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NEVANLINNA FUNCTIONS WITH REAL ZEROS

A. EREMENKO AND S. MERENKOV

Abstract. We show that for every non-negative integer d, there exist

differential equations w′′ + Pw = 0, where P is a polynomial of degree
d, such that some non-trivial solution w has all roots real.

1. Introduction

Consider a differential equation

(1) w′′ + Pw = 0,

where P is a polynomial of the independent variable. Every solution w of
this equation is an entire function. We are interested in solutions w all of
whose roots are real. If (1) has two linearly independent solutions with this
property, then degP = 0; see [7] and [8]. Here we study equations (1) that
have at least one solution with all roots real.

The question of describing equations (1) with this property was proposed
by S. Hellerstein and J. Rossi in [3, Probl. 2.71]. According to [6], up to
trivial changes of variables, only the following four examples were known until
recently.

• degP = 0. If k is real, all solutions of w′′+k2w = 0 are trigonometric
functions.
• degP = 1. The Airy equation w′′−zw = 0 has a solution Ai(z) whose

roots lie on the negative ray.
• degP is even and w = p exp q, where p and q are polynomials, and all

roots of p are real. In this case, the set of roots of w is evidently finite.
For example, if P (z) = 1− z2 + 2n, where n is a positive integer, then
the equation (1) has solutions w = Hn(z) exp(−z2/2), where Hn are
Hermite’s polynomials whose roots are all real.
• P (z) = az4 + bz2 − c. Gundersen [6] proved that for every a > 0

and b ≥ 0 one can find an infinite set of real numbers c, such that
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some solution of (1) has infinitely many roots, almost all of them real.
When b = 0 this result, with all roots real, was earlier obtained by
Titchmarsh [16, p. 172].

Here and in what follows “almost all” means “all except finitely many”.
Recently Kwang C. Shin [13] proved a similar result for a degree 3 polynomial:

• For every real a and b ≤ 0 there exists an infinite set of positive
numbers c such that the equation w′′ + (z3 + az2 + bz − c)w = 0 has
a solution with infinitely many roots, almost all of them real.

On the other hand, Gundersen [7] proved the following theorems:

Theorem A. If d = degP ≡ 2 (mod 4), and w is a solution of (1), with
almost all roots real, then w has only finitely many roots.

Theorem B. If (1) possesses a solution w with infinitely many real roots,
then P is a real polynomial, and w is proportional to a real function.

We also mention a result of Rossi and Wang [12] that if (1) has a solution
with infinitely many roots, all of them real, then at least half of all roots of
P are non-real. In view of Theorem B we restrict from now on to the case of
real polynomials P in (1). Our results are:

Theorem 1. For every d, there exist w satisfying (1) with degP = d and
such that all roots of w are real. For every positive d divisible by 4, there exist
w with infinitely many roots, all of them real, as well as w with any prescribed
finite number of roots, all of them real.

Theorem 2. Let w be a solution of the equation (1) whose all roots are
real, and d = degP . Then:

(a) For d ≡ 0 (mod 4) the set of roots of w is either finite or unbounded
from above and below (as a subset of the real axis).

(b) For odd d there are infinitely many roots of w all of which lie on a
ray.

Theorem 2 can be generalized to the case that almost all roots of w are
real.

In comparison with the existence results of Titchmarsh, Gundersen and
Shin mentioned above, our Theorem 1 gives more precise information on the
roots of w: they are all real. On the other hand we can tell less about the
polynomial P .

Our proofs are based on a geometric characterization of meromorphic func-
tions of the form f = w1/w2, where w1 and w2 are linearly independent so-
lutions of (1), due to F. and R. Nevanlinna [9][10], which will be explained in
the next section.
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2. A class of meromorphic functions

We associate with (1) another differential equation

(2)
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= 2P.

The expression on the left hand side of (2) is called the Schwarzian derivative
of f . The following well-known fact is proved by simple formal computation.

Proposition 1. The relation f = w1/w2 gives a bijective correspondence
between solutions f of (2) and classes of proportionality of pairs (w1, w2) of
linearly independent solutions of (1).

