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EXTENSIONS, DILATIONS AND FUNCTIONAL MODELS
OF DISCRETE DIRAC OPERATORS

B. P. ALLAHVERDIEV

Abstract. A space of boundary values is constructed for minimal sym-
metric discrete Dirac operators in the limit-circle case. A description of

all maximal dissipative, maximal accretive and self-adjoint extensions
of such a symmetric operator is given in terms of boundary conditions
at infinity. We construct a self-adjoint dilation of a maximal dissipa-
tive operator and its incoming and outgoing spectral representations,
which make it possible to determine the scattering matrix of the dila-

tion. We also construct a functional model of the dissipative operator
and its characteristic function. Finally, we prove the completeness of the
system of eigenvectors and associated vectors of dissipative operators.

1. Introduction

The theory of extensions of symmetric operators is one of the main branches
of operator theory. The first fundamental results in this area were obtained by
von Neumann [11], although the apparent origins can be found in the famous
work of Weyl (see [13], [14]), and also in numerous papers on the classical
problem of moments (see [1], [2], [3]). To describe the various classes of
extensions of symmetric operators, theorems on the representation of linear
relations have proved to be useful. The first result of this type is due to
Rofe-Beketov [12]. Independently, in [4] and [7], the notion of a ‘space of
boundary values’ was introduced and all maximal dissipative, accretive, self-
adjoint, and other extensions of symmetric operators were described (see [6]
and also the survey article [5]). However, regardless of the general scheme,
the problem of the description of the maximal dissipative (accretive), self-
adjoint and other extensions of a given symmetric operator via the boundary
conditions is of considerable interest. This problem is particularly interesting
in the case of singular operators, because at the singular ends of the interval
under consideration the usual boundary conditions are in general meaningless.
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One general method of spectral analysis of dissipative operators is the
method of contour integration of the resolvent. This method requires a sharp
estimate of the resolvent on expanding contours separating the spectrum. The
applicability of this method is restricted to weak perturbations of self-adjoint
operators and operators with sparse discrete spectrum. Since for wide classes
of singular systems there are no asymptotics of the solutions, the method
cannot be applied in those cases.

It is known (see [8], [10]) that the theory of dilations with applications of
operator models gives an adequate approach to the spectral theory of dissi-
pative (contractive) operators. A central part in this theory is played by the
characteristic function, which carries complete information on the spectral
properties of the dissipative operator. Thus, in the incoming spectral repre-
sentation of the dilation, the dissipative operator becomes the model. The
problem of the completeness of the system of eigenvectors and associated vec-
tors is solved in terms of the factorization of the characteristic function. The
computation of the characteristic functions of dissipative operators requires
the construction and investigation of a self-adjoint dilation and of the corres-
ponding scattering problem, in which the characteristic function is realized as
the scattering matrix.

In this paper we consider the minimal symmetric discrete Dirac operator
in the space l2A (N;E) (N := {0, 1, 2, . . .} , E := C

2) with defect index (1, 1)
(in Weyl’s limit-circle case). We construct a space of boundary values of
the minimal operator and describe all maximal dissipative, maximal accretive
and self-adjoint extensions in terms of the boundary conditions at∞. We also
construct a self-adjoint dilation of the maximal dissipative operator and its
incoming and outgoing spectral representations and determine the scattering
matrix of the dilation, using the scheme of Lax and Phillips [9]. With the help
of the incoming spectral representation we then construct a functional model
of the dissipative operator and determine its characteristic function. Finally,
using these results, we prove a theorem on the completeness of the system of
eigenvectors and associated vectors of dissipative operators.

2. Extensions of symmetric discrete Dirac operators

For sequences y(1) = {y(1)
n } and y(2) = {y(2)

n } (n ∈ N := {0, 1, 2, . . .}) of
complex numbers y(1)

n and y
(2)
n we consider the discrete Dirac system

(2.1) (l1y)n :=

{
−any(2)

n+1 + bny
(2)
n + pny

(1)
n = λcny

(1)
n ,

bny
(1)
n − an−1y

(1)
n−1 + qny

(2)
n = λdny

(2)
n ,

where λ is a complex spectral parameter, a−1 6= 0, an 6= 0, an, bn, pn, qn ∈
R := (−∞,∞) and cn > 0, dn > 0 (n ∈ N).
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System (2.1) is a discrete analog (for a−1 = an = 1, n ∈ N) of the Dirac
system given by

(2.2) J
dy(x)
dx

+B(x)y(x) = λA(x)y(x), x ∈ [0,∞) ,

where

J =
(

0 −1
1 0

)
, y(x) =

(
y1(x)
y2(x)

)
,

B(x) =
(
p(x) q(x)
q(x) r(x)

)
, A(x) =

(
c(x) 0

0 d(x)

)
,

where A(x) > 0 for almost all x ∈ [0,∞), and the elements of the matrices
A(x) and B(x) are real-valued, Lebesgue measurable and locally integrable
functions on [0,∞) . Equation (2.2) is the radial wave equation for a relativistic
particle in a central field and is of interest in physics.

