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ANOTHER APPROACH TO BITING CONVERGENCE OF
JACOBIANS

LUIGI GRECO, TADEUSZ IWANIEC, AND UMA SUBRAMANIAN

Abstract. We give new proof of the theorem of K. Zhang [Z] on biting
convergence of Jacobian determinants for mappings of Sobolev class

W 1,n(Ω,Rn). The novelty of our approach is in using W 1,p-estimates
with the exponents 1 6 p < n, as developed in [IS1], [IL], [I1]. These

rather strong estimates compensate for the lack of equi-integrability.
The remaining arguments are fairly elementary. In particular, we are
able to dispense with both the Chacon biting lemma and the Dunford-

Pettis criterion for weak convergence in L 1(Ω). We extend the result
to the so-called Grand Sobolev setting.

Biting convergence of Jacobians for mappings whose cofactor matri-

ces are bounded in L
n
n−1 (Rn) is also obtained. Possible generalizations

to the wedge products of differential forms are discussed.

1. Introduction and overview

Throughout this paper Ω will be a bounded open subset of Rn, n >2. We
shall study vector functions f = (f1, f2, . . . , fn) : Ω → R

n called Sobolev
mappings, whose coordinates f i, i = 1, 2, . . . , n belong to certain Sobolev
spaces W 1,pi(Ω) with 1 < pi <∞. The linear differential map Df(x) : Rn →
R
n is defined at almost every point x ∈ Ω and is represented by the Jacobi

matrix, also denoted by Df(x). Thus

(1.1) Df(x) =
[
∂f i(x)
∂xj

]
i,j=1,...,n

∈ Rn×n,

where Rn×n denotes the space of n×n matrices. This space is equipped with
the inner product 〈A,B〉 = Trace(A∗B) and the induced Hilbert-Schmidt
norm ‖A‖ = 〈A,A〉1/2. Our main object of study is the Jacobian determinant

(1.2) J(x, f) = det Df(x) .
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Let us make a few brief comments on exterior algebra. First note that the
Jacobian determinant gives rise to a wedge product of n exact 1-forms

(1.3) J(x, f) dx = df1 ∧ df2 ∧ · · · ∧ dfn .
Arranging these 1-forms into disjoint groups yields many more decompositions
of the Jacobian, namely

(1.4) J(x, f) dx = θ1 ∧ θ2 ∧ · · · ∧ θm ,
where the θ’s are closed forms of different degree, such as

(1.5) θi = df i1 ∧ df i2 ∧ · · · ∧ df il , 1 6 i1 < · · · < il 6 n .

Now to every pair of ordered l-tuples, i = (i1, i2, . . . , il) and j = (j1, j2, . . . , jl)
with 1 6 i1 < · · · < il 6 n and 1 6 j1 < · · · < jl 6 n, there corresponds a
l × l sub-determinant of the differential matrix, denoted by

(1.6)
∂f i

∂xj
=
∂(f i1 , . . . , f il)
∂(xj1 , . . . , xjl)

.

When l = 1 in the above definition, we get all the entries ∂f i/∂xj , i, j =
1, . . . , n, and when i = j = (1, 2, . . . , n) we get the Jacobian determinant.
Note the formula

(1.7) df i1 ∧ df i2 ∧ · · · ∧ df il =
∑
j

∂f i

∂xj
dxj ,

where dxj = dxj1 ∧ dxj2 ∧ · · · ∧ dxjl , for j = (j1, . . . , jl).
Numerous results on Jacobian determinants which we shall discuss here

remain valid for wedge products of arbitrary closed differential forms [GIM],
[I1], [IL], [RRT].

There are several natural assumptions on the mapping f = (f1, f2, . . . , fn)
under which the L 1-theory of Jacobians can be developed. For instance,
suppose the coordinate functions f i belong to the Sobolev space W 1,pi(Ω),
i = 1, 2, . . . , n, where the exponents satisfy Hölder’s relation

1/p1 + · · ·+ 1/pn = 1 .

In this case, J(x, f) is integrable. Mappings in the Sobolev space W 1,n(Ω,Rn)
may be treated as a special case of the situation just mentioned, with p1 =
· · · = pn = n. Reasoning as above, one can work with other natural settings.
If, for instance, f ∈ W 1,l(Ω,Rn) for some 1 6 l 6 n, then it suffices to
assume that the l × l minors ∂f i/∂xj belong to L n/l(Ω). Indeed, we have
the pointwise estimate

(1.8) |J(x, f)| 6 C(n)
∑
i,j

∣∣∣∣∂f i∂xj

∣∣∣∣n/l ∈ L 1(Ω) .

