DUALIZING COMPLEX OF THE INCIDENCE ALGEBRA OF A FINITE REGULAR CELL COMPLEX

KOHJI YANAGAWA

Abstract

Let Σ be a finite regular cell complex with $\emptyset \in \Sigma$, and regard it as a poset (i.e., partially ordered set) by inclusion. Let R be the incidence algebra of the poset Σ over a field k. Corresponding to the Verdier duality for constructible sheaves on Σ, we have a dualizing complex $\omega^{\bullet} \in D^{b}\left(\bmod _{R \otimes_{k} R}\right)$ giving a duality functor from $D^{b}\left(\bmod _{R}\right)$ to itself. This duality is somewhat analogous to the Serre duality for a projective scheme $(\emptyset \in \Sigma$ plays a role similar to that of "irrelevant ideals"). If $H^{i}\left(\omega^{\bullet}\right) \neq 0$ for exactly one i, then the underlying topological space of Σ is Cohen-Macaulay (in the sense of the Stanley-Reisner ring theory). The converse also holds if Σ is a simplicial complex. R is always a Koszul ring with $R^{!} \cong R^{\text {op }}$. The relation between the Koszul duality for R and the Verdier duality is discussed.

1. Introduction

Let Σ be a finite regular cell complex, and $X:=\bigcup_{\sigma \in \Sigma} \sigma$ its underlying topological space. The order given by $\sigma>\tau \stackrel{\text { def }}{\Longleftrightarrow} \bar{\sigma} \supset$ makes Σ a finite partially ordered set (poset, for short). Here $\bar{\sigma}$ is the closure of σ in X. Let R be the incidence algebra of the poset Σ over a field k. For a ring $A, \bmod _{A}$ denotes the category of finitely generated left A-modules. In this paper, we study the bounded derived category $D^{b}\left(\bmod _{R}\right)$ using the theory of constructible sheaves (e.g., Poincaré-Verdier duality). For the sheaf theory, consult [6], [7], [14]. We basically use the same notation as [6].

Let $\mathrm{Sh}_{c}(X)$ be the category of k-constructible sheaves on X with respect to the cell decomposition Σ. We have an exact functor $(-)^{\dagger}: \bmod _{R} \rightarrow \operatorname{Sh}_{c}(X)$. For $M \in \bmod _{R}$, we have a natural decomposition $M=\bigoplus_{\sigma \in \Sigma} M_{\sigma}$ as a k vector space. If $p \in \sigma \subset X$, the stalk $\left(M^{\dagger}\right)_{p}$ of M^{\dagger} at the point p is isomorphic to M_{σ}.

Let $\Sigma^{\prime}:=\Sigma \backslash \emptyset$ be an induced subposet of Σ, and T the incidence algebra of Σ^{\prime} over k. Then we have a category equivalence $\bmod _{T} \cong \operatorname{Sh}_{c}(X)$, which is well

[^0]known to specialists (see, for example, [8], [11], [14]). However, in this paper, $\emptyset \in \Sigma$ plays a role. Although $\bmod _{R} \neq \operatorname{Sh}_{c}(X), \bmod _{R}$ has several interesting properties which $\bmod _{T}$ does not possess. In some sense, \emptyset is analogous to the "irrelevant ideal" of a commutative Noetherian homogeneous k-algebra (i.e., the homogeneous coordinate ring of a projective scheme over k).

We have a left exact functor $\Gamma_{\emptyset}: \bmod _{R} \rightarrow \operatorname{vect}_{k}$ defined by $\Gamma_{\emptyset}(M)=\{x \in$ $\left.M_{\emptyset} \mid R x \subset M_{\emptyset}\right\}$. We denote its i th right derived functor by $H_{\emptyset}^{i}(-)$. For $M \in \bmod _{R}$, Theorem 2.2 states that

$$
\begin{aligned}
H^{i}\left(X, M^{\dagger}\right) \cong H_{\emptyset}^{i+1}(M) \quad \text { for all } i \geq 1 \\
0 \rightarrow H_{\emptyset}^{0}(M) \rightarrow M_{\emptyset} \rightarrow H^{0}\left(X, M^{\dagger}\right) \rightarrow H_{\emptyset}^{1}(M) \rightarrow 0 \quad(\text { exact })
\end{aligned}
$$

Here $H^{\bullet}\left(X, M^{\dagger}\right)$ stands for the sheaf cohomology (cf. [7], [6]).
The above fact is clearly analogous to the relation between graded modules over a commutative Noetherian homogeneous k-algebra A and the quasicoherent sheaves on the projective scheme $\operatorname{Proj}(A)$. There are other resemblances between these topics. In the final section of this paper, we give a list of the similarities.

Let A and B be k-algebras. Recently, several authors studied a dualizing complex $C^{\bullet} \in D^{b}\left(\bmod _{A \otimes_{k} B}\right)$ giving duality functors between $D^{b}\left(\bmod _{A}\right)$ and $D^{b}\left(\bmod _{B}\right)$. (Note that if $M \in \bmod _{A}$ and $N \in \bmod _{A \otimes_{k} B}$, then $\operatorname{Hom}_{A}(M, N)$ has a left B-module structure.) In typical cases, it is assumed that $B=A^{\circ}$. But, in this paper, from Verdier's dualizing complex $\mathcal{D}_{X}^{\bullet} \in D^{b}\left(\operatorname{Sh}_{c}(X)\right)$ on X, we construct a dualizing complex $\omega^{\bullet} \in D^{b}\left(\bmod _{R \otimes R}\right)$ which gives the duality functor $\mathbf{R} \operatorname{Hom}_{R}\left(-, \omega^{\bullet}\right)$ from $D^{b}\left(\bmod _{R}\right)$ to itself. Theorem 3.2 states that

$$
\mathbf{R} \operatorname{Hom}_{R}\left(M^{\bullet}, \omega^{\bullet}\right)^{\dagger} \cong \mathbf{R} \mathcal{H o m}\left(\left(M^{\bullet}\right)^{\dagger}, \mathcal{D}_{X}^{\bullet}\right)
$$

in $D^{b}\left(\operatorname{Sh}_{c}(X)\right)$ for all $M^{\bullet} \in D^{b}\left(\bmod _{R}\right)$. The dualizing complex ω^{\bullet} satisfies the Auslander condition in the sense of [19].

Corollary 3.5 states that

$$
\operatorname{Ext}_{R}^{i}\left(M^{\bullet}, \omega^{\bullet}\right)_{\emptyset} \cong H_{\emptyset}^{-i+1}\left(M^{\bullet}\right)^{\vee}
$$

This corresponds to the (global) Verdier duality on X. But, since $H_{\emptyset}^{i}(-)$ can be seen as an analog of a local cohomology over a commutative Noetherian homogeneous k-algebra, the above isomorphism can be seen as an imitation of the Serre duality. In Theorem $5.3(1), \emptyset \in \Sigma$ is also essential. It states that, for a simplicial complex $\Sigma, H^{i}\left(\omega^{\bullet}\right)=0$ for all $i \neq-\operatorname{dim} X$ if and only if X is Cohen-Macaulay in the sense of the Stanley-Reisner ring theory. If we use the convention that $\emptyset \notin \Sigma$, then the Cohen-Macaulay property cannot be characterized in this way.

Under the assumption that a subset Ψ of Σ gives the open subset $U_{\Psi}:=$ $\bigcup_{\sigma \in \Psi} \sigma$ of X, Theorem 5.3 describes the cohomology $H^{i}\left(U_{\Psi},\left.M^{\dagger}\right|_{U_{\Psi}}\right)$ using the duality functor $\mathbf{R} \operatorname{Hom}_{R}\left(-, \omega^{\bullet}\right)$. Note that the cohomology with compact
support $H_{c}^{i}\left(U_{\Psi},\left.M^{\dagger}\right|_{U_{\Psi}}\right)$ is much easier to treat in our context, as shown in Lemma 5.1.

We can regard R as a graded ring in a natural way. Then R is always Koszul, and the quadratic dual ring $R^{!}$is isomorphic to the opposite ring $R^{\text {op }}$ (Proposition 7.1). Koszul duality (cf. [1]) gives an equivalence $D^{b}\left(\bmod _{R}\right) \cong$ $D^{b}\left(\bmod _{R^{\circ \rho}}\right)$ of triangulated categories. The functors giving this equivalence coincide with the compositions of the duality functors $\mathbf{R} \operatorname{Hom}_{R}\left(-, \omega^{\bullet}\right)$ and $\operatorname{Hom}_{k}(-, k)$. This result is an "augmented" version of Vybornov [14].

It is well known that the Möbius function of a finite poset is a very important tool in combinatorics. In Proposition 6.1, generalizing [13, Proposition 3.8.9], we describes the Möbius function $\mu(\sigma, \hat{1})$ of the poset $\hat{\Sigma}:=\Sigma \amalg\{\hat{1}\}$ in terms of cohomology with compact support. As shown in [2], some finite posets arising from purely combinatorial/algebraic topics (e.g., Bruhat order) are isomorphic to the posets of finite regular cell complexes. So the author expects that the results in the present paper will play a role in a combinatorial study of these posets.

2. Preparation

A finite regular cell complex (cf. $[3, \S 6.2]$ and $[4]$) is a non-empty topological space X together with a finite set Σ of subsets of X such that the following conditions are satisfied:
(i) $\emptyset \in \Sigma$ and $X=\bigcup_{\sigma \in \Sigma} \sigma$;
(ii) the subsets $\sigma \in \Sigma$ are pairwise disjoint;
(iii) for each $\sigma \in \Sigma, \sigma \neq \emptyset$, there exists a homeomorphism from an i dimensional disc $B^{i}=\left\{x \in \mathbb{R}^{i} \mid\|x\| \leq 1\right\}$ onto the closure $\bar{\sigma}$ of σ which maps the open disc $U^{i}=\left\{x \in \mathbb{R}^{i} \mid\|x\|<1\right\}$ onto σ.
(iv) For any $\sigma \in \Sigma$, the closure $\bar{\sigma}$ can be written as the union of some cells in Σ.
Note that X is compact in this case. An element $\sigma \in \Sigma$ is called a cell. We regard Σ as a poset with the order given by $\sigma>\tau \stackrel{\text { def }}{\Longleftrightarrow} \bar{\sigma} \supset \tau$. The combinatorics of posets of this type is discussed in [2]. If $\sigma \in \Sigma$ is homeomorphic to U^{i}, we write $\operatorname{dim} \sigma=i$ and call σ an i-cell. We define $\operatorname{dim} \emptyset=-1$ and set $d:=\operatorname{dim} X=\max \{\operatorname{dim} \sigma \mid \sigma \in \Sigma\}$.

A finite simplicial complex is a primary example of a finite regular cell complex. When Σ is a finite simplicial complex, we sometimes identify Σ with the corresponding abstract simplicial complex. That is, we identify a cell $\sigma \in \Sigma$ with the set $\{\tau \mid \tau$ is a 0 -cell with $\tau \leq \sigma\}$. In this case, Σ is a subset of the power set 2^{V}, where V is the set of the vertices (i.e., 0 -cells) of Σ. Under this identification, for $\sigma \in \Sigma$, we let $\operatorname{st}_{\Sigma} \sigma:=\{\tau \in \Sigma \mid \tau \cup \sigma \in \Sigma\}$ and $\mathrm{lk}_{\Sigma} \sigma:=\left\{\tau \in \operatorname{st}_{\Sigma} \sigma \mid \tau \cap \sigma=\emptyset\right\}$ be subcomplexes of Σ.

Let $\sigma, \sigma^{\prime} \in \Sigma$. If $\operatorname{dim} \sigma=i+1, \operatorname{dim} \sigma^{\prime}=i-1$ and $\sigma^{\prime}<\sigma$, then there are exactly two cells $\sigma_{1}, \sigma_{2} \in \Sigma$ between σ^{\prime} and σ. (Here $\operatorname{dim} \sigma_{1}=\operatorname{dim} \sigma_{2}=i$.) A
remarkable property of a regular cell complex is the existence of an incidence function ε (cf. [4, II. Definition 1.8]). The definition of an incidence function is the following.
(i) To each pair $\left(\sigma, \sigma^{\prime}\right)$ of cells, ε assigns a number $\varepsilon\left(\sigma, \sigma^{\prime}\right) \in\{0, \pm 1\}$.
(ii) $\varepsilon\left(\sigma, \sigma^{\prime}\right) \neq 0$ if and only if $\operatorname{dim} \sigma^{\prime}=\operatorname{dim} \sigma-1$ and $\sigma^{\prime}<\sigma$.
(iii) If $\operatorname{dim} \sigma=0$, then $\varepsilon(\sigma, \emptyset)=1$.
(iv) If $\operatorname{dim} \sigma=i+1, \operatorname{dim} \sigma^{\prime}=i-1$ and $\sigma^{\prime}<\sigma_{1}, \sigma_{2}<\sigma, \sigma_{1} \neq \sigma_{2}$, then we have $\varepsilon\left(\sigma, \sigma_{1}\right) \varepsilon\left(\sigma_{1}, \sigma^{\prime}\right)+\varepsilon\left(\sigma, \sigma_{2}\right) \varepsilon\left(\sigma_{2}, \sigma^{\prime}\right)=0$.
We can compute the (co)homology groups of X using the cell decomposition Σ and an incidence function ε.

Let P be a finite poset. The incidence algebra R of P over a field k is the k-vector space with a basis $\left\{e_{x, y} \mid x, y \in P\right.$ with $\left.x \geq y\right\}$. The k-bilinear multiplication defined by $e_{x, y} e_{z, w}=\delta_{y, z} e_{x, w}$ makes R a finite dimensional associative k-algebra. Set $e_{x}:=e_{x, x}$. Then $1=\sum_{x \in P} e_{x}$ and $e_{x} e_{y}=\delta_{x, y} e_{x}$. We have $R \cong \bigoplus_{x \in P} R e_{x}$ as a left R-module, and each $R e_{x}$ is indecomposable.

Denote the category of finitely generated left R-modules by $\bmod _{R}$. If $N \in$ $\bmod _{R}$, we have $N=\bigoplus_{x \in P} N_{x}$ as a k-vector space, where $N_{x}:=e_{x} N$. Note that $e_{x, y} N_{y} \subset N_{x}$ and $e_{x, y} N_{z}=0$ for $y \neq z$. If $f: N \rightarrow N^{\prime}$ is a morphism in $\bmod _{R}$, then $f\left(N_{x}\right) \subset N_{x}^{\prime}$.

