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MODULUS OF CONTINUITY OF THE MAZUR MAP
BETWEEN UNIT BALLS OF ORLICZ SPACES AND

APPROXIMATION BY HÖLDER MAPPINGS

SYLVAIN DELPECH

Abstract. Under some regularity assumptions, we compute the mod-
ulus of continuity of the generalized Mazur map between unit balls of

Orlicz spaces. Our estimate coincides with the known estimates in the
setting of Lp(µ)-spaces. We apply this estimate to approximate uni-

formly continuous mappings between balls of reflexive Orlicz spaces by
α-Hölder maps, with α as large as possible. We also relate this opti-
mal value of α to the Boyd indices of the spaces and to the problem of

isomorphic extension of Hölder maps.

1. Introduction

Concerning the uniform classification of the unit spheres of infinite-dimen-
sional Banach spaces (see [2, p. 197]), the most general result known is due
to F. Chaatit [3]. Quantitative versions of this result assert that if X and
Y are separable infinite-dimensional Banach lattices which admit q- and q′-
concavity constants Cq(X) < ∞ and Cq′(Y ) < ∞ for some q, q′ < ∞, then
there exists a uniform homeomorphism between the unit spheres, F : S(X)→
S(Y ), such that F and F−1 have moduli of continuity which depend only
on q, q′, Cq(X) and Cq′(Y ). Recall that the modulus of continuity ωf of
a map f : (X, dX) → (Y, dY ) between two metric spaces is the function
ωf (t) = sup{dY (f(x), f(y)) : x, y ∈ X and dX(x, y) ≤ t}. If ωf (t) ≤ Ctα for
some constant C and α ∈ (0, 1], we say that f is α-Hölder; if this holds with
α = 1, we say that f is Lipschitz.

Historically, as mentioned in [2], the earliest result in this setting has been
obtained using the Mazur map (see [12]), which is an explicit uniform home-
omorphism, with explicit modulus of continuity, between the unit spheres of
different Lp(µ)-spaces, for p ≥ 1. More precisely, consider a measure µ and fix
1 ≤ p, q < ∞. Suppose that Lp(µ) is infinite-dimensional. Define the Mazur
map φpq : Lp(µ) → Lq(µ) by φpq(x) = |x|p/q sign(x). Then φpq provides a
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uniform homeomorphism between the unit spheres such that φ−1
pq = φqp and

φpq is Lipschitz on the unit sphere if p ≥ q, and p/q-Hölder if p ≤ q. If ν is
another measure such that Lp(µ) and Lq(ν) have the same density character,
then, as L2(µ) and L2(ν) are isometric, the Mazur map provides a uniform
homeomorphism between the unit spheres of Lp(µ) and Lq(ν). Weston [17]
remarked that the properties of the modulus of continuity of φpq remain valid
when 0 < p, q ≤ 1.

The explicit knowledge of the modulus of continuity of φpq plays a key role
in the proof of a result due to I. G. Tsaŕkov [16] (see also [2, p. 36]) on the
uniform approximation of uniformly continuous mappings from the unit ball
of Lp(µ) to Lq(ν) by α-Hölder mappings, with α ∈ (0, 1] as large as possible.
We give a precise statement of this result in Section 3.

Our aim here is to obtain similar results in the setting of Orlicz spaces. Let
M and N be two Orlicz functions and let µ be a measure. Following an idea
of M. S. Kaczmarz [8] we consider the map φMN : LM (µ) → LN (µ) defined
by φMN (x) = N−1 ◦M(|x|) sign(x). Under some regularity assumptions on
N−1 ◦M , we obtain that φMN is again an explicit uniform homeomorphism
between the closed unit balls, with explicit modulus of continuity. Moreover,
as φMN maps the unit sphere of LM (µ) onto the unit sphere of LN (µ), it is
in fact a uniform homeomorphism between the unit spheres.

E. Odell and T. Schlumprecht [15] gave a very general version of the Mazur
map. Using our explicit form for maps between Orlicz spaces, we are able to
compute directly the modulus of continuity of φMN without factorization
through any other space. Thus we obtain a similar modulus of continuity as
the one for φpq in the setting of Lp-spaces. In agreement with F. Chaatit
[3], the moduli of continuity of φMN and φ−1

MN = φNM depend only on the
p-convexity and the q-concavity of the spaces. The explicit knowledge of these
moduli of continuity then leads to an approximation result in the setting of
Orlicz spaces which can be related to the above-mentioned result of Tsaŕkov.

This paper is organized as follows. In Section 2, we recall some results
about Orlicz spaces and we state our main result. Section 3 deals with the
uniform approximation of uniformly continuous mappings between balls of
Orlicz spaces. Section 4 is devoted to the problem of isomorphic extension of
Hölder maps.

2. Orlicz spaces and statement of the main result

Orlicz spaces. We recall here some definitions and basic facts about Orlicz
spaces. For further details, see [4] and [9].

Let M : R→ R be such that

(i) M is even, convex and continuous,
(ii) M(1) = 1, and M(u) = 0 if and only if u = 0,
(iii) M(u)/u→ 0 as u→ 0 and M(u)/u→∞ as u→∞.
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Then M is called an Orlicz function. Such a function admits a non-decreasing
right derivative, which we denote by M ′r, and satisfies M(u) =

∫ u
0
M ′r(t)dt for

all u ≥ 0.
Let (G,Σ, µ) be a measure space. For a µ-measurable function x on G we

define its modulus by

ρM (x) =
∫
G

M(x(t))dµ(t).

We define the Orlicz space by

LM (G) = {x : ρM (λx) <∞ for some λ > 0}

and the Luxemburg norm by

‖x‖M = inf {λ > 0 : ρM (x/λ) ≤ 1} .

The space (LM (G), ‖ . ‖M ) is a Banach space.
We say that M satisfies condition ∆0

2 (resp. ∆∞2 ), and we write M ∈ ∆0
2

(resp. M ∈ ∆∞2 ), if there exist u0 > 0 and K > 1 such that M(2u) ≤ KM(u)
for all 0 ≤ u ≤ u0 (resp. u ≥ u0). If there exists K ≥ 1 such that M(2u) ≤
KM(u) for all u ≥ 0, then M ∈ ∆0

2 and M ∈ ∆∞2 and we say that M satisfies
condition ∆2 everywhere.

Recall that, by the definition of the norm and by Fatou’s theorem, we have
ρM (x/‖x‖M ) ≤ 1 if ‖x‖M > 0. The equality sign occurs when M satisfies the
appropriate ∆2 condition, but this no longer holds if M /∈ ∆2 (see [9, p. 78]).

Two Orlicz functions M1 and M2 are equivalent at 0 (resp. at ∞) if there
exist constants C ≥ 1 and u0 > 0 such that C−1M2(u) ≤ M1(u) ≤ CM2(u)
for all 0 ≤ u ≤ u0 (resp. u ≥ u0). If M1 and M2 are equivalent at 0 and at
∞, we say that M1 and M2 are equivalent everywhere.

