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POINTWISE AND L1 MIXING RELATIVE TO A
SUB-SIGMA ALGEBRA

DANIEL J. RUDOLPH

Abstract. We consider two natural definitions for the notion of a dy-
namical system being mixing relative to an invariant sub σ-algebra H.

Both concern the convergence of

|E(f · g ◦ Tn|H)− E(f |H)E(g ◦ Tn|H)| → 0

as |n| → ∞ for appropriate f and g. The weaker condition asks for
convergence in L1 and the stronger for convergence a.e. We will see
that these are different conditions. Our goal is to show that both these

notions are robust. As is quite standard we show that one need only
consider g = f and E(f |H) = 0, and in this case |E(f · f ◦ Tn|H)| → 0.
We will see rather easily that for L1 convergence it is enough to check

an L2-dense family. Our major result will be to show the same is true
for pointwise convergence, making this a verifiable condition. As an

application we will see that if T is mixing then for any ergodic S, S×T
is relatively mixing with respect to the first coordinate sub σ-algebra in
the pointwise sense.

1. Introduction

Mixing properties for ergodic measure preserving systems generally have
versions “relative” to an invariant sub σ-algebra (factor algebra). For most
cases the fundamental theory for the absolute case lifts to the relative case.
For example one can say T is relatively weakly mixing with respect to a factor
algebra H if

(1) L2(µ) has no finite dimensional invariant submodules over the sub-
space of H-measurable functions, or

(2) T has no nontrivial factors containing H that are relatively isometric
over H, or

(3) the 2-fold relatively independent self-joining of T is ergodic, or
(4) the 2-fold relatively independent joining of T with any ergodic action

having H as a factor is ergodic (see [4]).
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A similar situation holds for the K-property in that the following are all
known to be equivalent:

(1) T has H-relative trivial tail fields in that for any finite partition P

∞⋂
j=0

 ∞∨
n=j

T−n(P ) ∨H

 = H.

(2) T has noH relative Pinsker algebra, i.e., if h(T, P |H) = 0 then P ⊆ H.
(3) An appropriately formulated version of H-relative uniform multiple

mixing holds (see [1] and [2]).
A similar situation holds for the Bernoulli property and is the content of

Thouvenot’s well known theory of relatively Bernoulli actions (see [3]). In
particular one has both an H-relatively finitely determined and H-relatively
very-weakly Bernoulli characterization of those systems where the factor al-
gebra H has a complimentary factor on which the action is Bernoulli.

It is not surprising that the situation for mixing is murkier. Studying this
is the substance of our work here. What mixing relative to a factor algebra
H should say is that for any f and g

|E(f · g ◦ Tn|H)− E(f |H)E(g ◦ Tn|H)| → 0

as |n| → ∞. What is not clear is in what sense. We will show here that
two distinct senses are both reasonable, convergence in L1 and convergence
pointwise a.e. For L1-convergence it is natural to take functions in L2. For
convergence pointwise a.e. this may be true but we cannot show it. Rather
we work in a smaller Banach space between L2 and L∞.

Definition 1.1. Set

L2,∞
H = {f : E(|f |2|H) ∈ L∞(µ)}.

Notice that if H is trivial, this is L2 and if H is the full algebra, it is L∞.
Setting ‖f‖H2,∞ = ‖E(|f |2|H)1/2‖∞ we turn L2,∞

H into a Banach space.

The Rokhlin decomposition of µ over the factor H says we have a family
of fiber measures µx with

µ =
∫
µx dµ

and
E(f |H)(x) =

∫
f dµx.

Thus saying f ∈ L2,∞
H is just saying f ∈ L2(µx) for a.e. x and that the

L2(µx) norms of f are uniformly bounded in x. We will move interchangeably
between conditional probabilities (E(f |H)(x)) and fiber measures (

∫
f dµx)

in our calculations. When writing norms or inner products we will add the
measure in the subscript (e.g., 〈f, g〉µx or ‖f‖2,µx) to clarify the measure
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involved. To give an example, the invariance of the measure µ and the factor
H means that

〈f, g〉µx = 〈f ◦ T−1, g ◦ T−1〉µT (x)

Definition 1.2. We say a measure preserving action T is L1-relatively
mixing w.r.t. a factor algebra H if as |n| → ∞,

‖E(f · g ◦ Tn|H)− E(f |H)E(g ◦ Tn|H)‖1 → 0

for all f and g in L2.

