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CLIFFORD LINKS ARE THE ONLY MINIMIZERS OF THE
ZONE MODULUS AMONG NON-SPLIT LINKS

GRÉGOIRE-THOMAS MONIOT

Abstract. The zone modulus is a conformally invariant functional over
the space of two-component links embedded in R3 or S3. It is a positive
real number and its lower bound is 1. Its main property is that the zone
modulus of a non-split link is greater than (1 +

√
2)2. In this paper, we

will show that the only non-split links with modulus equal to (1+
√

2)2

are the Clifford links, that is, the conformal images of the standard
geometric Hopf link.

0. Introduction

Langevin and O’Hara introduced in [1] a conformally invariant functional
for knots, called the measure of acyclicity. It is the volume (with respect to a
conformally invariant measure on the space of all round spheres) of the set of
spheres that cut the knot in at least four points. There exists a constant C
such that a curve with measure of acyclicity below C is the unknot. To prove
this, they introduced a knot modulus called the zone modulus.

This work comes after O’Hara’s definition in [3] of the concept of a knot
energy. Roughly, a functional on the space of knots is an energy when it blows
up near a self-intersection. An energy is also expected to possess thresholds
such that a curve with energy lower than a particular threshold must belong
to a particular knot type. A knot representative in a knot class that realizes
the minimum energy provides the best shaped knot of its class.

One of the most famous knot energy functionals, introduced by O’Hara in
[3], is

E(γ) =
∫∫ {

1
|γ(v)− γ(u)|2

− 1
D(γ(u), γ(v))2

}
|γ′(u)||γ′(v)| du dv,

where γ is an embedded curve and D(γ(u), γ(v)) denotes the length of the
shortest path from γ(u) to γ(v) on γ. In [4] Freedman, He and Wang proved
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the conformal invariance of E and called E the Möbius energy. In the same
paper they showed that the energy of a closed curve is always greater than or
equal to 4 and that equality holds only for circles. They proved also that each
prime knot class has an energy-minimizing representative, and that, given
m > 0, there are finitely many knot types such that E ≤ m. In [5], Kim and
Kusner constructed explicit examples of knotted curves which are critical for
E.

In [2], Langevin and the author proved that the minimum of the zone
modulus over all non-split two-component links is (

√
2 + 1)2. This minimum

is attained by a special configuration of two circles called a Clifford link,
defined as follows:

Definition 1. We say that a link is a Clifford link when it consists of
two circles such that each sphere containing one of the circles is perpendicular
to each of the spheres containing the other circle. Equivalently, a Clifford link
is a conformal image of the standard geometric Hopf link.

In [4], Freedman, He and Wang defined the mutual Möbius energy of two
curves as

E(γ1, γ2) =
∫∫

|γ′
1(u)||γ′

2(v)|
|γ1(u)− γ2(v)|2

du dv.

Kim and Kusner showed in [5] that the standard geometric Hopf link is crit-
ical for E. In [7], He gave a geometric interpretation of the Euler-Lagrange
equation for any E-critical pair of curves. He showed that there exists a pair
of curves that minimizes E over all linked pairs of loops and that every such
pair is ambiently isotopic to the Hopf link. As far as the author knows, it is
still a conjecture that Clifford links are the only configurations that minimize
the Möbius energy among two-component non-split links.

The purpose of the present paper is to solve the analogous conjecture for
the zone modulus. We will show:

Theorem 1. The two-component links that realize the minimum zone
modulus among all non-split two-component links are the Clifford links.

It should be noted that the standard geometric Hopf link or its conformal
class, the Clifford links, seems to be a recurrent minimizer or maximizer of
various functionals. For example, Kusner proved in [6] that the thickness
of a non-split two-component link in S3 cannot exceed that of the standard
geometric Hopf link, which equals π/4. In [2], we proved that the standard
geometric Hopf is the only non-split two-component link with thickness π/4.

1. Preliminary definitions and known facts

We will recall in this section the definition of the zone modulus of a two-
component link and some results of [2].
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1.1. The modulus of a zone between two spheres. We first define the
modulus of a zone between two disjoint spheres, which we call for simplicity
the modulus of two spheres.

Definition 2. Given two disjoint spheres S1 and S2 in R3, let us choose
a conformal transformation that makes the two spheres concentric with radii
R2 > R1. Then the modulus µ(S1, S2) of the two spheres is the ratio R2/R1 >
1.

We can express the modulus in terms of the cross-ratio. Recall that the
cross-ratio of four collinear points is defined as

Cr(x1, x2, x3, x4) = (x1 − x3)(x2 − x4)/(x2 − x3)(x1 − x4).