We are mainly interested in the following three cases: G = [0, 1] or G =
(0,∞) with µ the Lebesgue measure on G, or G = N with µ the counting mea-
sure. The study of LM [0, 1] is associated with ∆∞2 and with the equivalence
at∞; that of LM (N) is associated with ∆0

2 and the equivalence at 0; similarly,
the study of LM (0,∞) is related to ∆2 everywhere and to the equivalence ev-
erywhere. In the following, G will always be one of the above three sets. We
denote by ∆G

2 the corresponding ∆2 condition, and by ∼G the corresponding
equivalence of Orlicz functions. A set I ⊂ R is called corresponding to the
Orlicz spaces built on G if, when G = [0, 1] (resp. G = N), there exists u0 > 0
such that I = (u0,∞) (resp. I = (0, u0)), and, when G = (0,∞), there exist
u0, u1 > 0 such that I = (0, u0) ∪ (u1,∞).

When M ∈ ∆G
2 , we have

LM (G) = {x : ρM (λx) <∞ for all λ > 0} .

If M1 ∼G M2, then LM1(G) and LM2(G) are isomorphic and the identity map
is an isomorphism.
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We denote by M∗(v) = sup{uv − M(u) : u ∈ R} the complementary
function of M . The function M∗ is also an Orlicz function. When the spaces
are endowed with the Luxemburg norm, we have the following version of the
Hölder inequality: For all x ∈ LM (G) and y ∈ LM∗(G) we have∫

G

x(t)y(t)dµ(t) ≤ 2‖x‖M‖y‖M∗ .

The constant 2 appears here because the usual Hölder inequality uses another,
equivalent, norm on LM (G) (see [9, p. 80]).

It is known that LM (G) is reflexive if and only if M ∈ ∆G
2 and M∗ ∈ ∆G

2 .
We denote by M ∈ ∆G

2 ∩∇G2 this last condition.
We recall next the notions of p-convexity and p-concavity; we refer to [6],

[7] and [10] for more details.
Let (X, ‖ . ‖) be a Banach lattice and let 1 ≤ p < ∞. We say that X is

p-convex if there exists a constant Cp(X) < ∞ so that for every choice of
vectors {xi}ni=1 we have∥∥∥∥∥∥

(
n∑
i=1

|xi|p
)1/p

∥∥∥∥∥∥ ≤ Cp(X)

(
n∑
i=1

‖xi‖p
)1/p

.

We say that X is p-concave if there exists a constant Cp(X) so that the reverse
inequality holds.

The following notions can be found in [6, p. 88]. Note that the setting of [6]
is more general than our definition of Orlicz functions. We call quasi-Orlicz
function every non-decreasing continuous function ϕ defined for u ≥ 0 such
that ϕ(0) = 0 and ϕ(1) = 1. In [6] such functions are called Orlicz functions.
Here we work with Banach spaces LM (G) with convex functions M .

Given 0 < α ≤ β < ∞, a quasi-Orlicz function ϕ is said to be α-convex
(resp. β-concave) if ϕ(u1/α) is a convex function (resp. if ϕ(u1/β) is a concave
function) of u ≥ 0.

As stated in [7, p. 168], for an Orlicz function M , the Banach lattice LM (G)
is p-convex (resp. q-concave) if and only if there exists a p-convex (resp. q-
concave) Orlicz function M̃ such that M ∼G M̃ . This occurs if and only if
M ∈ ∆G

2 (resp. M∗ ∈ ∆G
2 ).

Definition 2.1. Let 0 < α < β < ∞ and G ∈ {[0, 1], (0,∞),N}. A
quasi-Orlicz function ϕ is said to be in the class K(α, β) if ϕ(u)/uα is a non-
decreasing function of u > 0 and if ϕ(u)/uβ is a non-increasing function of
u > 0. For G ∈ {[0, 1], (0,∞),N}, ϕ is said to be in the class KG(α, β) if the
above statements hold for u in a neighbourhood corresponding to the Orlicz
spaces built on G.

Remark 2.2. (i) If M is an Orlicz function such that M ∈ ∆G
2 ∩∇G2 , then

there exist α and β such that M ∈ KG(α, β).
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(ii) A quasi-Orlicz function which is α-convex and β-concave belongs to the
class K(α, β) and thus to the classes KG(α, β) for all G ∈ {[0, 1], (0,∞),N}.

(iii) A quasi-Orlicz function ϕ with continuous derivative belongs to the
class KG(α, β) if and only if there exists a neighbourhood V corresponding to
the Orlicz spaces built on G such that

α ≤ uϕ′(u)/ϕ(u) ≤ β, for all u ∈ V .(2.1)

The equivalence of quasi-Orlicz functions is defined in the same way as that
of Orlicz functions. We have the following result.

Proposition 2.3 ([6, p. 89]). Let 0 < α < β < ∞ and let ϕ be a quasi-
Orlicz function which belongs to the class KG(α, β). Then there exists an
α-convex and β-concave quasi-Orlicz function ϕ̃ (so that ϕ̃ ∈ K(α, β)), with
continuous second derivative, such that ϕ ∼G ϕ̃. Moreover, ϕ̃ satisfies (2.1)
for all u > 0.

The main result. As above, let G denote one of the sets [0, 1], N, and
(0,∞), with the associated measure µ.

Let M and N be two Orlicz functions. We consider the mapping

φMN : LM (G) −→ LN (G),

x 7−→ φMN (x) = N−1 ◦M(|x|) sign(x).

We denote by ϕ the quasi-Orlicz function N−1 ◦M associated to φMN . The
inverse φ−1

MN = φNM : LN (G) → LM (G) is associated to the quasi-Orlicz
function ϕ−1 = M−1 ◦ N . Denote by BM (G), BN (G) the closed unit balls,
and by SM (G), SN (G) the unit spheres.

Theorem 2.4. Suppose that the quasi-Orlicz function ϕ = N−1 ◦M is in
the class K(α, β). Then φMN is α∧ 1-Hölder on BM (G) and φ−1

MN = φNM is
(1/β) ∧ 1-Hölder on BN (G).

Before proving Theorem 2.4 we make some comments and we state a corol-
lary.

As mentioned above, φMN maps SM (G) onto SN (G) and provides a uni-
form homeomorphism between unit spheres. Indeed, if ‖x‖M = 1, then Fa-
tou’s theorem ensures that ‖φMN (x)‖N ≤ 1, and a direct computation shows
that in fact ‖φMN (x)‖N = 1.

According to [3] and [15], the homeomorphy of the unit spheres of LM (G)
and LN (G) is well known when M,N ∈ ∆G

2 . The following result gives an
explicit modulus of continuity for the homeomorphism under some regularity
assumptions.

Corollary 2.5. Fix G ∈ {[0, 1], (0,∞),N}. Let M and N be two Orlicz
functions and suppose that there exist 1 ≤ pM ≤ qM < ∞ and 1 ≤ pN ≤
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qN < ∞ such that M ∈ KG(pM , qM ) and N ∈ KG(pN , qN ). Then, up to an
equivalent renorming, φMN : SM (G)→ SN (G) is a uniform homeomorphism
with explicit modulus of continuity, namely:

• φMN is (pM/qN ) ∧ 1-Hölder on SM (G),
• φ−1

MN = φNM is (pN/qM ) ∧ 1-Hölder on SN (G).