For each $x \in P$, we can construct an indecomposable injective module $E_{R}(x) \in \bmod _{R}$. (When there is no possibility of confusion, we simply denote it by $E(x)$.) Let $E(x)$ be the k-vector space with a basis $\left\{e(x)_{y} \mid y \leq x\right\}$. Then we can regard $E(x)$ as a left R-module by

$$
e_{z, w} e(x)_{y}= \begin{cases}e(x)_{z} & \text { if } y=w \text { and } z \leq x \tag{2.1}\\ 0 & \text { otherwise }\end{cases}
$$

Note that $E(x)_{y}=k e(x)_{y}$ if $y \leq x$, and $E(x)_{y}=0$ otherwise. An indecomposable injective in $\bmod _{R}$ is of the form $E(x)$ for some $x \in P$. Since $\operatorname{dim}_{k} R<\infty, \bmod _{R}$ has enough projectives and injectives. It is well known that R has finite global dimension.

Let Σ be a finite regular cell complex, and X its underlying topological space. We make Σ a poset as above. In the rest of this paper, R is the incidence algebra of Σ over k. For $M \in \bmod _{R}$, we have $M=\bigoplus_{\sigma \in \Sigma} M_{\sigma}$ as a k-vector space, where $M_{\sigma}:=e_{\sigma} M$.

Let $\operatorname{Sh}(X)$ be the category of sheaves of finite dimensional k-vector spaces on X. We say $\mathcal{F} \in \operatorname{Sh}(X)$ is a constructible sheaf with respect to the cell decomposition Σ, if $\mathcal{F} \mid \sigma$ is a constant sheaf for all $\emptyset \neq \sigma \in \Sigma$. Here, $\mathcal{F} \mid \sigma$ denotes the inverse image $j^{*} \mathcal{F}$ of \mathcal{F} under the embedding map $j: \sigma \rightarrow X$. Let $\operatorname{Sh}_{c}(X)$ be the full subcategory of $\operatorname{Sh}(X)$ consisting of constructible sheaves with respect to Σ. It is well known that $D^{b}\left(\operatorname{Sh}_{c}(X)\right) \cong D_{\mathrm{Sh}_{c}(X)}^{b}(\operatorname{Sh}(X))$. (See [7, Theorem 8.1.11]. There, it is assumed that Σ is a simplicial complex. However, this assumption is irrelevant. In fact, the key lemma [7, Corollay 8.1.5]
also holds for regular cell complexes. See also [11, Lemma 5.2.1].) So we will freely identify these categories.

There is a functor $(-)^{\dagger}: \bmod _{R} \rightarrow \operatorname{Sh}_{c}(X)$, which is well known to specialists (see, for example, $[14$, Theorem A]), but for the reader's convenience we give a precise construction here. See [14], [17] for details.

For $M \in \bmod _{R}$, set

$$
\operatorname{Spé}(M):=\bigcup_{\emptyset \neq \sigma \in \Sigma} \sigma \times M_{\sigma} .
$$

Let $\pi: \operatorname{Spé}(M) \rightarrow X$ be the projection map which sends $(p, m) \in \sigma \times M_{\sigma} \subset$ Spé (M) to $p \in \sigma \subset X$. For an open subset $U \subset X$ and a map $s: U \rightarrow \operatorname{Spé}(M)$, we will consider the following conditions:
$(*) \pi \circ s=\mathrm{Id}_{U}$ and $s_{q}=e_{\tau, \sigma} \cdot s_{p}$ for all $p \in \sigma, q \in \tau$ with $\tau \geq \sigma$. Here s_{p} (resp. s_{q}) is the element of M_{σ} (resp. M_{τ}) with $s(p)=\left(p, s_{p}\right)$ (resp. $\left.s(q)=\left(q, s_{q}\right)\right)$.
$(* *)$ There is an open covering $U=\bigcup_{\lambda \in \Lambda} U_{\lambda}$ such that the restriction of s to U_{λ} satisfies $(*)$ for all $\lambda \in \Lambda$.
Now we define a sheaf $M^{\dagger} \in \operatorname{Sh}_{c}(X)$ from M as follows. For an open set $U \subset X$, set

$$
M^{\dagger}(U):=\{s \mid s: U \rightarrow \operatorname{Spé}(M) \text { is a map satisfying }(* *)\}
$$

and the restriction map $M^{\dagger}(U) \rightarrow M^{\dagger}(V)$ is the natural one. It is easy to see that M^{\dagger} is a constructible sheaf. For $\sigma \in \Sigma$, let $U_{\sigma}:=\bigcup_{\tau \geq \sigma} \tau$ be an open set of X. Then we have $M^{\dagger}\left(U_{\sigma}\right) \cong M_{\sigma}$. Moreover, if $\sigma \leq \tau$, then we have $U_{\sigma} \supset U_{\tau}$ and the restriction map $M^{\dagger}\left(U_{\sigma}\right) \rightarrow M^{\dagger}\left(U_{\tau}\right)$ corresponds to the multiplication map $M_{\sigma} \ni x \mapsto e_{\tau, \sigma} x \in M_{\tau}$. For a point $p \in \sigma$, the stalk $\left(M^{\dagger}\right)_{p}$ of M^{\dagger} at p is isomorphic to M_{σ}. This construction gives the functor $(-)^{\dagger}: \bmod _{R} \rightarrow \operatorname{Sh}_{c}(X)$. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be a complex in $\bmod _{R}$. The complex $0 \rightarrow\left(M^{\prime}\right)^{\dagger} \rightarrow M^{\dagger} \rightarrow\left(M^{\prime \prime}\right)^{\dagger} \rightarrow 0$ is exact if and only if $0 \rightarrow M_{\sigma}^{\prime} \rightarrow M_{\sigma} \rightarrow M_{\sigma}^{\prime \prime} \rightarrow 0$ is exact for all $\emptyset \neq \sigma \in \Sigma$. Hence $(-)^{\dagger}$ is an exact functor. We also remark that M_{\emptyset} is irrelevant to M^{\dagger}.

For example, we have $E(\sigma)^{\dagger} \cong j_{*} \underline{k}_{\bar{\sigma}}$, where j is the embedding map from the closure $\bar{\sigma}$ of σ to X and $\underline{k}_{\bar{\sigma}}$ is the constant sheaf on $\bar{\sigma}$. We also have that $E(\sigma)^{\dagger} \cong j_{*} \underline{k}_{\bar{\sigma}} \cong i_{*} \underline{k}_{\sigma}$, where $i: \sigma \rightarrow X$ is the embedding map and \underline{k}_{σ} is the constant sheaf on σ. Similarly, we have $\left(R e_{\sigma}\right)^{\dagger} \cong h_{!} \underline{k}_{U_{\sigma}}$, where h is the embedding map from the open subset $U_{\sigma}=\bigcup_{\tau \geq \sigma} \tau$ to X.

REMARK 2.1. Let $\Sigma^{\prime}:=\Sigma \backslash \emptyset$ be an induced subposet of Σ, and T its incidence algebra over k. Then we have a functor $\bmod _{T} \rightarrow \operatorname{Sh}_{c}(X)$ defined in a similar way as $(-)^{\dagger}$, and it gives an equivalence $\bmod _{T} \cong \operatorname{Sh}_{c}(X)$ (cf. $\left[14\right.$, Theorem A]). On the other hand, by virtue of $\emptyset \in \Sigma$, our functor $(-)^{\dagger}$: $\bmod _{R} \rightarrow \mathrm{Sh}_{c}(X)$ is neither full nor faithful, but we will see that $\bmod _{R}$ has several interesting properties which $\bmod _{T}$ does not possess.

For $M \in \bmod _{R}$, set $\Gamma_{\emptyset}(M):=\left\{x \in M_{\emptyset} \mid R x \subset M_{\emptyset}\right\}$. It is easy to see that $\Gamma_{\emptyset}(M) \cong \operatorname{Hom}_{R}(k, M)$. Here we regard k as a left R-module by $e_{\sigma, \tau} k=0$ for all $e_{\sigma, \tau} \neq e_{\emptyset}$. Clearly, Γ_{\emptyset} gives a left exact functor from $\bmod _{R}$ to itself (or $\left.\operatorname{vect}_{k}\right)$. We denote the i th right derived functor of $\Gamma_{\emptyset}(-)$ by $H_{\emptyset}^{i}(-)$. In other words, $H_{\emptyset}^{i}(-)=\operatorname{Ext}_{R}^{i}(k,-)$.

Theorem 2.2 (cf. [17, Theorem 3.3]). For $M \in \bmod _{R}$, we have an isomorphism

$$
H^{i}\left(X, M^{\dagger}\right) \cong H_{\emptyset}^{i+1}(M) \quad \text { for all } i \geq 1
$$

and an exact sequence

$$
0 \rightarrow H_{\emptyset}^{0}(M) \rightarrow M_{\emptyset} \rightarrow H^{0}\left(X, M^{\dagger}\right) \rightarrow H_{\emptyset}^{1}(M) \rightarrow 0 .
$$

Here $H^{\bullet}\left(X, M^{\dagger}\right)$ stands for the cohomology with coefficients in the sheaf M^{\dagger}.
Proof. Let I^{\bullet} be an injective resolution of M, and consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \Gamma_{\emptyset}\left(I^{\bullet}\right) \rightarrow I^{\bullet} \rightarrow I^{\bullet} / \Gamma_{\emptyset}\left(I^{\bullet}\right) \rightarrow 0 \tag{2.2}
\end{equation*}
$$

of cochain complexes. Put $J^{\bullet}:=I^{\bullet} / \Gamma_{\emptyset}\left(I^{\bullet}\right)$. Each component of J^{\bullet} is a direct sum of copies of $E(\sigma)$ for various $\emptyset \neq \sigma \in \Sigma$. Since $E(\sigma)^{\dagger}$ is the constant sheaf on $\bar{\sigma}$ which is homeomorphic to a closed disc, we have $H^{i}\left(X, E(\sigma)^{\dagger}\right)=$ $H^{i}(\bar{\sigma} ; k)=0$ for all $i \geq 1$. Hence $\left(J^{\bullet}\right)^{\dagger}\left(\cong\left(I^{\bullet}\right)^{\dagger}\right)$ gives a $\Gamma(X,-)$-acyclic resolution of M^{\dagger}. It is easy to see that $\left[J^{\bullet}\right]_{\emptyset} \cong \Gamma\left(X,\left(J^{\bullet}\right)^{\dagger}\right)$. So the assertions follow from (2.2), since $H^{0}\left(I^{\bullet}\right) \cong M$ and $H^{i}\left(I^{\bullet}\right)=0$ for all $i \geq 1$.

REmARK 2.3. (1) If $M_{\emptyset}=0$, then we have $H^{i}\left(X, M^{\dagger}\right) \cong H_{\emptyset}^{i+1}(M)$ for all i.
(2) Let A be a commutative Noetherian homogeneous k-algebra (i.e., $A=$ $\bigoplus_{i \geq 0} A_{i}$ is a graded commutative ring satisfying: (1) $A_{0}=k$, (2) $\operatorname{dim}_{k} A_{1}<$ $\infty,{ }^{(3)} A$ is generated by A_{1} as a k-algebra). For a graded A-module M, we have the algebraic quasi-coherent sheaf \tilde{M} on the projective scheme $Y:=$ Proj A. It is well known that $H^{i}(Y, \tilde{M}) \cong\left[H_{\mathfrak{m}}^{i+1}(M)\right]_{0}$ for all $i \geq 1$, and

$$
0 \rightarrow\left[H_{\mathfrak{m}}^{0}(M)\right]_{0} \rightarrow M_{0} \rightarrow H^{0}(Y, \tilde{M}) \rightarrow\left[H_{\mathfrak{m}}^{1}(M)\right]_{0} \rightarrow 0 \quad \text { (exact) }
$$

Here $H_{\mathfrak{m}}^{i}(M)$ stands for the local cohomology module with support in the irrelevant ideal $\mathfrak{m}=\bigoplus_{i \geq 1} A_{i}$, and $\left[H_{\mathfrak{m}}^{i}(M)\right]_{0}$ is its degree 0 component $\left(H_{\mathfrak{m}}^{i}(M)\right.$ has a natural \mathbb{Z}-grading). See also Remark 4.6 (2) below and the list given in §8.
(3) Assume that Σ is a simplicial complex with n vertices. The StanleyReisner ring $k[\Sigma]$ of Σ is the quotient ring of the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ by the squarefree monomial ideal I_{Σ} corresponding to Σ (see [3], [12] for details). In [16], we defined squarefree $k[\Sigma]$-modules which are certain \mathbb{N}^{n} graded $k[\Sigma]$-modules. For example, $k[\Sigma]$ itself is squarefree. The category $\mathrm{Sq}(\Sigma)$ of squarefree $k[\Sigma]$-modules is equivalent to $\bmod _{R}$ of the present paper
(see [18]). Let $\Phi: \bmod _{R} \rightarrow \mathrm{Sq}(\Sigma)$ be the functor giving this equivalence. In [17], we defined a functor $(-)^{+}: \operatorname{Sq}(\Sigma) \rightarrow \operatorname{Sh}_{c}(X)$. For example, $k[\Sigma]^{+} \cong \underline{k}_{X}$. The functor $(-)^{+}$is essentially same as the functor $(-)^{\dagger}: \bmod _{R} \rightarrow \operatorname{Sh}_{c}(X)$ of the present paper. More precisely, $(-)^{\dagger} \cong(-)^{+} \circ \Phi$. For $M \in \bmod _{R}$, we have $H_{\emptyset}^{i}(M) \cong\left[H_{\mathfrak{m}}^{i}(\Phi(M))\right]_{0}$. So the above theorem is a variation of $[17$, Theorem 3.3].

3. Dualizing complexes

Let $D^{b}\left(\bmod _{R}\right)$ be the bounded derived category of $\bmod _{R}$. For $M^{\bullet} \in$ $D^{b}\left(\bmod _{R}\right)$ and $i \in \mathbb{Z}, M^{\bullet}[i]$ denotes the i th translation of M^{\bullet}, that is, $M^{\bullet}[i]$ is the complex with $M^{\bullet}[i]^{j}=M^{i+j}$. So, if $M \in \bmod _{R}, M[i]$ is the cochain complex $\cdots \rightarrow 0 \rightarrow M \rightarrow 0 \rightarrow \cdots$, where M sits in the $(-i)$ th position.

