemma 3.4 there exists a finite normal subgroup
W of G such that G/W contains a subgroup of finite index with modular
subgroup lattice. Without loss of generality it can be assumed that W = {1},
so that G is a finite extension of a group with modular subgroup lattice.
Since every finite subgroup of G is contained in a finite modular subgroup, it
follows from Lemma 3.5 that G = M ×K, where L(M) is a modular lattice,
the set of primes π(K) is finite and π(M) ∩ π(K) = ∅. Replacing G by its
subgroup K, we may suppose that π(G) is finite. Thus G is abelian-by-finite,
so that G = AE, where A is an abelian normal subgroup and E is a finite
modular subgroup of G. It is enough to prove the statement for the factor
group G/EG, so that it can be assumed that E has trivial core in G, and in
particular A ∩ E = {1}.

Suppose first that E is permutable in G. Then EG is locally nilpotent
(see [13], Theorem 6.3.1), so that G itself is locally nilpotent, and hence it is
finite-by-quasihamiltonian. Assume now that E is not permutable in G, so
that it is P -embedded in G (see [13], Theorem 6.2.17). Thus

G = S1 × · · · × St × L,
where each Si is a non-abelian P -group, elements from different factors have
coprime orders,

E = Q1 × · · · ×Qt × (E ∩ L),
each Qi is a non-normal Sylow subgroup of Si and E∩L is a permutable sub-
group of G. Moreover, the core of E ∩ L in L is trivial, and L =
(A∩L)(E ∩L). It follows now from the previous case that L contains a finite
normal subgroup N such that L/N has modular subgroup lattice. Therefore
also the lattice L(G/N) is modular. The theorem is proved. �

It follows directly from the above theorem that every periodic locally graded
group with nearly modular subgroup lattice is finite-by-metabelian. Moreover,
Theorem 3.6 also has the following consequence.

Corollary 3.7. Let G be a periodic locally graded group with nearly mod-
ular subgroup lattice. Then G is metabelian-by-finite.

Proof. Let N be a finite normal subgroup of G such that the subgroup
lattice L(G/N) is modular. It is clearly enough to prove that the centralizer
CG(N) is metabelian-by-finite, so that without loss of generality it can be
assumed that N is contained in Z(G). Write

G/N = H/N ×K/N,
where π(H/N) is finite and π(N) ∩ π(K/N) = ∅. Then K contains a normal
subgroup L such that K = N × L, so that L is metabelian and G = H × L.
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As π(H/N) is finite, the group H/N is abelian-by-finite and hence G is
metabelian-by-finite. �

4. Periodic groups

A group G is called an extended Tarski group if it contains a cyclic non-
trivial normal subgroup N with prime-power order such that G/N is a Tarski
group and H ≤ N or N ≤ H for every subgroup H of G. It was proved by R.
Schmidt that a periodic group G has modular subgroup lattice if and only if
G = M×T , where π(M)∩π(T ) = ∅, M is a locally finite group with modular
subgroup lattice and the group T = Dri Ti is a direct product of Tarski and
extended Tarski groups such that π(Ti)∩π(Tj) = ∅ if i 6= j (see [13], Theorem
2.4.16). The first lemma of this section shows that Tarski sections also occur
in the structure of arbitrary periodic groups with nearly modular subgroup
lattice.

Lemma 4.1. Let G = 〈E, g〉 be an infinite periodic group generated by a
finite subgroup E and an element g whose order is a power of a prime number
p. If the subgroup lattice L(G) is nearly modular, then G contains a finite
normal subgroup N such that G/N is a Tarski group.

Proof. Assume that the statement is false, and choose a counterexample
G = 〈E, g〉 such that the element g has minimal order. Since E is contained
in a finite modular subgroup of G, we may suppose that E itself is modular in
G, so that the lattices [G/E] and [〈g〉/〈g〉 ∩ E] are isomorphic; in particular
[G/E] is finite, and so every locally finite subgroup of G containing E is finite.
Thus it can also be assumed that E is a maximal locally finite subgroup of G,
because all such subgroups are modular in G. If gp ∈ E, then E is a maximal
subgroup of G, and hence G/EG is a Tarski group by a result of Stonehewer
(see [16], Theorem B), contradicting the choice of G. Therefore gp /∈ E, so
that the infinite group H = 〈E, gp〉 contains a finite normal subgroup L such
that H/L is a Tarski group, and K = 〈gp〉L is a maximal subgroup of H. Let
X be any finite modular subgroup of G containing K. Clearly H ∩X = K, so
that the lattices [〈H,X〉/X] and [H/K] are isomorphic, and the subgroup X is
maximal in 〈H,X〉. The above quoted result of Stonehewer yields that X con-
tains a normal subgroup X0 of 〈H,X〉 such that the factor group 〈H,X〉/X0