Definition 1.3. We say a measure preserving action T is pointwise-
relatively mixing w.r.t. a factor algebra H if as |n| → ∞,

|E(f · g ◦ Tn|H)− E(f |H)E(g ◦ Tn|H)| → 0

pointwise a.s. for all f and g in L2,∞
H .

As a first step let’s see that these are different notions. The example is a
“T, T−1” map where T is mixing. Let S be the shift map on X = {−1, 1}Z
with uniform Bernoulli measure. Let T be some mixing action on a space
(Y,G, ν). For ~x = {xi}∞i=−∞ ∈ X and y ∈ Y set T̂ (~x, y) = (S(~x), T x0(y)). Let
H be the first-coordinate algebra.

Theorem 1.4. The map T̂ is L1- but not pointwise-mixing relative to the
factor H.

Proof. In proving this we will see that checking convergence on a dense
family of functions f and g is sufficient to show relative L1-mixing. Letting
sn(~x) =

∑n−1
j=0 xj we get T̂n(~x, y) = (Sn(~x), T sn(x)(y)). Fix f, g ∈ L2 and

1/4 > ε > 0. W.l.o.g. we assume ‖f‖2 = ‖g‖2 = 1. First find f1, . . . , fk and
g1, . . . , gk all in L2(ν) and sets A1, . . . , Ak ⊆ X so that∥∥∥∥∥∑

i

χAi ⊗ f i − f

∥∥∥∥∥
2

< ε/10 and

∥∥∥∥∥∑
i

χAi ⊗ gi − g

∥∥∥∥∥
2

< ε/10.

Now select N0 so that for all |n| ≥ N0 and all 1 ≤ i, j ≤ k,∣∣∣∣∫ f i ⊗ gj ◦ Tn −
∫
f i
∫
gj
∣∣∣∣ < ε/10.

Select N so large that for all n ≥ N and Bn = {~x : |sn(~x)| < N0},
µ(Bn) < ε/10.
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Set f̄ =
∑
i χAi⊗f i and ḡ =

∑
j χAj ⊗gj . Now for n ≥ N we can calculate∥∥∥E(f · g ◦ T̂n|H)− E(f |H)E(g ◦ T̂n|H)

∥∥∥
1

≤
∥∥∥E(f̄ ·̄g ◦ T̂n|H)− E(f̄ |H)E(ḡ ◦ T̂n|H)

∥∥∥
1

+ 2‖f − f̄‖2‖ḡ‖2 + 2‖g − ḡ‖2‖f‖2

<
∥∥∥E(f̄ ·̄g ◦ T̂n|H)− E(f̄ |H)E(ḡ ◦ T̂n|H)

∥∥∥
1

+ ε/2.

Now ∥∥∥E(f̄ ·̄g ◦ T̂n|H)− E(f̄ |H)E(ḡ ◦ T̂n|H)
∥∥∥

1

=
∑

1≤i,j≤k

(∫
Ai∩S−n(Aj)

∣∣∣∣∣
∫
f̄ i ·̄gj ◦ T sn(~x)

−
∫
f̄ i
∫
ḡj ◦ T sn(~x)

∣∣∣∣∣ dµ(~x)

)

≤
∑

1≤i,j≤k

(∫
Ai∩S−n(Aj)∩Bcn

∣∣∣∣∣
∫
f̄ i · ḡj ◦ T sn(~x)

−
∫
f̄ i
∫
ḡj ◦ T sn(~x)

∣∣∣∣∣ dµ(~x)

)
+ ε/4

≤ ε/10 + ε/4 < ε/8.

