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TYPES OF RADON-NIKODYM PROPERTIES FOR THE
PROJECTIVE TENSOR PRODUCT OF BANACH SPACES

QINGYING BU, JOE DIESTEL, PATRICK DOWLING, AND EVE OJA

ABSTRACT. Let X and Y be Banach spaces such that X has a boundedly
complete basis. Then X®Y, the projective tensor product of X and Y,
has the Radon-Nikodym property (resp. the analytic Radon-Nikodym
property, the near Radon-Nikodym property, contains no copy of cg) if
and only if Y has the same property.

1. Preliminaries

Throughout this paper G will denote a compact metrizable abelian group,
B(G) is the o-algebra of Borel subsets of G, and ) is normalized Haar measure
on G. The dual group of G will be denoted by T

Let X be a real or complex Banach space. We denote by L (G, X) (respec-
tively, Lo (G, X)) the Banach space of (all equivalence classes of) A-Bochner
integrable functions on G with values in X (respectively, (all equivalence
classes of) A-measurable X-valued functions that are essentially bounded).

If 1 is a countably additive X-valued measure on B(G), we say that it is
of bounded variation if sup ), |#(A)[| < oo, where the supremum is taken
over all finite measurable partitions of G. The measure p is said to be of
bounded average range if there is a positive constant ¢ so that ||u(A)|| < eA(A),
for every A € B(G).

We will denote by M (G, X) the space of all X-valued measures on B(G)
that are of bounded variation, and M (G, X) will denote the space of all
X-valued measures on B(G) that are of bounded average range.

For v € T" and f € L1(G, X), we define the Fourier coefficient of f at v by

fy) = /G FOTOAAD).
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Similarly, if 4 € M (G, X), we define the Fourier coefficient of u at v by

Aly) = /G () du(t).

Let A be a subset of I'. A measure p € M; (G, X) will be called a A-measure
if fi(y) =0 for all v ¢ A.

DEFINITION 1 ([17], [15]). Let G be a compact metrizable abelian group,
let A be a subset of ', and let X be a Banach space. We say that X has type
I-A-Radon-Nikodym property (I-A-RNP) if every A-measure p in My (G, X)
is differentiable; that is, there is a function f € L;(G, X) such that u(F) =
[ fdX for all E € B(G).

DEFINITION 2 ([15]). Let G be a compact metrizable abelian group, let
A be a subset of ', and let X be a Banach space. We say that X has type
II-A-Radon-Nikodym property (II-A-RNP) if every A-continuous, A-measure
in My (G, X) is differentiable.

REMARK 1. Let G be the Cantor group, that is, G = {—1,1}". Then
I' = {~1,1} and Fourier coefficients of measures on B(G) with values in
a real or complex Banach space are well-defined. If A = I', then I-A-RNP,
ITI-A-RNP and the usual Radon-Nikodym property are all equivalent for both
real and complex Banach spaces. Since I' is infinite and discrete, it contains
an infinite Sidon subset [41, page 126]. If A is such an infinite Sidon set, then
by [16] a real or complex Banach space has I-A-RNP if and only if it has
II-A-RNP if and only if it does not contain a copy of .

REMARK 2. If G =T, the circle group, then I' = Z. Let X be a complex
Banach space. If A = Z, then X has I-A-RNP if and only if X has II-A-RNP
if and only if X has the Radon-Nikodym property. If A = NU {0}, then X
has I-A-RNP if and only if X has II-A-RNP if and only if X has the analytic
Radon-Nikodym property (see [15]). If A is an infinite Sidon set (for example
{2" : n € N}), then X has I-A-RNP if and only if X has II-A-RNP if and only
if X does not contain a subspace isomorphic to ¢y (see [16]) .

Another Radon-Nikodym property that we will deal with is the near Radon-
Nikodym property, which was introduced in [26].