Thus when P is a polynomial, all solutions of (2) are meromorphic in the
complex plane, and they are all obtained from each other by post-composition
with a fractional-linear transformation. We call solutions of equations (2)
with polynomial right hand side Nevanlinna functions. Equation (2) has a
real solution if and only if P is real.

It is easy to see that meromorphic functions f satisfying (2) are local home-
omorphisms. In other words, f ′(z) 6= 0 and all poles are simple.

F. and R. Nevanlinna gave a topological characterization of all meromor-
phic functions f which may occur as solutions of (2). To formulate their result
we recall several definitions.

A surface is a connected Hausdorff topological manifold of dimension 2
with countable base.

A continuous map π : X → Y of surfaces is called topologically holomorphic
if it is open and discrete. According to a theorem of Stöılov [15] this is
equivalent to the following property. For every x ∈ X, there is a positive
integer k and complex local coordinates z and w in neighborhoods of x and
π(x), such that z(x) = 0 and the map π has the form w = zk in these
coordinates. The integer k = k(x) is called the local degree of π at the point
x. So π is a local homeomorphism if and only if n = 1 for every x ∈ X.

A pair (X,π), where X is a surface and π : X → C a topologically holo-
morphic map, is called a surface spread over the sphere (Überlagerungsfläche
in German). Two such pairs (X1, π1) and (X2, π2) are considered equivalent
if there is a homeomorphism h : X1 → X2 such that π2 = π1 ◦ h. So, strictly
speaking, a surface spread over the sphere is an equivalence class of such pairs.

If f : D(R)→ C is a meromorphic function in some disc D(R) = {z : |z| <
R}, R ≤ ∞, then (D(R), f) defines a surface spread over the sphere. We will
call the equivalence class of (D(R), f) the surface associated with f . It is the
same as the Riemann surface of f−1, as defined in [1, p. 288], completed with
algebraic branch points as in [1, p. 300].

In the opposite direction, suppose that (X,π) is a surface spread over the
sphere. Then there exists a unique conformal structure on X which makes π



1096 A. EREMENKO AND S. MERENKOV

holomorphic. If X is open and simply connected, the Uniformization Theorem
says that there exists a conformal homeomorphism φ : D(R)→ X, where R =
1 or ∞. This homeomorphism φ is defined up to a conformal automorphism
of D(R). The function f = π ◦ φ is meromorphic in D(R), and (X,π) is (a
representative of) the surface associated with f .

If R =∞ we say that (X,π) is of parabolic type.
We consider surfaces spread over the sphere (X,π) where X is open and

simply connected (that is, homeomorphic to the plane), π a local homeomor-
phism, and subject to additional conditions below.

Suppose that for some finite set A ⊂ C the restriction

(3) π : X\π−1(A)→ C\A is a covering map.

Fix an open topological disc D ⊂ C containing exactly one point a of the set
A. If V is a connected component of π−1(D\{a}), then the restriction

(4) π : V → D\{a}
is a covering of a ring, and its degree k does not depend on the choice of the
disc D. The following cases are possible [11]:

(a) k =∞. Then (4) is a universal covering, V is simply connected and its
boundary consists of a single simple curve in X tending to “infinity” in both
directions. In this case we say that V defines a logarithmic singularity over a.
Notice that the number of logarithmic singularities over a is independent of
the choice of D.

(b) If k < ∞ and there exists a point x ∈ X such that Ṽ = V ∪ {x} is an
open topological disc, then π : Ṽ → D is a ramified covering and has local
degree k at x. As we assume that π is a local homeomorphism, only k = 1 is
possible, so π : Ṽ → D is a homeomorphism.

(c) If k < ∞ but there is no point x ∈ X such that V ∪ {x} is an open
disc, then we can add to X such an “ideal point” and define the topology
on X̃ = X ∪ {x} so that it remains a surface. Then X̃ is a sphere, as a
one-point compactification of an open simply connected surface, and our local
homeomorphism extends to a topologically holomorphic map between spheres
whose local degree equals one everywhere except possibly one point. It easily
follows that the local degree equals one everywhere, the extended map is a
homeomorphism. This implies that our original map π is an embedding.