Thus T̂ is L1-mixing relative to H.
On the other hand, for µ-a.e. ~x there exists infinitely many values ni where

sni(~x) = 0 as the standard symmetric random walk on Z is recurrent. At such
values ni, ∣∣∣E(f · g ◦ T̂ni |H)(~x)− E(f |H)(~x)E(g ◦ T̂ni |H)(~x)

∣∣∣
= |E(f · g|H)(~x)− E(f |H)(~x)E(g|H)(~x)| ,

which of course need not be zero. �

We have seen now that there do indeed exist actions which are L1-mixing
relative to a nontrivial factor algebra. The proof of Theorem 1.4 shows that
in fact it is sufficient to check L1 mixing relative to a factor by checking it on
a dense subset of functions and in particular a dense set of piecewise constant
functions of the form

∑
i χAi ⊗ f i where the Ai are measurable with respect

to H and the f i are measurable w.r.t. a second coordinate. Hence one can see
that if T is mixing then any S×T is L1-mixing relative to its first coordinate
algebra. What is not at all evident at this point is that there exist any actions
that are pointwise-mixing relative to a nontrivial factor algebra. We are now
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ready to begin our work to show that indeed not only do such actions exist
but it is as easy to verify it as it is for the L1-notion in that verifying it on a
dense family is sufficient.

2. Reducing to just one function

We now show that for both the L1 and pointwise notions it is sufficient
to show that functions mix against themselves. Notice that for H measurable
functions, one always has H-relative mixing. These functions play the role
of constants. Also notice that the set of functions on which the appropriate
limits hold for relative mixing is closed under linear combinations. Hence it is
enough to verify the limits for those f and g whose conditional expectations
are zero.

Definition 2.1. Set E2 = {f ∈ L2 : E(f |H) = 0} and E2,∞ = {f ∈
L2,∞
H : E(f |H) = 0}.

Corollary 2.2. A map T is L1-mixing relative to H iff for all f, g ∈ E2,
E(f · g ◦ Tn|H) → 0 in L1 and is pointwise-mixing relative to H iff for all
f, g ∈ E2,∞, E(f · g ◦ Tn|H)→ 0 pointwise a.s.

Definition 2.3. We say f ∈ E2 (or E2,∞) is L1- (or pointwise)-self-
mixing relative to a factor H if as |n| → ∞ we have E(f · f ◦ Tn|H) → 0 in
L1 (or pointwise).

Our goal now is to show that if all f are self-mixing relative to H then T
is mixing relative to H either in L1 or pointwise. We then want to see that
just checking an L2 dense family, in either case, is sufficient.

All our work is based on the standard trick that one function cannot be
dependent of all terms in a series of independent functions. We start with the
simplest lemma and walk through the complete argument to (re)familiarize
the reader with it.

Theorem 2.4. Suppose f ∈ E2 and

lim
|n|→∞

‖E(f · f ◦ Tn|H)‖1 = 0.

Then for all g ∈ L2 we have

lim
|n|→∞

‖E(g · f ◦ Tn|H)‖1 = 0.

Proof. Suppose not, i.e., there is a g ∈ L2 with ni ↗∞ and 1 > a > 0 for
which

‖E(g · f ◦ Tni |H)‖1 > a.
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W.l.o.g. we can assume that for all i 6= j we have∥∥E(f · f ◦ Tnj−ni |H)
∥∥

1
<

a2

2‖g‖22
by dropping to a subsequence of the ni.

Let hi = signumE(g ·f ◦Tni |H), which is an H measurable functions. Now
for all i, ∫

E(hi · g · f ◦ Tni |H) > a.

Thus

Ia <

∫
E

(
I∑
i=1

hi · g · f ◦ Tni |H

)

≤
∫ E

( I∑
i=1

hi · f ◦ Tni
)2

|H

E(g2|H)

1/2

≤

∫ E

( I∑
i=1

hi · f ◦ Tni
)2

|H

1/2(∫
E(g2|H)

)1/2

=

 ∑
1≤i,j≤I

∫ (
hi ◦ T−ni hj ◦ Tni

)
E(f · f ◦ Tnj−ni |H)

1/2

‖g‖2

≤

 ∑
1≤i,j≤I

∥∥E(f · f ◦ Tnj−ni |H)
∥∥

1

1/2

‖g‖2

≤
(
I‖f‖22 + I2 a2

2‖g‖22

)1/2

‖g‖2 ≤
√
I‖f‖2‖g‖2 +

Ia

2
.