DEFINITION 3. Let X be a Banach space. A bounded linear operator
T : L1[0,1] — X is said to be near representable if for each Dunford-Pettis
operator D : L1[0,1] — L1[0, 1], the composition operator ToD : L1[0,1] — X
is Bochner representable; that is, there exists g € Loo([0,1], X) such that
ToD(f) = f[O,l} fgdm for all f € L1]0,1]. A Banach space X is said to
have the near Radon-Nikodym property (NRNP) if every near representable
operator from L;[0,1] to X is Bochner representable.
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For comparison, let us recall that a Banach space X has the Radon-
Nikodym property if and only if every bounded linear operator T : L;[0,1] —
X is Bochner representable [12, page 63].

For any Banach space X, we will denote its topological dual by X* and its
closed unit ball by Bx. For two Banach spaces X and Y, let £(X,Y) denote
the space of all continuous linear operators from X to Y with its operator
norm || - ||, and let X&Y denote the completion of the tensor product X @ Y
with respect to the projective tensor norm. It is known that the dual of X®Y
is isometrically isomorphic to £(X,Y™) (see [12, page 230]).

2. Radon-Nikodym properties and boundedly complete Schauder
decompositions

Let X be a Banach space. A Schauder decomposition of X is a sequence
(Xn)S; of non-trivial closed subspaces of X such that every x € X can
be expressed uniquely in the form x = Zfbozl z,, where z, € X,, for every
n € N. Clearly, a sequence (e,)22; in X is a basis of X if and only if the
one-dimensional subspaces X,, = span{e, } form a Schauder decomposition of
X.

A Schauder decomposition (X,,)22; is boundedly complete if, whenever
(> )% , is a bounded sequence with z, € X,, for every n € N, then
>oo2 | @y, converges.

The following theorem, which is the main result of this paper, shows that
the Radon-Nikodym properties, considered in Section 1, are inherited by Ba-
nach spaces having a boundedly complete Schauder decomposition.

Recall that Dunford showed that a Banach space with a boundedly com-
plete Schauder basis has the Radon-Nikodym property [12, page 64, Theorem
6]. The proof of the following theorem is similar to Dunford’s proof.

THEOREM 4. Let G be a compact metrizable abelian group and let A be a
subset of I'. Let X be a Banach space having a boundedly complete Schauder
decomposition (X,)52,. Then X has I-A-RNP, II-A-RNP or, respectively,

the NRNP if each X,,, n € N, has the same property.

Proof. We will first give the proof for II-A-RNP. The almost identical proof
for I-A-RNP will be omitted.

Let P; : X — X, be the coordinate projections defined by P;(}, ) =
x;. It is well known that these projections are bounded linear operators. Since
ITI-A-RNP is invariant under equivalent renormings, we may assume, without
loss of generality, that the Schauder decomposition is monotone. This means

that for each n € N
n n+1
> i
i=1

D>
i=1

<

whenever x; € X;, for i € N.
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Let 4 : B(G) — X be a A-measure of bounded variation which is abso-
lutely continuous with respect to A. For each ¢ € N, define
wi: B(G) — X
E — P(u(E)).
It is easy to show that u; is a A-measure of bounded variation which is ab-

solutely continuous with respect to A, for each i € N. Since each X; has
II-A-RNP, there exists f; € L1(G, X;) such that

E):/fid)\, EeB(@), i=12,....
E

For each n € N, define

fn: G — X
t o E:‘L:l fi(t).
Since each f} € L1(G, X;) and each X; is a subspace of X, each f; € L1(G, X),
and hence f, € L1(G, X) for each n € N. Now define
fin: B(G) — X
E — Z?:l pi(E).

Furthermore, since (X,,)5°, is monotone,

= [lu(B)]-

[ln (B =

Therefore,
lin|(E) < |p|(E), E€B(G), n=12....
Now for each F € B(G) and each i,n € N with ¢ < n,

(in(E)) = p(E) = /E fi(t) dA(t)

- /E Py(fu(t) dA(t)
_p < /E ﬁ(t)dA(t)),

/fn t)dA(t), EeB(G), n=12,....

i

and hence

Thus for each E € B(G) and each n € N,
/ S 40| aa) = [ 1l ax =l E)
E|i= E

< |ul(E) < |u[(G) < oo.
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Note that
n+1

> hi) > )
=1 i=1

By the Monotone Convergence Theorem, for each FE € B(G),

[ s Zfz 0 = [ tim Zfz

, n=1,2,....