Proof of Corollary 2.5. We use Proposition 2.3 to obtain two Orlicz func-
tions M̃ ∈ K(pM , qM ) and Ñ ∈ K(pN , qN ) such that M ∼G M̃ and Ñ ∼G N

and such that the quasi-Orlicz function Ñ−1 ◦ M̃ satisfies the assumptions
of Theorem 2.4. Indeed, we have Ñ−1 ∈ K(1/qN , 1/pN ) and Ñ−1 ◦ M̃ ∈
K(pM/qN , qM/pN ).

We know, by equivalence, that the identity mapping between LM (G) (resp.
LN (G)) and LM̃ (G) (resp. LÑ (G)) is an isomorphism. With this renorming,
Corollary 2.5 follows. �

Remark 2.6. (i) Fix p, q ≥ 1. Take M(u) = up and N(u) = uq for all
u ≥ 0. Then φMN = φpq is the usual Mazur map between Lp(G) and Lq(G).
We have pM = qM = p and pN = qN = q, and Theorem 2.4 gives the usual
estimate for the modulus of continuity of φpq on the unit ball of Lp(G).

(ii) We give now an example for which the moduli of continuity obtained
in Theorem 2.4 are both sharp.

Take G = (0,∞) and consider the Orlicz functions M(u) = u2 ∨ u4

and N(u) = u2 defined for u ∈ R
+. The quasi-Orlicz function ϕ(u) =

N−1 ◦M(u) = u ∨ u2 is in the class K(1, 2). Theorem 2.4 gives that φMN :
BM (0,∞)→ BN (0,∞) is Lipschitz, and this is the best-possible estimate for
the modulus of continuity. Moreover, the inverse mapping φ−1

MN = φNM :
BN (0,∞) → BM (0,∞) is 1/2-Hölder on the unit ball BN (0,∞). Using the
indicator functions χ[0,1/n] with n ∈ N, one can show that the exponent 1/2
is also best-possible.

Let us now prove Theorem 2.4. The proof relies on the following lemma.

Lemma 2.7. Let ϕ be a quasi-Orlicz function in the class K(α, β). Then,
for all a, b ∈ R such that (a, b) 6= (0, 0), we have:

• If β ≤ 1 or sign(a) 6= sign(b), then∣∣ϕ(|a|) sign(a)− ϕ(|b|) sign(b)
∣∣ ≤ 2ϕ (|a− b|) .

• If 1 ≤ β, then

|ϕ(|a|)− ϕ(|b|)| ≤ 2(1−α)∨0β
ϕ (|a|+ |b|)
|a|+ |b|

|a− b|.

Proof. If sign(a) 6= sign(b), then ϕ(|a|) +ϕ(|b|) ≤ 2ϕ(|a|+ |b|) because ϕ is
non-decreasing. But in this case |a|+ |b| = |a− b|, so the result follows.
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Next, assume β ≤ 1 and sign(a) = sign(b). We can suppose that |b| ≥ |a|.
Since ϕ(u)/u is a non-increasing function of u, we have

ϕ(|b|)
|b|

≤ ϕ(|a|)
|a|

and
ϕ(|b|)
|b|

≤ ϕ(|b| − |a|)
|b| − |a|

.

We write ϕ(|b|) = λϕ(|b|) + (1 − λ)ϕ(|b|) and apply the above bounds for
ϕ(|b|)/|b| to the two terms on the right, with the choice λ = |a|/|b|. Using the
inequality |b| − |a| ≤ |b− a|, we obtain the result.

Finally, assume 1 ≤ β and sign(a) = sign(b). Again we can suppose that
|b| ≥ |a| > 0. As ϕ(|a|)/|a|β ≥ ϕ(|b|)/|b|β and ϕ(|b|)/|b|α ≤ ϕ(|a|+ |b|)/(|a|+
|b|)α, we obtain

ϕ(|b|)− ϕ(|a|) ≤

(
1−

(
|a|
|b|

)β)( |b|
|a|+ |b|

)α
ϕ(|a|+ |b|).

Using the inequality 1− uβ ≤ β(1− u) for u ∈ [0, 1], the result follows. �

Proof of Theorem 2.4. If ϕ ∈ K(α, β), then ϕ−1 ∈ K(1/β, 1/α). Thus,
to prove Theorem 2.4, it suffices to consider the three cases α ≤ β ≤ 1,
1 ≤ α ≤ β, and α ≤ 1 ≤ β.

Denote by BM (G) the closed unit ball of LM (G) and by ϕ the quasi-Orlicz
function N−1 ◦M . Fix x, y ∈ BM (G) such that ‖x− y‖M > 0.

Fact 1. It suffices to prove the result for x and y satisfying ‖x−y‖M < K,
where K > 0 is any given constant.

Indeed, as x, y ∈ BM (G) and as φMN takes values in BN (G), we have, for
‖x− y‖M ≥ K,

‖φMN (x)− φMN (y)‖N ≤ 2 ≤ 2
K
‖x− y‖M ≤

2
K

21−α‖x− y‖αM ,

so the desired inequality holds trivially for such x and y.
Now, define, for t ∈ G,

∆MN (t) =
∣∣φMN (x)(t)− φMN (y)(t)

∣∣
=
∣∣ϕ(|x(t)|) sign(x(t))− ϕ(|y(t)|) sign(y(t))

∣∣.
Under the assumption that ϕ is in the class K(α, β), our aim is to estimate

‖∆MN‖N = inf
{
λ > 0 :

∫
G

N

(
∆MN (t)

λ

)
dµ(t) ≤ 1

}
.

Case 1: α ≤ β ≤ 1.
In view of Fact 1, we can suppose 0 < ‖x− y‖M < 1. Set λ = 2‖x− y‖αM .

Lemma 2.7 gives, for all t ∈ G,
∆MN (t)

λ
≤ 2
λ
ϕ (|x(t)− y(t)|) .
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But ϕ(u)/uα is a non-decreasing function of u and 2/λ ≥ 1, so we have for
all t ∈ G

∆MN (t)
λ

≤ ϕ

((
2
λ

)1/α

|x(t)− y(t)|

)
.

This gives the estimate∫
G

N

(
∆MN (t)

λ

)
dµ(t) ≤

∫
G

M

(
|x(t)− y(t)|
‖x− y‖M

)
dµ(t).

By the definition of the norm this implies

‖φMN (x)− φMN (y)‖N ≤ 2‖x− y‖αM .

Hence φMN is α-Hölder on BM (G).

Case 2: 1 ≤ α ≤ β.
Define the sets

G+ = {t ∈ G : sign(x(t)) = sign(y(t))},
G− = {t ∈ G : sign(x(t)) 6= sign(y(t))}.

Set λ = 3 × 2 × β × 4β‖x − y‖M . In view of Fact 1, we can suppose that
0 < λ ≤ 2 (and thus 0 < ‖x− y‖M < 1).

Consider first the case t ∈ G−. According to Lemma 2.7,

∆MN (t)
λ

≤ 2
λ
ϕ(|x(t)− y(t)|)

Now ϕ(u)/u is a non-decreasing function of u and 2/λ ≥ 1, so∫
G−

N

(
∆MN (t)

λ

)
dµ(t) ≤

∫
G

M

(
2
λ
|x(t)− y(t)|

)
dµ(t) ≤ 1

3
,(2.2)

by the convexity of M (note that 2/λ ≤ 1/(3‖x− y‖M )) and because 0 <
‖x− y‖M < 1.