The cross-ratio is invariant by any homography of the line. We can extend
its definition to four concircular points as follows: The cross-ratio of four
points on a circle is the cross-ratio of the four image points by a stereographic
projection of the circle onto a line.

Two disjoint spheres S1 and S2 generate a pencil of spheres with limit
points. It is the set of spheres perpendicular to all the circles perpendicular
to both S1 and S2. The limit points are the two points of intersection of these
circles. Consider a circle perpendicular both to S1 and S2 as in Figure 1. It
contains the limit points l1 and l2 of the pencil generated by S1 and S2 and
intersects each Si in two points. Let us take two of these points, p1 and p2,
such that l1, p1, p2, l2 are in this order on the circle.

Let I be a Möbius transformation that sends l2 to infinity. The spheres
I(S1) and I(S2) are now concentric and we have

Cr(I(p1), I(p2), I(l2), I(l1)) = R2/R1,

where R1 and R2 are the radii of I(S1) and I(S2). By definition, we have
µ(S1, S2) = R2/R1. Thus

µ(S1, S2) = Cr(p1, p2, l2, l1).

S1

l1

p1 p2
l2

S2

I(l1)

I(l2) =∞

I(p1) I(p2)

I(S1)

I(S2)

R1

R2

Figure 1. Modulus in term of cross-ratio.
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Remark 1. Let P be a plane and S a sphere disjoint from P as in Figure
2. The abscissa λ of the limit point of the pencil generated by S and P is√

ab. Then,

µ(P, S) = Cr(0, a, λ,−λ) =

√
ab + a√
ab− a

.

P

S

−λ λa b0

Figure 2. Modulus of a sphere and a plane.

Remark 2. As a consequence, if P is a plane and S1 and S2 are two
spheres with the same radius and if S1 is closer to the plane than S2, then we
have µ(P, S1) < µ(P, S2).

Remark 3. As another consequence, if a sphere S of constant radius
approaches a plane P, without intersecting it, then the modulus of P and S
tends to 1. Indeed, if b − a is constant and a tends to 0, then µ(P, S) tends
to 1.

Remark 4. Let S1, S2 and S3 be three disjoint spheres. Suppose the open
3-ball bounded by S2 contains S3, but is disjoint from S1. Then µ(S1, S2) <
µ(S1, S3).

This can be proved by performing a conformal transformation that turns
S1 into a plane and computing the two cross-ratios.

1.2. The zone modulus of a link. Let K1 and K2 be two embedded
curves in S3.

Definition 3. A pair (S1, S2) of spheres is said to be non-trivial for K1

and K2 if they are disjoint and if, for each sphere, there is at least one point
of K1 and one point of K2 on it.

Definition 4. The zone modulus of K1 and K2 is the supremum of the
moduli of all non-trivial pairs of spheres for K1 and K2.

The main result of [2] is the following:



CLIFFORD LINKS MINIMIZE THE ZONE MODULUS 401

Theorem 2. Two linked curves have a zone modulus greater than or equal
to (1 +

√
2)2.

1.3. Trisecants. The following lemma is a concise rewriting of results of
[2].

x
y

z

K1

K2

Figure 3. A trisecant.

Lemma 1. Let K1 and K2 be two linked curves such that K1 goes through
infinity and let x be a point of K2. There exists a straight line L through x
that cuts K1 in y 6= ∞ and K2 again in z (see Figure 3). We call such a line a
trisecant through x. If the zone modulus of K1 and K2 equals (1+

√
2)2, then

y is the midpoint between x and z and there is no other point of intersection
between L and K1 or K2.

Trisecants may be seen as a conformal version of quadrisecants for two
linked curves. This subject goes back to 1933 (see Pannwitz’s work in [8]). A
more modern treatment appears in Kuperberg’s paper [9] and Denne’s thesis.

2. Proof of Theorem 1

Let K1 and K2 be two linked curves. Two cases may occur:
(1) For every point x on each curve, the other curve is contained in a

sphere perpendicular at x to the first curve.
(2) On one of the curves, say K1, there exists a point x1 such that no

sphere perpendicular at x1 to K1 contains K2.
If the first case occurs, there exist two points x1 and x2 on K1 and two

distinct spheres S1 and S2 containing K2 and perpendicular at x1 and x2 to
K1. Thus K2 is the round circle intersection of S1 and S2. For the same
reasons, K1 is also a round circle. Since K1 is perpendicular to S1 and S2, it
is perpendicular to each sphere going through S1∩S2 = K2. Thus each sphere
containing K1 is perpendicular to each sphere containing K2, so according to
Definition 1, K1 and K2 form a Clifford link and the theorem is proved in the
first case.