In this section, from Verdier's dualizing complex $\mathcal{D}_{X}^{\bullet} \in D^{b}\left(\operatorname{Sh}_{c}(X)\right)$, we construct a cochain complex ω^{\bullet} of injective left $\left(R \otimes_{k} R\right)$-modules which gives a duality functor from $D^{b}\left(\bmod _{R}\right)$ to itself. Let M be a left $\left(R \otimes_{k} R\right)$ module. When we regard M as a left R-module via the ring homomorphism $R \ni x \mapsto x \otimes 1 \in R \otimes_{k} R$ (resp. $R \ni x \mapsto 1 \otimes x \in R \otimes_{k} R$), we denote it by ${ }_{R} M$ (resp. $\left.M_{R^{\text {op }}}\right)$.

For $i \leq 1$, the i th component ω^{i} of ω^{\bullet} has a k-basis

$$
\left\{e(\sigma)_{\rho}^{\tau} \mid \sigma, \tau, \rho \in \Sigma, \operatorname{dim} \sigma=-i, \sigma \geq \tau, \rho\right\}
$$

and its module structure is defined by

$$
\left(e_{\sigma^{\prime}, \tau^{\prime}} \otimes 1\right) \cdot e(\sigma)_{\rho}^{\tau}= \begin{cases}e(\sigma)_{\sigma^{\prime}}^{\tau} & \text { if } \tau^{\prime}=\rho \text { and } \sigma^{\prime} \leq \sigma \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\left(1 \otimes e_{\sigma^{\prime}, \tau^{\prime}}\right) \cdot e(\sigma)_{\rho}^{\tau}= \begin{cases}e(\sigma)_{\rho}^{\sigma^{\prime}} & \text { if } \tau^{\prime}=\tau \text { and } \sigma^{\prime} \leq \sigma \\ 0 & \text { otherwise }\end{cases}
$$

Then we have ${ }_{R}\left(\omega^{i}\right) \cong\left(\omega^{i}\right)_{R^{\text {oค }}} \cong \bigoplus_{\operatorname{dim} \sigma=-i} E(\sigma)^{\mu(\sigma)}$ as left R-modules, where $\mu(\sigma):=\#\{\tau \in \Sigma \mid \tau \leq \sigma\}$. Note that $R \otimes_{k} R$ is isomorphic to the incidence algebra of the poset $\Sigma \times \Sigma$. For each $\sigma \in \Sigma$ with $\operatorname{dim} \sigma=-i$, we let $I(\sigma)$ be the subspace $\left\langle e(\sigma)_{\rho}^{\tau} \mid \tau, \rho \leq \sigma\right\rangle$ of ω^{i}. Then, as a left $R \otimes_{k} R$-module, $I(\sigma)$ is isomorphic to the injective module $E_{R \otimes_{k} R}((\sigma, \sigma))$, and $\omega^{i} \cong \bigoplus_{\operatorname{dim} \sigma=-i} I(\sigma)$. Thus ω^{\bullet} is of the form

$$
\begin{gathered}
0 \rightarrow \omega^{-d} \rightarrow \omega^{-d+1} \rightarrow \cdots \rightarrow \omega^{1} \rightarrow 0 \\
\omega^{i}=\bigoplus_{\substack{\sigma \in \Sigma \\
\operatorname{dim} \sigma=-i}} E_{R \otimes_{k} R}((\sigma, \sigma))
\end{gathered}
$$

The differential of ω^{\bullet} given by

$$
\omega^{i} \ni e(\sigma)_{\rho}^{\tau} \longmapsto \sum_{\sigma^{\prime} \geq \tau, \rho} \varepsilon\left(\sigma, \sigma^{\prime}\right) \cdot e\left(\sigma^{\prime}\right)_{\rho}^{\tau} \in \omega^{i+1}
$$

makes ω^{\bullet} a complex of left $\left(R \otimes_{k} R\right)$-modules.
Let $M \in \bmod _{R}$. Using the left R-module structure $I(\sigma)_{R^{\mathrm{op}}}$, we can regard $\operatorname{Hom}_{R}\left(M,{ }_{R} I(\sigma)\right)$ also as a left R-module. Moreover, we have the following.

Lemma 3.1. For $M \in \bmod _{R}$, we have $\operatorname{Hom}_{R}\left(M,_{R} I(\sigma)\right) \cong E(\sigma) \otimes_{k}\left(M_{\sigma}\right)^{\vee}$ as left R-modules. Here $\left(M_{\sigma}\right)^{\vee}$ is the dual vector space $\operatorname{Hom}_{k}\left(M_{\sigma}, k\right)$ of M_{σ}.

Proof. First, we show that if $M_{\sigma}=0$ then $\operatorname{Hom}_{R}\left(M,{ }_{R} I(\sigma)\right)=0$. Assume the contrary. If $0 \neq f \in \operatorname{Hom}_{R}\left(M,{ }_{R} I(\sigma)\right)$, there is some $x \in M_{\tau}, \tau<\sigma$, such that $f(x) \neq 0$. But we have $f\left(e_{\sigma, \tau} x\right)=e_{\sigma, \tau} f(x) \neq 0$. This contradicts the fact that $e_{\sigma, \tau} x \in M_{\sigma}=0$.

For a general $M \in \bmod _{R}$, let $M_{\geq \sigma}=\bigoplus_{\tau \in \Sigma, \tau \geq \sigma} M_{\tau}$ be a submodule of M. By the short exact sequence $0 \rightarrow M_{\geq \sigma} \rightarrow M \rightarrow \bar{M} / M_{\geq \sigma} \rightarrow 0$ we have $0 \rightarrow \operatorname{Hom}_{R}\left(M / M_{\geq \sigma},{ }_{R} I(\sigma)\right) \rightarrow \operatorname{Hom}_{R}\left(M,{ }_{R} I(\sigma)\right) \rightarrow \operatorname{Hom}_{R}\left(M_{\geq \sigma},{ }_{R} I(\sigma)\right) \rightarrow 0$. Since $\left(M / M_{\geq \sigma}\right)_{\sigma}=0$, we have $\operatorname{Hom}_{R}\left(M,{ }_{R} I(\sigma)\right)=\operatorname{Hom}_{R}\left(M_{\geq \sigma},{ }_{R} I(\sigma)\right)$. So we may assume that $M=M_{\geq \sigma}$. Let $\left\{f_{1}, \ldots, f_{n}\right\}$ be a k-basis of $\left(M_{\sigma}\right)^{\vee}$. Since $\left({ }_{R} I(\sigma)\right)_{\tau}=0$ for $\tau>\sigma, \operatorname{Hom}_{R}\left(M_{\geq \sigma},{ }_{R} I(\sigma)\right)$ has a k-basis $\left\{e(\sigma)_{\sigma}^{\tau} \otimes f_{i} \mid\right.$ $\tau \leq \sigma, 1 \leq i \leq n\}$. By the module structure of $I(\sigma)_{R^{\text {op }}}$, we have the expected isomorphism.

Since each ${ }_{R} \omega^{i}$ is injective, $\mathbf{D}(-):=\operatorname{Hom}_{R}^{\bullet}\left(-,{ }_{R} \omega^{\bullet}\right) \cong \mathbf{R} \operatorname{Hom}_{R}\left(-,{ }_{R} \omega^{\bullet}\right)$ gives a contravariant functor from $D^{b}\left(\bmod _{R}\right)$ to itself. In the sequel, we simply denote $\operatorname{Hom}_{R}\left(-,{ }_{R} \omega^{i}\right)$ by $\operatorname{Hom}_{R}\left(-, \omega^{i}\right)$, etc.

We can describe $\mathbf{D}\left(M^{\bullet}\right)$ explicitly. Since $\omega^{i} \cong \bigoplus_{\operatorname{dim} \sigma=-i} I(\sigma)$, we have

$$
\operatorname{Hom}_{R}\left(M, \omega^{i}\right) \cong \bigoplus_{\operatorname{dim} \sigma=-i} \operatorname{Hom}_{R}(M, I(\sigma)) \cong \bigoplus_{\operatorname{dim} \sigma=-i} E(\sigma) \otimes_{k}\left(M_{\sigma}\right)^{\vee}
$$

for $M \in \bmod _{R}$ by Lemma 3.1. So we can easily check that $\mathbf{D}(M)$ is of the form

$$
\begin{aligned}
\mathbf{D}(M): 0 \longrightarrow \mathbf{D}^{-d}(M) & \longrightarrow \mathbf{D}^{-d+1}(M) \longrightarrow \cdots \longrightarrow \mathbf{D}^{1}(M) \longrightarrow 0, \\
\mathbf{D}^{i}(M) & =\bigoplus_{\operatorname{dim} \sigma=-i} E(\sigma) \otimes_{k}\left(M_{\sigma}\right)^{\vee} .
\end{aligned}
$$

Here the differential sends $e(\sigma)_{\rho} \otimes f \in E(\sigma) \otimes_{k}\left(M_{\sigma}\right)^{\vee}$ to

$$
\sum_{\tau \in \Sigma, \tau \geq \rho} \varepsilon(\sigma, \tau) \cdot e(\tau)_{\rho} \otimes f\left(e_{\sigma, \tau}-\right) \in \bigoplus_{\operatorname{dim} \tau=\operatorname{dim} \sigma-1} E(\tau) \otimes_{k}\left(M_{\tau}\right)^{\vee} .
$$

For a bounded cochain complex M^{\bullet} of objects in $\bmod _{R}$, we have

$$
\mathbf{D}^{t}\left(M^{\bullet}\right)=\bigoplus_{i-j=t} \mathbf{D}^{i}\left(M^{j}\right)=\bigoplus_{-\operatorname{dim} \sigma-j=t} E(\sigma) \otimes_{k}\left(M_{\sigma}^{j}\right)^{\vee},
$$

and the differential is given by
$\mathbf{D}^{t}\left(M^{\bullet}\right) \supset E(\sigma) \otimes_{k}\left(M_{\sigma}^{j}\right)^{\vee} \ni x \otimes y \mapsto d(x \otimes y)+(-1)^{t}\left(x \otimes \partial^{\vee}(y)\right) \in \mathbf{D}^{t+1}\left(M^{\bullet}\right)$,
where $\partial^{\vee}:\left(M_{\sigma}^{j}\right)^{\vee} \rightarrow\left(M_{\sigma}^{j-1}\right)^{\vee}$ is the k-dual of the differential ∂ of M^{\bullet}, and d is the differential of $\mathbf{D}\left(M^{j}\right)$.

Since the underlying space X of Σ is locally compact and finite dimensional, it admits Verdier's dualizing complex $\mathcal{D}_{X}^{\bullet} \in D^{b}(\operatorname{Sh}(X))$ with coefficients in k (see [6, V. §2]).

Theorem 3.2. For $M^{\bullet} \in D^{b}\left(\bmod _{R}\right)$, we have

$$
\mathbf{D}\left(M^{\bullet}\right)^{\dagger} \cong \mathbf{R} \mathcal{H o m}\left(\left(M^{\bullet}\right)^{\dagger}, \mathcal{D}_{X}^{\bullet}\right) \quad \text { in } D^{b}\left(\operatorname{Sh}_{c}(X)\right)
$$

Proof. An explicit description of $\mathbf{R} \mathcal{H o m}\left(\left(M^{\bullet}\right)^{\dagger}, \mathcal{D}_{X}^{\bullet}\right)$ is given in the unpublished thesis [11] of A. Shepard. When Σ is a simplicial complex, this description is treated in $[14, \S 2.4]$, and also follows from the author's previous paper [17] (and [18]). The general case can be reduced to the simplicial complex case using the barycentric subdivision.

Shepard's description of $\mathbf{R H o m}\left(\left(M^{\bullet}\right)^{\dagger}, \mathcal{D}_{X}^{\bullet}\right)$ is the same thing as the above description of $\mathbf{D}\left(M^{\bullet}\right)$ under the functor $(-)^{\dagger}$.

LEmma 3.3. For each $\sigma \in \Sigma$, the natural map $E(\sigma) \rightarrow \mathbf{D} \circ \mathbf{D}(E(\sigma))$ is an isomorphism in $D^{b}\left(\bmod _{R}\right)$.

Proof. We may assume that $\sigma \neq \emptyset$. Let $\left.\Sigma\right|_{\sigma}:=\{\tau \in \Sigma \mid \tau \leq \sigma\}$ be a subcomplex of Σ. It is easy to see that $\mathbf{D}(E(\sigma))_{\emptyset}$ is isomorphic to the chain complex $C \bullet\left(\left.\Sigma\right|_{\sigma}, k\right)$ of $\left.\Sigma\right|_{\sigma}$. Thus $H^{i}(\mathbf{D}(E(\sigma)))_{\emptyset}=\tilde{H}_{-i}(\bar{\sigma} ; k)$ for all i, where $\tilde{H}_{\bullet}(\bar{\sigma} ; k)$ stands for the reduced homology group of the closure $\bar{\sigma}$ of σ. Hence $H^{i}(\mathbf{D}(E(\sigma)))_{\emptyset}=0$ for all i.

By Theorem 3.2 and the Verdier duality, we have

$$
\mathbf{D}(E(\sigma))^{\dagger} \cong \mathbf{R} \mathcal{H} o m\left(j_{*} \underline{k}_{\sigma}, \mathcal{D}_{X}^{\bullet}\right) \cong j_{j!} \underline{k}_{\sigma}[\operatorname{dim} \sigma] .
$$

Here $j: \sigma \rightarrow X$ is the embedding map.
Let M be a simple R-module with $M=M_{\sigma} \cong k$. Combining the above observations, we have $\mathbf{D}(E(\sigma)) \cong M[\operatorname{dim} \sigma]$. So $\mathbf{D} \circ \mathbf{D}(E(\sigma)) \cong \mathbf{D}(M[\operatorname{dim} \sigma]) \cong$ $E(\sigma)$, and the natural map $E(\sigma) \rightarrow \mathbf{D} \circ \mathbf{D}(E(\sigma))$ is an isomorphism.

Theorem 3.4.
(1) $\omega^{\bullet} \in D^{b}\left(\bmod _{R \otimes_{k} R}\right)$ is a dualizing complex in the sense of $[19$, Definition 1.1]. Hence $\mathbf{D}(-)$ is a duality functor from $D^{b}\left(\bmod _{R}\right)$ to itself.
(2) The dualizing complex ω^{\bullet} satisfies the Auslander condition in the sense of [19, Definition 2.1]. That is, if we set

$$
j_{\omega}(M):=\inf \left\{i \mid \operatorname{Ext}_{R}^{i}\left(M, \omega^{\bullet}\right) \neq 0\right\} \in \mathbb{Z} \cup\{\infty\}
$$

then, for all $i \in \mathbb{Z}$ and all $M \in \bmod _{R}$, any submodule N of $\operatorname{Ext}_{R}^{i}\left(M, \omega^{\bullet}\right)$ satisfies $j_{\omega}(N) \geq i$.