Once I is large enough, Ia ≤
√
I‖f‖2‖g‖2 + Ia/2 cannot hold. �

Corollary 2.5. For a measure preserving map T , if there is a dense
family of functions f in L2 which are L1-self-mixing relative to a factor algebra
H then T is L1-mixing relative to H.

We now obtain a result parallel to Theorem 2.4 for pointwise-mixing rela-
tive to a factor.

Theorem 2.6. Suppose f ∈ E2,∞ and E(f · f ◦Tn|H)→ 0 pointwise a.e.
Then for all g ∈ L2,∞

H we have E(g · f ◦ Tn|H)→ 0 pointwise a.e.

Proof. Following the pattern set above, suppose this is not true. That is
to say, there is a g ∈ L2,∞

H , an a > 0, and a set B ⊂ X with µ(B) > a and for
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x ∈ B there are ni = ni(x)↗∞ with

|E(g · f ◦ Tni |H)(x)| > a.

W.l.o.g. we can assume E(g ·f ◦Tni |H)(x) > a by taking a subset of B where
this value is of one sign infinitely often, taking this subsequence and replacing
g with −g if necessary.

For a.e. x ∈ B we can write

E(g · f ◦ Tn|H)(x) =
∫
g · f ◦ Tn dµx

where µx is the fiber measure of the factor H at the point x. Refine the
sequence ni(x) inductively for a.e. x so that the successive gaps are large
enough that for any |m| ≥ ni+1(x)− ni(x) we will have

E(f · f ◦ Tm|H)(Tni(x)) =
∫
f · f ◦ Tm dµTni (x) <

a2

2
(
‖g‖H2,∞

)2 .
Once more following the template of the previous theorem, for a.e. x ∈ B

we calculate

Ia < E

(
I∑
i=1

g · f ◦ Tni |H

)
(x)

≤ E

( I∑
i=1

f ◦ Tni
)2

|H

 (x)

1/2

‖g‖2,µx

≤

 I∑
i=1

‖f‖22,µTni (x)
+
∑
i 6=j

E(f ◦ Tni f ◦ Tnj |H)(x)

1/2

‖g‖H2,∞

≤

I (‖f‖H2,∞)2 +
∑
i 6=j

∫
f f ◦ Tnj−ni dµTni (x)

1/2

‖g‖H2,∞

≤
√
I ‖f‖H2,∞‖g‖H2,∞ +

Ia

2
.

Once I is large enough, this cannot hold. �

Corollary 2.7. If for all f ∈ E2,∞, f is pointwise-self-mixing relative
to the factor algebra H then T is pointwise-mixing relative to H.

3. Pointwise self-mixing on an L2 dense family is enough

To demonstrate pointwise-mixing relative to a factor algebra H it is enough
to check pointwise-self-mixing for functions in the L2,∞

H unit ball B1 of E2,∞.
This unit ball is closed in L2 as the L2 limit of a sequence of uniformly
bounded functions will possess the same bound a.s. Our goal now is to show
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that the subset of functions in B1 which are pointwise-self-mixing are closed in
L2. Hence to demonstrate pointwise-mixing relative to H it will be sufficient
to prove pointwise-self-mixing on an L2-dense subset of B1.

As we continue we assume that f ∈ B1 ⊆ E2,∞ is fixed. We investigate the
failure of f to be pointwise-self-mixing relative to H.

Definition 3.1. We say a point x ∈ X is a-bad if there are ni = ni(x),
|ni| ↗ ∞ with

|E(f · f ◦ Tni |H)(x)| = |〈f, f ◦ Tni〉µx | > a.