The L 1-integrability properties of Jacobians are studied under much less
restrictive hypotheses in [GIOV], [G2], [H], [IO], [IV], [KZ], [L], [M3], [MTS].
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One important concept in this theory is that of a weak Jacobian [B], [G],
[I2], [M4], [M5], [M6], [M7], [M8]. The weak (or distributional) Jacobian of a
mapping f is a Schwartz distribution, denoted by Jf , which operates on the
test functions Φ ∈ C∞0 (Ω) by the rule

(1.9) Jf [Φ] = −
∫

Ω

f1dΦ ∧ df2 ∧ · · · ∧ dfn .

The reader may guess that this definition has resulted from formal in-
tegration by parts of

∫
Φ(x) J(x, f) dx. This integration is legitimate for

f i ∈ W 1,pi
loc (Ω) with Hölder conjugate exponents pi , whereas using the Sobolev

inequality we see that the integral defining Jf also converges if f i ∈ W 1,si
loc (Ω),

where the Sobolev exponents 1 6 s1, . . . , sn < ∞ need only satisfy the so-
called Sobolev relation

1/s1 + · · ·+ 1/sn = 1 + 1/n (1 6 s1 < n) .

However, in the natural setting we can use Hölder’s inequality to obtain:

Proposition 1.1. For mappings f, g ∈ W 1,n(Ω,Rn) and Φ ∈ C∞0 (Ω) we
have ∣∣Jf [Φ]− Jg[Φ]

∣∣ =
∣∣∣∣∫

Ω

Φ(x)[J(x, f)− J(x, g)] dx
∣∣∣∣

6 C(n) ‖∇Φ‖∞‖f − g‖n(‖Df‖n + ‖Dg‖n)n−1 .

This is a warm-up to an even more general estimate in Lemma 3.1. Now, as
a consequence of the compactness of the embedding W 1,n(Ω) ↪→ L n(Ω), we
see that the distributional Jacobian J : W 1,n(Ω,Rn)→ D ′(Ω) is a continuous
operator with respect to the weak topology in W 1,n(Ω,Rn). Precisely, we
have:

Theorem 1.2 (Weak Continuity). If fk ⇀ f weakly in W 1,n(Ω,Rn), then
we have Jfk → Jf in the sense of Schwartz distributions. By definition, this
means that

(1.10) lim
k→∞

∫
Ω

Φ(x)J(x, fk) dx =
∫

Ω

Φ(x)J(x, f) dx

for every test function Φ ∈ C∞0 (Ω).

This elegant result should be credited to R. Caccioppoli [C1] and C. B. Mor-
rey [M1], [M2]. The utility of weak convergence of Jacobians was clearly rec-
ognized in quasiconformal geometry [GI], [IM], [R1], [R2], variational calculus
[AF], [M2], [BM1] and nonlinear elasticity [A], [B], [C2]. It is very easy to see,
by an approximation argument, that (1.10) remains valid for all continuous
test functions vanishing on ∂Ω, that is, in the space C0(Ω). We recall that
C0(Ω) is dual to the space of Radon signed measures. What Theorem 1.2 tells
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us is that the sequence of measures dµk = J(x, fk) dx converges weakly to
dµ = J(x, f) dx.

More generally, it may be shown that (1.10) remains valid if Φ ∈ V MO(Ω),
the completion of C∞0 (Ω) in the space BMO(Ω) of functions of bounded mean
oscillation. This is why the Jacobians actually converge in a biting sense. We
only mention that the space BMO(Ω) is defined by means of the norm

‖Φ‖BMO = sup
Q

1
|Q|

∫
Q

|Φ− ΦQ| dx ,

whereQ is a cube contained in Ω and ΦQ denotes the integral mean |Q|−1
∫
Q

Φ.
For details, we refer the reader to the seminal work [CLMS] and the references
therein. It is natural to ask what really is the class of test functions for which
(1.10) holds.

The reader may wish to note that (1.10) fails for compactly supported
bounded test functions. Even finding a subsequence of {fk} which satisfies
(1.10) may be impossible. To see this, consider fk(x) = h(2kx) in the unit
ball Ω = {x : |x| < 1}, where h can be any smooth mapping supported in
the annulus 1 < |x| < 2 such that J(x, h) 6≡ 0. This sequence converges to
zero weakly in W 1,n(Ω,Rn), since for all k ∈ N we have ‖fk‖n = 2−k‖h‖n
and ‖Dfk‖n = ‖Dh‖n. On the other hand, if we take the test function
Φ =

∑
j>1 J(2jx, h), then

∫
Φ(x)J(x, fk) dx =

∫
|J(x, h)|2 dx 6→ 0. A con-

centration of mass, which in this example takes place at the origin, is exactly
why some bounded sequences in L 1(Ω) do not contain any weakly convergent
subsequence.