is a Tarski group. Since E is a maximal locally finite subgroup of G, the
subgroup X0 must be contained in E. On the other hand, HX0 is infinite,
so that 〈H,X〉 = HX0 = H and X = H ∩ X = K. It follows that K is a
maximal locally finite subgroup of G, and in particular it is modular in G. As
H is a proper subgroup of G, the element g does not belong to K and so the
subgroup V = 〈K, g〉 is infinite. Moreover, the lattices [V/K] and [〈g〉/〈gp〉]
are isomorphic, so that K is a maximal subgroup of V and H ∩ V = K. As
above we obtain that V/KV is a Tarski group.
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Since E and K are modular subgroups of G, also H = 〈E,K〉 is modular
and so it is a maximal subgroup of G. Moreover, K = H ∩ V is not normal
in V , and so Hg 6= H; it follows that for every integer s with 1 ≤ s < p
the intersection H ∩Hgs is a maximal subgroup of H. Assume that all these
subgroups are finite. Thus L ≤ H ∩Hgs for each s, so that the subgroup L〈g〉

is finite, and hence also V = 〈L, g〉 must be finite, a contradiction. Therefore
H∩Hgs is infinite for some s and so H = (H∩Hgs)L. Thus the finite residual
J of H coincides with the finite residual of H ∩Hgs and the index |H : J | is
finite because H satisfies the minimal condition on subgroups. In particular,
J has no proper subgroups of finite index, so that it is contained in the finite
residual Jg

s

of Hgs , and hence Jg
s

= J . It follows that Jg = J , and so J
is a normal subgroup of G = 〈H, g〉. Clearly H = JL, so that J/J ∩ L is a
Tarski group, and J ∩L is a finite normal subgroup of G. Replacing G by the
factor group G/J ∩L, it can be assumed that J ∩L = {1}, so that H = J ×L
and J is a Tarski group. Then K = (K ∩ J) × L is contained in the normal
subgroup (V ∩ J)CV (J) of V , and hence V = (V ∩ J)CV (J). It follows that

G = 〈H,V 〉 = JV = J × CV (J),

so that CV (J) is infinite and the intersection CV (J) ∩KV is a finite normal
subgroup of G such that G/CV (J) ∩KV is the direct product of two Tarski
groups. Thus we may suppose that G itself is a direct product of two Tarski
groups, so that the cyclic subgroup 〈g〉 has order p and hence E is a maximal
subgroup of G. Therefore G/EG is a Tarski group, and this last contradiction
completes the proof of the lemma. �

We shall say that a perfect group G is a generalized Tarski group if the
centre Z(G) of G is finite and G/Z(G) is a Tarski group. It is clear that if
G is any generalized Tarski group, then the subgroup lattice L(G) is nearly
modular and every proper subgroup of G is finite and abelian. Note also that
Tarski groups and extended Tarski groups are obvious examples of general-
ized Tarski groups. In order to prove our theorem, a careful analysis of the
behaviour of generalized Tarski subgroups is needed.

Lemma 4.2. Let G be a periodic group with nearly modular subgroup lat-
tice, and let L be the locally finite radical of G. If G/L is a Tarski group, then
G contains a generalized Tarski subgroup T such that G = LT , L∩T = Z(T )
and [L, T ] = {1}.