For two arbitrary vector-valued sequences

y := {yn} :=

{
y

(1)
n

y
(2)
n

}
and z := {zn} :=

{
z

(1)
n

z
(2)
n

}
(n ∈ {−1} ∪ N),

denote by [y, z] the sequence with components [y, z]n (n ∈ {−1} ∪N) defined
by

(2.3) [y, z]n = an

(
y(1)
n z̄

(2)
n+1 − y

(2)
n+1z̄

(1)
n

)
.

It is easy to verify the Green’s formula

(2.4)
m∑
n=0

[((l1y)n, zn)E − (yn, (l1z)n)E ] = [y, z]m − [y, z]−1, m ∈ N.

To pass from the system (2.1) to operators we introduce the Hilbert space
H := l2A(N;E) consisting of all vector-valued sequences y = {yn} (n ∈ N)
such that

∞∑
n=0

(Anyn, yn)E =
∞∑
n=0

(
cn

∣∣∣y(1)
n

∣∣∣2 + dn

∣∣∣y(2)
n

∣∣∣2) <∞

with inner product (y, z) =
∑∞
n=0(Anyn, zn)E , where

A := {An}, An :=
(
cn 0
0 dn

)
(n ∈ N).

Denote by l1(y) (resp. ly) the vector-valued sequences with components
(l1y)n (resp. (ly)n := A−1

n (l1y)n) (n ∈ N). Next, denote by D the linear set
of all vectors y ∈ H such that ly ∈ H and y

(1)
−1 = 0. We define the maximal

operator L on D by the equality Ly = ly.
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It follows from (2.4) that for all y, z ∈ D the limit [y, z]∞ = limm→∞ [y, z]m
exists and is finite. Therefore, passing to the limit as m→∞ in (2.4), we get
that for arbitrary vectors y and z of D

(2.5) (Ly, z)− (y, Lz) = [y, z]∞ .

In H we consider the dense linear set D′0 consisting of finite vectors (i.e.,
vectors having only finitely many nonzero components). Denote by L′0 the
restriction of the operator L to D′0. It follows from (2.5) that L′0 is symmetric.
Consequently, it admits closure. Its closure is denoted by L0. The domain
D0 of L0 consists of precisely those vectors y ∈ D satisfying the condition

(2.6) [y, z]∞ = 0, ∀z ∈ D.

The minimal operator L0 is a symmetric operator with defect index (0, 0) or
(1, 1) and satisfying L = L∗0 (see [2], [3]). For defect index (0, 0) the operator
L0 is self-adjoint, that is, L∗0 = L0 = L.

We assume that L0 has defect index (1, 1), so that the Weyl limit-circle
case holds for the discrete Dirac expression l(y).

The Wronskian of two solutions y = {yn} and z = {zn} (n ∈ N) of (2.1) is
defined to be Wn(y, z) := an(y(1)

n z
(2)
n+1 − y

(2)
n+1z

(1)
n ), so that Wn(y, z) = [y, z̄]n

(n ∈ N). The Wronskian of two solutions of (2.1) does not depend on n
and two solutions of this system are linearly independent if and only if their
Wronskian is nonzero.

Denote by P (λ) = {Pn(λ)} and Q(λ) = {Qn(λ)} (n ∈ N) the solutions of
(2.1) satisfying the initial conditions

(2.7) P
(1)
−1 = 1, P

(2)
0 = 0, Q

(1)
−1 = 0, Q

(2)
0 = 1/a−1.

We have that Wn [P (λ), Q(λ)] = 1, n ∈ N ∪ {∞}. Consequently P (λ) and
Q(λ) form a fundamental system of solutions of (2.1). Since L0 has defect
index (1, 1), we have P (λ), Q(λ) ∈ H for all λ ∈ C.

Let u = P (0) and v = Q(0). Then we have:

Lemma 2.1. For arbitrary α, β ∈ C there exists a vector y ∈ D satisfying

(2.8) [y, u]∞ = α, [y, v]∞ = β.

Proof. Let f be an arbitrary vector in H satisfying

(2.9) (f, u) = α, (f, v) = β.

Such a vector f exists, even among linear combinations of u and v. Indeed,
if f = c1u + c2v, then the conditions (2.9) are a system of equations for the
constants c1 and c2 whose determinant is the Gram determinant of the linearly
independent vectors u and v, and hence is nonzero.

Denote by y = {yn} (n ∈ N) the solution of ly = f satisfying y
(1)
−1 = 0.