Proof. (1) The conditions (i) and (ii) of [19, Definition 1.1] obviously hold in our case, so it remains to prove that condition (iii) also holds. To see this, it suffices to show that the natural morphism $R \rightarrow \mathbf{D} \circ \mathbf{D}(R)$ is an isomorphism. But it follows from "Lemma on Way-out Functors" ([5, Proposition 7.1]) and Lemma 3.3.
(2) We may assume that $M \neq 0$. By the description of $\mathbf{D}(M)$, we have

$$
j_{\omega}(M)=-\max \left\{\operatorname{dim} \sigma \mid \sigma \in \Sigma, M_{\sigma} \neq 0\right\}
$$

and $\operatorname{Ext}_{R}^{i}\left(M, \omega^{\bullet}\right)_{\sigma}=0$ for $\sigma \in \Sigma$ with $\operatorname{dim} \sigma>-i$. Hence, any submodule $N \subset \operatorname{Ext}_{R}^{i}\left(M, \omega^{\bullet}\right)$ satisfies $j_{\omega}(N) \geq i$.

Corollary 3.5. We have $\operatorname{Ext}_{R}^{i}\left(M^{\bullet}, \omega^{\bullet}\right)_{\emptyset} \cong H_{\emptyset}^{-i+1}\left(M^{\bullet}\right)^{\vee}$ for all $i \in \mathbb{Z}$ and all $M^{\bullet} \in D^{b}\left(\bmod _{R}\right)$.

Proof. Since $\mathbf{D} \circ \mathbf{D}\left(M^{\bullet}\right)$ is an injective resolution of M^{\bullet}, we have $\mathbf{R} \Gamma_{\emptyset}\left(M^{\bullet}\right)$ $=\Gamma_{\emptyset}\left(\mathbf{D} \circ \mathbf{D}\left(M^{\bullet}\right)\right)$. By the structure of $\mathbf{D}(-)$, we have $\Gamma_{\emptyset}\left(\mathbf{D} \circ \mathbf{D}\left(M^{\bullet}\right)\right)=$ $\left(\mathbf{D}\left(M^{\bullet}\right)_{\emptyset}\right)^{\vee}[-1]$. So we are done.

4. Categorical Remarks

For $M, N \in \bmod _{R}$ and $\sigma \in \Sigma$, set $\operatorname{Hom}_{R}(M, N)_{\sigma}:=\operatorname{Hom}_{R}\left(M_{\geq \sigma}, N\right)$. We make $\underline{\operatorname{Hom}}_{R}(M, N):=\bigoplus_{\sigma \in \Sigma} \underline{\operatorname{Hom}}_{R}(M, N)_{\sigma}$ a left R-module as follows: For $f \in \underline{\operatorname{Hom}}_{R}(M, N)_{\sigma}$ and a cell τ with $\tau \geq \sigma$, we let $e_{\tau, \sigma} f$ be the restriction of f into the submodule $M_{\geq \tau}$ of $M_{\geq \sigma}$.

Lemma 4.1. For $M \in \bmod _{R}$, we have $\underline{\operatorname{Hom}}_{R}(M, E(\sigma)) \cong E(\sigma) \otimes_{k}\left(M_{\sigma}\right)^{\vee}$.
Proof. Similar to Lemma 3.1.
If a complex M^{\bullet} is exact, then so is $\operatorname{Hom}_{R}\left(M^{\bullet}, E(\sigma)\right)$ by Lemma 4.1. By the usual argument on double complexes, if M^{\bullet} is bounded and exact, and I^{\bullet} is bounded and each I^{i} is injective, then $\underline{\operatorname{Hom}}_{R}^{\bullet}\left(M^{\bullet}, I^{\bullet}\right)$ is exact.

Note that Σ is a meet-semilattice (see $[13, \S 3.3]$) as a poset if and only if, for any two cells $\sigma, \tau \in \Sigma$ with $\bar{\sigma} \cap \bar{\tau} \neq \emptyset$, there is a cell $\rho \in \Sigma$ with $\bar{\sigma} \cap \bar{\tau}=\bar{\rho}$. If Σ is a simplicial complex, or more generally, a polyhedral complex, then it is a meet-semilattice. If Σ is a meet-semilattice, for two cells $\sigma, \tau \in \Sigma$, either there is no upper bound for σ and τ (i.e., no cell $\rho \in \Sigma$ satisfies $\rho \geq \sigma$ and $\rho \geq \tau$), or there is the least element $\sigma \vee \tau$ in $\{\rho \in \Sigma \mid \rho \geq \sigma, \tau\}$ (cf. [13, Proposition 3.3.1]).

Assume that Σ is a meet-semilattice. Consider $\operatorname{Hom}_{R}\left(\operatorname{Re}_{\sigma}, N\right)_{\tau}$ for $N \in$ $\bmod _{R}$ and $\tau \in \Sigma$. If $\sigma \vee \tau$ exists, then we have $\underline{\operatorname{Hom}}_{R}\left(R e_{\sigma}, N\right)_{\tau}=N_{\sigma \vee \tau}$. Otherwise, there is no upper bound for σ and τ, and $\operatorname{Hom}_{R}\left(R e_{\sigma}, N\right)_{\tau}=0$. Hence the complex $\operatorname{Hom}_{R}\left(R e_{\sigma}, N^{\bullet}\right)$ is exact for an exact complex N^{\bullet}. Hence if N^{\bullet} is bounded and exact, and P^{\bullet} is bounded and each P^{i} is projective, then $\underline{\operatorname{Hom}}_{R}^{\bullet}\left(P^{\bullet}, N^{\bullet}\right)$ is exact.

By the above remarks, we have the following lemma (see [7, I.1.10] for the derived functor of a bifunctor).

Lemma 4.2. For $M^{\bullet}, N^{\bullet} \in D^{b}\left(\bmod _{R}\right)$, we have:
(1) If I^{\bullet} is an injective resolution of N^{\bullet}, then

$$
\mathbf{R} \underline{\operatorname{Hom}}_{R}\left(M^{\bullet}, N^{\bullet}\right) \cong \underline{\operatorname{Hom}}_{R}^{\bullet}\left(M^{\bullet}, I^{\bullet}\right)
$$

(2) If Σ is a meet-semilattice as a poset (e.g., Σ is a simplicial complex), then

$$
\mathbf{R} \underline{\operatorname{Hom}}_{R}\left(M^{\bullet}, N^{\bullet}\right) \cong \underline{\operatorname{Hom}}_{R}^{\bullet}\left(P^{\bullet}, N^{\bullet}\right)
$$

for a projective resolution P^{\bullet} of M^{\bullet}.
ExAmple 4.3. The additional assumption in Lemma 4.2 (2) is indeed necessary, that is, $\mathbf{R H o m}_{R}\left(M^{\bullet}, N^{\bullet}\right) \neq \underline{\operatorname{Hom}}_{R}^{\bullet}\left(P^{\bullet}, N^{\bullet}\right)$ in general.

For example, let X be a closed 2 dimensional disc, and Σ a regular cell decomposition of X consisting of one 2-cell (say, σ), two 1-cells (say, τ_{1}, τ_{2}), and two 0 -cells (say, ρ_{1}, ρ_{2}). Since $\bar{\tau}_{1} \cap \bar{\tau}_{2}=\rho_{1} \cup \rho_{2}, \Sigma$ is not a meet-semilattice.

Let N be a left R-module with $N=N_{\sigma}=k$. Then an injective resolution of N is of the form

$$
I^{\bullet}: 0 \rightarrow E(\sigma) \rightarrow E\left(\tau_{1}\right) \oplus E\left(\tau_{2}\right) \rightarrow E\left(\rho_{1}\right) \oplus E\left(\rho_{2}\right) \rightarrow E(\emptyset) \rightarrow 0
$$

We have

$$
\underline{\operatorname{Hom}}_{R}\left(R e_{\rho_{1}}, E(\sigma)\right)_{\rho_{2}}=\underline{\operatorname{Hom}}_{R}\left(R e_{\rho_{1}}, E\left(\tau_{1}\right)\right)_{\rho_{2}}=\underline{\operatorname{Hom}}_{R}\left(R e_{\rho_{1}}, E\left(\tau_{2}\right)\right)_{\rho_{2}}=k
$$

and

$$
\underline{\operatorname{Hom}}_{R}\left(R e_{\rho_{1}}, E\left(\rho_{1}\right)\right)_{\rho_{2}}=\underline{\operatorname{Hom}}_{R}\left(R e_{\rho_{1}}, E\left(\rho_{2}\right)\right)_{\rho_{2}}=0
$$

Thus $\underline{\operatorname{Ext}_{R}^{1}}\left(R e_{\rho_{1}}, N\right)_{\rho_{2}}=H^{1}\left(\underline{\operatorname{Hom}}\left(R e_{\rho_{1}}, I^{\bullet}\right)\right)_{\rho_{2}} \neq 0$, while $R e_{\rho_{1}}$ is a projective module.

Proposition 4.4. If $M^{\bullet} \in D^{b}\left(\bmod _{R}\right)$, then

$$
\mathbf{D}\left(M^{\bullet}\right) \cong \mathbf{R H o m}_{R}\left(M^{\bullet}, \mathbf{D}\left(R e_{\emptyset}\right)\right)
$$

Proof. Since $\mathbf{D}\left(R e_{\emptyset}\right)$ is of the form

$$
0 \rightarrow D^{-d} \rightarrow D^{-d+1} \rightarrow \cdots \rightarrow D^{1} \rightarrow 0
$$

with $D^{i}=\bigoplus_{\operatorname{dim} \sigma=-i} E(\sigma)$, the assertion follows from Lemmas 4.1 and 4.2.

Since $\left(R e_{\emptyset}\right)^{\dagger} \cong \underline{k}_{X}$, we have $\mathcal{D}_{X}^{\bullet} \cong \mathbf{D}\left(\underline{k}_{X}\right) \cong \mathbf{D}\left(R e_{\emptyset}\right)^{\dagger}$ by Proposition 4.4.
If $\mathcal{F}, \mathcal{G} \in \operatorname{Sh}_{c}(X)$, then it is easy to see that $\mathcal{H o m}(\mathcal{F}, \mathcal{G}) \in \operatorname{Sh}_{c}(X)$. For $M, N \in \bmod _{R}$ and $\emptyset \neq \sigma \in \Sigma$, we have

$$
\begin{aligned}
\mathcal{H o m}\left(M^{\dagger}, N^{\dagger}\right)\left(U_{\sigma}\right) & =\operatorname{Hom}_{\operatorname{Sh}\left(U_{\sigma}\right)}\left(\left.M^{\dagger}\right|_{U_{\sigma}},\left.N^{\dagger}\right|_{U_{\sigma}}\right) \cong \operatorname{Hom}_{R}\left(M_{\geq \sigma}, N_{\geq \sigma}\right) \\
& =\operatorname{Hom}_{R}\left(M_{\geq \sigma}, N\right)=\underline{\operatorname{Hom}}_{R}(M, N)_{\sigma}
\end{aligned}
$$

Hence

$$
\underline{\operatorname{Hom}}_{R}(M, N)^{\dagger} \cong \mathcal{H o m}\left(M^{\dagger}, N^{\dagger}\right)
$$

For $\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet} \in D^{b}\left(\operatorname{Sh}_{c}(X)\right)$, it is known that $\mathbf{R} \mathcal{H o m}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}\right) \in D^{b}\left(\operatorname{Sh}_{c}(X)\right)$ (see [7, Proposition 8.4.10]). Thus we can use an injective resolution of \mathcal{G}^{\bullet} in $D^{b}\left(\operatorname{Sh}_{c}(X)\right)$ to compute $\mathbf{R} \mathcal{H o m}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}\right)$. If I^{\bullet} is an injective resolution of $N^{\bullet} \in D^{b}\left(\bmod _{R}\right)$, then $\left(I^{\bullet}\right)^{\dagger}$ is an injective resolution of $\left(N^{\bullet}\right)^{\dagger}$ in $D^{b}\left(\operatorname{Sh}_{c}(X)\right)$. Hence we have the following.

Proposition $4.5\left(\left[11\right.\right.$, Theorem 5.2.5]). If $M^{\bullet}, N^{\bullet} \in D^{b}\left(\bmod _{R}\right)$, then

$$
\mathbf{R} \underline{\operatorname{Hom}}_{R}\left(M^{\bullet}, N^{\bullet}\right)^{\dagger} \cong \mathbf{R} \mathcal{H o m}\left(\left(M^{\bullet}\right)^{\dagger},\left(N^{\bullet}\right)^{\dagger}\right)
$$

By Lemma 4.2 (2), if Σ is a meet-semilattice, then $\mathbf{R} \mathcal{H o m}\left(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}\right)$ for $\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet} \in D^{b}\left(\operatorname{Sh}_{c}(X)\right)$ can be computed using a projective resolution of \mathcal{F}^{\bullet} in $D^{b}\left(\operatorname{Sh}_{c}(X)\right)$.

Remark 4.6. (1) Let J be the left ideal of R generated by $\left\{e_{\sigma, \emptyset} \mid \sigma \neq\right.$ $\emptyset\}$. Note that $J^{\dagger} \cong \underline{k}_{X}$. Then we have that $\underline{\operatorname{Hom}}_{R}(J, M)^{\dagger} \cong M^{\dagger}$ and $\underline{\operatorname{Hom}}_{R}(J, M)_{\emptyset} \cong \Gamma\left(X, M^{\dagger}\right)$. Moreover, we have $\underline{\operatorname{Ext}}_{R}^{i}(J, M)=\underline{\operatorname{Ext}}_{R}^{i}(J, M)_{\emptyset} \cong$ $H^{i}\left(X, M^{\dagger}\right)$ for all $i \geq 1$ by an argument similar to that in the proof of Theorem 2.2.
(2) Let $\bmod _{\emptyset}$ be the full subcategory of $\bmod _{R}$ consisting of modules M with $M_{\sigma}=0$ for all $\sigma \neq \emptyset$. Then $\bmod _{\emptyset}$ is a dense subcategory of $\bmod _{R}$. That is, for a short exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ in $\bmod _{R}, M$ is in $\bmod _{\emptyset}$ if and only if M^{\prime} and $M^{\prime \prime}$ are in $\bmod _{\emptyset}$. So we have the quotient category $\bmod _{R} / \bmod _{\emptyset}$ by [10, Theorem 4.3.3]. Let $\pi: \bmod _{R} \rightarrow \bmod _{R} / \bmod _{\emptyset}$ be the canonical functor. It is easy to see that $\pi(M) \cong \pi\left(M^{\prime}\right)$ if and only if $M_{>\emptyset} \cong M_{>\emptyset}^{\prime}$. Moreover, we have $\operatorname{Sh}_{c}(X) \cong \bmod _{R} / \bmod _{\emptyset}$.