A way out of this anomaly is to cut out certain parts of Ω where the
concentration of mass occurs. Those parts that are cut out will be called
“bites”. This procedure is well described by Chacon’s Lemma [BC], [BM2].
To formulate Chacon’s Lemma, we need to introduce a new concept.

Given a sigma finite measure space (X,µ), we denote by M (X,µ) the space
of all µ-measurable functions on X which are finite µ-almost everywhere.

Definition 1.3. A sequence {Jk}k=1,2,... in M (X,µ) is said to converge
to J ∈M (X,µ) in a biting sense if X can be expressed as a union of countable
number of µ-measurable subsets such that Jk ⇀ J weakly in L 1 on each of
these subsets. We write it as

(1.11)
[

lim
k→∞

= J , or Jk
[→ J .

Perhaps a few comments about how to read this definition are in order.
Let X =

⋃∞
ν=1Xν be the countable union of µ-measurable subsets mentioned

in our definition. Although we did not say it explicitly, it is understood that
all Jk and the limit J lie in L 1(Xν) for each ν = 1, 2, . . . . Thus, in contrast
to the original definition, here we do not require that the functions Jk are
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integrable on the entire space X. Certainly, it involves no loss of generality
in assuming that X1 ⊂ X2 ⊂ . . . , since otherwise we could replace these
sets by the sets X1 ⊂ X1 ∪ X2 ⊂ X1 ∪ X2 ∪ X3 ∪ . . . . The weak limit
remains unaffected. On several occasions it will be convenient to consider the
complements Bν = X \Xν . It is clear that, if µ(X) <∞, then limµ(Bν) = 0.
Therefore, we shall call them arbitrarily small bites from X. Outside those
bites {Jk} converges weakly in L 1 to J . It is possible to make different
bites. However, they all yield the same limit function. One should be a
little cautious because some familiar properties of convergent sequences do
not apply to convergence in the biting sense.

The notion of biting convergence owes much of its importance to the cele-
brated lemma of Chacon [BC] (see also [BZ]).

Lemma 1.4 (Brooks-Chacon). Every bounded sequence in L 1(X) con-
tains a subsequence converging in a biting sense.

Biting convergence is extremely useful in situations when the only available
information about a family of functions is its boundedness in L 1(X). This
typically occurs in the study of variational integrals [BZ], [Z] and in geometric
function theory [GI], [IM], where we have a bounded sequence of Jacobians.

Theorem 1.5 (K. Zhang). Every bounded sequence {fk} in W 1,n(Ω,Rn)
contains a subsequence {fki} converging weakly to a mapping f ∈ W 1,n(Ω,Rn)
such that

(1.12)
[

lim
i→∞

J(x, fki) = J(x, f) .

Of course, the existence of a subsequence {J(x, fki)} converging to a certain
integrable function is immediate from Chacon’s lemma. But the fact that the
biting limit equals J(x, f) is far from being obvious. Let us mention that the
biting limit of the Jacobians may not exist for the entire sequence, even if
we already know that {fk} converges weakly in W 1,n(Ω,Rn). What causes
this anomaly is the lack of equi-integrability of the Jacobians. Recall that the
equi-integrability condition is one of the Dunford-Pettis Criteria [E] for weak
compactness in L 1.

In this note we give a proof of Theorem 1.5 based on new estimates for the
Jacobian. Perhaps the simplest example to illustrate such estimates is the
following inequality for f ∈ W 1,n−nε(Ω,Rn), with 0 6 ε 6 1/(n+ 1):

(1.13)
∫

Ω

Φ(x)J(x, f) dx
|J(x, f)|ε

6 C ‖∇Φ‖∞‖DF‖n−nεn2
n+1

+ εC ‖Φ‖∞‖DF‖n−nεn−nε,
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where Φ is an arbitrary test function in C∞0 (Ω); see Lemma 3.1 for an even
more general estimate. The case ε = 0 reduces to the well known inequality

Jf [Φ] =
∫

Ω

Φ(x) J(x, f) dx 6 C(n) ‖∇Φ‖∞ ‖Df‖nn2
n+1

The point to emphasize is that the first term on the right hand side of (1.13)

only requires L
n2
n+1 -integrability of the differential. This term, when applied

to the mappings fk, will pose no difficulty since the functions |Dfk|
n2
n+1 are

equi-integrable. The second term requires almost L n-integrability of Dfk as
ε→ 0, but the factor ε will come to the rescue.