= lim i dA
[ gjf 0 ax)
< [ul(G) < oo.
Hence
sup Z fi(®) A-a.e..
i=1

Since (X,,)52, is also boundedly complete, the series ). f;(t) converges in X,
A-a.e.. Now define

G — X
t o 32 filt), Mae..
Note that lim,, fn(t) = f(t), M-a.e. in X. Thus f is A-measurable. Further-
more,
fhrenae ) <10l(©) < co.
Therefore,

feli(GX).
Now for each E € B(G) and each i € N,

(/f d)\)/Pf t) dA(t /fl t) dA(t

= /~Lz = l(:u’
and so

E):/Ef(t)d)\(t), E € B(G).

It follows that f is a Radon-Nikodym derivative of u, and hence X has II-A-
RNP. This completes the proof for II-A-RNP.

We will now give the proof for the NRNP. Let T': L]0, 1] — X be a nearly
representable operator. As in the first part of the proof of this theorem, it
is easy to show that the operators P; o T : L1]0,1] — X, are also nearly
representable for each 7, and hence, for each i, P; oT is Bochner representable
since each X; has the NRNP. Now, just as in the first part of the proof, we



1308 Q. BU, J. DIESTEL, P. DOWLING, AND E. OJA

can show that T is Bochner representable. Consequently, X has the NRNP
and the proof is complete. O

REMARK 3. A special case of Theorem 4 asserts (see Remarks 1 and 2)
that X does not contain a subspace isomorphic to ¢y if each of the X, do
not contain a subspace isomorphic to ¢g. This result was established in [34,
Lemma 3].

3. Applications to vector-valued sequence spaces and projective
tensor products

Let U be a Banach space with a boundedly complete 1-unconditional nor-
malized basis (e;)$2;; the l-unconditionality means that, for all n € N, and
scalars aj1,as,...,a, and si,Sa,...,8, with |s;] = 1 for each 1 < i < n,
1200 siaaeill < 11320 el

It is well known and easy to verify (using the Hahn-Banach Theorem)
that for each n € N, | Y0 ae;|| < || Yo, biei|| whenever aq,as, ..., a, and
b1,ba, ..., b, are scalars with |a;| < |b;] for each 1 < i < n.

For a sequence (X;)$2; of Banach spaces, define

UX;) = {x = (x;); : x; € X;, Z ||z;||le; converges in U} ,

(2

and define the norm on U(X;) to be

IZllox,) =

o0
S lleile:
=1

PROPOSITION 5. The space U(X;) is a Banach space and the subspaces
{(0,...,0,2;,0,...) : x; € X;}, i €N, form its boundedly complete Schauder
decomposition.

U

Proof. Let us observe that for each = (z;); € U(X;),

m
> lwilles
i=1

< 1Zllvex)
U

sup
m

and, for each i € N,

[zillei| < [1Z|lvx,)-

i = |
U
The last inequality shows that the coordinate projections from U(X;) to X;
are continuous.
To show that U(X;) is a Banach space, consider (™ = (xgn))z e U(X;)

such that (z(™)22 | is a Cauchy sequence in U(X;). Then
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¢ = sup, |2 ||y(x,) < oo and for each £ > 0, there exists an ng € N such
that for n, k > ng,

(1) 12 = 28y x,) < /2.

By the continuity of coordinate projections from U(X;) to X;, (sc(”))“’ | isa

3 n=

Cauchy sequence in X; for each 7 € N. Hence there is z; € X; such that

hmx(n)—xi, 1=1,2,....

Thus for each fixed m € N, there exists an mg € N with mg > ng such that

2 2™ _ gl < e/2m 1=1,2....,m.