Let the notation be as in (1) of this remark. Then $\underline{\operatorname{Hom}}_{R}(J,-)$ gives a functor $\eta: \bmod _{R} / \bmod _{\emptyset} \rightarrow \bmod _{R}$ with $\pi \circ \eta=\mathrm{Id}$. Moreover, η is a section functor (cf. $[10, \S 4.4]$) and $\bmod _{\emptyset}$ is a localizing subcategory of $\bmod _{R}$.

Let $A=\bigoplus_{i \geq 0} A_{i}$ be a commutative Noetherian homogeneous k-algebra as in Remark $2.3(2)$ and Gr_{A} the category of graded A-modules. We say $M \in$ Gr_{A} is a torsion module if for all $x \in M$ there is some $i \in \mathbb{N}$ with $A_{\geq i} \cdot x=0$. Let Tor_{A} be the full subcategory of Gr_{A} consisting of torsion modules. Clearly, Tor_{A} is dense in Gr_{A}. It is well known that the category $\mathrm{Qco}(Y)$ of quasicoherent sheaves on the projective scheme $Y:=\operatorname{Proj} A$ is equivalent to the quotient category $\operatorname{Gr}_{A} / \operatorname{Tor}_{A}$, and we have the section functor $\mathrm{Qco}(Y) \rightarrow \mathrm{Gr}_{A}$ given by $\mathcal{F} \mapsto \bigoplus_{i \in \mathbb{Z}} H^{0}(Y, \mathcal{F}(i))$. So Tor_{A} is a localizing subcategory of Gr_{A}. In this sense, our $\operatorname{Sh}_{c}(X) \cong \bmod _{R} / \bmod _{\emptyset}$ is a small imitation of $\mathrm{Qco}(Y) \cong$ $\mathrm{Gr}_{A} / \operatorname{Tor}_{A}$.

5. Cohomologies of sheaves on open subsets

Let $\Psi \subset \Sigma$ be an order filter of the poset Σ. That is, $\sigma \in \Psi, \tau \in \Sigma$, and $\tau \geq \sigma$ imply $\tau \in \Psi$. Then $U_{\Psi}:=\bigcup_{\sigma \in \Psi} \sigma$ is an open subset of X. If $M \in \bmod _{R}, M_{\Psi}:=\bigoplus_{\sigma \in \Psi} M_{\sigma}$ is a submodule of M. It is easy to see that $\left(M_{\Psi}\right)^{\dagger} \cong j!j^{*} M^{\dagger}$, where $j: U_{\Psi} \rightarrow X$ is the embedding map. If $\Psi=\{\tau \mid$ $\tau \geq \sigma\}$ for some $\sigma \in \Sigma$, then U_{Ψ} and M_{Ψ} are denoted by U_{σ} and $M_{\geq \sigma}$, respectively.

LEMMA 5.1. Let $\Psi \subset \Sigma$ be an order filter with $\Psi \not \supset \emptyset$. Then we have the following isomorphisms for all $i \in \mathbb{Z}$ and $M \in \bmod _{R}$.
(1) $H_{\emptyset}^{i+1}\left(M_{\Psi}\right) \cong H_{c}^{i}\left(U_{\Psi},\left.M^{\dagger}\right|_{U_{\Psi}}\right)$ for all i.
(2) $\operatorname{Ext}_{R}^{i}\left(M, \omega^{\bullet}\right)_{\sigma} \cong H_{\emptyset}^{-i+1}\left(M_{\geq \sigma}\right)^{\vee} \cong H_{c}^{-i}\left(U_{\sigma},\left.M^{\dagger}\right|_{U_{\sigma}}\right)^{\vee}$ for all $\emptyset \neq$ $\sigma \in \Sigma$.

Proof. (1) We have

$$
H_{\emptyset}^{i+1}\left(M_{\Psi}\right) \cong H^{i}\left(X,\left(M_{\Psi}\right)^{\dagger}\right) \cong H^{i}\left(X, j!j^{*} M^{\dagger}\right) \cong H_{c}^{i}\left(U_{\Psi},\left.M^{\dagger}\right|_{U_{\Psi}}\right)
$$

Here, by Remark 2.3 (1), the first isomorphism holds even if $i=0$.
(2) By the description of $\mathbf{D}(M)$, we have $\mathbf{D}(M)_{\sigma} \cong \mathbf{D}\left(M_{\geq \sigma}\right)_{\emptyset}$. Hence we have
$\operatorname{Ext}_{R}^{i}\left(M, \omega^{\bullet}\right)_{\sigma} \cong \operatorname{Ext}_{R}^{i}\left(M_{\geq \sigma}, \omega^{\bullet}\right)_{\emptyset} \cong H_{\emptyset}^{-i+1}\left(M_{\geq \sigma}\right)^{\vee} \cong H_{c}^{-i}\left(U_{\sigma},\left.M^{\dagger}\right|_{U_{\sigma}}\right)^{\vee}$.
Here the second isomorphism follows from Corollary 3.5.
Proposition 5.2. For any $\sigma \in \Sigma, \mathbf{D}\left(R e_{\sigma}\right)^{\dagger} \cong \mathbf{R} j_{*} \mathcal{D}_{U_{\sigma}}^{\bullet}$, where $j: U_{\sigma} \rightarrow$ X is the embedding map. In particular, $\mathbf{D}\left(R e_{\emptyset}\right)^{\dagger} \cong \mathcal{D}_{X}^{\bullet}$.

Proof. Set $U:=U_{\sigma}$. Since $\left(R e_{\sigma}\right)^{\dagger} \cong j!\underline{k}_{U}$, we have

$$
\begin{array}{rlr}
\mathbf{D}\left(R e_{\sigma}\right)^{\dagger} & \cong \mathbf{R} \mathcal{H o m}\left(j!\underline{k}_{U}, \mathcal{D}_{X}^{\bullet}\right) & \text { (by Theorem 3.2) } \\
& \cong \mathbf{R} j_{*} \mathbf{R} \mathcal{H o m}\left(\underline{k}_{U}, j^{*} \mathcal{D}_{X}^{\bullet}\right) & (\text { by }[6, \text { VII. Theorem 5.2]) } \\
& \cong \mathbf{R} j_{*} \mathbf{R} \mathcal{H o m}\left(\underline{k}_{U}, \mathcal{D}_{U}^{\bullet}\right) \cong \mathbf{R} j_{*} \mathcal{D}_{U}^{\bullet} . &
\end{array}
$$

Motivated by Lemma 5.1, we give a formula for the ordinary (not compact support) cohomology $H^{i}\left(U_{\Psi},\left.M^{\dagger}\right|_{U_{\Psi}}\right)$.

Theorem 5.3. Let $\Psi \subset \Sigma$ be an order filter with $\Psi \not \supset \emptyset$. We have

$$
H^{i}\left(U_{\Psi},\left.M^{\dagger}\right|_{U_{\Psi}}\right) \cong\left[\operatorname{Ext}_{R}^{i}\left(\mathbf{D}(M)_{\Psi}, \omega^{\bullet}\right)\right]_{\emptyset}
$$

for all $i \in \mathbb{N}$ and $M \in \bmod _{R}$.
Proof. For simplicity set $U:=U_{\Psi}$. Let $\mathcal{F}^{\bullet} \in D^{b}(\operatorname{Sh}(U))$. Taking a complex in the isomorphic class of \mathcal{F}^{\bullet}, we may assume that each component \mathcal{F}^{i} is a direct sum of sheaves of the form $h_{!} \underline{k}_{V}$, where V is an open subset of U with the embedding map $h: V \rightarrow U$ (see [6, II. Proposition 7.4]). Since each
component \mathcal{D}_{U}^{i} of $\mathcal{D}_{U}^{\bullet}$ is an injective sheaf, $h^{*} \mathcal{D}_{U}^{i}$ is also injective by $[6, \mathrm{II}$. Corollary 6.10], and we have

$$
\mathcal{H o m}\left(h_{!} \underline{k}_{V}, \mathcal{D}_{U}^{i}\right) \cong \mathbf{R} h_{*} \mathbf{R} \mathcal{H o m}\left(\underline{k}_{V}, h^{*} \mathcal{D}_{U}^{i}\right) \cong \mathbf{R} h_{*}\left(h^{*} \mathcal{D}_{U}^{i}\right) \cong h_{*} h^{*} \mathcal{D}_{U}^{i}
$$

by [6, VII, Theorem 5.2]. Since the sheaf $h_{*} h^{*} \mathcal{D}_{U}^{i}$ is flabby, $\mathcal{H o m}^{\bullet}\left(\mathcal{F}^{\bullet}, \mathcal{D}_{U}^{\bullet}\right)$ is a complex of flabby sheaves. Hence we have

$$
\begin{aligned}
\operatorname{Ext}_{\operatorname{Sh}(U)}^{i}\left(\mathcal{F}^{\bullet}, \mathcal{D}_{U}^{\bullet}\right) & \cong H^{i}\left(\Gamma\left(U, \mathcal{H o m}^{\bullet}\left(\mathcal{F}^{\bullet}, \mathcal{D}_{U}^{\bullet}\right)\right)\right. \\
& \cong \mathbf{R}^{i} \Gamma\left(U, \mathbf{R} \mathcal{H o m}\left(\mathcal{F}^{\bullet}, \mathcal{D}_{U}^{\bullet}\right)\right)
\end{aligned}
$$

Since $\left.\mathbf{R} \mathcal{H o m}\left(\mathbf{R} \mathcal{H o m}\left(\left.M^{\dagger}\right|_{U}, \mathcal{D}_{U}^{\bullet}\right), \mathcal{D}_{U}^{\bullet}\right) \cong M^{\dagger}\right|_{U}$ in $D^{b}(\operatorname{Sh}(U))$, we have

$$
\begin{array}{rlr}
H^{i}\left(U,\left.M^{\dagger}\right|_{U}\right) & \cong \mathbf{R}^{i} \Gamma\left(U, \mathbf{R} \mathcal{H o m}\left(\mathbf{R} \mathcal{H o m}\left(\left.M^{\dagger}\right|_{U}, \mathcal{D}_{U}^{\bullet}\right), \mathcal{D}_{U}^{\bullet}\right)\right) \\
& \cong \operatorname{Ext}_{\operatorname{Sh}(U)}^{i}\left(\mathbf{R H o m}\left(\left.M^{\dagger}\right|_{U}, \mathcal{D}_{U}^{\bullet}\right), \mathcal{D}_{U}^{\bullet}\right) \\
& \cong \mathbf{R}^{-i} \Gamma_{c}\left(U, \mathbf{R} \mathcal{H o m}\left(\left.M^{\dagger}\right|_{U}, \mathcal{D}_{U}^{\bullet}\right)\right)^{\vee} \quad(\text { by }[6, \mathrm{~V}, \text { Theorem 2.1]) } \\
& \cong \mathbf{R}^{-i} \Gamma_{c}\left(U,\left.\mathbf{R} \mathcal{H o m}\left(M^{\dagger}, \mathcal{D}_{X}^{\bullet}\right)\right|_{U}\right)^{\vee} \\
& \cong \mathbf{R}^{-i} \Gamma_{c}\left(U,\left.\mathbf{D}(M)^{\dagger}\right|_{U}\right)^{\vee} \\
& \cong \mathbf{R}^{-i+1} \Gamma_{\emptyset}\left(U, \mathbf{D}(M)_{\Psi}\right)^{\vee} & \\
& \cong\left(\operatorname{Ext}_{R}^{i}\left(\mathbf{D}(M)_{\Psi}, \omega^{\bullet}\right)_{\emptyset}\right) & \quad \text { (by Lemma 5.1) } \\
\quad \text { (by Corollary 3.5). }
\end{array}
$$

Example 5.4. Assume that X is a d-dimensional manifold (in this paper, the word "manifold" always means a manifold with or without boundary, as in [6]) and $\Psi \subset \Sigma$ is an order filter with $\Psi \nexists \emptyset$. We denote the orientation sheaf of X over k (cf. [6, V. $\S 3])$ by or $_{X}$. Thus we have or ${ }_{X}[d] \cong \mathcal{D}_{X}^{\bullet}$ in $D^{b}(\operatorname{Sh}(X))$. Let $U:=U_{\Psi}$ be an open subset with the embedding map $j: U \rightarrow X$. We have

$$
\left(\mathbf{D}\left(R e_{\emptyset}\right)_{\Psi}\right)^{\dagger} \cong j!j^{*} \mathbf{D}\left(R e_{\emptyset}\right)^{\dagger} \cong j!j^{*} \mathcal{D}_{X}^{\bullet} \cong j!\mathcal{D}_{U}^{\bullet} \cong\left(j!o r_{U}\right)[d]
$$

Thus

$$
\left[\operatorname{Ext}_{R}^{i}\left(\mathbf{D}\left(R e_{\emptyset}\right)_{\Psi}, \omega^{\bullet}\right)\right]_{\emptyset} \cong H_{\emptyset}^{-i+1}\left(\mathbf{D}\left(R e_{\emptyset}\right)_{\Psi}\right)^{\vee} \cong H_{c}^{d-i}\left(U, o r_{U}\right)^{\vee}
$$

But we have $H^{i}(U ; k) \cong H_{c}^{d-i}\left(U, \text { or }_{U}\right)^{\vee}$ by the Poincaré duality. So equality in Theorem 5.3 can actually hold.

For a finite poset P, the order complex $\Delta(P)$ is the set of chains of P. Recall that a subset C of P is a chain if any two elements of C are comparable. Obviously, $\Delta(P)$ is an (abstract) simplicial complex. The geometric realization of the order complex $\Delta\left(\Sigma^{\prime}\right)$ of $\Sigma^{\prime}:=\Sigma \backslash \emptyset$ is homeomorphic to the underlying space X of Σ.