So in any case the degree of the map (4) can be only 1 or ∞.

Definition. We say that (X,π) is an N-surface if X is open and simply
connected, π is a local homeomorphism, condition (3) is satisfied, and there
are only finitely many logarithmic singularities.

Unless π is an embedding, as in case (c), the number of logarithmic singu-
larities is at least two, because a sphere minus one point is simply connected,
so every covering over such a surface is a homeomorphism. All cases with two
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logarithmic singularities can be reduced by a fractional-linear transformation
of C to the case exp : C→ C.

The name N-surface is chosen in honor of F. and R. Nevanlinna. The com-
plete official name of this object would be “An open simply connected surface
spread over the sphere without algebraic branch points and with finitely many
logarithmic singularities”.

Theorem C.

(i) Every N-surface is of parabolic type, that is, its associated functions
are meromorphic in the plane C.

(ii) If an N-surface (X,π) has n ≥ 2 logarithmic singularities, then the
associated meromorphic functions f = π◦φ satisfy a differential equa-
tion (2) in which degP = n− 2.

(iii) For every polynomial P 6= 0, every solution f of (2) is a meromor-
phic function in the plane whose associated surface is an N-surface
with n = degP + 2 logarithmic singularities. If P = 0, there are no
logarithmic singularities and f is fractional-linear.

Two meromorphic functions f1 and f2 are called equivalent if f1(z) =
f2(az + b) with a 6= 0. Theorem C establishes a bijective correspondence
between equivalence classes of Nevanlinna functions and N-surfaces.

In this paper we use only statements (i) and (ii) of Theorem C. The connec-
tion between N-surfaces and differential equations was apparently discovered
by F. Nevanlinna who proved (iii) in [9]. Statements (i) and (ii) were proved
for the first time by R. Nevanlinna in [10]. Then Ahlfors [2] gave an alter-
native proof based on completely different ideas. A modern version of this
second proof uses quasiconformal mappings [5]. This modern proof is repro-
duced in [4]. All these authors were primarily interested in the theory of
meromorphic functions, and used differential equations as a tool. Apparently,
the only application of Theorem C to differential equations is due to Sibuya
[14] who deduced from it the existence of equations (1) with prescribed Stokes
multipliers.

In view of Theorem C, to obtain our results, we only need to single out
those N-surfaces that are associated with real meromorphic functions with
real roots.

3. Speiser graphs

We recall a classical tool for explicit construction and visualization of N-
surfaces. It actually applies to all surfaces spread over the sphere that satisfy
(3). First we suppose that a surface spread over the sphere (X,π) satisfying
(3) is given, and A = {a1, . . . , aq} is the set in (3). We call elements of A base
points. Consider a base curve, that is, an oriented Jordan curve Γ passing
through a1, . . . , aq. Choosing a base curve defines a cyclic order on A, and we
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assume that the enumeration is consistent with this cyclic order and interpret
the subscripts as remainders modulo q.

The base curve Γ divides the Riemann sphere C into two regions which we
denote D× and D◦, so that when Γ is traced according to its orientation, the
region D× is on the left. We choose points × ∈ D× and ◦ ∈ D◦, and connect
these two points by q disjoint simple arcs Lj so that each Lj intersects Γ
at exactly one point, and this point belongs to the arc (aj , aj+1) ⊂ Γ. We
obtain an embedded graph L ⊂ C having two vertices × and ◦ and q edges
Lj . This embedded graph defines a cell decomposition of the sphere, whose
2-cells (faces) are components of the complement of L, 1-cells (edges) are the
open arcs Lj and 0-cells (vertices) are the points × and ◦. Each face contains
exactly one base point.

The preimage of this cell decomposition under π is a cell decomposition
of X, because, as we saw in the previous section, each component of the
preimage of a cell is a cell of the same dimension (0, 1 or 2). The 1-skeleton
S = π−1(L) ⊂ X is a connected properly embedded graph in X. As S
completely defines the cell decomposition, we will permit ourselves to follow
the tradition and speak of this graph instead of the cell decomposition, and use
such expressions as “faces of S” meaning the faces of the cell decomposition.