To say that f is not pointwise-self-mixing relative to H is to say that for
some a > 0 the set of a-bad points has positive measure. Notice that for fixed
a the values ni(x) can be chosen measurably.

Definition 3.2. We say a set B ⊆ X, µ(B) > 0 is a-very bad if for a.e.
x ∈ B there are ni = ni(x), |ni| ↗ ∞ with

(i) Tni(x) ∈ B and
(ii) |〈f, f ◦ Tni〉µx | > a.

Note that on an a-very bad set B the values ni(x) can be chosen measurably.

Definition 3.3. We say a set B ⊆ X, µ(B) > 0 is a-terrible if any subset
B′ ⊆ B of positive measure is a-very bad.

Our goal is the following result:

Theorem 3.4. If f ∈ B1 ⊆ E2,∞ is not pointwise-self-mixing relative to
a factor algebra H then for some a > 0 there is an a-terrible set B ⊆ X,
µ(B) > 0.

Before completing the proof of Theorem 3.4 we show how this implies that
the pointwise-self-mixing functions in B1 are L2-closed.

Corollary 3.5. Suppose fi ∈ B1 ⊆ E2,∞ and each fi is pointwise-
self-mixing relative to H. Moreover suppose fi → f in L2. Then f is also
pointwise-self-mixing relative to H.

Proof. As all the fi ∈ B1 so is f . Now suppose f is not pointwise-self-
mixing. Then for some value a > 0 there is an a-terrible set B of positive
measure. Choose i so large that

µ(B ∩ {x : ‖f − fi‖2,µx < a/4}) > 0.

Now set B′ = B ∩ {x : ‖f − fi‖2,µx < a/4} and B′ will be an a-very bad set.
Thus for a.e. x ∈ B′ there are nj = nj(x) with |nj | ↗ ∞ and both

(i) Tnj(x)(x) ∈ B′ and
(ii) 〈f, f ◦ Tnj 〉µx > a.
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But now for a.e. x ∈ B′ we obtain the following conflict.

a ≤ lim sup
j
|〈f, f ◦ Tnj 〉µx − 〈fi, fi ◦ Tnj 〉µx |

= lim sup
j
|〈f − fi, f ◦ Tnj 〉µx + 〈fi, (f − fi) ◦ Tnj 〉µx |

≤ lim sup
j

(
‖f − fi‖2,µx‖f‖2,µTnj (x)

+ ‖f − fi‖2,µ
T
nj (x)
‖fi‖2,µx

)
≤ a/2 as both x and Tnj (x) are in B′. �

We now set about proving Theorem 3.4. At the core of this argument is the
same basic trick we have used twice before. We begin with some definitions.

Definition 3.6. We say a set G is c-good if for all x ∈ G,

{n 6= 0 : Tn(x) ∈ G and |〈f, f ◦ Tn〉µx | ≥ c}
is a finite set. We say G is c-very good if for all x ∈ G this set of integers is
empty.

Lemma 3.7. Any subset of a c-good set is c-good and any c-good set can
be partitioned into a countable collection of c-very good sets.

Proof. The first statement is clear. As

{n 6= 0 : Tn(x) ∈ G and |〈f, f ◦ Tn〉µx | ≥ c}
is finite for x ∈ G it is bounded. Partition G first according to this bound b,
writing G =

⋃∞
b=1Gb. Now, using the Rokhlin Lemma, one can partition each

Gb into subsets which never recur to themselves in time ≤ b. This provides
the desired partition. �

Lemma 3.8. If X contains no c-terrible set then X can be partitioned into
a countable collection of c-good sets and hence into a countable collection of
c-very good sets.

Proof. If a set A is not very bad then the set

A′ = {x ∈ A : #{n 6= 0 : Tn(x) ∈ A and |〈f, f ◦ Tn〉µx | ≥ c} <∞}
has positive measure. It follows that the set A′ must be c-good. Thus if X
has no c-terrible subsets, any subset of X of positive measure must contain a
c-good subset of positive measure. One now obtains the desired partition by
exhaustion. �

We now make another application of the basic trick.