We say a finite regular cell complex Σ is Cohen-Macaulay (resp. Buchsbaum) over k if $\Delta\left(\Sigma^{\prime}\right)$ is Cohen-Macaulay (resp. Buchsbaum) over k in the sense of $[12, \mathrm{II} . \S \S 3-4]$ (resp. [12, II.§8]). (If Σ is a simplicial complex, we can use Σ directly instead of $\Delta\left(\Sigma^{\prime}\right)$.) These are topological properties of the
underlying space X. In fact, Σ is Buchsbaum if and only if $\mathcal{H}^{i}\left(\mathcal{D}_{X}^{\bullet}\right)=0$ for all $-i \neq d:=\operatorname{dim} X$ (see [17, Corollary 4.7]). For example, if X is a manifold, Σ is Buchsbaum. Similarly, Σ is Cohen-Macaulay if and only if it is Buchsbaum and $\tilde{H}^{i}(X ; k)=0$ for all $i<d$.

We have

$$
H^{i}\left(\mathbf{D}\left(R_{\emptyset}\right)\right)_{\emptyset}=\operatorname{Ext}_{R}^{i}\left(\operatorname{Re}_{\emptyset}, \omega^{\bullet}\right)_{\emptyset} \cong H_{\emptyset}^{-i+1}\left(R_{\emptyset}\right)^{\vee} \cong \tilde{H}^{-i}(X ; k)^{\vee}
$$

for all $i \in \mathbb{Z}$ by Corollary 3.5 and Theorem 2.2. Recall that $\mathbf{D}\left(R e_{\emptyset}\right)^{\dagger} \cong \mathcal{D}_{X}^{\bullet}$. So $H^{i}\left(\mathbf{D}\left(R e_{\emptyset}\right)\right)=0$ for all $i \neq-d$ if and only if X is Cohen-Macaulay over k. In general, $H^{i}\left(\omega^{\bullet}\right)^{\dagger}$ can be non-zero for some $i \neq-d$ even if X is Cohen-Macaulay. For example, let X be a closed 2 -dimensional disc, and Σ the regular cell decomposition of X given in Example 4.3. Then the " $\rho_{1}-\rho_{2}$ component" $\left(\omega^{\bullet}\right)_{\rho_{2}}^{\rho_{1}}$ of ω^{\bullet} is of the form

$$
0 \rightarrow E(\sigma)_{\rho_{2}}^{\rho_{1}} \rightarrow E\left(\tau_{1}\right)_{\rho_{2}}^{\rho_{1}} \oplus E\left(\tau_{2}\right)_{\rho_{2}}^{\rho_{1}} \rightarrow 0
$$

Thus $H^{-1}\left(\omega^{\bullet}\right)_{\rho_{2}}^{\rho_{1}} \neq 0$, while X is Cohen-Macaulay. However, we have the following result.

Proposition 5.5. Assume that Σ is a meet-semilattice as a poset (e.g., Σ is a simplicial complex). Then we have:
(1) $H^{i}\left(\omega^{\bullet}\right)=0$ for all $i \neq-d$ if and only if Σ is Cohen-Macaulay over k.
(2) $H^{i}\left(\omega^{\bullet}\right)^{\dagger}=0$ for all $i \neq-d$ if and only if Σ is Buchsbaum over k.

Proof. (1) Since $\omega^{\bullet} \cong \mathbf{D}(R) \cong \bigoplus_{\sigma \in \Sigma} \mathbf{D}\left(R e_{\sigma}\right)$, the "only if" part is clear by the argument preceding the proposition. To prove the "if" part, we assume that Σ is Cohen-Macaulay. Set $\Omega:=H^{-d}\left(\mathbf{D}\left(R e_{\emptyset}\right)\right)$. Then $\Omega[d] \cong \mathbf{D}\left(R e_{\emptyset}\right)$ in $D^{b}\left(\bmod _{R}\right)$. By Proposition 4.4, we have $\mathbf{D}\left(R e_{\sigma}\right) \cong \operatorname{RHom}_{R}\left(R e_{\sigma}, \Omega[d]\right)$. Since $R e_{\sigma}$ is a projective module, we have $\operatorname{Ext}_{R}^{i}\left(R e_{\sigma}, \Omega\right)=0$ for all $i>0$ by Lemma 4.2. Thus $H^{i}\left(\mathbf{D}\left(R e_{\sigma}\right)\right)=0$ for all $i \neq-d$.
(2) Similar to (1).

Remark 5.6. By [17, Proposition 4.10], Proposition 5.5 (1) states that if Σ is a Cohen-Macaulay simplicial complex, the relative simplicial complex ($\left.\Sigma, \operatorname{del}_{\Sigma}(\sigma)\right)$ is Cohen-Macaulay in the sense of $[12$, III. $§ 7]$ for all $\sigma \in \Sigma$. Here $\operatorname{del}_{\Sigma}(\sigma):=\{\tau \in \Sigma \mid \tau \nsupseteq \sigma\}$ is a subcomplex of Σ.

Example 5.7. (1) We say that a finite regular cell complex Σ of dimension d is Gorenstein* over k (see [12, p. 67]), if the order complex $\Delta:=\Delta\left(\Sigma^{\prime}\right)$ of $\Sigma^{\prime}:=\Sigma \backslash \emptyset$ is Cohen-Macaulay over k (that is, $\tilde{H}_{i}\left(\mathrm{lk}_{\Delta} \sigma ; k\right)=0$ for all $\sigma \in \Sigma$ and all $i \neq d-\operatorname{dim} \sigma-1$; see [12, II. Corollary 4.2]) and $\tilde{H}_{d-\operatorname{dim} \sigma-1}\left(\mathrm{lk}_{\Delta} \sigma ; k\right)=$ k for all $\sigma \in \Delta$. (If Σ is a simplicial complex, we can use Σ directly instead of Δ.) This is a topological property of the underlying space X. For example, if X is homeomorphic to a d-dimensional sphere, then Σ is Gorenstein* (over
any k). Note that Σ is Gorenstein* over k if and only if it is Cohen-Macaulay over k and Eulerian (cf. [13]) as a poset.

It is easy to see that $\mathbf{D}\left(R e_{\emptyset}\right) \cong\left(R e_{\emptyset}\right)[d]$ in $D^{b}\left(\bmod _{R}\right)$ if and only if X is Gorenstein*. If Σ is a Gorenstein* simplicial complex, then $\omega^{\bullet} \cong \Omega[d]$ for some $\Omega \in \bmod _{R \otimes_{k} R}$ by Proposition 5.5. Moreover, we can describe Ω explicitly. In fact, Ω has a k-basis $\left\{e_{\tau}^{\sigma} \mid \sigma, \tau \in \Sigma, \sigma \cup \tau \in \Sigma\right\}$ and its module structure is defined by

$$
\left(e_{\sigma^{\prime}, \tau^{\prime}} \otimes 1\right) \cdot e_{\rho}^{\tau}= \begin{cases}e_{\sigma^{\prime}}^{\tau} & \text { if } \tau^{\prime}=\rho \text { and } \sigma^{\prime} \cup \tau \in \Sigma \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\left(1 \otimes e_{\sigma^{\prime}, \tau^{\prime}}\right) \cdot e_{\rho}^{\tau}= \begin{cases}e_{\rho}^{\sigma^{\prime}} & \text { if } \tau^{\prime}=\tau \text { and } \sigma^{\prime} \cup \rho \in \Sigma \\ 0 & \text { otherwise }\end{cases}
$$

To check this, note that the " $\tau-\rho$ component" $\left(\omega^{\bullet}\right)_{\rho}^{\tau}$ of $\omega^{\bullet}=\left\langle e(\sigma)_{\rho}^{\tau} \mid \sigma \geq \tau, \rho\right\rangle$ is isomorphic to $\tilde{C}_{-n-\bullet}\left(\operatorname{lk}_{\Sigma}(\tau \cup \rho)\right)$ as a complex of k-vector spaces, where $\tilde{C}_{\bullet}\left(\operatorname{lk}_{\Sigma}(\tau \cup \rho)\right)$ is the augmented chain complex of $\operatorname{lk}_{\Sigma}(\tau \cup \rho)$ and $n=\operatorname{dim}(\tau \cup$ $\rho)+1$. So the description follows from the Gorenstein* property of Σ. It is easy to see that $\mathbf{D}\left(R e_{\sigma}\right) \cong\left\langle e_{\tau}^{\sigma} \mid \tau \in \operatorname{st}_{\Sigma} \sigma\right\rangle$. So we have $\mathbf{R} j_{*} \mathcal{D}_{U_{\sigma}}^{\bullet} \cong j_{*} \underline{k}_{U_{\sigma}}[d]$, where $j: U_{\sigma} \rightarrow X$ is the embedding map $\left(j_{*} \underline{k}_{U_{\sigma}}\right.$ is essentially the constant sheaf on the closure \bar{U}_{σ} of U_{σ}).
(2) Let Σ be a finite simplicial complex of dimension d, and V the set of its vertices. Assume that Σ is Gorenstein in the sense of [12, II.§5]. Then there is a subset $W \subset V$ and a Gorenstein* simplicial complex $\Delta \subset 2^{V \backslash W}$ such that $\Sigma=2^{W} * \Delta$, where " $*$ " stands for the simplicial join. (The Gorenstein property depends on the particular simplicial decomposition of X.) Since a Gorenstein simplicial complex is Cohen-Macaulay, there is $\Omega \in \bmod _{R \otimes_{k} R}$ such that $\omega^{\bullet} \cong \Omega[d]$. By an argument similar to (1), Ω has a k-basis $\left\{e_{\tau}^{\sigma} \mid \sigma \cup \tau \in\right.$ $\Sigma, \sigma \cup \tau \supset W\}$ and its left $R \otimes_{k} R$-module structure is obtained in a similar way as in (1).

Assume that Σ is the d-simplex 2^{V}. Then Σ is Gorenstein and Ω has a k-basis $\left\{e_{\tau}^{\sigma} \mid \sigma \cup \tau=V\right\}$. Moreover, we have a ring isomorphism given by φ : $R \ni e_{\sigma, \tau} \mapsto e_{\tau^{c}, \sigma^{c}} \in R^{\mathrm{op}}$, where R^{op} is the opposite ring of R, and $\sigma^{\mathrm{c}}:=V \backslash \sigma$. Thus R has a left ($R \otimes_{k} R$)-module structure given by $(x \otimes y) \cdot r=x \cdot r \cdot \varphi(y)$. Then a map given by $R \ni e_{\sigma, \tau} \mapsto e_{\sigma}^{\tau^{c}} \in \Omega$ is an isomorphism of $(R \otimes R)$ modules. So R is an Auslander regular ring in this case. See [18, Remark 3.3].
(3) Assume that Σ is a simplicial complex and X is a d-dimensional manifold which is orientable (i.e., or ${ }_{X} \cong \underline{k}_{X}$) and connected. Then $H^{i}\left(\omega^{\bullet}\right)^{\dagger}=0$ for all $i \neq-d$. It is easy to see that $\Omega:=H^{-d}\left(\omega^{\bullet}\right) \in \bmod _{R \otimes_{k} R}$ has a k-basis $\left\{e_{\tau}^{\sigma} \mid \sigma \cup \tau \in \Sigma\right\}$ and the module structure is give by the same way as (1).

6. The Möbius function of the poset $\hat{\Sigma}$

The Möbius function of a finite poset P is a function

$$
\mu:\{(x, y) \mid x \leq y \text { in } P\} \rightarrow \mathbb{Z}
$$

recursively defined by $\mu(x, x)=1$ for all $x \in P$ and $\mu(x, y)=-\sum_{x \leq z<y} \mu(x, z)$ for all $x, y \in P$ with $x<y$. See [13, Chapter 3] for a general theory of this function.

For a finite regular cell complex Σ, let $\hat{\Sigma}$ be the poset obtained from Σ by adjoining the greatest element $\hat{1}$ (even if Σ already possess a greatest element, we add a new one). Then the Möbius function μ of $\hat{\Sigma}$ has a topological meaning. For example, we have $\mu(\emptyset, \hat{1})=\tilde{\chi}(X)$, where $\tilde{\chi}(X)$ is the reduced Euler characteristic $\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{k} \tilde{H}^{i}(X ; k)$ of X. When the underlying space X is a manifold, the Möbius function of $\hat{\Sigma}$ is completely determined in [13, Proposition 3.8.9]. Here we study the general case.

For $\sigma \in \Sigma$ with $\operatorname{dim} \sigma>0,\left\{\sigma^{\prime} \in \Sigma \mid \sigma^{\prime}<\sigma\right\}$ is a regular cell decomposition of $\bar{\sigma}-\sigma$ which is homeomorphic to a sphere of dimension $\operatorname{dim} \sigma-1$. Hence we have $\mu(\tau, \sigma)=(-1)^{l(\tau, \sigma)}$ for $\tau \in \Sigma$ with $\tau \leq \sigma$ by [13, Proposition 3.8.9], where $l(\tau, \sigma):=\operatorname{dim} \sigma-\operatorname{dim} \tau$. So it remains to describe $\mu(\sigma, \hat{1})$ for $\sigma \neq \emptyset$.

Proposition 6.1. For a cell $\emptyset \neq \sigma \in \Sigma$ with $j:=\operatorname{dim} \sigma$, we have

$$
\mu(\sigma, \hat{1})=\sum_{i \geq j}(-1)^{i-j+1} \operatorname{dim}_{k} H_{c}^{i}\left(U_{\sigma} ; k\right)
$$

Here $H_{c}^{i}\left(U_{\sigma} ; k\right)$ is the cohomology with compact support of the open set $U_{\sigma}=$ $\bigcup_{\rho \geq \sigma} \rho$ of X.

Proof. The assertion follows from the following computation:

$$
\begin{aligned}
\mu(\sigma, \hat{1}) & =-\sum_{\rho \in \Sigma, \rho \geq \sigma} \mu(\sigma, \rho) \\
& =\sum_{i \geq j}(-1)^{i-j+1} \cdot \#\{\rho \in \Sigma \mid \rho \geq \sigma, \operatorname{dim} \rho=i\} \\
& =\sum_{i \geq j}(-1)^{i-j+1} \operatorname{dim}_{k} \mathcal{H}^{-i}\left(\mathcal{D}_{X}^{\bullet}\right)\left(U_{\sigma}\right) \\
& =\sum_{i \geq j}(-1)^{i-j+1} \operatorname{dim}_{k} H_{c}^{i}\left(U_{\sigma} ; k\right)
\end{aligned}
$$

Here the second equality follows from the fact that $\mu(\sigma, \rho)=(-1)^{l(\sigma, \rho)}$; the third equality follows from $\mathcal{D}_{X}^{\bullet} \cong \mathbf{D}\left(R e_{\emptyset}\right)^{\dagger}$ and the description of $\mathbf{D}\left(R e_{\emptyset}\right)$ (recall also that $\left.M^{\dagger}\left(U_{\sigma}\right) \cong M_{\sigma}\right)$; and the last equality follows from the Verdier duality.