( ) H 7 2 b )<y 9

Note that
> lwille: Sollwi=a™ e+ D 2 e
i=1 U i=1 U i=1 U

<e/2+4 3" px,) <e/2+c

So
§e/2+c<oo.

m
Z il e

Since the basis (e;)$2; is boundedly complete > |lzi| e; converges in U, and
hence T = (z;); € U(X;). Furthermore, by (1) and (2), for each n > no,

m m m
Sl — il e; Z i — 20 e; Z 2{™) — i e
i=1 @ U i U

<||x(n - z(m ||U(X1)+5/2<5/2+5/2_5

sup
m

U

Thus for each n > ny,

ZHQE — il &

=1

<e.
U

z™) — o) = Sup

Therefore, (™), converges to Z in U(X;). This proves that U(X;) is a
Banach space.

To see that the subspaces {(0,...,0,2;,0,...) : z; € X;}, ¢ € N, form a
Schauder decomposition for U(X;), we denote by Z; the element (0, ...,0,z;,
0,...)in U(X;), where z; € X;, and observe that, for any = = (z;); € U(X;),

m (oo}
(3) i‘—Za?i = Z lzille;]l — 0 as m — oo.
=1 U(X,i) 1=m-+1 U
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The Schauder decomposition is boundedly complete because

m m
Zfi Z zille;
i=1

i=1

< 0
U

sup = sup
m m

U(X5)

implies that Y .o [lz;]|e; converges in U. Hence, z = (z;); € U(X;) and, by
(3), Yoo T = 1. O

REMARK 4. The last part of the above proof shows that the Schauder
decomposition is a complete Schauder decomposition for the normed linear
space U(X;). Therefore, U(X;) is a Banach space by [25].

Theorem 4 and Proposition 5 immediately yield:

THEOREM 6. The space U(X;) has I-A-RNP, II-A-RNP or, respectively,
the NRNP if all of the Banach spaces X; have the same property.

REMARK 5. If U =/4,, 1 <p < o0, and (e;)$2; is the unit vector basis of
U, then U(X;) = £,(X;) is clearly the usual £,-direct sum of Banach spaces
X;. It is well known (see [12, page 219]) that £,(X;) has the Radon-Nikodym
property if all the X; have the Radon-Nikodym property. The particular case
of Theorem 6 for U(X;), where each X; is equal to a Banach space X and U
is an equivalent renorming of L,[0,1], 1 < p < oo, with its normalized Haar
basis, was established in [5].

Let X be a Banach space with a boundedly complete Schauder decompo-
sition (X,,)2°;, where each of the spaces X,, are finite dimensional; such a
decomposition is called a boundedly complete FDD. Let P; : X — X; be the
coordinate projection defined by P;(>, #,) = x;. Let Y be a Banach space
and let Iy denote the identity operator on Y. Consider the natural tensor
product of the operators P; and Iy; m; = P;® Iy : XQY — X®Y. It is easily
verified (see [21]) that (m;(X®Y))$2; is a Schauder decomposition of X®Y .
Also note that since each X; is finite dimensional, m;(X®Y) is isomorphic to
E(liim(xi)(Y). Consequently, each subspace m;(X®Y) of X®Y has I-A-RNP,
II-A-RNP or, respectively, the NRNP if Y has the same property. More-
over, in [33, Proposition 1] it is proved that if X has a boundedly complete
FDD, then (m;(X®Y))$2, is a boundedly complete Schauder decomposition
of X®Y . Therefore we immediately get from Theorem 4:

THEOREM 7. Let X be a Banach space with a boundedly complete FDD
and let Y be a Banach space. Then X®Y, the projective tensor product of
X and Y, has I-A-RNP, II-A-RNP or, respectively, the NRNP if Y has the
same property.
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A specific case of Theorem 7 is when one of the spaces has a boundedly
complete basis. We explicitly state this result so we can refer back to it in
later sections.

THEOREM 8. Let X be a Banach space with a boundedly complete basis
and let Y be a Banach space. Then X®Y, the projective tensor product of
X and Y, has I-A-RNP, II-A-RNP or, respectively, the NRNP if Y has the

same property.

Let us recall that a Banach space with a boundedly complete basis has the
Radon-Nikodym property.

REMARK 6. The following result, giving a particular case of Theorem 8§,
was proved by Holub [23] (see also [42, Proposition 4.28]): if X and Y are
Banach spaces with boundedly complete bases, then X®Y has a boundedly
complete basis.