There are also variants of (1.13) for differential forms [S]. In analogy to
the differential map df = (df1, df2, . . . , dfn) we might consider the m-tuple of
rather general differential forms

(1.14) ω = (ω1, ω2, . . . , ωm) ∈ L p1(Ω,∧l1)× · · · ×L pm(Ω,∧lm)

such that

(1.15) dω = (dω1, dω2, . . . , dωm) ∈ L s1(Ω,∧l1+1)× · · · ×L sm(Ω,∧lm+1) .

Here we assume that the exponents 1 < p1, p2, . . . , pm < ∞ satisfy Hölder’s
relation 1/p1 + 1/p2 + · · ·+ pm = 1, while 1 6 s1, s2, . . . , sm <∞ are coupled
by the Sobolev relation 1/s1+1/s2+· · ·+1/sm = 1+1/n. Note that condition
(1.15) trivially holds if ω consists of closed or exact forms. This latter case
is of great interest in the theory of null Lagrangians. In any case the set of
all such m-tuples of differential forms is a Banach space with respect to the
norm

‖ω‖p,s =
m∑
i=1

(
‖ωi‖pi + ‖dωi‖si

)
, p = (p1, . . . , pm) , s = (s1, . . . , sm) .

We denote this space by L p
s (Ω,∧l1 × · · · × ∧lm). Let us state without proof

the following extension of K. Zhang’s Theorem.

Theorem 1.6. Every bounded sequence {ωk} in the space L p
s (Ω,∧l1 ×

· · · × ∧lm) has a subsequence {ωki} weakly converging to ω = (ω1, . . . , ωm) ∈
L p
s (Ω,∧l1 × · · · × ∧lm) such that

(1.16)
[

lim
i→∞

ω1
ki ∧ ω

2
ki ∧ · · · ∧ ω

m
ki = ω1 ∧ ω2 ∧ · · · ∧ ωm .

In another direction, we consider functions which belong to L p(Ω) for
every 1 6 p < n. The n-modulus of a function is defined by

(1.17) Ln(ε, f) = sup
0<τ6ε

(
τ

∫
Ω

|f |n−τ
) 1
n−τ

, 0 < ε 6 n− 1 .
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Then the so-called Grand Lebesgue space, denoted by GL n(Ω), consists of
functions with bounded n-modulus. This is a Banach space furnished with
the norm

(1.18) ‖f‖GLn(Ω) = sup
0<ε6n−1

Ln(ε, f) = sup
0<τ6n−1

(
τ

∫
Ω

|f |n−τ
) 1
n−τ

.

The closure of L n(Ω) with respect to the above norm consists of functions
whose n-modulus of integrability vanishes at zero. We denote this closure by
GL n

0 (Ω). Thus,

(1.19) lim
ε→0

Ln(ε, f) = 0 for f ∈ GL n
0 (Ω) .

The restriction on the parameter τ in (1.18) is immaterial, which is clear from
the inequality

‖f‖GLn 6 Ln(ε, f) + Cε(n) ‖f‖1 for every 0 < ε 6 n− 1 .

The Grand Sobolev space G W 1,n(Ω,Rn) consists of mappings f : Ω → R
n

whose differential has vanishing n-modulus. An example of such a mapping
would be an f whose differential lies in the Zygmund class L n log−1 L (Ω),
that is

(1.20)
∫

Ω

|Df(x)|n dx
log
(
e+ |Df(x)|

) <∞ .

For an exposition at greater length we refer the reader to [IS1], [IS2], [G],
[IKO], [GIS]. In this category of mappings we have the following biting theo-
rem.

Theorem 1.7. Let {fk} be a bounded sequence in G W 1,n(Ω,Rn). Suppose
that the derivatives have uniformly vanishing n-modulus, that is,

(1.21) lim
ε↘0

ε sup
k>1

∫
Ω

|Dfk(x)|n−nε dx = 0 ,

and that the Jacobian determinants are bounded in L 1(Ω),

(1.22) sup
k>1

∫
Ω

|J(x, fk)| dx <∞ .

Then there exists a subsequence {fki} converging weakly in W 1,p(Ω,Rn) (for
all 1 6 p < n) to a mapping f ∈ G W 1,n(Ω,Rn) such that

(1.23)
[

lim
i→∞

J(x, fki) = J(x, f) .

It is worth noting that condition (1.22) is redundant when the mappings
have nonnegative Jacobian, simply because for each compact U ⊂ Ω we have

sup
k>1

∫
U

|J(x, fk)| dx 6 sup
k>1
‖Dfk‖GLn(Ω) <∞ ;
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see [IS1], [W].

