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A NOTE ON COMMUTATORS OF FRACTIONAL
INTEGRALS WITH RBMO(y) FUNCTIONS

WENGU CHEN AND E. SAWYER

ABSTRACT. Let p be a Borel measure on R? which may be non-doubling.
The only condition that p must satisfy is u(Q) < col(Q)™ for any cube
Q C RY with sides parallel to the coordinate axes, for some fixed n
with 0 < n < d. In this note we consider the commutators of fractional
integrals with functions of the new BMO introduced by X. Tolsa.

1. Introduction

Let p be a non-negative n-dimensional Borel measure on R¢, that is, a
measure satisfying

#@Q) < col(@)"

for any cube @ C R? with sides parallel to the coordinate axes, where 1(Q)
stands for the side length of @) and n is a fixed real number such that 0 <
n < d. Throughout this note, all cubes we shall consider will be those with
sides parallel to the coordinate axes. For r > 0, r@) will denote the cube with
the same center as @ and with I[(rQ) = rl(Q). Moreover, Q(x, r) will be the
cube centered at x with side length r.

The classical theory of harmonic analysis for maximal functions and sin-
gular integrals on (R™, u) has been developed under the assumption that the
underlying measure p satisfies the doubling property, i.e., there exists a con-
stant ¢ > 0 such that u(B(z, 2r)) < cu(B(zx, 1)) for every € R™ and r > 0.
However, some recent results on Calderén-Zygmund operators ([4], [5], [6],
[7]) and functions of bounded mean oscillation ([3], [8]) show that it should
be possible to dispense with the doubling condition for most of the classical
theory. The purpose of this note is to extend the main theorem in [1] to this
new setting and strengthen the above point of view.
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Let us introduce some notations and definitions. Let 0 < 3 < n. Given
two cubes @ C R in R%, we set

NQ_’R k
@ _ 1(2°Q)
wifn=1e 3 ity

where Ng g is the first integer k such that [(2*Q) > I(R). If 8 = 0, then
K é; )R = K, r- The latter concept was introduced by Tolsa in [8].

Given (4 (depending on d) large enough (for example, 34 > 2™), we say
that a cube Q C R? is doubling if 1(2Q) < Bau(Q)-

Given a cube Q@ C R?, let N be the smallest integer > 0 such that 2V @ is
doubling. We denote this cube by Q.

Let 7 > 1 be a fixed constant. We say that b € L] _(u) is in RBMO(p) if
there exists a constant ¢; such that for any cube @

)

:| 1-8/n

a
1 —_— b—mzbldu < c
@ 1(nQ) Jo | a” '
and
(2) |mgb —mpgb| < c1Kq, g for any two doubling cubes @ C R,

where mgb = (1/1(Q)) fQ bdy. The minimal constant ¢; is the RBMO(u)
norm of b, and it will be denoted by ||b||«. By Lemma 2.6 and Remark 2.9
in [8] one obtains equivalent norms in the space RBMO(u) with different
parameters > 1 and (g > 2".

2. Statement of the theorem and its proof

Now we can state the main result in this note.

THEOREM 1. Let b(x) € RBMO(u). Then the operator
[0, I](f)(x) = b(x) Lo f(2) — La(bf)(x)

satisfies

116, L) (F)llq < cllbll ]l £l

I (2) = /R L),

a |z —y[n—e

where

1/g=1/p—a/n,1<p<njfaand0<a<n.

Before proving the theorem, we need another equivalent norm for RBMO (p)
and some lemmas.
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Suppose that for a given function b € L{ (1) there exist some ¢y and a
collection of numbers {bg}q (i.e., for each cube @ there exists bg € R) such
that

1
(3) sup o [ b= boldn < o
Q nmQ) Jo
and
(4) |bg — br| < c2Kg, g for any two cubes @ C R.

Then we write ||b||«« = inf ¢, where the infimum is taken over all the constants
co and all the numbers {bg} satisfying (3) and (4). By [8, Lemma 2.8, p. 99],
for a fixed n > 1, the norms || - ||« and || - ||+« are equivalent.