We label vertices of S by × and ◦, according to their images under π, and
similarly label the faces by the base points aj . Our labeled graph S (or more
precisely, the labeled cell decomposition) has the following properties:

1. Every edge connects a ×-vertex to a ◦ vertex.
2. Every vertex belongs to the boundaries of exactly q faces having all q

different labels.
3. The face labels have cyclic order a1, . . . , aq anticlockwise around each
×-vertex, and the opposite cyclic order around each ◦-vertex.

The labeled graph S is called the Speiser graph or the line complex of the
surface spread over the sphere (X,π).

A face of S is called bounded if its boundary consists of finitely many edges
and vertices. It follows from property 1 that the numbers of edges and vertices
on the boundary of a bounded face are equal and even. If a is a base point,
all solutions of the equation π(x) = a belong to the bounded faces labeled by
a, and each such face contains exactly one solution. If k is the local degree
of π at this point x, then the face is a 2k-gon, that is, bounded by 2k edges
and 2k vertices. As we consider local homeomorphisms in this paper, k = 1
for every bounded face. Existence of 2-gonal faces leads to multiple edges of
the Speiser graph.

Suppose now that X is a surface and a labeled cell decomposition of X
with 1-skeleton S is given such that 1, 2 and 3 hold. If we choose a set
A ⊂ C of q points and a curve Γ ⊂ C passing through the points of the set
A, and define L as above, then there exists a topologically holomorphic map
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π such that S = π−1(L). This map π is unique up to pre-composition with
a homeomorphism of X. A verification of this statement is contained in [5].
We recall the construction.

The labels of faces define labels of edges: an edge is labeled by j if it belongs
to the common boundary of faces with labels aj and aj+1. This defines a map
of the 1-skeleton of S to the 1-skeleton L of the cell decomposition of the
sphere: each edge of S labeled by j is mapped onto Lj homeomorphically,
and such that the orientation is consistent with the vertex labeling. It is easy
to see that this map is a covering S → L. The boundary of each face covers
a topological circle formed by two adjacent edges and two vertices of L. Such
a map extends to a ramified covering between faces, ramified only over the
base points (unramified for 2-gonal or unbounded faces, which is the case for
all Speiser graphs we consider).

For a given cyclically ordered set A and a surface X, the correspondence
between topologically holomorphic maps π and Speiser graphs is not canoni-
cal: it depends on the choice of the base curve Γ. (It is the isotopy class of Γ
with fixed set A that matters.)

It is easy to single out those Speiser graphs that correspond to N-surfaces:
the ambient surface X is open and simply connected, and two additional
properties hold:

4. Each face has either two or infinitely many boundary edges.
5. The set of unbounded faces is finite.

Property 4 corresponds to the assumption that π is a local homeomorphism,
and property 5 follows from the fact that unbounded faces correspond to
“logarithmic singularities”, that is, to the components V in (4) where the
covering has infinite degree.

So we have:

Proposition 2. Let (X,π) be an N-surface, and a a base point. Then
each solution of the equation π(x) = a is contained in a face which is a 2-
gon, and is labeled by a. Each such face contains exactly one solution of this
equation.

For each Speiser graph S corresponding to an N-surface, we define a new
graph T = T (S) with the same vertices: two vertices are connected by a single
edge in T if they are connected by at least one edge in S. Thus T is obtained
from S by replacing all edges connecting a pair of vertices with a single edge.
Property 4 of S implies that T is a tree. Faces of T are exactly the unbounded
faces of S. We assume that vertices and unbounded faces inherit their labels
from S.

The tree T is properly embedded in X. Each vertex has at least two and
at most q adjacent edges in T and the cyclic order of face labels around the
×-vertices of T is the same as in S.
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Examples of trees T can be seen in Figures 1–5. The right half of each
figure represents a base curve with base points marked on it. The left half is
the tree T with the labeling of unbounded faces.

