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COUNTING INVOLUTIONS

MICHAEL ASCHBACHER, ULRICH MEIERFRANKENFELD, AND BERND
STELLMACHER

Abstract. Some results are established which are useful in determining
the order of a finite group with one class of involutions, given knowledge
of the centralizer of an involution. An application is provided to illus-

trate the results. The main tool is a lemma of H. Bender on counting
involutions.

0. Introduction

There are a number of results on finite groups that are proved by counting
involutions; the Brauer-Fowler Theorem [4] and the Thompson Order Formula
(see 45.6 in [1]) are perhaps the two most important examples. In a less well
known paper [2], Bender introduces an involution counting technique useful in
analyzing small groups where more traditional local analysis is often ineffec-
tive. In particular Bender’s approach can sometimes be used to calculate the
order of a group with one class of involutions; we recall that the Thompson
Order Formula does not apply to such groups.

In this note we use Bender’s approach to prove:

Theorem 1. Assume M is a nontrivial TI-subgroup of the finite group G,
let M∗ = NG(M), and assume M∗ = MCM∗(z) for some involution z ∈M∗
and CG(x) is of odd order for each x ∈M#. Then one of the following holds:

(1) M E G.
(2) n(G) ≤ |G : M |, where n(G) denotes the number of involutions in G.
(3) G ∼= PGL2(m) or L2(m) for some power m of some prime p, M

is an elementary abelian p-group of order m, and m ≡ 1 mod 4 if
G ∼= L2(m).

(4) G ∼= L2(2e) for some integer e > 1 and M is cyclic of order 2e + 1.
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(5) There exists a positive integer d such that G is the split extension of
an elementary abelian group of order 22d by M∗, and M∗ is dihedral
of order 2(2d + 1).

See [1] for the definition of basic notation and terminology. For example, T
is a TI-subgroup of G if distinct conjugates of T in G intersect trivially; O(G)
is the largest normal subgroup of G of odd order; G# = G− {1} is the set of
nontrivial elements of G.

Notice that if conclusion (2) holds then |M | ≤ |CG(t)| for each involution t
in G, while if G has one class of involutions then conclusion (2) of Theorem 1
is equivalent to |M | ≤ |CG(z)|.

The next lemma provides subgroups to which Theorem 1 can be applied.
It is a slight variation on the penultimate theorem in [3]. Given a group G,
define the commuting graph of G to be the graph ∆ with vertex set G# and
g adjacent to h if gh = hg. Write d(g, h) for the distance from g to h in ∆
and let ∆i(g) = {h ∈ ∆ : d(g, h) = i}.

Lemma 2. Let G be a finite group, z an involution in G, and 1 6= x an
element of G inverted by z. Assume:

(i) d(z, x) ≥ 3.
(ii) If d(z, x) = 3 then z inverts no member of ∆2(z) ∩∆(x).

Set M = CG(x). Then:
(1) M = CG(y) for each y ∈M#, so d(z, x) =∞.
(2) M is a TI-subgroup of G.
(3) M is abelian of odd order and inverted by z.
(4) M∗ = NG(M) is a Frobenius group with kernel M and complement

CM∗(z).
(5) M is a Hall subgroup of G.

In a group G with one class of involutions, if one has good control over the
centralizer of an involution then one can usually obtain strong information
about the centralizers of elements at distance 1 from involutions, and hence
also some information about elements at distance 2. Lemma 2 and Theorem
1 supply information about centralizers of elements at distance greater than
2 that are inverted by involutions.

Finally to illustrate how Theorem 1 and Lemma 2 can be applied, we give
a short, elementary proof of the following well known result:

Theorem 3. Let G be a finite group containing an involution z such that
T = CG(z) is dihedral of order 8. Then one of the following holds:

(1) G = TO(G).
(2) G ∼= S4

∼= PGL2(3).
(3) G ∼= S5

∼= PGL2(5).
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(4) G ∼= L3(2) ∼= PSL2(7).
(5) G ∼= A6

∼= PSL2(9).