Then y ∈ D. We show that y is the desired vector. Indeed, using (2.4) as
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m→∞, we get that

(2.10) (f, u) = (ly, u) = [y, u]∞+(y, lu) , (f, v) = (ly, v) = [y, v]∞+(y, v) .

But lu = 0, and thus (y, lu) = 0. Therefore, (f, u) = α = [y, u]∞. Analo-
gously, [y, v]∞ = β. �

Lemma 2.2. For arbitrary vectors y, z ∈ D, we have the equality (n ∈
N ∪ {∞})

(2.11) [y, z]n = [y, u]n [z̄, v]n − [y, v]n [z̄, u]n .

Proof. Since the sequences u = {un} and v = {vn} are real and since
[u, v]n = 1 (n ∈ N ∪ {∞}), we have

[y, u]n [z̄, v]n − [y, v]n [z̄, u]n

= an

(
y(1)
n u

(2)
n+1 − y

(2)
n+1u

(1)
n

)
an

(
z̄(1)
n v

(2)
n+1 − z̄

(2)
n+1v

(1)
n

)
− an

(
y(1)
n v

(2)
n+1 − y

(2)
n+1v

(1)
n

)
an

(
z̄(1)
n u

(2)
n+1 − z̄

(2)
n+1u

(1)
n

)
= a2

n

(
y(1)
n u

(2)
n+1z̄

(1)
n v

(2)
n+1 − y(1)

n u
(2)
n+1z̄

(2)
n+1v

(1)
n − y

(2)
n+1u

(1)
n z̄(1)

n v
(2)
n+1

+ y
(2)
n+1u

(1)
n z̄

(2)
n+1v

(1)
n − y(1)

n v
(2)
n+1z̄

(1)
n u

(2)
n+1 + y(1)

n v
(2)
n+1z̄

(2)
n+1u

(1)
n

+ y
(2)
n+1v

(1)
n z̄(1)

n u
(2)
n+1 − y

(2)
n+1v

(1)
n z̄

(2)
n+1u

(1)
n

)
= an

(
y(1)
n z̄

(2)
n+1 − y

(2)
n+1z̄

(1)
n

)
an

(
u(1)
n v

(2)
n+1 − u

(2)
n+1v

(1)
n

)
= [y, z]n .

The lemma is proved. �

Theorem 2.3. The domain D0 of the operator L0 consists of precisely
those vectors y ∈ D satisfying the boundary conditions

(2.12) [y, u]∞ = [y, v]∞ = 0.

Proof. As noted above, the domain D0 of L0 coincides with the set of all
vectors y ∈ D satisfying (2.6). By virtue of Lemma 2.1, (2.6) is equivalent to

(2.13) [y, u]∞ [z̄, v]∞ − [y, v]∞ [z̄, u]∞ = 0.

Further, by Lemma 2.1, the numbers [z̄, v]∞ and [z̄, u]∞ (z ∈ D) can be
arbitrary, and therefore (2.13) holds for all z ∈ D if and if the conditions
(2.12) hold. The theorem is proved. �

The triple (H,Γ1,Γ2), where H is a Hilbert space and Γ1 and Γ2 are linear
mappings of D (A∗) into H, is called (see [4], [6], [7]) a space of boundary
values of a closed symmetric operator A acting in a Hilbert space H with
equal (finite or infinite) defect index if
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(i) for any f, g ∈ D (A∗),

(A∗f, g)H − (f,A∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H ;

(ii) for any F1, F2 ∈ H, there exists a vector f ∈ D (A∗) such that Γ1f =
F1,Γ2f = F2.

In our case, we denote by Γ1 and Γ2 the linear mappings of D into C defined
by

(2.14) Γ1y = [y, u]∞ , Γ2f = [y, v]∞ (y ∈ D) .

Then we have:

Theorem 2.4. The triple (C,Γ1,Γ2) defined by (2.14) is the space of
boundary values of the operator L0.

Proof. By Lemma 2.1, for arbitrary y, z ∈ D we have

(Ly, z)− (y, Lz) = [y, z]∞ = [y, u]∞ [z̄, v]∞ − [y, v]∞ [z̄, u]∞
= (Γ1y,Γ2z)− (Γ2y,Γ1z) ,

i.e., the first condition in the definition of the space of boundary values holds.
The second condition holds by Lemma 2.1.

Recall that a linear operator T (with domain D(T )) on some Hilbert space
H is called dissipative (accretive) if Im(Tf, f) ≥ 0 (respectively, Im(Tf, f) ≤
0) for all f ∈ D(T ) and maximal dissipative (accretive) if it does not have a
proper dissipative (accretive) extension. �

By [4] or [6], Theorem 2.4 implies the following result:

Theorem 2.5. Every maximal dissipative (accretive) extension Lh of L0

is determined by the equality Lhy = Ly for the vectors y in D satisfying the
boundary condition

(2.15) [y, u]∞ − h [y, v]∞ = 0,

where Imh ≥ 0 or h = ∞ (resp. Imh ≤ 0 or h = ∞). Conversely, for an
arbitrary h with Imh ≥ 0 or h = ∞ (resp. Imh ≤ 0 or h = ∞), the bound-
ary condition (2.15) determines a maximal dissipative (accretive) extension
on L0. The self-adjoint extensions of L0 are obtained precisely when h is a
real number or infinity. For h = ∞, condition (2.15) should be replaced by
[y, v]∞ = 0.