Proof. ClearlyG contains a subgroup E generated by two elements of prime
power order such that G = LE, and the factor group E/E ∩ L is isomorphic
to the Tarski group G/L. The intersection K = E ∩L is finite by Lemma 4.1,
and so E = KCE(K). Let T be the finite residual of E. Since E satisfies the
minimal condition on subgroups, the index |E : T | is finite, so that E = KT
and T is a perfect subgroup of G with finite centre; moreover, T is contained
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in CE(K) and K ∩ T = Z(T ), so that T/Z(T ) is a Tarski group and T is
a generalized Tarski group. Therefore G = LT and L ∩ T = Z(T ). Let H
be any finite subgroup of L containing Z(T ), and let X be a finite modular
subgroup of G containing H. As the lattices [〈X,T 〉/X] and [T/X ∩ T ] are
isomorphic, it follows that the group 〈X,T 〉 satisfies the maximal condition
on subgroups, so that 〈X,T 〉 ∩L is finite and hence also T/CT (〈X,T 〉 ∩L) is
a finite group. Thus

[H,T ] ≤ [〈X,T 〉 ∩ L, T ] = {1},

and so [L, T ] = {1} since L is covered by its finite subgroups containing Z(T ).
�

Corollary 4.3. Let G be a periodic group with nearly modular subgroup
lattice. If G is not locally finite, then it contains a generalized Tarski subgroup.

Proof. Choose an infinite finitely generated subgroup K = 〈x1, . . . , xn〉 of
G, where x1, . . . , xn are elements of prime power order and n is minimal with
respect to this condition. Then H = 〈x1, . . . , xn−1〉 is finite, and it follows
from Lemma 4.1 that K = 〈H,xn〉 contains a finite normal subgroup N such
that K/N is a Tarski group. Application of Lemma 4.2 yields that K contains
a generalized Tarski subgroup. �

Lemma 4.4. Let G be a periodic group with nearly modular subgroup lat-
tice, and let T be a generalized Tarski subgroup of finite index of G. Then
there exists a finite normal subgroup K of G such that G = KT , K∩T = Z(T )
and [K,T ] = {1}. In particular, T is normal in G.

Proof. Clearly T is the finite residual ofG, and in particular T and Z(T ) are
normal subgroups of G. Let K be a normal subgroup of G which is maximal
with respect to the condition K∩T = Z(T ), so that K is finite and TK/K is a
Tarski group. Put Ḡ = G/K; then T̄ = TK/K is the unique minimal normal
subgroup of Ḡ, and hence CḠ(T̄ ) = {1}. Assume that T̄ is a proper subgroup
of Ḡ, and let x̄ 6= 1 and ḡ be elements of T̄ and Ḡ \ T̄ , respectively. If the
subgroup 〈ḡ, x̄〉 is infinite, then 〈ḡ〉T̄ = 〈ḡ, x̄〉 since T̄ has finite index in Ḡ; on
the other hand, if 〈ḡ, x̄〉 is finite, we have 〈ḡ〉T̄ = 〈〈ḡ, x̄〉, ȳ〉 for some element y
of T . In both cases, it follows from Lemma 4.1 that 〈ḡ〉T̄ = 〈h̄〉 × T̄ , contrary
to the condition CḠ(T̄ ) = {1}. This contradiction shows that G = KT . In
particular, K is the locally finite radical of G, and an application of Lemma
4.2 yields that [K,T ] = {1}. The lemma is proved. �

Lemma 4.5. Let G be a periodic group with nearly modular subgroup lat-
tice, and let T be a generalized Tarski subgroup of G. Then T is normal in
G.
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Proof. Assume that the statement is false. Without loss of generality we
may suppose that G = 〈g, T 〉, where g is an element of G of minimal order for
which T g 6= T . Then the order of g is a power of a prime number p, and gp

normalizes T . The subgroup 〈gp〉T has finite index in a modular subgroup X
of G, and it follows from Lemma 4.4 that X contains a finite normal subgroup
K such that X = KT , K ∩ T = Z(T ) and [K,T ] = {1}, so that in particular
T is normal in X. Since the lattices [G/X] and [〈g〉/〈g〉 ∩X] are isomorphic,
the subgroup X is maximal in G. If Xg = X, then G = 〈g〉X, so that the
index |G : T | is finite and T is normal in G by Lemma 4.4, contrary to the
assumption. It follows that X ∩Xg is a maximal subgroup of X. If X ∩Xg is
infinite, then the intersection T ∩ T g is also infinite, so that T g = T and T is
normal in G, a contradiction. Thus the maximal subgroup M = X ∩Xg of X
is finite. On the other hand, M is also maximal in Xg, and hence there exists
a maximal subgroup L of X such that Lg = M . If L 6= M , then X = 〈L,M〉
is contained in 〈M, g〉 and so G = 〈M, g〉; on the other hand, if L = M , the
subgroup 〈M, g〉 is finite and G = 〈〈M, g〉, x〉 for some element x of X having
prime power order. In both cases it follows from Lemma 4.1 that G contains
a finite normal subgroup N such that G/N is a Tarski group, and hence T is
normal in G by Lemma 4.2, a final contradiction. �

Corollary 4.6. Let G be a periodic group with nearly modular subgroup
lattice, and let T1 and T2 be distinct generalized Tarski subgroups of G. Then
[T1, T2] = {1}.