Bender gives a similar proof of a slightly weaker result in [2]. Theorem 1
makes possible only a small simplification in Bender’s treatment, but such
simplifications become more crucial in larger examples.

Local characterizations like Theorem 2 of small groups in the existing litera-
ture typically involve extensive use of exceptional character theory and block
theory. In addition to supplying simplified proofs for such results, another
advantage to an approach involving involution counting is the elimination or
reduction in appeals to character theory.

1. A lemma of Bender

Let G be a finite group and J the set of involutions in G. For S ⊆ G, let
n(S) = |J ∩ S| be the number of involutions in S. Following Bender in [2],
given a subgroup M of G, define

f = f(G,M) =
n(G)
|G : M |

− 1.

Observe:

Lemma 1.1. n(G) > |G : M | iff f(G,M) > 0.

Write G/M for the coset space of cosets Mg, g ∈ G, and represent G by
right multiplication on G/M .

Again following Bender, given a nonnegative integer m, define

bm = bm(G,M) = |{C ∈ G/M − {M} : n(C) = m}|.

Observe that for each m, M acts on the set of cosets C of M with n(C) = m.
The following lemma of Bender in [2] is one of the fundamental tools in

this paper; its proof is easy and elementary.

Lemma 1.2 (Bender). Assume M ≤ G with n(G) > |G : M |. Then

b1 = f−1(n(M) +
∑
i>1

(i− 1)bi − 1− b0)− 1− b0 −
∑
i>1

bi.

2. The proof of Theorem 1

Throughout this section we assume the hypotheses of Theorem 1. Continue
the notation of the previous section. In addition, for x ∈ G let I(x) be the
set of involutions in G inverting x. Set m = |M |. Recall m2(G) is the 2-rank
of G; that is, m2(G) = k, where 2k is the maximal order of an elementary
abelian 2-subgroup of G.
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Lemma 2.1.

(1) M is abelian of odd order and inverted by z.
(2) I(y) ⊆Mz = zM for all y ∈M#.
(3) J ∩M∗ = zM .
(4) m2(M∗) = 1.
(5) CM∗(z) is a complement to M in M∗ and [z,M∗] = M .

Proof. Let W = CG(M). By hypothesis CG(y) is of odd order for each
y ∈ M#, so m is odd, W is of odd order, and CM (i) = 1 for each involution
i ∈M∗. Thus (1) holds. If i ∈ I(y) then i ∈M∗ as M is TI. Then i inverts M ,
so zi ∈W . Hence as |W | is odd, i ∈ zW . But by hypothesis, M∗ = MCM∗(z),
so W = MCW (z), and hence i ∈ zM = Mz. Therefore (2) holds. Further
as CM (i) = 1 for each i ∈ J ∩M∗, (2) implies (3). As m2(M〈z〉) = 1, (3)
implies (4). As M∗ = MCM∗(z) and CM (z) = 1, (5) holds. �

Lemma 2.2.

(1) Mz is the unique coset C of M such that n(C) > 1.
(2) n(Mz) = m.

Proof. Suppose C ∈ G/M with n(C) > 1. Then there are distinct in-
volutions i, j ∈ C. Then ij ∈ M# is inverted by i and j, so by 2.1(2),
i, j ∈ I(ij) ⊆ Mz; that is C = Mz, so (1) holds. Part (2) follows from parts
(1) and (2) of 2.1. �

During the remainder of the section we assume that neither conclusion (1)
nor conclusion (2) of Theorem 1 hold. Thus n(G) > |G : M | and G 6= M∗ =
NG(M). Let a = |M∗ : M |, r = |CG(z)|/a and N = |G : M∗|. Observe
a = |CM∗(z)|.

Recall the definition of the parameters bi = bi(G,M) from the previous
section.