3. Completeness theorem, self-adjoint dilation and functional
model of dissipative operators

In the sequel we shall study the maximal dissipative operators Lh (with
Imh > 0) generated by the expression ly and the boundary condition (2.15).

For the spectral analysis of the dissipative operators Lh we will apply the
dilation and functional model theory of Lh as mentioned in introduction. We
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first develop the Lax-Phillips scattering theory for self-adjoint dilations of Lh
and determine the scattering matrix of such a dilation via the characteristic
function of Lh. The applications of these theories go far beyond the problem
discussed here (see [8], [9], [10]).

Let us first state our main result for the operator Lh.

Theorem 3.1. For all values of h with Imh > 0, except possibly for
a single value h = h0, the characteristic function Sh(λ) of the dissipative
operator Lh is a Blaschke product and the spectrum of Lh is purely discrete
and belongs to the open upper half plane. The operator Lh (h 6= h0) has
a countable number of isolated eigenvalues with finite multiplicity and limit
points at infinity, and the system of eigenvectors and associated vectors of
this operator is complete in l2A (N;E).

To prove the theorem, we first construct the self-adjoint dilation of the
operator Lh.

Let us add to the space H := l2A (N;E) the ‘incoming’ and ‘outgoing’
channels D− := L2(−∞, 0) and D+ := L2 (0,∞). We form the main Hilbert
space of the dilation H = L2 (−∞, 0)⊕H ⊕ L2 (0,∞) , and in H we consider
the operator Lh generated by the expression

(3.1) L 〈ϕ−, y, ϕ+〉 =
〈
i
dϕ−
dξ

, l(y), i
dϕ+

dς

〉
on the set D(Lh) of vectors 〈ϕ−, y, ϕ+〉 satisfying ϕ− ∈ W 1

2 (−∞, 0), ϕ+ ∈
W 1

2 (0,∞), y ∈ D, and

(3.2) [y, u]∞ − h [y, v]∞ = αϕ−(0), [y, u]∞ − h̄ [y, v]∞ = αϕ+(0),

where α2 := Imh, α > 0, and W 1
2 is the Sobolev space. Then we have:

Theorem 3.2. The operator Lh is self-adjoint in H and is a self-adjoint
dilation of the operator Lh.

Proof. Suppose that f, g ∈ D (Lh), f = 〈ϕ−, y, ϕ+〉 and g = 〈ψ−, z, ψ+〉.
Then, integrating by parts and using (2.14), we get that

(Lhf, g)H =
∫ 0

−∞
iϕ′−ψ̄−dξ + (ly, z)H +

∫ ∞
0

ϕ′+ψ̄+dξ(3.3)

= iϕ− (0) ψ̄− (0)− iϕ+ (0) ψ̄+ (0) + [y, z]∞ + (f,Lh)H .

Next, using the boundary conditions (3.2) for the components of the vectors
f, g and relation (2.13), we see by direct computation that iϕ− (0) ψ̄− (0)
−iϕ+ (0) ψ̄+ (0) + [y, z]∞ = 0. Thus, Lh is symmetric. Therefore, to prove
that Lh is self-adjoint, it suffices for us to show that L∗h ⊆ Lh. Take g =
〈ψ−, z, ψ+〉 ∈ D (L∗h). Let L∗hg = g∗ = 〈ψ∗−, z∗, ψ∗+〉 ∈ H, so that

(3.4) (Lhf, g)H = (f, g∗)H , ∀f ∈ D (Lh) .
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By choosing vectors with suitable components as the element f ∈ D (Lh) in
(3.4), it is not difficult to show that ψ− ∈W 1

2 (−∞, 0), ψ+ ∈W 1
2 (0,∞), z ∈ D

and g∗ = Lg, where the operation L is defined by (3.1). Consequently, (3.4)
takes the form (Lf, g)H = (f,Lg)H , ∀f ∈ D (Lh) . Therefore, the sum of the
integral terms in the bilinear form (Lf, g)H must be equal to zero, i.e.,

(3.5) iϕ− (0) ψ̄− (0)− iϕ+ (0) ψ̄+ (0) + [y, z]∞ = 0

for all f = 〈ϕ−, y, ϕ+〉 ∈ D (Lh). Further, solving the boundary conditions
(3.2) for [y, u]∞ and [y, v]∞ , we find that [y, v]∞ = 1

iα (ϕ+ (0)− ϕ− (0)) and
[y, u]∞ = αϕ− (0)+ h

iα (ϕ+ (0)− ϕ− (0)) . Therefore, using (2.11), we find that
(3.5) is equivalent to the equation

iϕ− (0) ψ̄− (0)− iϕ+ (0) ψ̄+ (0) = − [y, z]∞

=
1
iα

(ϕ+ (0)− ϕ− (0)) [z̄, u]∞

−
[
αϕ− (0) +

h

iα
(ϕ+ (0)− ϕ− (0))

]
[z̄, v]∞ .