Proof. The subgroups T1 and T2 are normal in G by Lemma 4.5, so that
in particular [T1, T2] ≤ T1 ∩ T2 = Z(T1) ∩ Z(T2). Thus T1 acts trivially
on T2/Z(T2). If y is any element of T2, the finite subgroup 〈y, Z(T2)〉 is
normalized, and so even centralized by T1. Therefore [T1, T2] = {1}. �

Lemma 4.7. Let the group G = A × B be the direct product of two
Tarski groups A and B. If the subgroup lattice L(G) is nearly modular, then
π(A) ∩ π(B) = ∅.

Proof. Assume by contradiction that there exists a prime number p ∈
π(A) ∩ π(B). Then A = 〈a, x〉 and B = 〈b, y〉, where all elements a, x, b, y
have order p. Put H = 〈ab, xy〉, and let X be a modular subgroup of G con-
taining H such that the index |X : H| is finite. Since the elements ab and xy
also have order p, it follows from Lemma 4.1 that H contains a finite normal
subgroup K such that H/K is a Tarski group, and so by Lemma 4.2 there
exists in X a generalized Tarski subgroup of finite index. In particular, X
is a proper subgroup of G, and hence X contains neither A nor B because
AX = BX = G. Since 〈a〉xy = 〈a〉x 6= 〈a〉, the subgroup 〈a〉 is not normalized
by X, and so the proper subgroup A∩X of A is not trivial by Lemma 3.3. On
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the other hand, A∩X is normal in G = XB, and this contradiction completes
the proof. �

Our next result will be crucial for our purposes.

Lemma 4.8. Let G be a periodic group with nearly modular subgroup lat-
tice. If G is generated by generalized Tarski subgroups, then there exists a
finite subgroup Z of Z(G) such that the subgroup lattice L(G/Z) is modular.

Proof. Let {Ti | i ∈ I} be a collection of generalized Tarski subgroups of
G such that G = 〈Ti | i ∈ I〉. It follows from Lemma 4.5 and Corollary 4.6
that every Ti is normal in G and [Ti, Tj ] = {1} for i 6= j, so that Z(G) =
〈Z(Ti) | i ∈ I〉, and the factor group G/Z(G) is isomorphic to the direct
product of the Tarski groups Ti/Z(Ti), with i ∈ I. Thus by Lemma 4.7 we
have that π(Ti/Z(Ti)) ∩ π(Tj/Z(Tj)) = ∅ if i 6= j. Let I0 be the subset of I
consisting of all indices i such that Ti neither is a Tarski group nor an extended
Tarski group; for each i ∈ I0 the subgroup lattice L(Ti) is not modular (see
[13], Theorem 2.4.16), and hence Ti contains a cyclic non-modular subgroup
〈xi〉 whose order is a power of a prime number pi. Clearly 〈xi〉 is not contained
in the centre Z(Ti) and xpii ∈ Z(Ti); in particular, pi 6= pj if i 6= j. Put
A = 〈xi | i ∈ I0〉, and let X be a modular subgroup of G0 = 〈Ti | i ∈ I0〉
such that the index |X : A| is finite. Clearly the subgroup A is abelian and
A ∩ Ti = 〈xi〉 for each i ∈ I0. Moreover, AZ(G0) is a maximal locally finite
subgroup of G0, so that X is contained in AZ(G0) and hence X = AE, where
E is a finite subgroup of Z(G0). Put Ḡ = G/E; then 〈x̄i〉 = X̄ ∩ T̄i is a
modular subgroup of T̄i for all i ∈ I0. Clearly T̄i = 〈x̄i, x̄ḡii 〉 for some element
ḡi of T̄i, and the lattice [T̄i/〈x̄i〉] is isomorphic to the interval

[〈x̄ḡii 〉/〈x̄i〉 ∩ 〈x̄
ḡi
i 〉] = [〈x̄ḡii 〉/〈x̄

pi
i 〉].