Lemma 2.3.

(1) b1 = f−1(m− (b0 + 2))− (b0 + 2).
(2) b0 < m− 2.

Proof. As n(G) > |G : M |, we can apply 1.1 to conclude f > 0 and appeal
to 1.2. By 2.2, bi = 0 except when i is 0, 1, or m; also n(M) = 0 and bm = 1.
Thus (1) follows from 1.2. As b1 ≥ 0, (1) implies (2). �

Lemma 2.4. Let g ∈ G−M∗ and set D = M∗ ∩M∗g. Then:
(1) n(Mg) = 1 and n(M∗g) = a.
(2) D is a complement to M in M∗ inverted by the involution t ∈ Mg,

D contains a unique involution i, and D = CM∗(i).
(3) M ∩M∗g = 1.
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(4) N − 1 = m(r − 1).
(5) |G| = Nma = (m(r − 1) + 1)ma.
(6) b1 = am(r − 1).

Proof. If n(Mg) 6= 1 then n(Mg) = 0 by 2.2(1). However as M ∩Mg = 1,
the orbit onG/M ofMg underM is of lengthm, so b0 ≥ m, contrary to 2.3(2).
Further M∗g is the union of a cosets of M , so n(M∗g) = a, establishing (1).

Next by 2.1(3), zG ∩M∗ = zM
∗
, so CG(z) is transitive on the set Γ of

fixed points of z on G/M∗ (see 5.21 in [1]). Thus |Γ| = |CG(z) : CM∗(z)| =
|CG(z)|/a = r. Let U = M∗g∩J ; by (1), U is of order a. Thus for j ∈ U , the
set U of elements of D inverted by j is {uj : u ∈ U} of order a. By (1), U is
a set of coset representatives for M in M∗g, so as M∗j = M∗g and D ≤M∗,
we conclude:

M∗ =
⋃
u∈U

Muj = MU = MD.

In particular D is of even order, so as j acts on D, D contains an involution
i centralizing j. Now by 2.1(5), i inverts M , so M ∩D = [M ∩D, i]. Also by
2.1(5) applied to M∗g, [M ∩D, i] ≤ [M∗g, i] ≤Mg, so M ∩D ≤M ∩Mg = 1.
Thus D is a complement to M in M∗, so |D| = a = |U | and hence D = U . As
D = U , D is inverted by j, so D is abelian. Thus D ≤ CM∗(i), so D = CM∗(i)
and as m2(M∗) = 1, i is the unique involution in D. Therefore (2) and (3)
hold.

For each g ∈ G−M∗, M∗ ∩M∗g is the stabilizer in M∗ of M∗g ∈ G/M∗,
so by (2), M∗g is fixed by a unique involution of M∗. Thus by 2.1(3),
G/M∗ − {M∗} is partitioned by the m sets FixG/M∗(zx) − {M∗}, x ∈ M .
This establishes (4).

Next |G : M∗| = N and |M∗| = ma, so (5) follows from (4). Similarly
|G : M | = aN , while by (1), |G : M | = a+ b1. Then (4) implies (6). �

Lemma 2.5.

(1) Either
(i) for some integer e > 2, CG(z) ∼= E2e , a = 2, and r = 2e−1,

or
(ii) r = 2 and CM∗(z) is inverted by an involution in CG(z)−CM∗(z).

(2) In case (i):
(a) |G| = 2m(m(2e−1 − 1) + 1).
(b) |G : CG(z)| = m(m(2e−1 − 1) + 1)/2e−1.
(c) |J | = m(2e − 1).