Next, consider the case t ∈ G+. Using Lemma 2.7 we obtain

∆MN (t) ≤ βϕ(s(t))
s(t)

|x(t)− y(t)|,

with s(t) = |x(t)| + |y(t)|. Note that we may assume that s(t) 6= 0 because
if s(t) = 0 then ∆MN (t) = 0. As ϕ(u)/uβ is non-increasing, we have for all
t ∈ G+ such that s(t) 6= 0,

N

(
∆MN (t)

λ

)
≤ N

[
ϕ(s(t))

β

λ

|x(t)− y(t)|
s(t)

]
≤ N [ϕ (s(t)/4) f(t)] ,

where

f(t) = 4β
β

λ

|x(t)− y(t)|
s(t)

.
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Define the sets

G+
1 = {t ∈ G+ : s(t) 6= 0 and f(t) ≥ 1},

G+
2 = {t ∈ G+ : s(t) 6= 0 and f(t) < 1}.

For all t ∈ G+
1 , as ϕ(u)/u is non-decreasing,

N [ϕ (s(t)/4) f(t)] ≤ N
[
ϕ

(
s(t)
4
f(t)

)]
.

So we have∫
G+

1

N

(
∆MN (t)

λ

)
dµ(t) ≤

∫
G

M

(
4β
β

λ
|x(t)− y(t)|

)
dµ(t) ≤ 1

3
,(2.3)

using again the convexity of M and the choice of λ.
For all t ∈ G+

2 , by the convexity of N and the fact that ϕ(u)/uβ is non-
increasing, we have

N (ϕ (s(t)/4) f(t)) ≤ f(t)N [ϕ(s(t)/4)] = 4β−1 β

λ

M(s(t)/4)
s(t)/4

|x(t)− y(t)|.

We are going to apply the generalized Hölder inequality to the function on
the right. It is easy to check that for all u > 0, M∗(M(u)/u) ≤M(u) (see [9,
p. 13]). Since ‖s(.)/4‖M < 1, we have as above∫

G

M∗
(
M(s(t)/4)
s(t)/4

)
dµ(t) ≤ 1,

and thus ∥∥∥∥M(s(.)/4)
s(.)/4

∥∥∥∥
M∗
≤ 1.

Applying the Hölder inequality, we obtain∫
G+

2

N

(
∆MN (t)

λ

)
dµ(t) ≤ 2× 4β−1

∥∥∥∥M(s(.)/4)
s(.)/4

∥∥∥∥
M∗

∥∥∥∥βλ (x− y)
∥∥∥∥
M

(2.4)

≤ 2× 4β−1 β

λ
‖x− y‖M ≤

1
3
.

From inequalities (2.2), (2.3) and (2.4) we obtain∫
G

N

(
∆MN (t)

λ

)
dµ(t) =

∫
G−∪G+

1 ∪G
+
2

N

(
∆MN (t)

λ

)
dµ(t) ≤ 1.

This means that

‖φMN (x)− φMN (y)‖N ≤ λ = 6β4β‖x− y‖M ,

so φMN is Lipschitz on BM (G).

Case 3: α ≤ 1 ≤ β.
If t ∈ G−, we argue as above using the fact that ϕ(u)/uα is a non-decreasing

function of u.
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If t ∈ G+
2 , the argument is again the same as above, using the estimate

‖x− y‖M ≤ 21−α‖x− y‖αM .
If t ∈ G+

1 , a different argument is required. As ϕ(u)/uα is non-decreasing,
we have

N [ϕ (s(t)/4) f(t)] ≤ N
[
ϕ

(
s(t)
4
f(t)1/α

)]
,

= N

[
ϕ

((
β

λ

)1/α

4(β/α)−1s(t)1−(1/α)|x(t)− y(t)|1/α
)]

.

But

|x(t)− y(t)|1/α = |x(t)− y(t)|(1/α)−1|x(t)− y(t)|

≤ s(t)(1/α)−1|x(t)− y(t)|,

because 1/α− 1 ≥ 0. Thus, for t ∈ G+
1 we have

N

(
∆MN (t)

λ

)
≤M

[(
β

λ

)1/α

4(β/α)−1|x(t)− y(t)|

]
.

Combining the estimates on G−, G+
2 and G+

1 , we obtain that in this case,
φMN is α-Hölder on BM (G).

Summarizing, we have proved:
• If α ≤ β ≤ 1, φMN is α-Hölder on BM (G).
• If 1 ≤ α ≤ β, φMN is Lipschitz on BM (G).
• If α ≤ 1 ≤ β, φMN is α-Hölder on BM (G).

This completes the proof of Theorem 2.4. �

3. Application to the approximation of uniformly continuous
mappings

The main result. Let (X, ‖ . ‖X) and (Y, ‖ . ‖Y ) be two Banach spaces.
Denote by BX = {x ∈ X : ‖x‖X ≤ 1} the closed unit ball of (X, ‖ . ‖X).
Let f : BX → Y be uniformly continuous. We consider the problem of
approximating f uniformly by α-Hölder mappings, with α ∈ (0, 1] as large as
possible. This can be formulated in the following way: We define

UC(B, Y ) = {f : BX → Y : f is uniformly continuous} ,
and

Hα(BX , Y ) = {f : BX → Y : f is α-Hölder}

for α ∈ (0, 1], and set H0(BX , Y ) = UC(B, Y ). We have the inclusions
Hβ(BX , Y ) ⊂ Hα(BX , Y ) ⊂ UC(B, Y ) for 1 ≥ β ≥ α ≥ 0. Moreover,
UC(BX , Y ) endowed with the norm ‖f‖∞ = sup {‖f(x)‖Y : x ∈ BX} is a
Banach space. Thus we are interested in the closure of Hα(BX , Y ) with
respect to the norm ‖ . ‖∞ in UC(BX , Y ).
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We set

α(BX , Y ) = sup
{
α ∈ [0, 1], Hα(BX , Y )

‖ . ‖∞ = UC(BX , Y )
}
.

The value α = α(BX , Y ) is best-possible in the sense that if β > α then there
exist ε > 0 and a uniformly continuous map f : BX → Y such that for every
β-Hölder function ψ : BX → Y we have ‖f − ψ‖∞ > ε.

For general resuls on such approximations problems we refer to the book
[2].

We now consider the case when (X, ‖ . ‖X) = (Lp(G), ‖ . ‖p) and (Y, ‖ . ‖Y ) =
(Lq(G′), ‖ . ‖q) with p, q ≥ 1 and G,G′ equal to [0, 1] or N or (0,∞). We de-
note by Bp(G) the closed unit ball of (Lp(G), ‖ . ‖p). The following theorem
of I. G. Tsaŕkov [16] gives the exact value of α(Bp(G), Lq(G′)).

Theorem 3.1 ([16] and [2, p. 36]). Let G,G′ ∈ {[0, 1], (0,∞),N} with
adapted measures. Then we have:

α(Bp(G), Lq(G′)) =

{
1 if p ≥ 2 ≥ q or q =∞,
min (1/2, 1/q) if p =∞ and q <∞,

α(Bp(G), Lq(G′)) ≥


2/q if p, q ≥ 2,
p/2 if p, q ≤ 2,
p/q if p ≤ 2 ≤ q.