Lemma 3.9. Suppose G is a2/4-very good. Then for a.e. x ∈ X,

{n : Tn(x) ∈ G and |〈f, f ◦ Tn〉µx | > a}
has cardinality at most 8/a2.
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Proof. Suppose Tn1(x), . . . , TnI (x) ∈ G and |〈f, f ◦ Tni〉µx | > a for all i.
Assume in addition that all the values 〈f, f ◦Tni〉µx are of the same sign. We
compute

Ia <

∣∣∣∣∣〈f,
I∑
i=1

f ◦ Tni〉µx

∣∣∣∣∣
≤ ‖f‖2,µx

 I∑
i=1

‖f‖22,µTni (x)
+
∑
i 6=j

〈f ◦ Tni , f ◦ Tnj 〉µx

1/2

≤
(
I + I2 a

2

4

)1/2

≤
√
I + I

a

2
.

This cannot hold once I > 4/a2. Among any collection of 8/a2 values ni a
collection of half of them must be of the same sign. �

The next proposition will complete the proof of Theorem 3.4.

Proposition 3.10. Let T be an ergodic action, H an invariant factor
algebra and f ∈ B1 ⊆ E2,∞. If X contains no a2/4-terrible set of positive
measure then the set of a-bad points in X has measure zero.

Proof. As X has no a2/4 terrible sets, we can partition X into G1, G2, . . .
where each Gi is an a2/4-very good set. Now suppose that x is an a-bad point,
i.e., there are ni = ni(x) with |ni| ↗ ∞ and |〈f, f ◦ Tni〉µx | > a. Lemma 3.9
tells us that at most 8/a2 of the Tni(x) can belong to any particular Gj . We
conclude that for each a-bad point x the orbit points Tni(x)(x) must become
ever more concentrated in the tail of the sequence of sets Gj .

To continue we argue by contradiction. That is to say assume B is a set of
a-bad points with µ(B) > 0 and w.l.o.g. we will assume that B ⊆ G1. (The
set of a-bad points must intersect some Gj and we can relabel it to be the
first and restrict to the intersection.)

Select a value N so that

µ

 ∞⋃
j=N

Gj

 <
a2

8
µ(B).

We know that for each x ∈ B there must be an n(x) with

|〈f, f ◦ Tn(x)〉µx | > a and Tn(x) ∈
∞⋃
j=N

Gj .

The value n(x) can be chosen measurably and so we can partition B as
⋃
nBn

where Bn = {x ∈ B : n(x) = n}.



POINTWISE AND L1 MIXING RELATIVE TO A SUB-SIGMA ALGEBRA 515

Now note that for each Bn the map Tn : Bn →
⋃∞
j=N Gj is 1-1 and measure

preserving. As µ(B) > (8/a2)µ(
⋃∞
j=N Gj), there must be L > 8/a2 points

x1, x2, . . . xL ∈ B ⊆ G1 where all the Tn(xi)(xi) are identical, i.e., equal to
some x0 ∈

⋃∞
j=N Gj . But this then gives us one point x0 with L > 8/a2

images xi = T−n(xi)(x0) all in the same G1 and with

|〈f, f ◦ T−n(xi)〉µx0
| > a,

which we saw was impossible. �

4. Conclusions

We can now discuss the general class of cocycle extensions, of which T, T−1

maps are an example. We begin with the standard description. Let S and T
be measure preserving and ergodic transformations of (X,F , µ) and (Y,G, ν),
respectively. For any function n : X → Z we can construct the cocycle
extension Sn : X × Y → X × Y by setting Sn(x, y) = (S(x), Tn(x)(y)). Both
the T, T−1 maps and direct products are of this form.

Suppose now that T is mixing and let H be the first coordinate algebra F .
We want to understand in generality when Sn is L1- and pointwise-relatively
mixing w.r.t. H. We can so long as n is integrable.

As is usual, let n(i, x) be the cocycle generated by n so that Sjn(x, y) =
(Sj(x), Tn(i,x)(y)). Whether or not Sn is relatively mixing now depends on
the distribution of the functions n(i, x) for i large.