Since the values ϕ± (0) can be arbitrary complex numbers, a comparison of the
coefficients of ϕ± (0) on the left and right of this identity gives that the vector
g = 〈ψ−, z, ψ+〉 satisfies the boundary conditions [z, u]∞−h [z, v]∞ = αψ−(0)
and [z, u]∞ − h̄ [z, v]∞ = αψ+(0). Consequently, the inclusion L∗h ⊆ Lh is
established, and hence Lh = L∗h.

The self-adjoint operator Lh generates inH a unitary group Ut = exp [iLht]
(t ∈ R). Denote by P : H → H and P1 : H → H the mappings defined by
P : 〈ϕ−, y, ϕ+〉 → y and P1 : y → 〈0, y, 0〉. Let Zt = PUtP1 (t ≥ 0).
The family {Zt} (t ≥ 0) of operators is a strongly continuous semigroup of
completely nonunitary contractions on H. Denote by Ah the generator of this
semigroup, i.e., Ahy = limt→+0(it)−1(Zty − y). The domain of Ah consists
of all the vectors for which the limit exists. The operator Ah is a maximal
dissipative operator. The operator Lh is called the self-adjoint dilation of Ah
(see [8], [10]). We show that Ah = Lh, and hence that Lh is a self-adjoint
dilation of Lh. To do this, we first establish the relation (see [8], [10])

(3.6) P (Lh − λI)−1
P1y = (Lh − λI)−1

y, y ∈ H, Imλ < 0.

To this end, we set (Lh − λI)−1
P1y = g = 〈ψ−, z, ψ+〉. Then (Lh − λI) g =

P1y, and hence Lz−λz = y, ψ− (ξ) = ψ− (0) e−iλξ and ψ+ (ς) = ψ+ (0) e−iλς .
Since g ∈ D (Lh) and hence ψ− ∈ L2 (−∞, 0), it follows that ψ− (0) = 0, and
consequently, z satisfies the boundary condition [z, u]∞−h [z, v]∞ = 0. There-
fore, z ∈ D (Lh), and since a point λ with Imλ < 0 cannot be an eigenvalue
of dissipative operator, it follows that z = (Lh − λI)−1y. We remark that
ψ+ (0) can be obtained from the formula ψ+ (0) = α−1

(
[z, u]∞ − h̄ [z, v]∞

)
.
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Thus,

(Lh − λI)−1
P1y =

〈
0, (Lh − λI)−1y, α−1

(
[z, u]∞ − h̄ [z, v]∞

)
e−iλς

〉
for y ∈ H and Imλ < 0. On applying the mapping P , we obtain (3.6).

It is now easy to show that Ah = Lh. Indeed, by (3.6),

(Lh − λI)−1 = P (Lh − λI)−1
P1 = −iP

∫ ∞
0

Ute
−iλtdtP1

= −i
∫ ∞

0

Zte
−iλtdt = (Ah − λI)−1

, Imλ < 0,

from which it is clear that Lh = Ah. Theorem 3.2 is proved. �

The unitary group Ut = exp [iLht] (t ∈ R) has an important property
which makes it possible to apply to it the Lax-Phillips scheme [9]. Namely,
it has incoming and outgoing subspaces D− =

〈
L2 (−∞, 0) , 0, 0

〉
and D+ =〈

0, 0, L2 (0,∞)
〉

possessing the following properties:

(1) UtD− ⊂ D−, t ≤ 0 and UtD+ ⊂ D+, t ≥ 0;
(2)

⋂
t≤0 UtD− =

⋂
t≥0 UtD+ = {0};

(3)
⋃
t≥0 UtD− =

⋃
t≤0 UtD+ = H;

(4) D−⊥D+.

Property (4) is obvious. To prove property (1) for D+ (the proof for D−
is similar), we set Rλ = (Lh − λI)−1 for all λ with Imλ < 0. Then, for any
f = 〈0, 0, ϕ+〉 ∈ D+ we have

Rλf =

〈
0, 0,−ie−iλξ

∫ ξ

0

e−iλsϕ+(s)ds

〉
.

Hence, Rλf ∈ D+; therefore, if g⊥D+, then

0 = (Rλf, g)H = −i
∫ ∞

0

e−iλt (Utf, g)H dλ, Imλ < 0.