Moreover, equality holds in the following cases:

• If G 6= N, then α(Bp(G), Lq(G′)) = 2/q if p, q ≥ 2.
• If G′ 6= N, then α(Bp(G), Lq(G′)) = p/2 if p, q ≤ 2.
• If G = G′ = N or G 6= N and G′ 6= N, then α(Bp(G), Lq(G′)) = p/q

if p ≤ 2 ≤ q.

Remark 3.2. The different cases for G and G′ involving N, to obtain
upper bounds for the exponent of the approximation in the second part of
Theorem 3.1, implicitly appear in the proof given in [2] when isomorphic
copies of L2 are needed in Lp(G) and in Lq(G′).

Our main result of this section is the following theorem, which extends
Tsaŕkov’s result to the setting of Orlicz spaces.

Theorem 3.3. Let G,G′ ∈ {[0, 1], (0,∞),N} with adapted measures. Let
M and N be two Orlicz functions such that M ∈ KG(pM , qM ) and N ∈
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KG(pN , qN ), with pM , pN > 1 and qM , qN <∞. Then we have:

α(BM (G), LN (G′)) = 1 if pM ≥ 2 ≥ qN ,

α(BM (G), LN (G′)) ≥


2/qN if pM , qN ≥ 2,
pM/2 if pM , qN ≤ 2,
pM/qN if pM ≤ 2 ≤ qN .

Moreover, we have:
• If G 6= N, then α(BM (G), LN (G′)) ≤ 2/pN if qM , pN ≥ 2.
• If G′ 6= N , then α(BM (G), LN (G′)) ≤ qM/2 if qM , pN ≤ 2.
• If G = G′ = N or G 6= N and G′ 6= N, then α(BM (G), LN (G′)) ≤
qM/pN if qM ≤ 2 ≤ pN .

Remark 3.4. (i) When G and G′ are in the appropriate cases, Theorem
3.3 gives the estimates

pM ∧ 2
qN ∨ 2

≤ α(BM (G), LN (G′)) ≤ qM ∧ 2
pN ∨ 2

.

(ii) Our method of proof is the same as that of Tsaŕkov [16]. However, the
more general setting of Orlicz spaces clearly shows the central role played by
the notions of p-convexity and of q-concavity, which was hidden in the setting
of Lp-spaces.

For the proof of Theorem 3.3 we will need the following lemma, which
essentially is proved in [2]. For the sake of completeness we give a proof here.

Lemma 3.5. Let M and N be two Orlicz functions. Suppose that LM [0, 1]
and LM (0,∞) are reflexive. Let X be a normed linear space and denote by
BX its closed unit ball. Then

α(BX , LN (0,∞)) ≤ α(BX , LN [0, 1]),

α(BM (0,∞), X) ≤ α(BM [0, 1], X).

Proof of Lemma 3.5. Define the maps

ϕ : LN [0, 1] −→ LN (0,∞) P : LN (0,∞) −→ LN [0, 1],

x 7−→

{
x(t) if t ∈ [0, 1],
0 else,

x 7−→ x∣∣[0,1]
.

Then ϕ and P are linear and satisfy ‖ϕ(x)‖ = ‖x‖ and ‖P (x)‖ ≤ ‖x‖ with x
in the appropriate Orlicz space and ‖ . ‖ the associated norm. Moreover, P ◦ϕ
is the identity on LN [0, 1].

Let f : BX → LN [0, 1] be uniformly continuous. Fix α < α(BX , LN (0,∞)).
We seek to approximate f by an α-Hölder map. Fix ε > 0. As ϕ ◦ f :
BX → LN (0,∞) is uniformly continuous, there exists gε ∈ Hα(BX , LN (0,∞))
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such that for all x ∈ BX , ‖ϕ ◦ f(x) − gε(x)‖ ≤ ε. Thus, for all x ∈ BX ,
‖P ◦ ϕ ◦ f(x) − P ◦ gε(x)‖ ≤ ε. But P ◦ ϕ ◦ f(x) = f(x), and so P ◦ gε
approximates f and is α-Hölder. By definition, we have α ≤ α(BX , LN [0, 1]).
Since this holds for all α < α(BX , LN (0,∞)), we obtain α(BX , LN (0,∞)) ≤
α(BX , LN [0, 1]). Thus the first inequality is proved.

Now consider the map ϕ defined as above with M instead of N . The spaces
BM [0, 1] and ϕ(BM [0, 1]) are Lipschitz equivalent (with ϕ and ϕ−1 defined on
ϕ(LM [0, 1])), so it is easy to check that α(BM [0, 1], X) = α(ϕ(BM [0, 1]), X).
Moreover, by [5], as the space LM (0,∞) is reflexive, endowed with the Lux-
emburg norm, it has a uniformly normal structure. Now, by a result in [2,
p. 28], every closed, convex and bounded subset A ⊂ LM (0,∞) is an absolute
uniform retract (i.e., for every metric space (Y, dY ) containing A, there exists
a uniformly continuous map r : Y → A which is the identity on A). We apply
this with the subset ϕ(BM [0, 1]) ⊂ BM (0,∞) to obtain a uniformly contin-
uous map r : BM (0,∞) → ϕ(BM [0, 1]) such that, for all x ∈ ϕ(BM [0, 1]),
r(x) = x.

To prove the second inequality, let f : ϕ(BM [0, 1]) → X be uniformly
continuous, and let α < α(BM (0,∞), X) and ε > 0. Then f ◦r : BM (0,∞)→
X is also uniformly continuous and there exists a map gε : BM (0,∞) → X,
which is α-Hölder, such that, for all x ∈ BM (0,∞), we have ‖f◦r(x)−gε(x)‖ ≤
ε. This gives, for all x ∈ ϕ(BM [0, 1]), ‖f(x)− gε(x)‖ ≤ ε. Also, gε restricted
to ϕ(BM [0, 1]) is still α-Hölder. It follows that α ≤ α(ϕ(BM [0, 1]), X), and
since this holds for any α < α(BM (0,∞), X), we obtain α(BM (0,∞), X) ≤
α(ϕ(BM [0, 1]), X) = α(BM [0, 1], X), which is the desired inequality. �

Proof of Theorem 3.3. The proof uses the same method as in [16] and [2,
p. 36], with the map φMN in place of φpq. We apply Proposition 2.3 to
obtain maps M̃ and Ñ such that M̃ ∼G M and Ñ ∼G′ N and such that
M̃ is pM -convex and qM -concave and Ñ is pN -convex and qN -concave. The
map ϕ̃ = Ñ−1 ◦ M̃ then satisfies the assumptions of Theorem 2.4. Also,
using the isomorphisms between the Orlicz spaces, it is easy to see that
α(BM (G), LN (G′)) = α(BM̃ (G), LÑ (G′)). Thus, it suffices to prove the re-
sult with M̃ and Ñ in place of M and N . To simplify notations, we drop the
“tilde” symbol in M̃ , Ñ , and ϕ̃, and assume that M and N are such that the
map N−1 ◦M satisfies the assumptions of Theorem 2.4.