Suppose that S has n > 2 unbounded faces. Then the tree T (S) has n
maximal (by inclusion) infinite “branches” consisting of vertices of degree 2,
of the form

− ◦ −×− ◦ −×− ◦ − . . . or −×− ◦ −×− ◦ −×− . . . .
Such branches are called logarithmic ends. A tree T (S) is the union of its
logarithmic ends and a finite subtree.

For example, the trees in Figures 1 and 2 have 14 logarithmic ends; each
of them is the union of these 14 ends and a finite graph with 11 vertices. The
tree in Figure 3 is the union of 11 logarithmic ends and a finite subgraph with
9 vertices. The tree in Figure 4 is the union of 12 logarithmic ends and a
finite subgraph with 10 vertices, and the tree in Figure 5 is the union of 13
logarithmic ends and a finite subgraph with 11 vertices.

We excluded in our definition of logarithmic ends those graphs S that
contain only two unbounded faces. There is only one tree T (S) corresponding
to such graphs. This tree is homeomorphic to a line, and corresponds to a
function of the form L ◦ exp(az + b), where L is fractional linear.

4. Symmetric Speiser graphs

A symmetric surface spread over the sphere is defined as a triple (X,π, s),
where s : X → X is a homeomorphism such that s ◦ s = id and π ◦ s(x) =
π(x), and the bar denotes complex conjugation. It is clear that such an s is
an anticonformal homeomorphism of X. If (X,π) is of parabolic type, and
φ : C→ X a conformal homeomorphism, then φ−1 ◦ s ◦φ is an anticonformal
involution of the complex plane. Each such involution is conjugate to z 7→ z by
a conformal automorphism of C. So for a symmetric surface spread over the
sphere there exists a uniformizing map φ with the property φ(z) = s◦φ(z), z ∈
C. The set of fixed points of s is called the axis (of symmetry); it is the image
of the real line under φ.

If f is a real function meromorphic in C, then its associated surface has a
natural involution which makes it a symmetric surface spread over the sphere.
In the opposite direction, to a symmetric surface of parabolic type spread over
the sphere a real meromorphic function is associated.

It is clear that the set A = {a1, . . . , aq} of base points of a symmetric N-
surface is invariant under complex conjugation. Suppose for a moment that
at most two of the points a1, . . . , aq are real. Then there exists a base curve
Γ passing through a1, . . . , aq which is symmetric with respect to complex
conjugation. Choosing the × and ◦ points on the real axis we can perform
the construction of the Speiser graph symmetrically. The resulting graph S
and the tree T (S) will be symmetric in the following sense. The involution s
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will send each vertex to a vertex with the same label, each edge to an edge
and each face to a face with complex conjugate label.

In the general case, that more than two base points are allowed on the real
line, one has to modify a little the definition of the Speiser graph. Let a be a
real base point of a symmetric N-surface (X,π, s). Consider an open (round)
disc D ⊂ C centered at a and not containing other base points. Let V be a
component of π−1(D) which defines a logarithmic singularity (see Section 2).
Then one of the following holds: either V is invariant under s, or s(V ) = V ′,
where V ′ is another component of π−1(D), disjoint from V . In the latter
case, V is disjoint from the symmetry axis. In the former case, we will call
the logarithmic singularity real.

We claim that there are at most two real logarithmic singularities. Indeed,
for a real logarithmic singularity, the intersection of V with the symmetry
axis consists of a “ray”, and there cannot be more than two disjoint “rays”
on the symmetry axis.

The symmetry axis divides X into two “halfplanes”, and each non-real
logarithmic singularity (more precisely, its defining region V ) belongs to one
of these “halfplanes”. Thus the non-real logarithmic singularities are split
into two classes, say C+ and C−, according to the “halfplane” they belong,
and the regions V and V ′ always belong to different classes.