LEMMA 1. Ifp>1landl/q=1/p—a/n,0< a <n, then

o (F)llq < cll.fllp-
If p=1, then

p{a s L f) (@) > A}) < (¢/A|fll)™ =),
Proof. See [2, p. 1269)]. .

LEMMA 2. Letp<r<n/a andl/q=1/r —a/n. Then

1 Fllg < ell .

where forn >1 and 0 < 8 < n/p, M;Eﬁ()n) s the non-centered mazximal opera-
tor

1/p
(8) 1
M T) = sup <7/ Pq ) 7
V@) = sup (e | VWP
and when B =0, we denote Méozn) by M, (-

Proof. Note that for 0 < 8 < n/p and n > 1, Mzgﬁ()n) is controlled by the

operator defined as

— 1 1/p
Tt = s (i [ 1SPu)

zeNTQ
We only need to prove the lemma for ]T/[/;a()n). We first prove that
p({w s M F(@) > A}) < (/A fllp)"/ =P,
Let us consider the set E defined by

B={a: M) f(z)> A}
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By the Besicovitch covering lemma it follows that there exists a sequence of
cubes Q;, with bounded overlap, so that £ C [J I (); and on each @); we have

=
S — fPPdu > NP,
w@er Jo,
Let ¢ = np/(n — ap). Then p/q < 1. Hence,
r/q

W(EP < p UQj <> @),

J

—Q n 1
p@rn < 5 i

and since p/qg =1 — ap/n,

1
S H@ <5 [ir Yxa, |

Hence

u(E) < 1115

Note now that if p < s < n/a, then using Holder’s inequality
77 (@) 17 ()
Mp, (n) (z) < Ms,(n)f(x)'

Hence by the preceding arguments we have

wE) < (S1r)" "

The lemma follows by the Marcinkiewicz interpolation theorem. O

LEMMA 3. For ng,)R, 0 < B < n, we have the following properties:
(1) If Q C R C S are cubes in R?, then K(Q[?)R < Kéf)s, Kz(%ﬁ,)s < cKéé)S
and Kégﬁ,)s < c(Kg)R + K}(%ﬁ,) ).
(2) If Q C R have comparable sizes, then Kézﬁ,)R <ec.
(3) If N is a positive integer and the cubes 2Q, 2°Q, ..., 2N~1Q are non-
doubling, then Kg)QNQ <ec. So, Kc(;)ﬁ,)@ <ec.
Proof. The properties (1) and (2) are easy to check. Let us prove (3). Note
that B4 > 2". For k=1,..., N — 1, we have u(2**1Q) > B4u(2¥Q). Thus
12N Q
n2tQ) < (N_k)
d
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for k=1,..., N — 1. Therefore

N-1 N 1-5 N 1-8/n
® 27Q) 127 Q)
KQ2NQ<1+Z[6;V Fl2k Q)" ] +[g( Q)" }

1-8/n N—1 1-8/n
<1+”’/"+[“(2NQ)] / S —
l(2NQ)n — ﬂ(]i\/—k2(k7N)n
<1+Cl B/n 1‘5/”2(2n/ﬁ) (1-8/n) <ec. 0
k=1

In [8], Tolsa defined a sharp maximal operator M7 f(x) such that
f € RBMO(p) <= M*f € L*>(p).

In order to prove the theorem, we need to introduce a variant of this sharp
maximal operator M#: () f(x) such that M# f(x) = M# (©) f(z). We define

gt s el o]

€EQCR K( )
Q,%doubling QR

M#’(ﬁ)f:v :supi
( ) wEQM 3/2

We also consider the non-centered doubling maximal operator IV, defined by

1
N = - dp.
i@ QEE}%_ gu(Q) /Q Fldy

By Remark 2.3 of [8], for p-almost all # € R? one can find a sequence of
doubling cubes {Q}x centered at x with [(Qf) — 0 as k — oo such that

1 e
lim s /Q () = i)

So, |f(z)] < Nf(x) for p-a.e. x € R Moreover, it is easy to show that N is
of weak type (1,1) and bounded on L?(u), p € (1, o0].