To conclude the proof, it is enough to prove that the second case never
occurs when modulus(K1,K2) = (1 +

√
2)2. We will suppose the contrary

and show in the remainder of this section that this is impossible.
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From now on, we suppose that modulus(K1,K2) = (1 +
√

2)2 and that
there exists a point x1 on K1 such that no sphere perpendicular at x1 to K1

contains K2. By a suitable Möbius transformation, we send x1 to infinity and
the tangent at x1 to a vertical line. The spheres perpendicular to K1 at x1 are
now all the horizontal planes. Then there exist two distinct horizontal planes
Ptop and Pbottom tangent to K2 such that K2 lies between these planes.

Let K̃1 denote K1 \∞. Let x2 ∈ K2. By Lemma 1, there exists a trisecant
L through x2 which cuts K̃1 in a point x3 and K2 again in a point x4. The
point x3 is the midpoint between x2 and x4. The following lemma shows that
K2 is trapped between spheres in particular position with L.

x1 =∞

c

x2

x3

x4

S

Σ

L

Figure 4. The spheres Σ and S.

Lemma 2. Let c be the midpoint between x2 and x3. Let Σ and S be the
spheres centered at c with Σ going through x4 and S going through x2 and x3

(see Figure 4). The curve K2 lies between Σ and S.

Proof. Suppose that there exists a point x on K2 outside the zone bounded
by S and Σ. Then x is either outside Σ or inside S; see Figure 5. We will show
that there exists a non-trivial pair of spheres of modulus strictly greater than
(1 +

√
2)2, contradicting our assumption that modulus(K1,K2) = (1 +

√
2)2.

When x is outside Σ, consider the line L′ through c and x and the plane P ′

through x that is perpendicular to L′. Since P ′ contains x1 ∈ K1 and x ∈ K2,
the pair (S, P ′) is non-trivial. Let a and b be the two points of intersection
of S with L′. By Remark 1, µ(S, P ′) is a function of the abscissa of a and
b on L′ if x marks the origin. With x outside Σ, we have |b − a| < |x − a|.
Therefore, µ(S, P ′) > (1 +

√
2)2.

When x is inside S, consider the sphere S′ through x that is tangent to
S at x3 and the plane P through x4 that is perpendicular to L. Since S′

contains x3 ∈ K1 and x ∈ K2, the pair (S′, P ) is non-trivial. By Remark 4,
µ(S′, P ) > µ(S, P ) = (1 +

√
2)2. �

Corollary 1. The curves K1 and K2 are perpendicular to L.
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x1 =∞
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x4

L
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x2

S′

x3
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L

x

P
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S

Figure 5. A point x of K2 outside Σ or inside S exhibits a
non-trivial pair of spheres whose modulus is too large.

Proof. Let c1 be the midpoint between x2 and x3 and let c2 be the midpoint
between x3 and x4. Let Σ1 and S1 be the spheres centered at c1 such that
Σ1 goes through x4 and S1 goes through x2 and x3. Let Σ2 and S2 be the
spheres centered at c2 such that Σ2 goes through x2 and S2 goes through x3

and x4 (see Figure 6).

L x2

x3

x4c1 c2

x1 =∞

S1 S2

Σ1 Σ2

Figure 6. The four spheres that enclose K2.

By Lemma 2, K2 must lie between Σ1 and S1 and between Σ2 and S2.
Therefore K2 must be tangent to S1 and Σ2 at x2 and tangent to S2 and Σ1

at x4. Therefore K2 is perpendicular to L.
We can now choose a Möbius transformation that keeps L fixed and that

exchanges x1 with x2. The same argument with K1 and K2 interchanged
shows that K1 is also perpendicular to L. �

Corollary 2. The trisecant L through x2 is unique.