The particular case of Theorem 8 with X = L,[0,1], 1 < p < oo, was proved
in [7] using a different method which, in fact, will be developed further in the
next section of this paper. This method was first used in [6] and then in
[5] to show, respectively, that £,&0X and L,[0,1]@X, 1 < p < oo, have the
Radon-Nikodym property whenever X has the Radon-Nikodym property.

REMARK 7. A particular case of Theorem 8 (see Remarks 1 and 2) asserts
that X®Y contains no copy of ¢y whenever X has a boundedly complete basis
and Y contains no copy of ¢g. A similar result is true for complemented copies
of ¢y (see [35, Theorem 3]). Moreover (see [33, Theorem 3] and [36, Theorem
2]), if 1 < p < g < oo, then £,®X contains no (complemented) copy of
£y, whenever X contains no (complemented) copy of ¢,. These results were
proved, like Theorem 7, using the natural Schauder decomposition of X®Y
associated to the basis of X.

James [24] (see [29, Theorem 1.c.10]) showed that an unconditional ba-
sis for a Banach space is boundedly complete if the space contains no sub-
space isomorphic to ¢g. This is the case when the space has the (analytic)
Radon-Nikodym property or near Radon-Nikodym property. Therefore, from
Theorem 8 and Remarks 1 and 2, we immediately obtain:

THEOREM 9. Let X and Y be Banach spaces such that one of them has
an unconditional basis. Then XQY, the projective tensor product of X and
Y, has the Radon-Nikodym property, the analytic Radon-Nikodym property,
the near Radon-Nikodym property or, respectively, contains no subspace iso-
morphic to cq if both X and'Y have the same property.

REMARK 8. It is well known that the reflexive Banach spaces have the
Radon-Nikodym property. However, Theorem 9 does not remain valid for
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reflexivity. In [33, Theorem 2], it is proved that if X and Y are reflexive
Banach spaces such that one of them has an unconditional basis, then X®Y
is reflexive if and only if it contains no complemented subspace isomorphic
to £1. (Notice, for instance, that ¢3¢, contains a complemented subspace
isomorphic to /1, but &3 does not (see, for example, [42, Example 2.10 and
Corollary 4.24] or [33, Theorems 4 and 5]).)

REMARK 9. In general, the Radon-Nikodym property and the property of
not containing ¢y isomorphically are not stable under projective tensor prod-
ucts: the Banach space X constructed by Bourgain and Pisier [3, Corollary
2.4] has the Radon-Nikodym property (and hence X contains no subspace
isomorphic to cp), but the projective tensor product X@X contains cq iso-
morphically.

4. Semi-embeddings of U®X into U(X)

If X and Y are Banach spaces, then a mapping 7 : X — Y is called a
semi-embedding if T is injective and T'(Bx) is closed in Y. An important
result in the theory of semi-embeddings, appearing in a paper of Bourgain
and Rosenthal [4], which they attribute to F. Delbaen, is: if X is a separable
Banach space, if Y is a Banach space with the Radon-Nikodym property and
if there is a semi-embedding 7' : X — Y of X into Y, then X has the Radon-
Nikodym property. This result of Delbaen has been extended to other types of
Radon-Nikodym properties; to the near Radon-Nikodym property in [26], to
the type-I-Radon-Nikodym property in [15], and to the type type-II-Radon-
Nikodym property in [38].

The main result of this section is that the projective tensor product, U®X,
of the Banach spaces U and X semi-embeds in the sequence space U (X ), when
U has a boundedly complete unconditional basis. Of course, the space U(X)
is the Banach space U(X;), where all the Banach spaces X; are equal to X.
We will then use this result to obtain an alternate proof of Theorem 9.

Throughout this section, unless otherwise stated, U will denote a Banach
space with a normalized boundedly complete 1-unconditional basis (e;)52,
and X will denote an arbitrary Banach space. Then the basis (e;)$2; will also
have normalized biorthogonal functionals, (e})$2,; that is, ||e;]| = |lef]| =1

for all 2 € N and
X 1 ifi=j,
ei(ef)_{ 0 ifij.