LEMMA 4. Let f € L () with [ fdu =0 if ||| < co. For 1 < p < oo,
if inf(1, Nf) € LP(u), then for 0 < 8 < n we have

INFllzey < cllM# B £l Lo

When 8 = 0, this is Theorem 6.2 of [8]. With minor changes in the proof
one can obtain the present lemma. We omit the proof here for brevity.

LEMMA 5. For 0 < 8 < n there exists a constant Pg (large enough)
depending on co, n and 8 such that if Q1 C Q2 C -+ C @y, are concentric
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cubes with Kgi) > Pg fori=1,2,...,m—1, then

7Qi+l
= 0 )
I63 I53
Z KinQiJrl < C3KQ1,Qm’
=1

where c3 depends only on cg, n and 3.

Proof. Let Q) be a cube concentric with @; such that 1(Q;) < I(Q}) <
20(Q;) with 1(Q}) = 2¥1(Q,) for some k > 0. Then

1) ) )
¢ Ko qun S EQ g, S kg g

for all ¢ with ¢4 depending on ¢y, n and 3.
Observe also that if we take Ps so that c¢; ' Ps > 2, then K, >2and

Qi i1
SO
Nai, o) _
KB o S [u(2’f¢22)}1 o
in : - kO)/\n :
B o LERe)
Therefore
N ’ ’
m—1 m—1" Qi Qiy1 koY 11=8/n
2"Q})
5 KW <9 #(2°Q0) .
( ) ; Wiyl T = ; Z(QkQ;)”

On the other hand, if Py is large enough, then Q] # Qj, ;. Indeed,

NQQ',QHJ k 1-8/n
—B/n 2 i
o "No.a [M( e )}

> Ps—1
1(2FQ)" =85

i+l 2
k=1

and so Ng,, Q.,,, = (P3 — 1)/6376/71 > 2, assuming Pjs large enough. This
implies 1(Qi+1) > 20(Qs), so Qi # Q. As a consequence, there is no
overlapping in the terms [u(2°Q})/1(28Q})"]*=#/™ on the right hand side of
(5). Thus

m—1 m—1

(8) 8 () 2 1-(8)
S K g <y Ky g, < 2K, o <265Kg) g - O
=1 i=1

LEMMA 6. For 0 < (8 < n there exists a constant Pé (large enough)
depending on co, n and 3 such that if v € R? is a fived point and {fg}osx is
a collection of numbers such that |fg — fr| < KC(QB’)RCQD for all doubling cubes

Q C R with x € Q such that K < P., then
Q,R B

lfo — frl < c5K<(£)RCm for all doubling cubes Q C R with x € Q,

where c5 depends on cg, n and [3.
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Proof. Let Q C R be two doubling cubes in R? with 2 € Q =: Q. Let
Q1 be the first cube of the form 2¢Q, k > 0, such that K3, > Pj. Since

. < Pg, we have Kgf)Ql < 2P3+cg by Lemma 3. So, for the doubling
cube Ql, we have Kéf )@ < ¢7 with ¢7 depending on Pg, n, ¢y and (.
» Wl

In general, given ,Q\;, we denote by @;+1 the first cube of the form 2’“@;, k>
0, such that K (8) 0 > Pg. We consider the doubling cube @Q; ;. We have

Qi, Qit1
K9 __ < K9 __ > g® Pe. Th ,
Qi, Qit1 cr and Q'szJrl Qi, Qit1 > £s en we obtain
(6) \fcz—leSzlf@:—f@lﬂf@;—m,
=1

where 61; is the first cube of the sequence {@;}Z such that 5;; D R. Since

Kgi) o < ¢7, we also have Kg/) R SOt By (6) and Lemma 5, if we set
N N+1 N>

Pé = ¢y, we get
8) (5)
< K ~
|fo — fr] Z o 1,QIC + K Cx
(3) (3 (B)
< —C, s <
< oK Cot KOOy < eKC 0

Proof of Theorem 1. For all p € (1, n/a) we will prove the following sharp
maximal function estimate:

MF (b, 111)(@) < bl (M ) (2) + My, (372 (T ) (@) + La(1f1) () )
Then, if we take 7 such that 1 <r <p <n/a and 1/¢=1/p — a/n, we get
1B, Ll fllg < IN(b., La)f)llg < ellM# @ (b, L]f)]lq
< ellblle (I sy Flla + 1M, 3720 T )l + 12 (1Dl )
< b1,

Thus it remains to prove the above sharp maximal function estimate.
Let {bg}q be a family of numbers satisfying

/Q b boldi < 2u(2Q) bl

for any cube @, and
bg — br| < 2Kq, r||b]|«
for all cubes Q C R. For any cube @, we set

hQ =mQ (Ia((b - bQ)fXRd\(4/3)Q)) :
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We will prove that

1
O e / b, L) — heldy
< ellblle (M) () + My, (32 (T ) ()
for all x and @ with z € @, and
(8)  Ihg — hal < cllbl. (M /(@) + La(1f) (@) Ko, RES

for all cubes @ C R with z € Q.
To get (7) for some fixed cube Q and z with x € Q, we write [b, I,]f in
the form

(9) [b; Lol f = (b= b@)af = La((b = bQ) f1) = La((b = bq) f2),

where fi = fX(4/3)Q and f2 = f — fi.
Let us first estimate the term (b — bg)In f:

1 1 o 1/17'
(10) ,U((3/2)Q) /Q|(b_bQ)Iaf|d/1’< (M 3/2 /|b_bQ| dﬂ’)

1/p
<7y [, o)
< el My, 3 (1o ) 0)

Next we are going to estimate the second term on the right hand side of
(9). We take s = /p. Then we have

1-1/r
! / 1L (b — o) foldu < D1 (0= b))l

1((3/2)Q) w((3/2)Q)
M(Q)l 1 7" -
<Gl (/r=1/s=a/n)
< MMQ

)1 1/r 1/s
b—b sd
1 1/ss’ 1/p
cC—————— b—b ss'd ng
< 1((3/2)Q)1/ </(4/3)Q| al u) (/(4/3)@ £l u)
1/ss’
1 ’
Cl a7 b—bol5d
: (u((3/2)Q) /(4 P u)

1/p
1 p
g (u((S/Q)Q)lap/n /(4 /3)Q|f‘ du)

<C||b|| M (9/8)f< )
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By (9), (10) and (11), to get (7) it remains to estimate the difference
1((b = b@) f2) — hal. For g1, y2 € @ we have

(12)

[ 1o ((b — bQ)fz)(yl) — 1o ((b— bQ)fz)(%)\

ly2 — y1|
= C/ T g ntial? boll f(2)|du(z
R4\ (4/3)Q |Z—y1|"+1 5 10(2) = bollf (2)ldu(z)
3 UQ)
=¢ / —————— | [b(z) — by |
o ama-iame - mfre ( 24(4/3)Q

+[bg — bzk(4/3)Q|> |f(2)|du(z)
< cz PG oy M)~ B cmallF )

+cZk2 F11b]| ng) /Qk(4/3)Q|f(z)ldu(z)
- ) 1/p
) b — by P
3% <M(2’“(3/2)Q) /%(4/3)@' e “)
1/p
1 P
d
- <M(2’“(3/2)Q)”‘p/" L “)

1/p
1
+ed> k27F|p / flPdu
E 1B« ( [@F(3/2)Q)1nTn 2k(4/3)@| |

<e) 2"€|\bll*M,§739/g)f(af) + cZkz-kub||*M;f?g/s>f<x>
k=1 k=1

<C||bH M (9/8)f( )

where we used the fact that
bg — bar(asz)ql < 2Kq, 2r(4/3)QlIbll« < ckl[b]|..
Taking the mean over ys € Q), we get

[La((b = b@) f2)(y1) — hq| = [1a((b = bQ) f2)(y1) — mq(La((b — bg) f2))]
< c||b|| M 9/8)f(x)
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Thus
1) / 1 (b = b) £2) (41) — haldiu(yn) < cllbl M%), ) £ (@),

and so ( ) holds.