Theorem 1.8. Let fk : Ω → R
n be mappings having nonnegative Jaco-

bian and bounded in the space G W 1,n(Ω,Rn). Then there is a subsequence
{fki}i=1,2,... weakly converging to f in G W 1,n(Ω,Rn) such that

(1.24) lim
i→∞

∫
Ω

Φ(x)J(x, fki) dx =
∫

Ω

Φ(x)J(x, f) dx

for every Φ ∈ L∞(Ω) with compact support.

Let us emphasize explicitly that this theorem tell us, in particular, that
the Jacobian determinants are locally integrable.

There is another interesting biting convergence result that has not yet been
noted in the literature. It concerns Sobolev mappings fk ∈ W 1,n−1(Rn,Rn)
converging to f weakly in W 1,n−1(Rn,Rn). We assume, in addition, that the
cofactor matrices

D#fk =

{
∂(f1

k , . . . , f
i−1
k , f i+1

k , . . . , fnk )
∂(x1, . . . , xj−1, xj+1, . . . , xn)

}
i=1,...,n
j=1,...,n

stay bounded in L
n
n−1 (Rn), that is,∫

Rn

|D#fk(x)|
n
n−1 dx 6M , k = 1, 2, . . .

In particular, we have∫
Rn

|J(x, fk)| dx 6M , k = 1, 2, . . .

as well. It has been shown in [IO] that under these conditions the Jacobians
belong to the Hardy space H 1(Rn) and, in fact, converge to J(x, f) in the
weak star topology of H 1(Rn). Then, using Corollary IV.1 in [CLMS], we
conclude with the following result.

Theorem 1.9. Let fk converge weakly to f in W 1,n−1(Rn,Rn) and sup-
pose that the cofactors of Dfk stay bounded in L

n
n−1 (Rn). Then there is a

subsequence of the Jacobians J(x, fk) converging to J(x, f) in a biting sense.

2. Some preliminaries

A family F ⊂ L 1(Ω, µ) is said to be equi-integrable if

(2.1) lim
M→∞

sup
f∈F

∫
|f |>M

|f | dµ = 0 .
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Clearly, we need only verify the limit to be zero for some unbounded sequence
{Mj}j=1,2,..., that is

(2.2) lim
j→∞

sup
f∈F

∫
|f |>Mj

|f | dµ = 0,

because the function M 7→ sup{
∫
|f |>M |f | dµ : f ∈ F} is decreasing.

The lemma below shows how to extract from F a sort of nearly equi-
integrable sequence. The proof may be adopted from [AF]; see also [BM2].

Lemma 2.1 (Good Selection). Every bounded sequence {fj} in L 1(Ω, µ)
contains a subsequence, again denoted by {fj}, such that

(2.3) lim
M→∞

sup
j>1

∫
M6|fj |<2j

|fj | dµ = 0

We shall need the following result:

Corollary 2.2. Let {fj} be the sequence in Lemma 2.1. Define the sets
(later referred to as bites)

(2.4) Bk =
⋃
j>k

Ej , where Ej = {x ∈ Ω; |fj | > 2j} .

Then for every k = 1, 2, . . . we have:

• µ(Bk) 6 2−k C, where C = sup{‖fj‖1 : j = 1, 2, . . . }.
• The family {fj}j=1,2,... is equi-integrable on Ω \ Bk for every k, that

is, outside every bite.

Remark 2.3. At this point, the reader may wish to appeal to the Dunford-
Pettis criterion [E] to conclude that our sequence{fj} contains a subsequence
converging in a biting sense. But we are not going to pursue this approach
here.

3. The W 1,p-estimate, 1 6 p < n

The following strengthening of the inequality in (1.13) is critical for our
approach to the biting convergence of Jacobians. The point to make here is
that this inequality involves integration of the partial derivatives in powers
less than the dimension n.

Lemma 3.1. Let f and g be mappings in the Sobolev class W 1,n−nε(Ω,Rn),
0 6 ε 6 1/(n+ 1), defined on a ball Ω = {x ∈ Rn : |x| < R}. Then for every
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test function φ ∈ C∞0 (Ω) we have∫
Ω

φ(x)
[
J(x, f)
|J(x, f)|ε

− J(x, g)
|J(x, g)|ε

]
dx

6 C(n)R(n+1)ε‖∇φ‖∞‖f − g‖n2

(
‖Df‖ n2

n+1
+ ‖Dg‖ n2

n+1

)n−1−nε

+ εC(n)‖φ‖∞
∫

Ω

(
|Df(x)|n−nε + |Dg(x)|n−nε

)
dx .