Let f : BM (G) → LN (G′) be uniformly continuous and fix ε > 0. Con-
sider the composition Φ = φN2 ◦ f ◦ φ2M , where φ2M : L2(G) → LM (G)
and φN2 : LN (G′) → L2(G′) are uniformly continuous on balls. Then
Φ : B2(G) → L2(G′) is a uniformly continuous map between Hilbert spaces.
Hence, according to [13], there exists a Lipschitz mapping g : B2(G)→ L2(G′)
such that ‖Φ−g‖∞ ≤ ε. It is clear that (φN2)−1 ◦g ◦(φ2M )−1 = φ2N ◦g ◦φM2

is a uniform approximation of f on BM (G). Moreover, according to Theorem
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2.4, this approximation is in the appropriate space Hα(BM (G), LN (G′)) cor-
responding to the position of pM and qN relative to the number 2. By the
definition of α(BM (G), LN (G′)), this proves the lower estimates of Theorem
3.3.

As α(BM (G), LN (G′)) ≤ 1, the upper estimate holds in the case when
qM ≥ 2 ≥ pN > 1, so it suffices to deal with the remaining cases.

First, suppose that G = G′. We have to consider three cases: (1) qM ≤ 2
and pN ≥ 2; (2) qM ≥ 2 and pN ≥ 2, and (3) qM ≤ 2 and pN ≤ 2.

Case 1: qM ≤ 2 and pN ≥ 2.
We have to prove that α(BM (G), LN (G)) ≤ qM/pN . Fix δ > 0. The

proof consists in finding a uniformly continuous map φ : BM (G) → LN (G)
satisfying

inf{‖φ− g‖∞ : g ∈ HqM/pN+δ(BM (G), LN (G))} > 0.

In fact, we will show that the map φMN itself has this property. This follows
from the following lemma, which is similar to the result in [2, p. 36].

Lemma 3.6. Let M,N be two Orlicz functions satisfying the assumptions
of Corollary 2.5, with the same notations. Suppose that qM ≤ pN . Fix α ∈
(0, 1]. Then for all g ∈ Hα(BM (G), LN (G)) there exists C > 0 such that

2‖φMN − g‖∞ ≥ sup
n∈N ,n even

{1− Cn1/pNM−1(1/n)α}, if G ∈ {(0,∞),N},

2‖φMN − g‖∞ ≥ sup
n∈N ,n even

{1− Cn1/pN 1/M−1(n)α}, if G = [0, 1].

In particular, if fn(α) = n1/pNM−1(1/n)α → 0 as n→∞ (resp. fn(α) =
n1/pN 1/M−1(n)α → 0), then the set Hα(BM (G), LN (G)) is not dense in
UC(BM (G), LN (G)) when G ∈ {(0,∞),N} (resp. when G = [0, 1]).

Proof of Lemma 3.6. Case 1: G ∈ {(0,∞),N}.
Let g ∈ Hα(BM (G), LN (G)). Fix n ∈ N and set l2nM = (R2n, ‖ . ‖M ), where

‖x‖M = inf

{
λ > 0 :

2n∑
i=1

M(|xi|/λ) ≤ 1

}
and l2nN = (R2n, ‖ . ‖N ). Denote by B(l2nM ) and B(l2nN ) the closed unit balls in
these spaces. The space l2nM (resp. l2nN ) can be represented as the subspace of
LM (G) (resp. LN (G)) consisting of functions that are constant on some fixed
2n disjoint sets, with measure 1 each.

There exists a norm-one projection P : LN (G) → l2nN such that P (x) = x
for all x ∈ l2nN . So, for all x ∈ B(l2nM ),

‖φMN (x)− P ◦ g(x)‖N = ‖P ◦ φMN (x)− P ◦ g(x)‖N
≤ ‖φMN (x)− g(x)‖N ≤ ‖φMN − g‖∞.
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Given a permutation σ of {1, . . . , 2n} and a choice of signs θ = (θ1, . . . , θ2n),
we consider the operator

Uσ,θ : R2n → R
2n

x 7→ (θ1xσ−1(1), . . . , θixσ−1(i), . . . , θ2nxσ−1(2n)).

This operator defines an isometry on both l2nM and l2nN and induces the norm-
one operator

Vσ,θ :
(
UC(B(l2nM ), l2nN ), ‖ . ‖∞

)
→
(
UC(B(l2nM ), l2nN ), ‖ . ‖∞

)
f 7→ Uσ,θ ◦ f ◦ U−1

σ,θ ,

and the average operator

V =
1

(2n)!22n

∑
σ,θ

Vσ,θ.

It is not difficult to see that Vσ,θ(φMN ) = φMN . So we have

‖φMN − V (P ◦ g)‖∞ = ‖V (φMN )− V (P ◦ g)‖∞
≤ ‖φMN − P ◦ g‖∞ (because V is a norm-one operator)

≤ ‖φMN − g‖∞ (as before).

To simplify notations, we set h = V (P ◦ g). Then h ∈ Hα(B(l2nM ), l2nN ), with
a constant Ch that is independent of n.

We have Vσ,θ(h) = h for all σ, θ, which means that Uσ,θ ◦h = h◦Uσ,θ. Thus
h preserves the support and, if c > 0 and if χA is the indicator function of a
subset A of {1, . . . , 2n}, then h(cχA) = c′χA, where the constant c′ depends
only on c and on the cardinality of A.

Now, for all x, y ∈ B(l2nM ), we have

2‖φMN − g‖∞ ≥ ‖φMN (x)− φMN (y)‖N − ‖h(x)− h(y)‖N .

We will apply this with a judicious choice of x and y.
Set xk = M−1(1/2n)χ(k, . . . , k + n − 1), for 1 ≤ k ≤ n + 1. Then

xk ∈ B(l2nM ) and ‖xk − xk+1‖M = M−1(1/2n)/M−1(1/2). A direct calcu-
lation gives ‖φMN (x1)− φMN (xn+1)‖N = 1. Moreover, the vectors (h(xk)−
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h(xk+1))1≤k≤n+1 are disjointly supported and satisfy

‖h(x1)− h(xn+1)‖N =

∥∥∥∥∥
n∑
k=1

(h(xk)− h(xk+1))

∥∥∥∥∥
N

=

∥∥∥∥∥∥
(

n∑
k=1

|h(xk)− h(xk+1)|pN
)1/pN

∥∥∥∥∥∥
N

(by the disjointness of supports)

≤ C

(
n∑
k=1

‖h(xk)− h(xk+1)‖pNN

)1/pN

(by the pN -convexity of LN (G))

≤ C1

(
n∑
k=1

(‖xk − xk+1‖αM )pN
)1/pN

= C2n
1/pNM−1(1/2n)α,

where C, C1, and C2 are constants independent of n.

Case 2: G = [0, 1].
Since the spaces l2nM are in general not subspaces of the Orlicz space LM [0, 1],

the above argument does not work here and needs to be modified, in contrast
to the case M(u) = up. Again we fix n ∈ N, a permutation σ of {1, . . . , 2n}
and a choice of signs θ = (θ1, . . . , θ2n). We divide the interval [0, 1] into 2n
subintervals Ik = [k−1

2n ,
k
2n ], 1 ≤ k ≤ 2n. Let

Tσ,k : Ik −→ Iσ−1(k)

t = λ
k − 1

2n
+ (1− λ)

k

2n
7−→ Tσ,k(t) = λ

σ−1(k)− 1
2n

+ (1− λ)
σ−1(k)

2n
.