The real logarithmic singularities lie over at most two base points.
Let a be a real base point such that there are no real logarithmic singular-

ities over a. Consider a homeomorphism η+ of the Riemann sphere which is
the identity outside D and sends the point a to the point a+ iε, where ε > 0
is so small that a+ iε ∈ D. Let η−(z) = η+(z). We deform our map π in the
following way:

π∗(x) =

 η+ ◦ π(x), x ∈ V, V ∈ C+,
η− ◦ π(x), x ∈ V, V ∈ C−,
π(x), otherwise.

Evidently, the new N-surface is symmetric. Let E be the set of projections
of real logarithmic singularities, card E ≤ 2. Performing the deformation de-
scribed above for all real base points except two of them, a′ and a′′, such that
E ⊂ {a′, a′′}, we obtain a new symmetric N -surface which has the property
that only two base points are real. So a symmetric base curve can be cho-
sen and a symmetric Speiser graph constructed. The Speiser graph of this
deformed surface does not depend on ε as soon as ε is positive and small
enough, and we call it a symmetric Speiser graph of (X,π). The number of
base points of (X,π∗) is larger than that of (X,π); to preserve properties 2
and 3, we can use two different labels, say a+ and a−, for a base point a as
above. The faces of S over a+ iε are labeled by a+, those over a− iε by a−.

Symmetric Speiser graphs have all the properties 1–5 listed above, and
in addition, they are preserved by an orientation-reversing involution of the
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ambient surface. This includes the action of s on labels if we consider a+ and
a− as complex conjugate.

Given a symmetric Speiser graph one can construct a symmetric surface
spread over the sphere corresponding to this Speiser graph. First we replace
all labels a+ by a+ iε and a− by a− iε, then choose a symmetric base curve
passing through the new base points, points × and ◦ on the real axis and
a symmetric graph L, and perform all constructions preserving symmetry.
Then we apply the inverse of the deformation described above to place the
base points in their original position.

We will need two simple properties of symmetric Speiser graphs S and trees
T (S).

A. If a logarithmic end of T intersects the axis, then it is contained in
the axis.

Indeed, suppose first that two vertices v1 and v2 of the same logarithmic
end belong to the axis. If there are vertices of this logarithmic end between
v1 and v2 that do not belong to the axis, then the vertices between v1 and v2

together with their symmetric vertices and v1 and v2 will contain a cycle in
T , which is impossible. If all vertices between v1 and v2 belong to the axis,
then the whole end has to belong to the axis, because all vertices of the end
have degree 2, and T is symmetric.

If exactly one vertex of a logarithmic end belongs to the axis, then the
whole Speiser graph contains only vertices of degree 2, so there are only two
unbounded faces, the situation we excluded in the definition of a logarithmic
end.

B. Every (open) edge either belongs to the axis or is disjoint from it.
Indeed, the endpoints of an edge intersecting the axis would be interchanged

by the involution, but this is impossible because they are differently labeled.
In the following Proposition 3 we consider a symmetric N-surface satisfying

the following

Assumptions. The number of logarithmic ends is at least 3, zero is a base
point, there is at most one real logarithmic singularity not lying over zero, and
the symmetric Speiser graph does not have labels 0+ or 0−.

Comments. The assumption that there are at least three logarithmic ends
excludes only the trivial cases when P = const. The assumption that 0 is
a base point does not restrict generality because an extra base point can be
always added. The third assumption excludes the cases when the number of
real roots is finite (if there are two non-zero real logarithmic singularities, then
f has non-zero limits along the real axis as x → +∞ and x → −∞, so the
set of real roots is finite). If this third assumption is satisfied, we can always
construct the symmetric Speiser graph in such a way that it does not contain
labels 0+ and 0−.
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Proposition 3. Let S ⊂ C be a symmetric Speiser graph corresponding
to a symmetric N-surface, f an associated real Nevanlinna function, and sup-
pose that the above Assumptions are satisfied. Then all roots of f are real if
and only if S has the following property: each vertex belongs either to the axis
of symmetry, or to the boundary of an unbounded face labeled by 0.