From this it follows that (Utf, g)H = 0 for all t ≥ 0. Hence UtD+ ⊂ D+ for
t ≥ 0, and property (1) has been proved.

To prove property (2), we denote by P+ : H → L2 (0,∞) and P+
1 :

L2 (0,∞) → D+ the mappings defined by P+ : 〈ϕ−, u, ϕ+〉 → ϕ+ and
P+

1 : ϕ → 〈0, 0, ϕ〉, respectively. We note that the semigroup of isometries
Vt = P+UtP

+
1 , t ≥ 0, is a one-sided shift in L2 (0,∞). Indeed, the genera-

tor of the semigroup of the one-sided shift Vt in L2 (0,∞) is the differential
operator i (d/dξ) with boundary condition ϕ (0) = 0. On the other hand, the
generator A of the semigroup of isometries U+

t , t ≥ 0, is the operator

Aϕ = P+LhP+
1 f = P+Lh〈0, 0, ϕ〉 = P+

〈
0, 0, i

dϕ

dξ

〉
= i

dϕ

dξ
,
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where ϕ ∈ W 1
2 (0,∞) and ϕ (0) = 0. But since a semigroup is uniquely

determined by its generator, it follows that U+
t = Vt; hence,⋂

t≥0

UtD+ =

〈
0, 0,

⋂
t≥0

VtL
2 (0,∞)

〉
= {0} ,

i.e., property (2) is proved.
In this scheme of the Lax-Phillips scattering theory, the scattering matrix

is defined in terms of the theory of spectral representations. We now proceed
to construct these representations. In the process, we also prove property (3)
of the incoming and outgoing subspaces.

Lemma 3.3. The operator Lh is totally nonself-adjoint (simple).

Proof. Let H ′ ⊂ H be a nontrivial subspace in which Lh induces a self-
adjoint operator L′h with domain D(L′h) = H ′ ∩D(Lh). If y ∈ D(L′h), then
Im (Lhy, y) = 0, and we get from Im (Lhy, y) = (Imh) |[y, v]∞|

2 = 0 that
[y, v]∞ = 0. This and the boundary condition (2.17) also imply the equality
[y, u]∞ = 0. Thus,

(3.7) [y, u]∞ = [y, v]∞ = 0, y ∈ D(L′h).

Denote by L0 and L∞ the self-adjoint extensions of L0 determined by
the boundary conditions [y, u]∞ = 0 and [y, v]∞ = 0, respectively. By (3.7)
D(L′h) is contained in each of D(L0) and D(L∞). Suppose that λ belongs to
the spectrum of L′h. Then λ is real, and there exists a sequence of vectors
fn ∈ D(L′h) such that ‖fn‖ = 1 and ‖Lhfn − λfn‖ → 0 as n → ∞. This
implies that λ belongs also to the spectra of the operators L0 and L∞. Since
the spectra of L0 and L∞ are purely discrete, λ is an eigenvalue of these
operators. The corresponding eigenvectors differ from Q (λ) only by a scalar
factor, because Q (λ) is the only linearly independent solution of the system
(2.1) with y

(1)
−1 = 0. Consequently, [Q (λ) , u]∞ = [Q (λ) , v]∞ = 0. Further,

from (2.11) with y = P (λ) and z = Q (λ) we have

(3.8) [P (λ) , Q (λ)]∞ = [P (λ) , u]∞ [Q (λ) , v]∞ − [P (λ) , v]∞ [Q (λ) , u]∞ .

The right-hand side is equal to 0 in view of (3.8), while the left-hand side, as
the value of the Wronskian of the solutions P (λ) and Q (λ) of (2.1), is equal
to 1. This contradiction shows that H ′ = {0}. The lemma is proved. �

We set H− =
⋃
t≥0 UtD−, H+ =

⋃
t≤0 UtD+

Lemma 3.4. H− +H+ = H.

Proof. Using property (1) of the subspace D+, it is easy to show that the
subspace H′ = H 	 (H− +H+) is invariant relative to the group {Ut} and
has the form H′ = 〈0,H ′, 0〉, where H ′ is a subspace in H. Therefore, if
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the subspace H′ (and hence also H ′) were nontrivial, then the unitary group
{Ut}, restricted to this subspace, would be a unitary part of the group {Ut},
and hence the restriction L′h of Lh to H ′ would be a self-adjoint operator in
H ′. From the simplicity of the operator Lh it follows that H ′ = {0}, i.e.,
H′ = {0}. The lemma is proved. �

Let us adopt the following notation:

nh(λ) := [Q (λ) , u]∞ − h [Q (λ) , v]∞ ,

n(λ) :=
[Q (λ) , u]∞
[Q (λ) , v]∞

,(3.9)

Sh(λ) :=
nh(λ)
nh̄(λ)

=
n(λ)− h
n(λ)− h̄

.(3.10)

From (3.9), it follows that n(λ) is a meromorphic function on the complex
plane C with a countable number of poles on the real axis. Further, it is
possible to show that the function n(λ) satisfies Imλ Imn(λ) > 0 for Imλ 6= 0
and n(λ̄) = n(λ) for λ ∈ C with the exception of the real poles of n(λ).