As above, we consider, for ϕ = M or ϕ = N , the operator

Uσ,θ : Lϕ[0, 1]→ Lϕ[0, 1] , x 7→ Uσ,θ(x),

defined by Uσ,θ(x)(t) = θkx(Tσ,k(t) for all t ∈ Ik. This operator is an isometry
because ∫

Ik

x(Tσ,k(t))dt =
∫
Iσ−1(k)

x(t)dt,

and it satisfies U−1
σ,θ = Uσ−1,θσ , where θσ = (θσ(1), . . . , θσ(2n)). The associated

norm-one operator is given by

Vσ,θ : UC(BM [0, 1], LN [0, 1])→ UC(BM [0, 1], BN [0, 1])

f 7→ Uσ,θ ◦ f ◦ U−1
σ,θ ,

and the average operator V is defined in the same way as before.
Using these operators Vσ,θ, the proof proceeds as before, with xk defined

by xk = χ[ k−1
2n , k+n−1

2n ], 1 ≤ k ≤ n + 1, so that ‖xk − xk+1‖M = 1/M−1(n)α

and fn(α) = n1/pN 1/M−1(n)α. Hence the lemma is proved. �
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We now continue with the proof of Theorem 3.3. We fix δ > 0 and let
fn(α) be defined as in Lemma 3.6. According to the lemma, it suffices to
show that fn(qM/pN + δ) → 0 as n → ∞. By Proposition 2.3, M(u1/qM )
is a concave function of u, so its inverse M−1(u)qM is a convex function of
u. Thus, recalling that M−1(1) = 1, we obtain M−1(1/n)qM/pN ≤ (1/n)1/pN

and M−1(n)qM/pN ≥ n1/pN . Hence, for all n ∈ N,

fn(qM/pN + δ) ≤M−1(1/n)δ , if G ∈ {(0,∞),N},

fn(qM/pN + δ) ≤ 1/M−1(n)δ , if G = [0, 1].

Since M−1(1/n) and 1/M−1(n) go to 0 as n increases to infinity, we obtain
that ‖φMN − g‖∞ ≥ 1/2, for all g ∈ HqM/pN+δ(BM (G), LN (G)). By the
definition of the index α(BM (G), LN (G)), this implies α(BM (G), LN (G)) ≤
qM/pN + δ, for all δ > 0, and the estimate follows. Using Lemma 3.5 we
obtain the desired estimates for the case when G = [0, 1] and G′ = (0,∞) and
when G′ = [0, 1] and G = (0,∞).

For the remaining cases of qM and pN we follow the arguments in [2, p. 38].

Case 2: qM ≥ 2 and pN ≥ 2.
According to [10, p. 134], L2[0, 1], and thus L2(G′), is isomorphic to a

subspace of LM [0, 1]. Moreover, it is known (see [2]) that L2(G′) has uniformly
normal structure. The arguments used in the proof of Lemma 3.5 show that
for every normed linear space Y we have α(BM [0, 1], Y ) ≤ α(B2(G′), Y ).
Taking Y = LN (G′), we obtain α(B2(G′), LN (G′)) ≤ 2/pN . by the upper
estimate proved above. Therefore α(BM [0, 1], LN (G′) ≤ 2/pN . By Lemma
3.5, the same holds with [0, 1] replaced by (0,∞),

Case 3: qM ≤ 2 and pN ≤ 2.
Since, by [10], L2(G) is isomorphic to a complemented subspace of LN [0, 1].

it is easy to see, using the same arguments as in the proof of Lemma 3.5,
that for every normed linear space X with closed unit ball BX we have
α(BX , LN [0, 1]) ≤ α(BX , L2(G)). Taking X = LM (G), the upper estimate
already proved gives α(BM (G), L2(G)) ≤ qM/2. Thus α(BM (G), LN [0, 1]) ≤
qM/2. Again, by Lemma 3.5, the same estimate holds with [0, 1] replaced by
(0,∞) �

Connection with the Boyd indices. We now relate our approximation
result to the usual Boyd indices. In the setting of Orlicz spaces, the Boyd
indices coincide with the Matuszewska-Orlicz indices of the corresponding
Orlicz function, which are defined as follows:
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Definition 3.7 (see [11, p. 21]). Let M be an Orlicz function and G ∈
{[0, 1], (0,∞),N}. We define

αM (G) = sup
{
p : inf

λ≥1:u∈I(G)
M(λu)/M(λ)up > 0

}
,

βM (G) = inf

{
q : sup

λ≥1:u∈I(G)

M(λu)/M(λ)uq <∞

}
,

with I[0, 1] = [1,∞), I(N) = (0, 1] and I(0,∞) = (0,∞). These indices are
called the Matuszewska-Orlicz indices of the Orlicz function M .

As stated above, we can identify Matuszewska-Orlicz indices with Boyd
indices, and we shall make this identification in the sequel.

Theorem 3.8. Let LM (G) and LN (G′) be two Orlicz spaces such that
1 < αM (G), αN (G′) and βM (G), βN (G′) <∞. Then Theorem 3.3 holds with
pM = αM (G), qM = βM (G), pN = αN (G′) and qN = βN (G′), provided the
indices qM and pN are strictly greater than or strictly less than the number 2.

Remark 3.9. The conditions on qM and pN break down into the following
four cases: (1) qM > 2 > pN > 1; (2) qM , pN > 2; (3) 1 < qM , pN < 2; (4)
1 < qM < 2 < pN .

Proof. According to [10, p. 139,141] we have

αM (G) = sup {p ≥ 1 : LM (G) satisfies an upper p-estimate},
βM (G) = inf {q ≥ 1 : LM (G) satisfies a lower q-estimate}.

Recall (see [10, p. 82]) that a Banach lattice (X, ‖ . ‖) is said to satisfy an
upper p-estimate (resp. lower q-estimate) if the property of p-convexity (resp.
q-concavity) holds for every choice of pairwise disjoint vectors {xi}ni=1.

We set pM (G) = αM (G) and qM (G) = βM (G), and fix ε > 0 small enough
such that 1 < pM (G)−ε < qM (G)+ε, and we do the same with N . According
to [10, p. 100,101], LM (G) is (pM (G) − ε)-convex and (qM (G) + ε)-concave.
Thus, by Proposition 2.3 there exists a (pM (G)− ε)-convex and (qM (G) + ε)-
concave Orlicz function Mε such that M ∼G Mε. Set pMε

= pM (G) − ε and
qMε

= qM (G) + ε. We define Nε and qNε , pNε analogously, so that Nε ∼G′ N .
It is clear that α(BM (G), LN (G′)) = α(BMε

(G), LNε(G
′)) because the spaces

are isomorphic.
Suppose, for example, that 1 < qM (G) < 2 < pN (G′). Then for ε small

enough we have 1 < qMε
< 2 < pNε and Theorem 3.3 gives pMε

/qNε ≤
α(BMε

(G), LNε(G
′)) ≤ qMε

/pNε . Thus, for ε small enough,

pM (G)− ε
qN (G) + ε

≤ α(BM (G), LN (G′)) ≤ qM (G) + ε

pN (G)− ε
.
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By letting ε go to 0, we obtain the desired estimate for the case 1 < qM (G) <
2 < pN (G′). The other cases can be dealt with by similar arguments. �

Remark 3.10. In particular, if the Orlicz spaces are p-convex and q-
concave with p and q as their Boyd indices, then Theorem 3.3 applies directly.