We will actually prove a slightly stronger variant of this estimate, namely∫
Ω

φ(x) [J(x, f)− J(x, g)]

(|Df(x)|2 + |Dg(x)|2)nε/2
dx(3.1)

6 C(n) ‖(f − g)∇φ‖ n2
1+εn(n+1)

(
‖Df‖ n2

n+1
+ ‖Dg‖ n2

n+1

)n−1−nε

+ εC(n) ‖φ (Df −Dg)‖n−nε
(
‖Df‖n−nε + ‖Dg‖n−nε

)n−1−nε
.

But let us first show how this implies the lemma. To this effect we only need
to observe the following elementary pointwise inequality:∣∣∣∣∣ J(x, f)
|J(x, f)|ε

− J(x, g)
|J(x, g)|ε

− J(x, f)− J(x, g)(
|Df |2 + |Dg|2

)nε/2
∣∣∣∣∣ 6 εC (|Df |n−nε+ |Dg|n−nε

)
.

This is a consequence of t1−ε(1− tε) 6 ε, for 0 6 t 6 1. Indeed,∣∣∣∣ J(x, f)
|J(x, f)ε|

− J(x, f)
(|Df |2 + |Dg|2)nε/2

∣∣∣∣ =
(
|Df |2 + |Dg|2

)(n−nε)/2×
×

[
|J(x, f)|(

|Df |2 + |Dg|2
)n/2

]1−ε{
1−

[
|J(x, f)|(

|Df |2 + |Dg|2
)n/2

]ε}
6 2n ε

(
|Df |n−nε + |Dg|n−nε

)
.

Similarly we argue with the terms containing J(x, g). All that remains to
be proven is the estimate in (3.1). Before embarking upon this task, let us con-
sider the pair of matrices [A,B] as elements of a Hilbert space Rn×n ×Rn×n.
We shall consistently use the symbol |A| as the Hilbert-Schmidt norm of a ma-
trix A ∈ Rn×n, |A|2 = Trace(A∗A). The space Rn×n×Rn×n is equipped with
the inner product [A,B] · [A′, B′] = 〈A,A′〉+ 〈B,B′〉 = Trace(A∗A′ + B∗B′)
and the induced norm ‖[A,B]‖2 = |A|2 + |B|2. In this way we have defined
the Lebesgue space L p(Ω,Rn×n × Rn×n) of pairs of matrix functions on Ω.
We then may apply Hodge decomposition to such matrix fields; see [I1] for
details. Accordingly,

(3.2)
[Df,Dg](

|Df |2 + |Dg|2
)nε/2 = [DF,DG] + [A,B],



ANOTHER APPROACH TO BITING CONVERGENCE OF JACOBIANS 825

where F,G ∈ W 1,n−nε1−nε (Ω,Rn×n) and the pair [A,B] consists of divergence
free matrix fields A,B in the space L

n−nε
1−nε (Ω,Rn×n). This decomposition

is unique once we impose certain Neumann type boundary conditions on A
and B. An especially important consequence of the uniqueness is that the
components [DF,DG] and [A,B] are expressed by singular integrals of the
left hand side. We then arrive at various L p-estimates, in particular:

(3.3) ‖DF‖n−nε
1−nε

+ ‖DG‖n−nε
1−nε

6 C(n)
(
‖Df‖1−nεn−nε + ‖Dg‖1−nεn−nε

)
,

and

(3.4) ‖DF‖ n2
(n+1)(1−nε)

+‖DG‖ n2
(n+1)(1−nε)

6 C(n)
(
‖Df‖1−nε

n2
n+1

+ ‖Dg‖1−nε
n2
n+1

)
.

It is important to realize that there is no [A,B] component for ε = 0, because
of the uniqueness in the Hodge decomposition. With the aid of complex
interpolation [I1], this fact is accounted for in the following inequality:

(3.5) ‖A‖n−nε
1−nε

+ ‖B‖n−nε
1−nε

6 εC(n)
(
‖Df‖1−nεn−nε + ‖Dg‖1−nεn−nε

)
.

The details can be found in [GIM], [I1], [IL], [IM], [IS2]. Before turning to
the proof of (3.1), we shall introduce the notation M = (|Df |2 + |Dg|2)nε/2,
and make a telescoping decomposition of the numerator:

[J(x, f)− J(x, g)]dx = df1 ∧ · · · ∧ dfn − dg1 ∧ · · · ∧ dgn

= (df1 − dg1) ∧ df2 ∧ · · · ∧ dfn

+ dg1 ∧ (df2 − dg2) ∧ df3 ∧ · · · ∧ dfn

+ · · ·+ dg1 ∧ · · · ∧ dgn−1 ∧ (dfn − dgn) .