Proof. Suppose that all roots of f are real. This means that all preimages
of 0 lie on the axis of symmetry. By Proposition 2, these preimages are in
bijective correspondence with 2-gonal faces F labeled by zero. We have for
such faces F ∩ s(F ) 6= ∅, and thus by the symmetry of the graph, F = s(F ).
It follows that both vertices on the boundary of F belong to the axis.

Every vertex belongs to the boundary of some face labeled by 0 by property
2 of the Speiser graphs (Section 3). If this face is bounded, we conclude from
the above that the vertex lies on the symmetry axis. This proves the necessity
of the condition of Proposition 3.

Now we suppose that each vertex belongs either to the symmetry axis or to
the boundary of an unbounded face labeled by zero. As every vertex belongs
to the boundary of only one face labeled by 0, we conclude that every 2-
gonal face labeled by zero has one boundary vertex on the axis, and thus its
other boundary vertex also belongs to the axis. We conclude that this face is
symmetric, and thus the π-preimage of 0 contained in this face belongs to the
axis.

Proof of Theorem 2. The cases P = 0 and d = 0 are trivial, so we assume
that d ≥ 1. If there are two real logarithmic singularities over non-zero points,
then d is even and f has finitely many roots, so there is nothing to prove. Thus
we suppose from now on that the Assumptions stated above are satisfied.

If the number n = degP + 2 of logarithmic ends is even, then either none
or two of them belong to the axis of symmetry.

If none of the logarithmic ends belongs to the axis, then f has finitely many
roots.

Now suppose that there are two logarithmic ends on the axis of symmetry.
Consider one of them. Let a and b be the labels of the two unbounded faces
adjacent to it. Then a 6= b and a = b, so neither a nor b can be 0. This implies
that all vertices on this logarithmic end belong to the boundaries of 2-gonal
faces whose labels are 0, and thus we obtain an infinite sequence of real roots.
As there are two logarithmic ends on the axis of symmetry, the sequence of
roots is unbounded from above and below. This proves (a).

That for d = 4k, k ≥ 1, both cases actually occur is demonstrated by
Figures 1 and 2.

If n is odd, then exactly one logarithmic end belongs to the axis of sym-
metry. The other end of the symmetry axis is contained in an infinite face
and bisects it (by symmetry). It follows that π has a limit on this other end
of the symmetry axis. If the limit is non-zero, (b) immediately follows. If the
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limit is zero, we notice that this end of the axis belongs to a neighborhood V
of a real logarithmic singularity over 0, and again statement (b) follows.

Proof of Theorem 1. It is enough to display a Speiser graph S for each case.
For simplicity we only show in Figures 1–5 the trees T (S) on the left of each
picture and the base curves with base points on the right. It can be easily
seen that each of our trees has a unique extension to a symmetric Speiser
graph S that has the property described in Proposition 3.

Remarks. Suppose that all base points of a symmetric N-surface are
real. Then we can construct another kind of Speiser graph, which we call
anti-symmetric, without using the perturbation procedure described above.
Namely, take the real axis as the base curve, and choose × and ◦ at the
points ±i. The corresponding Speiser graph is preserved by the involution,
except that the vertex labels are now interchanged. It is easy to see that in
such an anti-symmetric graph there can be no vertices on the axis (the values
of our function at vertices are ±i and the function is real), and thus exactly
one edge of T (S) intersects the axis, because T (S) is connected and symmetric
with respect to the axis. We conclude:

Any real Nevanlinna function with at least three logarithmic singularities
and only real asymptotic values can have at most one real zero.

We thank the referee for many valuable remarks and suggestions.
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Figure 1. d ≡ 0 (mod 4), the sequence of roots is infinite
in both directions. The tree T (S) in this picture has 14 log-
arithmic ends, and d = 12.
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Figure 2. d ≡ 0 (mod 4), the sequence of roots is finite.
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Figure 3. d ≡ 1 (mod 4), the sequence of roots is infinite in
one direction. In this picture, d = 9.
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Figure 4. d ≡ 2 (mod 4), the sequence of roots is finite. In
this picture, d = 10.
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Figure 5. d ≡ 3 (mod 4), the sequence of roots is infinite in
one direction. In this picture, d = 11.
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