Examples and comments. We now use Remark 2.2 to compute the
classes KG for some examples.

Example 3.11. Consider the function M(u) = u2(1 + | ln(u)|) for u > 0.
This function is an Orlicz function for u in a neighbourhood of 0 and for large
values of u. We define N(u) = u2 if u ≥ 0.

First, suppose that G = G′ = [0, 1]. As for large values of u we have
uM ′r(u)/M(u) = 2+1/(1 + ln(u)) ≥ 2, Theorem 3.3 gives α(BM [0, 1], L2[0, 1])
= 1 and the proof shows that Lipschitz maps are dense (i.e., the bound
α(BM [0, 1], L2[0, 1]) is attained).

Next, suppose that G = G′ = N. We write l2 for L2(N). For u in a
neighbourhood of 0 we have uM ′r(u)/M(u) = 2 − 1/(1− ln(u)). Fix ε > 0.
There exists u0 = u0(ε) such that, for all u ≤ u0, uM ′r(u)/M(u) ≥ 2 − ε.
Then Theorem 3.3 gives α(BM (N), l2) ≥ (2− ε)/2. This is true for all ε > 0,
so α(BM (N), l2) = 1. But in this case Lipschitz maps are not dense (i.e., the
bound α(BM (N), l2) is not attained). Indeed, by Proposition 2.3 there exists
a (2 − ε)-convex and 2-concave Orlicz function Mε, with continuous second
derivative, such that M ∼G Mε. Then α(BMε

(N), l2) = α(BM (N), l2) = 1
because the spaces are isomorphic. We apply Lemma 3.6 to the function Mε.
We note that

fn(1) = n1/2M−1
ε (1/n) = n1/2cn,

where cn = M−1
ε (1/n) satisfies Mε(cn) = 1/n. But Mε ∼G M , so there exists

C > 0 independent of n such that Mε(cn) ≥ CM(cn) = Cc2n(1− ln(cn)) for n
large enough. Hence,

fn(1) ≤ 1√
C

1
(1− ln(cn))1/2

→ 0 as n→∞.

Lemma 3.6 asserts that Lipschitz maps are not dense in UC(BMε
(N), l2).

Hence they are not dense in UC(BM (N), l2) even if α(BM (N), l2) = 1, a
bound which is not attained here.

Example 3.12. Suppose that G = G′ = N and fix p > 1 +
√

2. Consider
the Orlicz function M(u) = up+sin(ln | ln(u)|) in some neighbourhood of 0. Then

uM ′r(u)/M(u) = p+ sin(ln | ln(u)|) + cos(ln | ln(u)|)

and we have pM = p − 1 ≤ qM = p + 1. In this case Theorem 3.3 does not
provide the precise value of α, but only upper and lower estimates for it.
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4. Connection between approximation and extension

We use the following well known general principle: An extension theorem
for a class of functions implies an approximation theorem by functions in
this class. Consider two metric spaces (X, dX) and (Y, dY ). Following the
terminology of A. Naor [14], we denote by B(X,Y ) the set of all α > 0
such that there is a constant C such that, for all D ⊂ X and for any α-Hölder
function g : D → Y with constant K, there is an α-Hölder function g̃ : X → Y
with constant less than CK which extends g. Such a function g̃ is called an
isomorphic extension of g.

Suppose that (X, ‖ . ‖X) and (Y, ‖ . ‖Y ) are two Banach spaces. Without
showing that B(X,Y ) is non-empty (which may occur), we now prove some
inclusion results, which provide the supremum of the values α for which an
isomorphic extension can exist.

A result of the form B(X,Y ) ⊂ (0, α0) means that for α > α0 there exists
an α-Hölder map between a subset D of X and Y which admits no isomorphic
extension. The following proposition gives such a result.

Proposition 4.1. If α ∈ B(X,Y ), then Hα(BX , Y ) is dense in
UC(BX , Y ) endowed with ‖ . ‖∞. Hence

B(X,Y ) ⊂ (0, α(BX , Y )].

Proof (see [2, p. 35]). Let α ∈ B(X,Y ) and let C be the corresponding
constant. Let ε > 0 and f : BX → Y be uniformly continuous with modulus
of continuity ω. Let A be a maximal ε-separated set in BX . For all x, y ∈ A,

‖x− y‖X ≤
([
‖x− y‖X

εα

]
+ 1
)
εα,

where [ . ] denotes the integral part. As ω is nondecreasing and subadditive,
we obtain

‖f(x)− f(y)‖Y ≤ ω(‖x− y‖X) ≤ ω
(([

‖x− y‖X
εα

]
+ 1
)
εα
)

≤ ω(εα)
εα

(21−α + 1)‖x− y‖αX ,

because x, y ∈ A ⊂ BX . Thus the restriction of f to A is α-Hölder with
constant K = ω(εα)ε−α(21−α + 1). Denote by f̃ its isomorphic extension
with constant CK. Let x ∈ BX . There exists y ∈ A such that ‖x− y‖X ≤ ε
and thus

‖f(x)− f̃(x)‖Y ≤ ‖f(x)− f(y)‖Y + ‖f̃(y)− f̃(x)‖Y
≤ ω(ε) + C(21−α + 1)ω(εα).

Thus f ∈ Hα(BX , Y )
‖ . ‖∞ , and by definition α ≤ α(BX , Y ). �
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Claim 4.2. There exist Banach spaces X and Y such that α(BX , Y ) = 0
and thus B(X,Y ) = ∅.

Indeed, fix p ≥ 1 and take X = Lp[0, 1] and Y = (
∑
Lqk [0, 1])2 with qk ≥ 2

for all k and qk → ∞. Since there exists a norm-one projection from Y onto
Lqk for all k, by arguing as in the proof of Lemma 3.5 one easily sees, using
Theorem 3.1, that α(Bp, Y ) ≤ α(Bp, Lqk) = min{p, 2}/qk for all k ∈ N. The
right-hand side here tends to 0 as k goes to∞, so we have α(BX , Y ) = 0, and
the above proposition gives B(X,Y ) = ∅.

Claim 4.3. Theorem 3.3 and Proposition 4.1 provide examples of normed
spaces Y such that 1 /∈ B(H,Y ), where H stands for the Hilbert spaces L2 or
l2.

This fact, stated in [14] in the setting of Lp-spaces, provides another answer
to a question posed by K. Ball in [1] and solved in [14].

Example 4.4. Consider our previous Orlicz function M(u) = u2(1 +
| ln(u)|) in some neighbourhood of 0. Set lM = LM (N). Then we have

B(lM , l2) ⊂ (0, 1[.

It may be possible to extend isomorphically every α-Hölder maps with α < 1,
but not every Lipschitz map. Indeed, we have seen that Lipschitz maps are
not dense in UC(BM (N), l2) endowed with ‖ . ‖∞.

Acknowledgment. The author is very grateful to the referee for helpful
suggestions which improved the paper.
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