Let

U−λ (ξ, ζ) =
〈
e−iλξ,

α

nh(λ)
Q(λ), S̄h(λ)e−iλζ

〉
.

We note that the vectors U−λ (ξ, ζ) for real λ do not belong to the space
H. However, these vectors satisfy the equation LU = λU (λ ∈ R) and
the corresponding boundary conditions for the operator Lh. With the help
of the vectors U−λ (ξ, ζ), we define the transformation F− : f → f̃−(λ) by
(F−f)(λ) := f̃−(λ) := 1√

2π
(f, U−λ )H on the vectors f = 〈ϕ−, y, ϕ+〉, where

ϕ−(ξ) and ϕ+(ζ) are compactly supported smooth functions, and y = {yn}
(n ∈ N) is a finite nonzero vector-valued sequence.

Lemma 3.5. The transformation F− maps H− isometrically onto L2(R).
For all vectors f, g ∈ H− the Parseval equality and the inversion formula hold:

(f, g)H = (f̃−, g̃−)L2 =
∫ ∞
−∞

f̃−(λ)g̃−(λ)dλ, f =
1√
2π

∫ ∞
−∞

f̃−(λ)U−λ dλ,

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Proof. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ−, 0, 0〉, we have that

f̃−(λ) :=
1√
2π

(f, U−λ )H =
1√
2π

∫ 0

−∞
ϕ−(ξ)eiλξdξ ∈ H2

−,

and in view of the usual Parseval equality for Fourier integrals

(f, g)H =
∫ 0

−∞
ϕ−(ξ)ψ̄−(ξ)dξ =

∫ ∞
−∞

f̃−(λ)g̃−(λ)dλ = (F−f,F−g)L2.
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Here and below, H2
± denote the Hardy classes in L2(R) consisting of the func-

tions analytically extendable to the upper and lower half-planes, respectively.
We now extend the Parseval equality to the whole space H−. To this end,

we consider in H− the dense set H′− of vectors f obtained as follows from
the smooth, compactly supported functions in D− : f ∈ H′− if f = Utf0,
f0 = 〈ϕ−, 0, 0〉, ϕ− ∈ C∞0 (−∞, 0), where T = Tf is a non-negative number
(depending on f). In this case, if f, g ∈ H′−, then for T > Tf and T > Tg
we have that U−T f, U−T g ∈ D− and, moreover, the first components of these
vectors belong to C∞0 (−∞, 0). Therefore, since the operators Ut (t ∈ R) are
unitary, by the equality F−Utf = (Utf, U−λ )H = eiλt(f, U−λ )H = eiλtF−f, we
have

(f, g)H = (U−T f, U−T g)H = (F−U−T f,F−U−T g)L2(3.11)

= (e−iλTF−f, e−iλTF−g)L2 = (F−f,F−g)L2 .

Taking the closure in (3.11), we obtain the Parseval equality for the whole
space H−. The inversion formula follows from the Parseval equality if all
integrals in it are understood as limits of integrals over finite intervals. Finally,
we have

F−H− =
⋃
t≥0

F−UtD− =
⋃
t≥0

e−iλtH2
− = L2(R),

i.e., F− maps H− onto the whole of L2(R). The lemma is proved. �

We set

U+
λ (ξ, ζ) = 〈Sh(λ)e−iλξ,

α

nh̄(λ)
Q(λ), e−iλζ〉.

We note that the vectors U+
λ (ξ, ζ) for real λ do not belong to the space

H. However, these vectors satisfy the equation LU = λU (λ ∈ R) and the
corresponding boundary conditions for the operator Lh. With the help of
the vectors U+

λ (ξ, ζ), we define a transformation F+ : f → f̃+(λ) on vectors
f = 〈ϕ−, y, ϕ+〉, where ϕ−(ξ) and ϕ+(ζ) are compactly supported smooth
functions, and y = {yn} (n ∈ N) is a finite vector-valued sequence, by set-
ting (F+f)(λ) := f̃+(λ) := 1/

√
2π(f, U+

λ )H. The proof of the next result is
analogous to that of Lemma 3.5.