Thus 〈x̄i〉 is a maximal subgroup of T̄i, and hence Z(T̄i) = 〈x̄pii 〉. It follows
that π(T̄i) ∩ π(T̄j) = ∅ for all i, j in I such that i 6= j. Since the factor group

Ḡ = Dr
i∈I

T̄i

has nearly modular subgroup lattice, application of Lemma 3.2 yields that all
but finitely many T̄i’s have modular subgroup lattice. Therefore Ḡ contains
a finite central subgroup Z̄ = Z/E such that the subgroup lattice of Ḡ/Z̄
is modular, and Z is a finite central subgroup of G such that L(G/Z) is
modular. �

Lemma 4.9. Let the group G = A× T be the direct product of a periodic
abelian group A and a Tarski group T such that π(A) ⊆ π(T ). If the subgroup
lattice L(G) is nearly modular, then A is finite.

Proof. Assume by contradiction that A is infinite, and let H be a subgroup
of prime order of T . Since L(G) is nearly modular, there exists a finite modular
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subgroup X of G containing H. Clearly AX = AH and B = A∩X is a finite
normal subgroup of G, so that replacing G by the factor group G/B we may
suppose that A∩X = {1}, and hence H = X is modular in G. By hypothesis
there exist elements a ∈ A and x ∈ T \H, with the same prime order p, such
that H ∩ 〈a〉〈x〉 = {1}. Thus

〈H, ax〉 ∩ 〈a〉〈x〉 = 〈ax,H ∩ 〈a〉〈x〉〉 = 〈ax〉.
On the other hand, {1} 6= [x,H] = [ax,H] ≤ T , so that 〈H, ax〉 = 〈a〉T , and
hence

〈H, ax〉 ∩ 〈a〉〈x〉 = 〈a〉T ∩ 〈a〉〈x〉 = 〈a〉〈x〉,
a contradiction because 〈ax〉 6= 〈a〉〈x〉. Therefore A must be finite. �

Lemma 4.10. Let the group G = T ×H be the direct product of a Tarski
group T and an infinite P -group H = 〈x〉nA, where A is an abelian group of
prime exponent q /∈ π(T ) and x has prime order p ∈ π(T ). Then the subgroup
lattice L(G) is not nearly modular.

Proof. Assume by contradiction that L(G) is a nearly modular lattice. Let
y be an element of prime order of T , and let X be a finite modular subgroup
of G containing 〈y, x〉. Clearly X = 〈y, x〉E, where E is a finite subgroup of
A. As every subgroup of A is normal in G, and the factor group G/E is also a
counterexample, replacing G by G/E we may suppose that 〈y, x〉 is a modular
subgroup of G. Let z ∈ T \ 〈y〉 be an element of order p, and let a 6= 1 be
an element of A. Then the product zx has order p and 〈x〉 ∩ 〈x〉a = {1}.
Moreover, [y, zx] = [y, z] 6= 1, so that T = 〈y, [y, zx]〉 and hence

T 〈x〉a = 〈y, zx〉a = 〈y, (zx)a〉 ≤ 〈〈y, x〉, (zx)a〉.
As 〈y, x〉 is modular in G, we have

〈〈y, x〉, (zx)a〉 ∩ 〈z, xa〉 = 〈zx〉a(〈y, x〉 ∩ 〈z, xa〉) = 〈zx〉a.
Therefore

〈z, xa〉 = T 〈x〉a ∩ 〈z〉〈x〉a ≤ 〈〈y, x〉, (zx)a〉 ∩ 〈z, xa〉 = 〈zx〉a,
and this contradiction proves the lemma. �

Lemma 4.11. Let G be a periodic non-trivial group whose locally finite
radical is trivial. If the subgroup lattice L(G) is nearly modular, then G is
generated by its Tarski subgroups.