Definition 4.1. We say the cocycle n(i, x) “spreads in the mean” if for
all N > 0

lim
i→∞

µ({x : |n(i, x)| < N}) = 0.

We say the cocycle n(i, x) “spreads pointwise” if

lim
i→∞

|n(i, x)| =∞ a.e.

The proof that T, T−1 actions are L1-mixing relative to H applies to any
Sn where the cocycle spreads in the mean. We now know that to check
pointwise-relative mixing it is sufficient to check an L2 dense family in B1, in
particular to check it on functions of the form

∑
i χAi ⊗ fi as are used in the

discussion of T, T−1-maps. We can thus apply that argument to show that
if the cocycle n spreads pointwise then Sn is pointwise-relative mixing w.r.t.
the first coordinate algebra. We now pull all this together.

Proposition 4.2. Suppose S and T are as above. Suppose n : X → Z is
in L1(µ).

(a) If
∫
ndµ 6= 0 then Sn is pointwise-relative mixing with respect to

its first coordinate algebra. In particular S × T is pointwise-relative
mixing with respect to the first coordinate algebra.
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(b) If
∫
ndµ = 0 and the cocycle generated by n spreads in the mean then

Sn is L1- but not pointwise-relative mixing w.r.t. its first coordinate
algebra.

(c) If n generates a cocycle that does not spread in the mean then Sn is
not L1-relatively mixing w.r.t. its first coordinate algebra.

Proof. Statement (a) follows from the ergodic theorem in that if n is not
of mean zero then the cocycle it generates will spread pointwise. Statement
(b) is just a general version of the T, T−1 argument given in the introduction
once one knows that any mean zero n will generate a recurrent cocycle. The
proof of (c) is quite simple and we leave it to the reader. �

We leave it now to the reader to explore more general cocycle extensions.
Certainly there is no problem applying these methods to extensions by larger
abelian groups of mixing actions.

A significant motivation for understanding properties relative to an invari-
ant factor H is to use the orbit transference method of [2] to lift results from
actions of Z to general discrete amenable actions. For this method to work
whatever properties of an action are under discussion must have relative ver-
sions and these relative versions must be invariant under H-measurable orbit
equivalences. To clarify the picture we state a result that one would wish to
prove for general amenable actions. Is it the case that a weakly mixing isomet-
ric extension of a mixing action must be mixing? This is known to be true for
Z actions. Moreover the Z proof does not seem to lift to the amenable case.
To apply orbit transference to this question one would need to know a rela-
tivized version of this result but only for Z actions. One must ask whether an
H-relatively weakly mixing H-relatively isometric extension of an H-relatively
mixing action remains H-relatively mixing. We have explicitly avoided indi-
cating which type of relative mixing we mean. This question is meaningful for
both L1- and pointwise-relative mixing. Only the pointwise version though
would be useful for the orbit transference method. We will show elsewhere
that in fact L1-relative mixing w.r.t. a factor H is not invariant under H-
measurable orbit equivalences. The pointwise notion obviously is. Hence it
is necessary to verify the above relativized result on isometric extensions for
pointwise-relative mixing. Again to apply the transference method one must
know that if T has an absolute property, then S×T has the relative property
w.r.t. the first coordinate algebra. We have settled this piece of the problem
here. It appears the above relativized result can be proven for pointwise-
mixing relative to H, giving all the pieces to settle the problem. This work
will appear elsewhere if it is in fact correct.

The author wishes to thank Kyewon Park, Mariusz Lemanczyk and Jean-
Paul Thouvenot for very helpful conversations on the issues discussed here.



POINTWISE AND L1 MIXING RELATIVE TO A SUB-SIGMA ALGEBRA 517

References

[1] M. Rahe, Relatively finitely determined implies relatively very weak Bernoulli, Canad.
J. Math. 30 (1978), 531–548. MR 81j:28029

[2] D. J. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of

Math. (2) 151 (2000), 1119–1150. MR 2001g:37001
[3] J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en
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