Lemma 3.6. The transformation F+ maps H+ isometrically onto L2(R),
and for all vectors f, g ∈ H+, the Parseval equality and the inversion formula
hold:

(f, g)H = (f̃+, g̃+)L2 =
∫ ∞
−∞

f̃+(λ)g̃+(λ)dλ, f =
1√
2π

∫ ∞
−∞

f̃+(λ)U+
λ dλ,

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).
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According to (3.9), the function Sh(λ) satisfies |Sh(λ)| = 1 for λ ∈ R.
Therefore, it follows from the explicit formula for the vectors U+

λ and U−λ
that

(3.12) U−λ = S̄h(λ)U+
λ (λ ∈ R).

By Lemmas 3.5 and 3.6 this implies H− = H+. Together with Lemma 3.4
this shows that H = H− = H+. Hence property (3) for Ut above has been
established for the incoming and outgoing subspace.

Thus, the transformation F− maps H isometrically onto L2(R) with the
subspace D− mapped onto H2

− and the operators Ut mapped to operators of
multiplication by eiλt. In other words, F− is the incoming spectral representa-
tion for the group {Ut}. Similarly, F+ is the outgoing spectral representation
for {Ut}. It follows from (3.12) that the passage from the F+-representation
of an vector f ∈ H to its F−-representation is realized by multiplication by
the function Sh(λ) : f̃−(λ) = Sh(λ)f̃+(λ). According to [9], the scattering
matrix (function) of the group {Ut} with respect to the subspaces D− and
D+ is the coefficient by which the F−-representation of a vector f ∈ H must
be multiplied in order to get the corresponding F+ -representation: f̃+(λ)
= S̄h(λ)f̃−(λ). Thus, by [9], we have now proved the following result:

Theorem 3.7. The function S̄h(λ) is the scattering matrix of the group
{Ut} (of the self-adjoint operator Lh).

Let S(λ) be an arbitrary inner function (see [10]) on the upper half-plane.
Define K = H2

+	SH2
+. Then K 6= {0} is a subspace of the Hilbert space H2

+.
We consider the semigroup of the operators Zt (t ≥ 0) acting in K according
to the formula Ztϕ = P

[
eiλtϕ

]
, ϕ := ϕ(λ) ∈ K, where P is the orthogonal

projection from H2
+ onto K. The generator of the semigroup {Zt} is denoted

by T : Tϕ = limt→+0(it)−1(Ztϕ − ϕ). T is a dissipative operator acting in
K and its domain D(T ) consists of all functions ϕ ∈ K for which the above
limit exists. The operator T is called a model dissipative operator (we remark
that this model dissipative operator, which is associated with the names of
Lax and Phillips [9], is a special case of a more general model dissipative
operator constructed by Sz.-Nagy and Foiaş [10]). We claim that S(λ) is the
characteristic function of the operator T .

Let K = 〈0,H, 0〉 so that H = D− ⊕K ⊕D+. It follows from the explicit
form of the unitary transformation F− that under the mapping F−,

H → L2(R), f → f̃−(λ) = (F−f)(λ), D− → H2
−, D+ → ShH

2
+,(3.13)

K → H2
+ 	 ShH2

+, Utf → (F−UtF−1
− f̃−)(λ) = eiλtf̃−(λ).

The formulas (3.13) show that the operator Lh is a unitary equivalent to
the model dissipative operator with characteristic function Sh(λ). Since the
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characteristic functions of unitary equivalent dissipative operators coincide
[10], we have proved the following result:

Theorem 3.8. The characteristic function of the dissipative operator Lh
coincides with the function Sh(λ) defined in (3.10).

Proof of Theorem 3.1. It is known that the characteristic function Sh(λ)
of a dissipative operator Lh carries complete information about the spec-
tral properties of this operator (see [8], [10]). For example, the absence of a
singular factor s(λ) of the characteristic function Sh(λ) in the factorization
Sh(λ) = s (λ)B (λ) (where B (λ) is a Blaschke product) guarantees the com-
pleteness of the system of eigenvectors and associated vectors of the dissipative
operators Lh.

It is clear from the explicit formula (3.10) that the function Sh(λ) is an
inner function in the upper half-plane and, moreover, is meromorphic in the
whole λ-plane. Therefore, it can be factored in the form

(3.14) Sh(λ) = eiλcBh (λ) , c = c (h) > 0,

where Bh (λ) is a Blaschke product. It follows from (3.14) that

(3.15) |Sh(λ)| ≤ e−c(h) Imλ, Imλ ≥ 0.

Further, expressing n(λ) in terms of Sh(λ), we find from (3.10) that

(3.16) n(λ) =
h̄Sh(λ)− h
Sh(λ)− 1

.

If c (h) > 0 for some h (Imh > 0), then (3.15) implies that limt→+∞ Sh(it)
= 0. Therefore, by (3.16) it follows that limt→+∞ n(it) = h. Since n(λ) does
not depend on h, this implies that c(h) can be nonzero at no more than a
single point h = h0 (given by h0 = limt→+∞ n(it)). Hence, Theorem 3.1 is
proved. �
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