Accordingly, the integral in the left hand side of (3.1) splits into n integrals.
Each of them will be estimated by the two terms that appear in the right
hand side of (3.1). Let us put on stage only the first integral

I1 =
∫

Ω

φ(x) (df1 − dg1) ∧ df
2

M
∧ df3 ∧ · · · ∧ dfn

=
∫

Ω

φ(x) (df1 − dg1) ∧ dF 2 ∧ df3 ∧ · · · ∧ dfn

+
∫

Ω

φ(x) (df1 − dg1) ∧A2 ∧ df3 ∧ · · · ∧ dfn .

Here we have used a part of the decomposition in (3.2), namely M−1df2 =
dF 2+A2, where dF 2 and A2 stand for the second column vector of DF and A,
respectively. Notice that we have a sufficient degree of regularity to integrate
by parts in the first of the two integrals. We pass the exterior derivative from
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the term d(f1 − g1) into the test function φ. This integration by parts yields

|I1| 6
∫

Ω

|f − g| |∇φ|
(
|DF |+ |DG|

) (
|Df |+ |Dg|

)n−2

+
∫

Ω

|Df −Dg| |φ|
(
|A|+ |B|

) (
|Df |+ |Dg|

)n−2
.

Next we apply Hölder’s inequalities. To simplify the writing, we introduce
the following exponents involved in this computation:

p =
n2

1 + εn(n+ 1)
, q =

n2

(n+ 1)(1− nε)
, r =

n2

(n+ 1)(n− 2)
,

α = n− n ε , β =
n− n ε
1− n ε

, γ =
n− n ε
n− 2

.

Accordingly, we obtain

|I1| 6
∥∥ (f − g)∇φ

∥∥
p

∥∥ |DF |+ |DG|∥∥
q

∥∥( |Df |+ |Dg| )n−2
∥∥
r

+
∥∥φ(Df −Dg)

∥∥
α

∥∥|A|+ |B|∥∥
β

∥∥(|Df |+ |Dg|)n−2
∥∥
γ
.

Finally, the inequalities in (3.3), (3.4) and (3.5) imply

|I1| 6 C(n)
∥∥(f − g)∇φ

∥∥
n2

1+εn(n+1)

(
‖Df‖ n2

n+1
+ ‖Df‖ n2

n+1

)n−1−nε

+ εC(n)
∥∥φ(Df −Dg)

∥∥
n−nε

(
‖Df‖n−nε + ‖Dg‖n−nε

)n−1−nε
.

This is what we had to show. The proof of Lemma 3.1 is therefore complete.

4. Proof of biting theorem

We begin by selecting a suitable subsequence {fνk} and arbitrarily small
bites B1, B2, · · · from Ω. With the aid of Corollary 2.2, we are able to make
a selection such that the Jacobians J(x, fνk), k = 1, 2, · · · , form an equi-
integrable family outside each of these bites. Note that although the hypothe-
ses of Theorem 1.5 ensure L 1-boundedness of the sequence {|Dfν |n}, so far
we have been using L 1-boundedness of the Jacobians only. It is instructive to
mention in advance that in the forthcoming arguments we shall not make use
of the L n-integrability of the differentials, but we will use the boundedness of
the sequence {Dfν} in L p(Ω,Rn×n) for some n > p > n2/(n+ 1). This is suf-
ficient to claim compactness of the embedding W 1,p(Ω,Rn) ↪→ L n2

(Ω,Rn).
We can thereby assume without loss of generality that the sequence {fνk}
converges to f strongly in L n2

(Ω,Rn). Moreover, if we confine ourselves to
a further subsequence, again denoted by {fνk}, then we can also assume that

(4.1) lim
k→∞

kn+1‖fνk − f‖n2 = 0

To settle matters finally, we assume that νk = k, for notational simplicity.
This involves no loss of generality because we can always enumerate the indices
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as necessary. It will be convenient to assume that the complement of each
bite is compactly contained in Ω. This is legitimate as we can always make
additional bites near ∂Ω. Our ultimate goal is to show that J(x, fk)→ J(x, f)
weakly in L 1(Ω\B), where B stands for one of the bites B1, B2, · · · Fix a test
function η ∈ L∞(Ω\B). We may assume that |η(x)| 6 χΩ\B(x), where χΩ\B
stands for the characteristic function of Ω \ B. In particular, η is supported
in a compact subset of Ω. For each 0 < ε < 1, we can write∫

Ω

η(x)[J(x, fk)− J(x, f)] =
∫

Ω

η(x)
[
J(x, fk)
|J(x, fk)|ε

− J(x, f)
|J(x, f)|ε

]
(4.2)

+
∫

Ω

η(x)
[
J(x, fk)− J(x, fk)

|J(x, fk)|ε

]
−
∫

Ω

η(x)
[
J(x, f)− J(x, f)

|J(x, f)|ε

]
.