(3) In case (ii):
(a) |G| = m(m+ 1)a.
(b) |G : CG(z)| = m(m+ 1)/2.
(c) |J | = m(a+ 1).
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Proof. If CG(z) ≤ M∗ then r = 1, so N = 1 by 2.4(4), contradicting
G 6= M∗. Thus there is g ∈ CG(z)−M∗. Let A = M∗∩M∗g; then CM∗(z) = A
by 2.4(2). By 2.4(1), there is an involution t ∈ Mg, and by 2.4(2), t inverts
A. Further g ∈ CM (z)t = {t}, so each element of CG(z)− A is an involution
inverting A. Thus (1)(ii) holds if r = 2. If r > 2 there exists h ∈ CG(z) − A
with hg /∈ A. Thus hg inverts and centralizes A, so A is of exponent 2, and
then A = 〈z〉 by 2.1(4), so (1)(i) holds. Hence (1) is established.

Observe that as |CG(z)| = ar, |G : CG(z)| = Nm/r by 2.4(5). Also by
2.4(1) and 2.4(6), |J | = n(M) + b1 = m + am(r − 1). Then (2) and (3) are
easy calculations, given 2.4. �

Lemma 2.6. Assume case (ii) of 2.5(1) holds and let A = CM∗(z). Then:

(1) G is 2-transitive on G/M∗ and M is regular on G/M∗ − {M∗}.
(2) A is cyclic and semiregular on M .
(3) a = (m− 1)/2 or m− 1.
(4) m is a power of a prime p and M is an elementary abelian p-group.
(5) If a = m−1 then G has two classes of involutions and G ∼= PGL2(m).
(6) If a = (m− 1)/2 then G has one class of involutions and G ∼= L2(m)

with m ≡ 1 mod 4.

Proof. By 2.5(3), |G : M∗| = m + 1, while by 2.4(3), M is semiregular
on G/M∗ − {M∗}, so (1) holds. Suppose 1 6= X ≤ A with 1 6= CM (X).
As CM (z) = 1, z /∈ X, so as m2(A) = 1, X is of odd order. By (1),
CM (X) is regular on Fix(X) − {M∗} and by 2.5(2) there is an involution
t ∈ G −M∗ inverting X, so CMt(X) is regular on Fix(X) − {M∗t}. Thus
Y = 〈CM (X), CMt(X)〉 is 2-transitive on Fix(X) and Y ≤ CG(X). Thus
there is g ∈ CG(X) with cycle (M∗,M∗t). This is impossible as A〈t〉 is the
global stabilizer of this set and each g ∈ At inverts X, so g /∈ CG(X) as X
is of odd order. Thus A is semiregular on M , so as A is abelian, A is cyclic;
that is (2) holds.

By 2.5(3), |J | = m(a+1) and |zG| = m(m+1)/2, som(m+1)/2 ≤ m(a+1),
and hence a ≥ (m− 1)/2. But by (2), a divides m− 1, so (3) holds. Further
if a = (m − 1)/2 then J = zG, so G has one class of involutions and m ≡ 1
mod 4 as a is even. If a = m − 1, then A is regular on M#, so G is sharply
3-transitive on G/M∗ by (1). In any event, A is irreducible on M , so (4)
holds.

In each case G is determined up to isomorphism by a result of Zaussenhaus
[6], but we do not need Zaussenhaus’ result. Rather we argue as follows:

Suppose a = m− 1. Regard M as an s-dimensional vector space over Fp;
then A is a cyclic subgroup of GL(M) regular on M#, so A is determined up
to conjugation in GL(M). Hence M∗ = MA and its action on Ω = G/M∗ are
determined up to equivalence. Let S = Sym(Ω). In particular a generator x
of A is an a-cycle on Ω−{M∗}, so CS(A) = A×〈τ〉, where τ is a transposition
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in S with cycle (M∗,M∗t), and NS(A) = 〈τ〉 × B, where B = NS(A)M∗ is
the split extension of A by Aut(A). Thus A is of index 2 in a unique dihedral
subgroup D of S such that D � B. Therefore G = 〈M∗, t〉 = 〈M∗, D〉 is
determined up to conjugation in S. Then as PGL2(m) satisfies the hypotheses
of G, it follows that G ∼= PGL2(m), so (5) holds.