Assume that X is a manifold of dimension d. If $\sigma \neq \emptyset$ is contained in the boundary of X, then U_{σ} is homeomorphic to $\left(\mathbb{R}^{d-1} \times \mathbb{R}_{\geq 0}\right)$ and $H_{c}^{i}\left(U_{\sigma} ; k\right)=0$ for all i. Thus $\mu(\sigma, \hat{1})=0$ in this case. If σ is not contained in the boundary of X, then U_{σ} is homeomorphic to \mathbb{R}^{d} and $H_{c}^{i}\left(U_{\sigma} ; k\right)=0$ for all $i \neq d$ and $H_{c}^{d}\left(U_{\sigma} ; k\right)=k$. Hence we have $\mu(\sigma, \hat{1})=(-1)^{d-\operatorname{dim} \sigma+1}$. So Proposition 6.1 recovers [13, Proposition 3.8.9].

7. Relation to Koszul duality

Let $A=\bigoplus_{i \geq 0} A_{i}$ be an \mathbb{N}-graded associative k-algebra such that $\operatorname{dim}_{k} A_{i}<$ ∞ for all i and $A_{0} \cong k^{n}$ for some $n \in \mathbb{N}$ as an algebra. Then $\mathfrak{r}:=\bigoplus_{i>0} A_{i}$ is the graded Jacobson radical. We say A is Koszul if a left A-module A / \mathfrak{r} admits a graded projective resolution

$$
\cdots \rightarrow P^{-2} \rightarrow P^{-1} \rightarrow P^{0} \rightarrow A / \mathfrak{r} \rightarrow 0
$$

such that P^{-i} is generated by its degree i component as an A-module (i.e., $P^{-i}=A P_{i}^{-i}$). If A is Koszul, it is a quadratic ring, and its quadratic dual ring $A^{!}$(see [1, Definition 2.8.1]) is Koszul again, and isomorphic to the opposite ring of the Yoneda algebra $\operatorname{Ext}_{A}^{\bullet}(A / \mathfrak{r}, A / \mathfrak{r})$.

Note that the incidence algebra R of Σ is a graded ring with $\operatorname{deg}\left(e_{\sigma, \sigma^{\prime}}\right)=$ $\operatorname{dim} \sigma-\operatorname{dim} \sigma^{\prime}$. So we can discuss the Koszul property of R.

Proposition 7.1 (cf. [18, Lemma 4.5]). The incidence algebra R of a finite regular cell complex Σ is always Koszul. Moreover, the quadratic dual ring $R^{!}$is isomorphic to $R^{\text {op }}$.

When Σ is a simplicial complex, the above result was proved by Polishchuk [8] in much wider context (but $\emptyset \notin \Sigma$ in his convention). More precisely, Polishchuk introduced a new partial order on the set $\Sigma \backslash \emptyset$ associated with a perversity function p, and constructed two rings from this new poset. Then he proved that these two rings are Koszul and quadratic dual rings of each other. Our rings R and $R^{\circ \mathrm{op}}$ correspond to the case when p is the top (or bottom) perversity. In the middle perversity case, Σ has to be a simplicial complex to make their rings Koszul.

Proof. By [9], [15], R is Koszul if and only if the order complex $\Delta(I)$ is Cohen-Macaulay over k for any open interval I of Σ. Set $\Sigma^{\prime}:=\Sigma \backslash \emptyset$. Note that $\Delta(I)=\mathrm{lk}_{\Delta\left(\Sigma^{\prime}\right)} F$ for some $F \in \Delta\left(\Sigma^{\prime}\right)$ containing a maximal cell $\sigma \in \Sigma$. Set $\Delta:=\operatorname{st}_{\Delta\left(\Sigma^{\prime}\right)} \sigma$. Then $\Delta(I)=\mathrm{lk}_{\Delta} F$. Since the underlying space of Δ is the closed disc $\bar{\sigma}, \Delta$ is Cohen-Macaulay. Hence $\mathrm{lk}_{\Delta} F$ is also. So R is Koszul.

Let

$$
T:=T_{R_{0}} R_{1}=R_{0} \oplus R_{1} \oplus\left(R_{1} \otimes_{R_{0}} R_{1}\right) \oplus \cdots=\bigoplus_{i \geq 0} R_{1}^{\otimes i}
$$

be the tensor ring of

$$
R_{1}=\left\langle e_{\sigma, \tau} \mid \sigma, \tau \in \Sigma, \sigma>\tau, \operatorname{dim} \sigma=\operatorname{dim} \tau+1\right\rangle
$$

over R_{0}. Then $R \cong T / I$, where

$$
I=\left(e_{\sigma, \rho_{1}} \otimes e_{\rho_{1}, \tau}-e_{\sigma, \rho_{2}} \otimes e_{\rho_{2}, \tau} \mid \sigma>\rho_{i}>\tau, \operatorname{dim} \sigma=\operatorname{dim} \tau+2\right)
$$

is a two-sided ideal. Let $R_{1}^{*}:=\operatorname{Hom}_{R_{0}}\left(R_{1}, R_{0}\right)$ be the dual of the left R_{0-} module R_{1}. Then R_{1}^{*} has a right R_{0}-module structure such that $(f a)(v)=$ $(f(v)) a$, and a left R_{0}-module structure such that $(a f)(v)=f(v a)$, where $a \in R_{0}, f \in R_{1}^{*}, v \in R_{1}$. As a left (or right) R_{0}-module, R_{1}^{*} is generated by $\left\{e_{\tau, \sigma}^{*} \mid \sigma>\tau, \operatorname{dim} \sigma=\operatorname{dim} \tau+1\right\}$, where $e_{\tau, \sigma}^{*}\left(e_{\sigma^{\prime}, \tau^{\prime}}\right)=\delta_{\sigma, \sigma^{\prime}} \cdot \delta_{\tau, \tau^{\prime}} \cdot e_{\sigma}$.

Let $T^{*}=T_{R_{0}} R_{1}^{*}$ be the tensor ring of R_{1}^{*}. Note that $e_{\tau, \sigma}^{*} \otimes e_{\tau^{\prime}, \sigma^{\prime}}^{*} \in R_{1}^{*} \otimes_{R_{0}}$ R_{1}^{*} is non-zero if and only if $\sigma=\tau^{\prime}$. We have that $\left(R_{1}^{*} \otimes_{R_{0}} R_{1}^{*}\right)$ is isomorphic to $\left(R_{1} \otimes_{R_{0}} R_{1}\right)^{*}=\operatorname{Hom}_{R_{0}}\left(R_{1} \otimes_{R_{0}} R_{1}, R_{0}\right)$ via $(f \otimes g)(v \otimes w)=g(v f(w))$, where $f, g \in R_{1}^{*}$ and $v, w \in R_{1}$. In particular, $\left(e_{\tau, \rho}^{*} \otimes e_{\rho, \sigma}^{*}\right)\left(e_{\sigma, \rho} \otimes e_{\rho, \tau}\right)=e_{\sigma}$. Recall that if $\sigma, \tau \in \Sigma, \sigma>\tau$ and $\operatorname{dim} \sigma=\operatorname{dim} \tau+2$, then there are exactly two cells $\rho_{1}, \rho_{2} \in \Sigma$ between σ and τ. So an easy computation shows that the quadratic dual ideal

$$
I^{\perp}=\left(f \in R_{1}^{*} \otimes R_{1}^{*} \mid f(v)=0 \text { for all } v \in I_{2} \subset R_{1} \otimes R_{1}=T_{2}\right) \subset T^{*}
$$

of I is equal to

$$
\left(e_{\tau, \rho_{1}}^{*} \otimes e_{\rho_{1}, \sigma}^{*}+e_{\tau, \rho_{2}}^{*} \otimes e_{\rho_{2}, \sigma}^{*} \mid \rho_{1} \neq \rho_{2}, \sigma>\rho_{i}>\tau, \operatorname{dim} \sigma=\operatorname{dim} \tau+2\right)
$$

The k-algebra homomorphism $R^{\mathrm{op}} \rightarrow R^{!}=T^{*} / I^{\perp}$ defined by the identity map on $R_{0}=T_{0}=\left(T^{*}\right)_{0}=\left(R^{!}\right)_{0}$ and $R_{1} \ni e_{\sigma, \tau} \mapsto \varepsilon(\sigma, \tau) \cdot e_{\tau, \sigma}^{*} \in R_{1}^{!}$is a graded isomorphism. Here ε is an incidence function of Σ.

Since $R^{!} \cong R^{\text {op }}, \operatorname{Hom}_{k}(-, k)$ gives duality functors $\mathbf{D}_{k}: \bmod { }_{R} \rightarrow \bmod _{R^{!}}$ and $\mathbf{D}_{k}^{\mathrm{op}}: \bmod _{R^{!}} \rightarrow \bmod _{R}$. These functors are exact, and they can be extended to duality functors between $D^{b}\left(\bmod _{R}\right)$ and $D^{b}\left(\bmod _{R^{!}}\right)$.

Note that $R^{!}$is a graded ring with $\operatorname{deg} e_{\tau, \sigma}^{*}=\operatorname{dim} \sigma-\operatorname{dim} \tau$. Let gr_{R} (resp. $\mathrm{gr}_{R^{!}}$) be the category of finitely generated graded left R-modules (resp. $R^{!}$-modules). Note that we can regard the functor \mathbf{D} (resp. \mathbf{D}_{k} and $\mathbf{D}_{k}^{\mathrm{op}}$) as a functor from $D^{b}\left(\operatorname{gr}_{R}\right)$ to itself (resp. $D^{b}\left(\operatorname{gr}_{R}\right) \rightarrow D^{b}\left(\operatorname{gr}_{R^{\prime}}\right)$ and $D^{b}\left(\operatorname{gr}_{R^{\prime}}\right) \rightarrow$ $\left.D^{b}\left(\operatorname{gr}_{R}\right)\right)$.

For each $i \in \mathbb{Z}$, let $\operatorname{gr}_{R}(i)$ be the full subcategory of gr_{R} consisting of modules M with $\operatorname{deg} M_{\sigma}=\operatorname{dim} \sigma-i$. For any $M \in \operatorname{gr}_{R}$, there are modules $M^{(i)} \in \operatorname{gr}_{R}(i)$ such that $M \cong \bigoplus_{i \in \mathbb{Z}} M^{(i)}$. The forgetful functor gives an equivalence $\operatorname{gr}_{R}(i) \cong \bmod _{R}$ for all $i \in \mathbb{Z}$, and $D^{b}\left(\operatorname{gr}_{R}(i)\right)$ is a full subcategory of $D^{b}\left(\operatorname{gr}_{R}\right)$. Similarly, let $\mathrm{gr}_{R^{!}}(i)$ be the full subcategory of $\mathrm{gr}_{R^{!}}$consisting of modules M with $\operatorname{deg} M_{\sigma}=-\operatorname{dim} \sigma-i$. The above mentioned facts on $\operatorname{gr}_{R}(i)$ also hold for $\mathrm{gr}_{R^{!}}(i)$.

Let $D F: D^{b}\left(\operatorname{gr}_{R}\right) \rightarrow D^{b}\left(\operatorname{gr}_{R^{!}}\right)$and $D G: D^{b}\left(\operatorname{gr}_{R^{!}}\right) \rightarrow D^{b}\left(\operatorname{gr}_{R}\right)$ be the functors defined in [1, Theorem 2.12.1]. Since R and $R^{!}$are Artinian, $D F$
and $D G$ give an equivalence $D^{b}\left(\operatorname{gr}_{R}\right) \cong D^{b}\left(\operatorname{gr}_{R^{!}}\right)$by the Koszul duality ([1, Theorem 2.12.6]).

For the case when Σ is a simplicial complex the following result was proved by Vybornov [14] (under the convention that $\emptyset \notin \Sigma$). Independently, the author also proved a similar result ([18, Theorem 4.7]).

Theorem 7.2 (cf. Vybornov, [14, Corollary 4.3.5]). Under the above notation, if $M^{\bullet} \in D^{b}\left(\operatorname{gr}_{R}(0)\right)$, then we have $D F\left(M^{\bullet}\right) \in D^{b}\left(\operatorname{gr}_{R^{!}}(0)\right)$. Similarly, if $N^{\bullet} \in D^{b}\left(\operatorname{gr}_{R^{\prime}}(0)\right)$, then $D G\left(N^{\bullet}\right) \in D^{b}\left(\operatorname{gr}_{R}(0)\right)$. Under the equivalence $\operatorname{gr}_{R}(0) \cong \bmod _{R}$ and $\operatorname{gr}_{R^{!}}(0) \cong \bmod _{R^{!}}$, we have $D F \cong \mathbf{D}_{k} \circ \mathbf{D}$ and $D G \cong \mathbf{D} \circ \mathbf{D}_{k}^{\mathrm{op}}$.

Proof. Recall that $\left(R^{!}\right)_{0}=R_{0}$. Let $N \in \bmod _{R^{!}}$. For the functor $D G$, we need the left R-module structure on $\operatorname{Hom}_{R_{0}}\left(R, N_{\sigma}\right)$ given by $(x f)(y):=f(y x)$. The R-homomorphism given by $\operatorname{Hom}_{R_{0}}\left(R, N_{\sigma}\right) \ni f \longmapsto \sum_{\tau \leq \sigma} e(\sigma)_{\tau} \otimes_{k}$ $f\left(e_{\sigma, \tau}\right) \in E(\sigma) \otimes_{k} N_{\sigma}$ gives an isomorphism $\operatorname{Hom}_{R_{0}}\left(R, N_{\sigma}\right) \cong \bar{E}(\sigma) \otimes_{k} N_{\sigma}$. Under this isomorphism, for cells $\tau<\sigma$, the morphism $\operatorname{Hom}_{R_{0}}\left(R, N_{\sigma}\right) \rightarrow$ $\operatorname{Hom}_{R_{0}}\left(R, N_{\tau}\right)$ given by $f \mapsto\left[x \mapsto e_{\tau, \sigma}^{*} f\left(e_{\sigma, \tau} x\right)\right]$ corresponds to the morphism $E(\sigma) \otimes_{k} N_{\sigma} \rightarrow E(\tau) \otimes_{k} N_{\tau}$ given by $e(\sigma)_{\rho} \otimes y \mapsto e(\tau)_{\rho} \otimes e_{\tau, \sigma}^{*} y$. (Here $e(\tau)_{\rho}=0$ if $\tau \nsupseteq \rho$.)