Proof. Suppose, to the contrary, that there exists another trisecant L̃
through x2 which cuts K̃1 in x̃3 and K2 again in x̃4. For convenience, let
us work in the plane that contains L and L′ (see Figure 7). Let c be the mid-
point between x2 and x3 and let C be the circle through x4 centered at c. By
Lemma 2, x̃4 lies in the interior of C. Therefore we have |x2− x̃4| < |x2−x4|.
Analogously, if we consider c̃ the midpoint between x2 and x̃3 and let C̃ be
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L
L̃

x2

c

x3

x4

c̃

x̃3

x̃4

C

Figure 7. Uniqueness of the trisecant through x2.

the circle through x̃4 centered at c̃, then we have |x2 − x4| < |x2 − x̃4|. This
is a contradiction. �

As a corollary, by moving the point x2 on K2, we can define a map F :
K2 → K1 that sends x2 to x3 and a map G : K2 → K2 that sends x2 to x4.
More precisely:

Definition 5. Let x be any point of K2. There exists a unique trisecant
L through x that cuts K̃1 and K2 again. We define F (x) to be the point where
K̃1 intersects L and G(x) to be the point other than x where K2 intersects L.

Lemma 3. The maps F and G are continuous.

Proof. Let x ∈ K2 and let xn be a sequence of points of K2, which converges
to x. The curve K2 is compact, so the sequence yn = G(xn) has at least one
point of accumulation a in K2. Let yun be a subsequence converging to a and
let Ln denote the trisecant through xun . These lines cut K̃1 in a sequence of
points zun = F (xun). Since zun = (xun + yun)/2, the sequence zun converges
to a point z = (x + a)/2 of K̃1. Hence there exists a line L that cuts K̃1 in z
and K2 in x and a and that is therefore the unique trisecant through x. Thus,
there exists only one accumulation point of the sequence yn which converges
to y = G(x). Therefore G is continuous. Since xn and yn are both convergent,
zn converges to the point z = F (x), and therefore F is continuous. �

Lemma 4. The map G is a homeomorphism of K2 with no fixed points
such that G ◦G(x) = x.

Proof. Let x and y be two points of K2 such that G(x) = G(y) = z. This
means that there exists a trisecant L through x, F (x) and z, and another
trisecant L′ through y, F (y) and z. Since there exists only one trisecant
through z, we must have L = L′. By Lemma 1, K2 intersects L in exactly
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two distinct points. Since x 6= z, we must have x = y. The map G is therefore
one-to-one.

Let x be a point of K2 and y = G(x). The line through x and y is the
unique trisecant through y. Hence G(y) = x. �

Lemma 5. The curve K2 is symmetric about a vertical line. The image
F (K2) is a segment of this line.

Proof. Recall that Ptop and Pbottom are distinct horizontal planes that are
tangent to K2, such that K2 lies between Ptop and Pbottom. Let t2 be a point
of K2∩Ptop and t4 = G(t2). Let b2 be a point of K2∩Pbottom and b4 = G(b2).
Choose an orientation on K2 such that t2, b2 and t4 are in this order on K2.
The image by F of the arc joining t2 to t4 is a continuous path δ of K1 that
contains F (b2) = b3. Thus δ joins F (t2) = t3 to F (t4) = t3 through b3.
But since K1 is a simple curve through infinity, δ is described twice. Thus
for every point z ∈ K1 between t3 and b3 there exist at least two distinct
points x and y on the arc of K2 joining t2 to t4 such that F (x) = F (y) = z.
Since G is orientation preserving, G(x) is on the arc of K2 joining G(t2) = t4
to G(t4) = t2. Thus G(x) 6= y. The trisecants L through x and z and L′

through y and z are distinct. By Corollary 1, L and L′ are perpendicular to
K1. Since the tangent to K1 at x1 has been chosen to be a vertical line, L
and L′ are horizontal. The plane containing L and L′ is therefore horizontal
and perpendicular to K1 at z. Thus, the tangent to K1 at z is vertical. The
arc of K1 between t3 and b3 is therefore a segment of a vertical line. For any
x ∈ K2, the points x and G(x) are symmetric about this line since F (x) is
the midpoint of x and G(x). �

Lemma 6. The length between a point of K2 and its image under F is
constant.

Proof. Let γ(t) be a parametrization of K2. We have:
d

dt
|F (γ(t))− γ(t)|2 = 2〈(F ◦ γ)′(t)− γ′(t), F (γ(t))− γ(t)〉

By Corollary 1, F (γ(t))−γ(t) is perpendicular to K1 and K2. Since (F ◦ γ)′(t)
is the tangent to K1 and γ′(t) the tangent to K2, we have

d

dt
|F (γ(t))− γ(t)|2 = 0. �

Let us summarize the situation: K2 lies between two horizontal planes on
a cylinder whose axis is a vertical line which coincides with K1 in the region
between the two planes (see Figure 8).

This configuration is in contradiction with Lemma 2. Indeed, the compo-
nent K2 is not contained in the interior of the sphere going through t4 centered
at the midpoint of t2 and t3.
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Figure 8. The shape of K2.
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