It is well known that (ef)$°, is an unconditional basic sequence in U* and
(see, for example, [29, Proposition 1.b.4]) U is isometrically isomorphic to the
dual space of V' = span{e} : i € N}; that is, U = V*. Since the basis (e;)32,
is 1-unconditional, we immediately have the following result:

PROPOSITION 10. Letu =Y .°, ei(u)e; € U. Then:
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(i) For each subset o of N, || >, ef(u)es]| < [Jul].
(ii) For each choice of signs 6 = (0;)22,, || Yoy Oief (w)e; || < [Jul|.
(i) For each A= (A); € foos |55, Mt (@el] < I\ le - [l

THEOREM 11. U®X semi-embeds in U(X).

Proof. Throughout the proof, let € > 0 be arbitrary. Define
v UX — U(X)
z = (220:1 ez‘(uk)xk)i,
where >"77 | ur @ zy, is a representation of z.

Step 1. 1 is a continuous linear one-to-one map from U®X into U(X).
In fact, z € U®X admits a representation z = Y peq uk @z such that

o0
Dl -llzell < lzllyex + e
k=1

For each ¢ € N, choose x} € Bx~ such that

[o(2)ill < (W(2)ia7) +€/20, i=12,....
By Proposition 10, for each m € N,

Z‘W) illei Z )is T +5/21)

v m oo v m
Z Z (ug)xk, 7)e; —l—ZE/Qi
i=1 k=1 U i=1
oo m

< Z Z +e
k=11li= U
o (o)

<D el - Do er(wr)ei| +e
o:O = U
=2

|zl - (Jurl| + ¢

>_.

k=
< ([zlpgx +¢) +e
Therefore,

SUP < ||z||U®X'

Z ¥ (2)ille:
U
Since (e;)$2, is a boundedly complete basis of U, the series ), ||[1)(2);||e; con-

verges in U, and hence ¢(z) € U(X) with ||¢(z )||U(X < ||Izllygx- Therefore,
1 is a well-defined continuous linear map.
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To show v is one-to-one, suppose that 1(z) = 0. Then z admits a repre-
sentation z = Y r- | ug ® zy, such that

Now for each T € L(U, X*) = (U®X)*,

I
WK
M8
o,
s
£l
I
o

So z = 0, and hence v is one-to-one. Step 1 is complete.

Next we want to show 1 is a semi-embedding, that is, for a sequence
Zn € Bpgx and an element (y;); € U(X) such that lim, ¢ (z,) = (y): in
U(X), there exists a z € B¢y such that 1 (z) = (:)i-

Step 2. If ¢ is defined by (T,¢) = > ooy (yi, Te;) for each T € L(U, X*),
then ¢ € L(U, X*)* with ||¢| < 1.
In fact, for each n € N, 2z, € U®X admits a representation

oo
zn:Zuk’n@)xk,n, n=12,...
k=1
such that
00
D luknll - lzenll < lzallvex +6 n=1,2,....
k=1

Since limy, ¥ (2y,) = lim,, (Y pe g €f (wk,n)Th,n)i = (vi)i in U(X),
limZef(uk,n)xkyn =i, 1=1,2,....
k=1

Fix m € N. Then there exists an ng € N such that

<e/m, 1=1,2,...,m.

o0
Z e: (uk,no)xk’no —Yi
k=1

For any T' € L(U, X*), define S by Su = > ", 0;ef(u)Te; for each u € U,
where 0; = sign((3>"r; €} (Wk,no)Tkno» T'€i)). Then by Proposition 10, S €
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L(U, X*) with S| < ||| So

uk R )Ik no» Tez>

(Uk,no)l'k,nm Tei>

Db

=1

V]2

<N e/m | Te| +
=1

6: (uk7n0)xk5,nov Te1,> ‘

=~
Il
A

< ellTN + D bief (wrng)Tes, Thing)
k=1 i=1
oo

= el| T + | D _{Sttng: Thins)| = T+ I(S, 20|
k=1

S el[TI + 1SN - Nznoll < el T[| + (17|

Letting m — oo and € — 0,

Z\ yi, Tei)| < |[T]].
1=1

Therefore, ¢ is a well-defined continuous linear functional with ||¢|| < 1. Step
2 is complete.