Let $N \in \mathrm{gr}_{R^{!}}$. By the explicit description of \mathbf{D} given in $\S 3$, we have

$$
\left(\mathbf{D} \circ \mathbf{D}_{k}^{\mathrm{op}}\right)^{i}(N)=\bigoplus_{\substack{\sigma \in \Sigma \\ \operatorname{dim} \sigma=-i}} E(\sigma) \otimes_{k} N_{\sigma}=\bigoplus_{\substack{\sigma \in \Sigma \\ \operatorname{dim} \sigma=-i}} \operatorname{Hom}_{R_{0}}\left(R, N_{\sigma}\right)
$$

and the differential map defined by
$E(\sigma) \otimes_{k} N_{\sigma} \ni e(\sigma)_{\rho} \otimes y \mapsto \sum_{\substack{\tau \in \Sigma \\ \operatorname{dim} \tau=-i-1}} \varepsilon(\sigma, \tau)\left(e(\tau)_{\rho} \otimes e_{\tau, \sigma}^{*} y\right) \in\left(\mathbf{D} \circ \mathbf{D}_{k}^{\mathrm{op}}\right)^{i+1}(N)$.
So, if we forget the grading of modules, we have $D G(N) \cong\left(\mathbf{D} \circ \mathbf{D}_{k}^{\mathrm{op}}\right)(N)$. Similarly, we can obtain an isomorphism $D G\left(N^{\bullet}\right) \cong\left(\mathbf{D} \circ \mathbf{D}_{k}^{\text {op }}\right)\left(N^{\bullet}\right)$ for a complex $N^{\bullet} \in D^{b}\left(\mathrm{gr}_{R^{!}}\right)$.

Assume that $N \in \operatorname{gr}_{R^{!}}(0)$. Then the degree of $e(\sigma)_{\tau} \otimes y \in E(\sigma) \otimes_{k} N_{\sigma} \subset$ $D G(N)$ is $(\operatorname{dim} \tau-\operatorname{dim} \sigma)+\operatorname{dim} \sigma=\operatorname{dim} \tau$ (see the proof of [1, Theorem 2.12.1] for the grading of $D G(N))$. Thus we have $D G(N) \in \operatorname{gr}_{R}(0)$.

We can prove the statement on $D F$ in a similar (and easier) way

The results corresponding to Proposition 7.1 and Theorem 7.2 also hold for the incidence algebra of the poset $\Sigma \backslash \emptyset$. In other words, Vybornov [14, Corollary 4.3.5] and the "top perversity case" of Polishchuk [8] can be generalized directly into regular cell complexes.

8. Summary

For the reader's convenience, we give a list of the similarities between the subjects investigated in this paper and (quasi-)coherent sheaves on a projective scheme.

For a cell complex and related concepts, we use the same notation as before $\left(\Sigma, X, R, \bmod _{R}, \operatorname{Sh}_{c}(X)\right.$ and so on). Readers who skipped the preceding sections are recommended to see $\S 1$ for a review of this notation. Let $A=\bigoplus_{i \geq 0} A_{i}$ be a commutative Noetherian homogeneous algebra over a field k. We denote the graded maximal ideal $\bigoplus_{i \geq 1} A_{i}$ by \mathfrak{m}. Let Gr_{A} be the category of graded A-modules, and gr_{A} its full subcategory consisting of finitely generated modules. For $M \in \operatorname{gr}_{A}$ and $N \in \operatorname{Gr}_{A}, \operatorname{Hom}_{A}(M, N)$ has a natural graded A-module structure. By $\mathrm{Qco}(Y)$ (resp. $\mathrm{Coh}(Y)$) we denote the category of quasi-coherent (resp. coherent) sheaves on the projective scheme $Y=\operatorname{Proj}(A)$

In the following list, the item $(n \mathrm{R})$ for $n=1,2, \ldots$, states the property of $\bmod _{R}$ corresponding to the property of $\mathrm{Gr}_{A}\left(\right.$ or gr $\left._{A}\right)$ stated in the item $(n \mathrm{~A})$. Of course, the situations of $(n \mathrm{R})$ are much simpler than those of $(n \mathrm{~A})$.
(1R) We have an exact functor $(-)^{\dagger}: \bmod _{R} \rightarrow \operatorname{Sh}_{c}(X)$ with $M^{\dagger}\left(U_{\sigma}\right) \cong M_{\sigma}$ for each $\emptyset \neq \sigma \in \Sigma$. Here U_{σ} denotes the open set $\bigcup_{\tau \geq \sigma} \tau$ of X.
(2R) We have a left exact functor $\Gamma_{\emptyset}: \bmod _{R} \rightarrow \bmod _{R}$ (or vect ${ }_{k}$) whose derived functor $H_{\emptyset}^{i}(-)$ satisfies $H^{i}\left(X, M^{\dagger}\right) \cong H_{\emptyset}^{i+1}(M)$ for all $i \geq 1$ and $0 \rightarrow H_{\emptyset}^{0}(M) \rightarrow M_{\emptyset} \rightarrow H^{0}\left(X, M^{\dagger}\right) \rightarrow H_{\emptyset}^{1}(M) \rightarrow 0 \quad$ (exact).
(3R) If $\bmod _{\emptyset}$ is the full subcategory of $\bmod _{R}$ consisting of modules M with $\Gamma_{\emptyset}(M)=M$ (equivalently, $M \in \bmod _{\emptyset} \Longleftrightarrow M^{\dagger}=0$), then this is a localizing subcategory with $\bmod _{R} / \bmod _{\emptyset} \cong \operatorname{Sh}_{c}(X)$.
(4R) We have a dualizing complex $\omega^{\bullet} \in D^{b}\left(\bmod _{R \otimes_{k} R}\right)$ giving the duality functor $\mathbf{R} \operatorname{Hom}_{R}\left(-, \omega^{\bullet}\right)$ from $D^{b}\left(\bmod _{R}\right)$ to itself. We have a direct summand $\bar{\omega}^{\bullet}$ of ω^{\bullet} such that $\left(\bar{\omega}^{\bullet}\right)^{\dagger} \in D^{b}\left(\operatorname{Sh}_{c}(X)\right)$ is the dualizing complex $\mathcal{D}_{X}^{\bullet}$ of X (e.g., if X is a manifold of dimension d, then $H^{-d}\left(\bar{\omega}^{\bullet}\right)^{\dagger}$ is the orientation sheaf of $\left.X\right)$. For $M^{\bullet} \in D^{b}\left(\bmod _{R}\right)$, we have $\mathbf{R} \operatorname{Hom}_{R}\left(M^{\bullet}, \omega^{\bullet}\right)^{\dagger} \cong \mathbf{R H o m}\left(\left(M^{\bullet}\right)^{\dagger}, \mathcal{D}_{X}^{\bullet}\right)$ in $D^{b}\left(\operatorname{Sh}_{c}(X)\right)$. Moreover, $\mathbf{R} \mathcal{H o m}\left(-, \omega^{\bullet}\right)^{\dagger}$ corresponds to the Verdier duality for $D^{b}\left(\operatorname{Sh}_{c}(X)\right)$.
(5R) For $M^{\bullet} \in D^{b}\left(\bmod _{R}\right)$, we have $\operatorname{Ext}_{R}^{i}\left(M^{\bullet}, \omega^{\bullet}\right)_{\emptyset} \cong H_{\emptyset}^{-i+1}\left(M^{\bullet}\right)^{\vee}$.
(6R) The dualizing complex ω^{\bullet} satisfies the Auslander condition of [19]. For $0 \neq M \in \bmod _{R}$, we have

$$
\max \left\{\operatorname{dim} \sigma \mid M_{\sigma} \neq 0\right\}=-\min \left\{i \mid \operatorname{Ext}_{R}^{i}\left(M, \omega^{\bullet}\right) \neq 0\right\}
$$

(1A) We have a well known exact functor $(-)^{\sim}:_{\mathrm{Gr}_{A}} \rightarrow \mathrm{Qco}(Y)$. If $M \in$ gr_{A}, then \tilde{M} is coherent.
(2A) We have a left exact functor $\Gamma_{\mathfrak{m}}: \mathrm{Gr}_{A} \rightarrow \mathrm{Gr}_{A}$ whose derived functor (i.e., the local cohomology functor) $H_{\mathfrak{m}}^{i}(-)$ satisfies $H^{i}(Y, \tilde{M}) \cong$
$\left[H_{\mathfrak{m}}^{i+1}(M)\right]_{0}$ for all $i \geq 1$ and $0 \rightarrow\left[H_{\mathfrak{m}}^{0}(M)\right]_{0} \rightarrow M_{0} \rightarrow H^{0}(Y, \tilde{M}) \rightarrow$ $\left[H_{\mathfrak{m}}^{1}(M)\right]_{0} \rightarrow 0$ (exact).
(3A) If Tor_{A} is the full subcategory of Gr_{A} consisting of modules M with $\Gamma_{\mathfrak{m}}(M)=M$ (equivalently, $M \in \operatorname{Tor}_{A} \Longleftrightarrow \tilde{M}=0$), then this is a localizing subcategory with $\mathrm{Gr}_{A} / \operatorname{Tor}_{A} \cong \mathrm{Q} \operatorname{co}(Y)$.
(4A) We have a dualizing complex $\omega_{A}^{\bullet} \in D^{b}\left(\operatorname{gr}_{A}\right)$ which gives the duality functor $\mathbf{R} \operatorname{Hom}_{A}\left(-, \omega_{A}^{\bullet}\right)$ from $D^{b}\left(\mathrm{gr}_{A}\right)$ to itself. If we use the convention that $H_{\mathfrak{m}}^{i}\left(\omega_{A}^{\bullet}\right) \neq 0 \Longleftrightarrow i=1$, then $\left(\omega_{A}^{\bullet}\right)^{\sim} \in D^{b}(\operatorname{Coh}(Y))$ is the dualizing complex $\mathcal{D}_{Y}^{\bullet}$ of Y. For $M^{\bullet} \in D^{b}\left(\operatorname{gr}_{A}\right)$, we have $\mathbf{R} \operatorname{Hom}_{A}\left(M^{\bullet}, \omega_{A}^{\bullet}\right)^{\sim} \cong \mathbf{R} \mathcal{H o m}\left(\left(M^{\bullet}\right)^{\sim}, \mathcal{D}_{Y}^{\bullet}\right)$ in $D^{b}(\operatorname{Coh}(Y))$. Moreover, $\mathbf{R} \operatorname{Hom}_{A}\left(-, \omega_{A}^{\bullet}\right)^{\sim}$ corresponds to the Serre duality for $D^{b}(\operatorname{Coh}(Y))$.
(5A) For $M^{\bullet} \in D^{b}\left(\operatorname{gr}_{A}\right)$, we have $\operatorname{Ext}_{A}^{i}\left(M^{\bullet}, \omega_{A}^{\bullet}\right) \cong H_{\mathfrak{m}}^{-i+1}\left(M^{\bullet}\right)^{\vee}$, where $(-)^{\vee}$ stands for the graded k-dual. (Note that $\mathbf{R} \Gamma_{\mathfrak{m}}\left(\omega_{A}^{\bullet}\right) \cong A^{\vee}[-1]$ in our convention.)
(6A) The dualizing complex ω_{A}^{\bullet} satisfies the Auslander condition (this condition is always satisfied in the commutative case). For $0 \neq M \in \mathrm{gr}_{A}$, we have $\operatorname{Krull-\operatorname {dim}}(M)-1=-\min \left\{i \mid \operatorname{Ext}_{A}^{i}\left(M, \omega_{A}^{\bullet}\right) \neq 0\right\}$. Recall that if $M \notin \operatorname{Tor}_{A}$, then $\operatorname{dim} \tilde{M}=\operatorname{Krull}-\operatorname{dim}(M)-1$.

Acknowledgments. The author is grateful to Professor Maxim Vybornov for informing him of his work (including [14]) and related papers (including [8]), and for sending him Shepard's thesis [11]. The author has learned much from theses papers.

References

[1] A. Beilinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527. MR 1322847 (96k:17010)
[2] A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), 7-16. MR 746039 (86e:06002)
[3] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge University Press, Cambridge, 1998. MR 1251956 (95h:13020)
[4] G. E. Cooke and R. L. Finney, Homology of cell complexes, Based on lectures by Norman E. Steenrod, Princeton University Press, Princeton, N.J., 1967. MR 0219059 (36 \#2142)
[5] R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR 0222093 (36 \#5145)
[6] B. Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190 ($87 \mathrm{~m}: 14013$)
[7] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1990. MR 1074006 (92a:58132)
[8] A. Polishchuk, Perverse sheaves on a triangulated space, Math. Res. Lett. 4 (1997), 191-199. MR 1453053 (98h:18015)
[9] P. Polo, On Cohen-Macaulay posets, Koszul algebras and certain modules associated to Schubert varieties, Bull. London Math. Soc. 27 (1995), 425-434. MR 1338684 (96m:20068)
[10] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London, 1973. MR 0340375 (49 \#5130)
[11] A. Shepard, A cellular description of the derived category of a stratified space, Ph.D. Thesis, Brown University, 1984.
[12] R. P. Stanley, Combinatorics and commutative algebra, Progress in Mathematics, vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996. MR 1453579 (98h:05001)
[13] , Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. MR 1442260 (98a:05001)
[14] M. Vybornov, Sheaves on triangulated spaces and Koszul duality, preprint, ArXiv: math.AT/9910150.
[15] D. Woodcock, Cohen-Macaulay complexes and Koszul rings, J. London Math. Soc. (2) 57 (1998), 398-410. MR 1644229 (99g:13025)
[16] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree N Spé n graded modules, J. Algebra 225 (2000), 630-645. MR 1741555 (2000m:13036)
[17] , Stanley-Reisner rings, sheaves, and Poincaré-Verdier duality, Math. Res. Lett. 10 (2003), 635-650. MR 2024721 (2005a:13045)
[18] _ Derived category of squarefree modules and local cohomology with monomial ideal support, J. Math. Soc. Japan 56 (2004), 289-308. MR 2028674 (2004j:13041)
[19] A. Yekutieli and J. J. Zhang, Rings with Auslander dualizing complexes, J. Algebra 213 (1999), 1-51. MR 1674648 (2000f:16012)

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: yanagawa@math.sci.osaka-u.ac.jp

[^0]: Received May 9, 2005; received in final form August 26, 2005.
 2000 Mathematics Subject Classification. Primary 16E05. Secondary 32S60, 13F55.