At this point, we need the following result:

Lemma 4.1. Let F ⊂ L 1(Ω \ E) be an equi-integrable family. Then

(4.3) lim
ε→0

sup
J∈F

∫
Ω\B

∣∣J − |J |−εJ∣∣ = 0 .

Proof. Here is perhaps the simplest way of seeing this result. Given any
number M > 1, we define

Θ(M) = sup
J∈F

∫
|J|>M

|J | .

Equi-integrability of F tells us that Θ(M)→ 0 as M increases to infinity. For
each J ∈ F we have the uniform estimate (independent of J)∫

Ω\B

∣∣J − |J |−εJ∣∣ 6 ∫
|J|6M

∣∣J − |J |−εJ∣∣+
∫
|J|>M

|J |

6 (ε+M −M1−ε)|Ω|+ Θ(M) .

This follows from the elementary inequality |J − |J |−εJ | 6 ε, if |J | 6 1 and
|J − |J |−εJ | 6M −M1−ε, if 1 6 |J | 6M . Letting ε go to zero yields

(4.4) lim
ε→0

sup
J∈F

∫ ∣∣J − |J |−εJ∣∣ 6 Θ(M) .

As M can be arbitrarily large, we conclude the proof of Lemma 4.1. �

Now we return to our proof. Lemma 4.1 shows that the last two integrals
in (4.2) tend to zero uniformly in k as ε → 0. The last two integrals of (4.2)
will go to zero no matter what the εk are. Therefore it suffices to find positive
numbers εk converging to zero and such that

(4.5) lim
k→∞

∫
Ω

η(x)
[

J(x, fk)
|J(x, fk)|εk

− J(x, f)
|J(x, f)|εk

]
dx = 0 .
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As we shall see the sequence εk will depend on the test function η. To this
effect, we approximate η by the functions ηk = η ∗ Φk ∈ C∞0 (Ω), where
Φk(y) = knΦ(ky), for large k. As always, the mollifying function Φ ∈ C∞0 (B)
is supported in the unit ball B and has integral 1. We then have

‖ηk‖∞ 6 ‖η‖∞ 6 1 ,(4.6)

‖∇ηk‖∞ 6 ‖∇Φk‖∞‖η‖∞ 6 C kn+1 .(4.7)

It is well known that, for every exponent 1 6 p <∞, ‖η− ηk‖p → 0. Now we
are in a position to define the sequence {εk}. It must decrease to zero slowly
enough to satisfy

(4.8) lim
k→∞

‖η − ηk‖pk = 0 , where pk = 1/εk .

Let us split the integral in (4.2) in accordance with the decomposition
η = (η − ηk) + ηk: ∫

Ω

(η − ηk)
[

J(x, fk)
|J(x, fk)|εk

− J(x, f)
|J(x, f)|εk

]
dx

+
∫

Ω

ηk

[
J(x, fk)
|J(x, fk)|εk

− J(x, f)
|J(x, f)|εk

]
dx .

By Hölder’s inequality with the pair of exponents pk and 1/(1 − εk), the
first integral is bounded by ‖η − ηk‖pk

(
‖J(x, fk)‖1−εk1 + ‖J(x, f)‖1−εk1

)
and,

therefore, goes to zero. It remains to estimate the second integral. Lemma 3.1
gives the following bound:

C(n)Rnεk+εk‖∇ηk‖∞‖fk − f‖n2

(
‖Dfk‖ n2

n+1
+ ‖Df‖ n2

n+1

)n−1−nεk

+εk C(n) ‖ηk‖∞
∫

Ω

(
|Dfk|n−nεk + |Df |n−nεk

)
.

The first term goes to zero, as the sequence {|Dfk|} is bounded in L
n2
n+1 (Ω)

and ‖∇ηk‖∞‖fk − f‖n2 6 Ckn+1‖fk − f‖n2 → 0, by (4.7) and (4.1). To
complete the proof, we need only observe that ‖ηk‖∞ 6 1 and

(4.9) lim
k→∞

εk

∫
Ω

(
|Dfk|n−nεk + |Df |n−nεk

)
= 0 .

This is trivially true since the n-norms ‖Dfk‖n stay bounded as k →∞. This
completes the proof of Theorem 1.5.

These lines of reasoning can be modified to prove Theorem 1.7. In addition
to what has already been said, we notice that it is not necessary to assume
boundedness of {|Dfk|} in L n(Ω). Equation (4.9) remains true for sequences
with uniformly vanishing n-modulus, establishing Theorem 1.7.
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