So assume a = (m−1)/2. Then G has one class of involutions and satisfies
the hypotheses of Theorem 3.5 in Chapter 13 of [5]. Then that result says
G ∼= L2(m), so (6) holds. �

Lemma 2.7. Assume case (i) of 2.5(1) holds. Then:
(1) Either

(a) G has one class of involutions, m = 2e+1, and |G| = 2e(22e−1),
or
(b) G has more than one class of involutions, m = 2d+ 1, and |G| =

22d+1(2d + 1), where d = e− 1.
(2) If G has one class of involutions then G ∼= L2(2e).
(3) If G has more than one class of involutions then G = RM∗, where

R = O2(G) ∼= E22d .
(4) M is cyclic.

Proof. By 2.5(2),

m(m(2d − 1) + 1)
2d

= |zG| ≤ |J | = m(2d+1 − 1),

so
m(2d − 1) ≤ 2d(2d+1 − 1)− 1 = (2d − 1)(2d+1 + 1),

and hence

(∗) m ≤ 2d+1 + 1 = 2e + 1.

Indeed, ifG has one class of involutions then the inequality in (∗) is an equality,
so m = 2e + 1 and hence |G| = 2e(22e − 1) by 2.5(2), so (1)(a) holds in this
case. Further CG(z) ∼= E2e in 2.5(1).i, so as G has one class of involutions,
CG(i) ∼= E2e for each i ∈ J . Therefore (2) holds by Exercise 16.1 in [1]. In
particular the unique subgroup of G of order 2e + 1 is cyclic, so (4) holds.

Thus we may assume G has more than one class of involutions. Then the
inequality in (∗) is strict; that is, m < 2e + 1. However by 2.5(2),

|G : CG(z)| = m(m(2d − 1) + 1)
2d

,

so
0 ≡ m(2d − 1) + 1 ≡ 1−m mod 2d,

and hence m = 2d + 1. Thus (1)(b) holds by 2.5(2).
Let i ∈ J − zG; then i inverts no element of M# as M is a TI-subgroup of

G and all involutions in M∗ are in zG. Indeed, as |G| = (2d + 1)22d+1 and M
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is a TI-subgroup, all elements in G# of odd order are in conjugates of M , so
i inverts no element of G# of odd order. Let R = O2(G); it follows from the
Baer-Suzuki Theorem (see 39.6 in [1]) that i ∈ R. As CG(x) is of odd order
for each x ∈ M#, M is semiregular on R. Thus if V is a nontrivial M -chief
section on R, |V #| ≡ 0 mod 2d + 1, so |V | ≥ 22d. Then as |G| = 22d|M∗|, it
follows that R ∼= E22d and M∗ is a complement to R in G. Thus (3) holds.
Finally as M is abelian and semiregular on R, (4) holds. �

Observe that 2.5–2.7 complete the proof of Theorem 1.

3. The proof of Lemma 2

In this section we assume the hypotheses of Lemma 2. By (i), CM (z) = 1,
so z inverts M and (3) holds. Let y ∈ M#. Then d(z, y) ≥ d(z, x) − 1, so
if d(z, x) > 3 then d(z, y) ≥ 3. On the other hand, if d(z, x) = 3 then as z
inverts y, d(z, y) ≥ 3 by (ii). As M is abelian, M ≤ CG(y) and as d(z, y) ≥ 3,
z inverts CG(y), so CG(y) is abelian. Thus CG(y) ≤ M , so (1) holds. Then
(1) implies (2).

Let i be an involution in M∗. By (1), CM (i) = 1, so i inverts M . Thus
iz ∈ CG(M) = M , so i ∈ Mz. Thus J ∩M∗ = Mz = zM , so CM∗(z) is a
complement to M in M∗ by a Frattini argument. Further for r ∈ CM∗(z)#,
CM (r) = 1 by (1), so (4) holds. Finally by (4), M is a Hall subgroup of M∗,
while for p ∈ π(M) and P ∈ Sylp(M), NG(P ) ≤ M∗ by (2), so P ∈ Sylp(G).
Thus (5) holds.