Now we have to check the regularity condition (8) for the numbers {hq}¢.
Consider two cubes @ C R with x € Q. We set N = Ng r + 1. We write the
difference |hg — hr| in the form

Imq (Lo ((b — 0Q) fXra\(4/3)0)) — MR(La((b = bR) fXRa\(4/3)R))]
< mqLa((b — Q) fX20\(4/3)0))| + Mm@ (La((bg — br) fXR4\20))|
+ [mqLa((b = br) fXavg\2@)) + Imr(La((b — bR) fX25 @\ (4/3)R))|
+ Imq(Ia((b — br) fXrar2n @) — MR(La((b — br) fXra\2~ )]
=U1+Us+Us+ Uy + Us.
Let us estimate U;. For y € @ we have
c

[ 1o ((b — bq) fx20\(a/3)0) (¥)] < Q)= /2Q b —bol| fldu

c ' l/p/ » 1/p
< g (b rer ) ([ o)
1 o 1/p' 1 ) 1/p
<y Lo o) (rrmar=mrm o 1)

< bl My g f ().

Hence we obtain

Ur < cl[b]l. My ) f ()

Next, consider the term Us. For x, y € Q, it is easily seen that

o (FXrt\2Q) )] < Ta(F) (@) + MWy o) f ().
Thus

Uy = ‘@/Q(bcz )1, (fXRd\QQ)(y)d'u‘
< ef,mlbl. (La(1)(@) + M) ().

The term Uy is easy to estimate. Calculations similar to those carried out
for U; yield
Uy < C||b|| M 9/8)f($)
Let us now turn to the term Us. Argumg as in (12), for any y, z € R, we
get

L (b — br) Franov@) () — La((b = br) Fxianan @) ()] < elbl My o £(@).
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Taking the mean over @) for y and over R for z, we obtain
U5 < C”b” M g/g)f(x)

Finally, it remains to deal with Us. For y € @) we have

I, ((b—20 b—b d
al(b = br) franrag) W) < € Z I 2’%2 /2k+1Q\2kQ| rll 7l
N-1 1 , 1/p’ 1/p
< _ b—0brPd Pd .
>¢ ; I( kQ)nfa (/QHIQ | R| p,) </2k+1Q If] M)
Note that

, 1/’
( / b — br” du)
2k+1Q

1/p
< ([ b=t ) Q) g - b
2k+1Q
< cKg, glb]lp(2¥2Q)V7".
Thus

(6= ) a0 )
/~L(2k+2Q)1/p/ ( . )1/P
< ckg, bl Z gy (o, 17

(2kQ)n a
NQ=R k+2\1—a/n 1/p
n(2°7Q) 1
< cKq, r||b]- T — |fPdp
2 i) QY Jyuing

< CKQ RKQ R”b” M 9/8)f( )
Taking the mean over ), we get
Us < cKq, rEK (s gllb M %y 15 f (2).

From the estimates on Uy, Uy, Us, Uy and Us, the regularity condition (8)
follows.

Let us see how from (7) and (8) one obtains the sharp maximal function
estimate. By (7), if @ is a doubling cube and z € @, we have

(14)  |ma(lb, fam—hms@ / b, T]f — holdu

< cllblle (M50 (@) + My 32y (L) (@)
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Also, for any cube Q with z € Q, K, 5 < cand K((;)@ < ¢, we have, by (7)
and (8), ’

1
(15) m/@ ’[b, La]f =mg([b, L]f)| du

1
< @) J, b elS el Iha =gl + g~ ma((. Tl

< ellblle (M0 () + My, (32T f) (@) + LalIf1)() )

On the other hand, for all doubling cubes @@ C R with x € @ such that
K(on)R < P!, where P/, is the constant in Lemma 6, we have by (8)

ha — hal < kg rlbll. (M s F(2) + La(Lf)(@)) PL

Hence by Lemma 6 we get

ha = il < K plblls (M s (2) + Ta( 1))

p,

for all doubling cubes @ C R with « € @, and using (14) again, we obtain
Imq([b, Ialf) — mr([b, Ia]f)]
< Kbl (ML ) F () + My 3/ (T (@) + T 1)) )

From this estimate and (15) we get the sharp maximal function estimate. O
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