Proof. Let T be the subgroup generated by all Tarski subgroups of G.
It follows from Lemma 4.5, Corollary 4.6 and Lemma 4.7 that T = Dri Ti,
where each Ti is a Tarski group and π(Ti) ∩ π(Tj) = ∅ if i 6= j. Assume by
contradiction that T is properly contained in G, and let x be an element of
G \ T whose order is a power of a prime number p. If p ∈ π(Ti), by Lemma
4.4 there exists an element y such that 〈x, Ti〉 = 〈y〉×Ti, and the same lemma
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also yields that [y, Tj ] = {1} for all j 6= i, so that y belongs to CG(T ). On
the other hand, CG(T ) ∩ T = {1}, so that the normal subgroup CG(T ) of G
is locally finite by Corollary 4.3, and hence CG(T ) = {1}. Thus y = 1, and
this contradiction proves the lemma. �

Proof of the Theorem. Let G be a group whose subgroup lattice L(G) is
nearly modular, and assume by contradiction that G does not contain any
finite normal subgroup N such that L(G/N) is modular. The locally finite
radical L of G is a proper subgroup by Theorem 3.6, and Lemma 4.11 yields
that the factor group G/L is generated by its Tarski subgroups, so that it
follows from Lemma 4.2 that G = LT , where T is the subgroup generated
by all generalized Tarski subgroups of G. The same lemma also gives that
[L, T ] = {1}. Moreover, by Theorem 3.6 the locally finite group L contains a
finite normal subgroup E such that L/E has modular subgroup lattice, while
it follows from Lemma 4.8 that there exists a finite subgroup Z of Z(T ) such
that the lattice L(T/Z) is modular. Clearly, EZ is a finite normal subgroup
of G, and replacing G by G/EZ it can be assumed without loss of generality
that

T = Dr
n∈N

Tn,

where each Tn either is trivial or a Tarski or an extended Tarski group with
π(Tm) ∩ π(Tn) = ∅ if m 6= n, and

L = Dr
n∈N

Ln,

where each Ln either is a primary group with modular subgroup lattice or a
P ∗-group and π(Lm) ∩ π(Ln) = ∅ if m 6= n. Let K be the direct product
of all subgroups Ln such that π(Ln) ∩ π(T ) = ∅. Then K is a direct factor
of G and π(K) ∩ π(G/K) = ∅, so that we may also suppose that K = {1},
and hence π(Ln) ∩ π(T ) 6= ∅ for all n such that Ln 6= {1}. For each positive
integer n, let In be the set of all j ∈ N such that π(Lj) ∩ π(Tn) 6= ∅ and
π(Lj)∩π(Tm) = ∅ for any m < n, and put Mn = Drj∈In Lj and Gn = TnMn.
For every j ∈ In, there exists an abelian non-trivial subgroup Aj of Lj such
that π(Aj) ⊆ π(Tn). Since [Mn, Tn] ≤ [L, T ] = {1}, we have

Gn/Z(Tn) = Tn/Z(Tn)×MnZ(Tn)/Z(Tn),

so that Lemma 4.9 yields that the subgroup 〈Aj | j ∈ In〉 is finite and in
particular the set In is finite. It follows that the subgroup Mn must be finite
for every n. In fact, if Mn would be infinite, for some j ∈ In the subgroup
Lj should be an infinite P ∗-group of the form Lj = 〈x〉 n A, where A is an
infinite abelian normal subgroup of prime exponent q /∈ π(Tn) and x is an
element of order pk for some prime p ∈ π(Tn) and k ≥ 1; thus the subgroup
lattice L(LjTn/〈xp

k−1〉) is not nearly modular by Lemma 4.10, contrary to
the hypothesis of the theorem.
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Now let S be the set of all subgroups Gn such that the lattice L(Gn)
is not modular, and assume that S is infinite. Since every Mn is finite,
there exists a subsequence (Grn)n∈N, consisting of elements of S, such that
π(Grm) ∩ π(Grn) = ∅ if m 6= n. Therefore

〈Grn | n ∈ N〉 = Dr
n∈N

Grn

and hence the subgroup lattice L(〈Grn | n ∈ N〉) is not nearly modular by
Lemma 3.2. This contradiction shows that S is finite and so the normal
subgroup

M = 〈Mn | Gn ∈ S〉
of G is also finite. Put Ḡ = G/M and use bars for homomorphic images
modulo M . Then Ḡn has modular subgroup lattice for every positive integer
n and so Ḡn = T̄n × H̄n, where H̄n is finite and π(T̄n) ∩ π(H̄n) = ∅ (see [13],
Theorem 2.4.16). This implies that L̄j = (L̄j ∩ T̄n)× (L̄j ∩H̄n) for any j ∈ In,
so that L̄j ∩ T̄n 6= {1} and hence L̄j ≤ T̄n. Thus Ḡn = T̄n for every n and the
group

Ḡ = Dr
n∈N

Ḡn

has modular subgroup lattice. This last contradiction completes the proof. �
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