This completes the proof of Lemma 2.

4. The proof of Theorem 3

In this section we assume the hypotheses of Theorem 3. As 〈z〉 = Z(T )
is characteristic in T and T ∈ Syl2(CG(z)), T ∈ Syl2(G). Let A1 and A2 be
the two 4-subgroups of T and let Gi = NG(Ai). If z is strongly closed in T
with respect to G, then applying Thompson transfer to the cyclic subgroup
of index 2 in T , O2(G) has cyclic Sylow 2-subgroups. Therefore (1) holds (see
39.2 in [1]). Thus we may assume zg ∈ A1 − 〈z〉.

As 〈z〉 = [T,A1] and 〈zg〉 = [T g, A1], H = 〈T, T g〉 ≤ G1 and H induces
L2(2) on A1. Thus as A1 = CG(A1), G1 = H ∼= S4. If A1 is strongly closed
in T with respect to G, then by Thompson transfer, O2(G1) = O2(G) ∩ G1.
Let L = O2(G). Then A1 ∈ Syl2(L) and L has one class of involutions with
CL(z) = A1

∼= E4. It follows from Exercise 16.1 in [1] that L ∼= A4 or A5,
and then that (2) or (3) holds. Thus we may assume A1 is not strongly closed
in T with respect to G, so G has one class of involutions and by symmetry,
G2
∼= S4.

Suppose x ∈ G# is of odd order and inverted by an involution. As G has
one class of involutions, we may assume z inverts x. As CG(z) is a 2-group,
d(z, y) =∞ for each y ∈ G# of odd order. Thus we conclude from Lemma 2
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that X = CG(x) is a TI-subgroup of odd order inverted by z and satisfies the
hypotheses of the group “M” in Theorem 1. Therefore by Theorem 1, either
|X| ≤ |CG(z)| = 8, or G satisfies one of conclusions (3)–(5) of Theorem 1. In
the latter case as G has one class of involutions and CG(z) ∼= D8, we conclude
(4) or (5) holds. Thus we may assume |CG(x)| = 3 or 5 for each x ∈ G# of
odd order inverted by an involution. In particular if Xi ∈ Syl3(Gi) then as Xi

is inverted by an involution in T , Xi = CG(Xi), so NG(Xi) = NGi(Xi) ∼= S3.
Let M = G1; as |M | > |T |, we may apply 1.2 to M . As G has one class of

involutions,

f =
|G : T |
|G : M |

− 1 =
|M |
|T |
− 1 = 2.

Further if y ∈M# then either NG(〈y〉) ≤M , or y is one of the six involutions
in M−A1. Thus if u is an involution in G−M then n(Mu) > 1 iff u centralizes
one of these six involutions y, in which case 〈y〉 = M ∩Mu, so n(Mu) = 2.
Hence bm = 0 for m > 2 and b2 = 6. Then as n(M) = 9, it follows from 1.2
that

b1 = f−1(n(M) + b2 − b0 − 1)− b2 − b0 − 1

=
9 + 6− b0 − 1

2
− 6− b0 − 1 =

−3b0
2

.

Thus as b1 ≥ 0, we conclude b1 = b0 = 0. Therefore |G : M | = 1 + b2 = 7.
Now we conclude G ∼= L3(2) by any one of a number of means. For example,
G is 2-transitive on G/Gi for i = 1, 2, so the coset geometry of G on the
family {G1, G2} is a projective plane of order |Gi : G1 ∩G2| − 1 = 2. As it is
an elementary exercise to show there is a unique plane of order 2, G = L3(2)
is the group of automorphisms of that plane.

This completes the proof of Theorem 3.
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