Step 3. There exists a z € Byg x.. such that (z) = (ys)i-

In fact, note that U = V*. So K = (By,weak”) x (Bx«,weak") is a
compact Hausdorff space. Define J : L(U, X*) — C(K) by JT(u,z**) =
(T'u, x**) for each u € By and each x™* € Bx«-. Then ||JT||¢x) = [|T]|. So
J(L(U,X*)) is a closed subspace of C(K). Define Fy, : J(L(U,X*)) — K
by Fy4(JT) = (T,¢) for each T € L(U,X*). Then ||Fy|| = ||¢||. By the
Hahn-Banach Theorem, Fj, can be norm-preservingly extended to C(K), and
moreover, by the Riesz Representation Theorem, there exists a regular Borel
measure u on K such that

@ BT = [ JTe)dulas), T e LUXO)
K
and
(5) () = I Foll = ll6]l-
Define
g: K — X

(’LL, (E**) — ot
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Then g is weak™ continuous and hence weak™ p-measurable. Furthermore, for
each z* € X*,

/MMMM:/MWﬁMMS/HmMMSWWWWO<m
K K K

So g is Gel'fand integrable (see [12, page 53]). Define
h: K — U
(u,z**) +— .

Then h is weak™ continuous and hence weak™ u-measurable. Note that U is
separable. By [12, page 42, Corollary 4], h is strongly p-measurable. More-
over,

t/mmﬁwwm:/mmmmmw0<w
K K

So h is Bochner |u|-integrable. It follows from [12, page 172, Lemma 3] that
there exist a sequence (uy)32, of U and a sequence (Ej)72 ; of Borel measur-
able subsets of K such that

(oo}
h=> uxm, , lul-ae.
k=1

and
>l - pl(E) < /K [l dlp| + & < |ul(K) + €.
k=1

Now for each T' € L(U, X*), by (4),

T.6) = FolT) = |

JT (u, ™) dp(u, 2**) = / (Tu, ™) dp(u, ).
K

K
For each ¢ € N and each * € X*, plugging T; = e ® 2™ in the above equality,

(6) (i, %) = (T3, §)
(Tyu, ™) dp(u, ™)

(€7 (w)z™, z™), dp(u, ™)

z*(g)e; (h) dp(u, z™)

x* (g) <e;‘k7 Z uk‘XEk> du(ua IL‘**)
k=1

k=1

I
TS TS s S I  S
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where

wp = Gel'fand— ; g dp(u, x**), k=1,2,....
k

Notice that for each x* € X™* and each k € N,

[ v du‘ < [ wldp

< / "] - gl dlpl < [l - |l (Ek).
Ey

|wy" (2")] =

So
[werll < [ul(Ex),  k=1,2,....
Thus for each i € N,

oo o0
D lles tun)witll =D lef (we)| - lwi”|
k=1 k=1

<D Nl - 1l(Er) < pl(K) +e.
k=1

It follows that the series ), ef(ur)w;* converges absolutely in X** for each
i € N. Therefore, by (6),

@ vi=Y el i=12,...
k=1

Now let z = >3, up @ wi*. Then z € U®X** and ¢(z) = (y;);. Further-
more,

®)  lzlvax- < 2 luell - i < > sl - 1l (Ex) < [pl(K) +&.
k=1 k=1

Letting e — 0,

(9) 1zllygx-- < |pI(K) = [l¢l| <1.

Step 3 is complete.



1318 Q. BU, J. DIESTEL, P. DOWLING, AND E. OJA
Step 4. 2 € Bygx-

In fact, for each n € N, define 2/, = > ; e; ® y; € U®X. Then for each
T e LU, X*),

(2t —2,T) = i (Tei,yi) — i (Tug, w*)
' k=1

i=1
n oo oo
E (Te;, E T (uk)wy™) —E (Tug, wi*)
i=1 k=1 k=1
oo
E el (ug)Te;,wi™)y — Y (Tug,wy”)
k=1

k=1 i=1
Since > "o llukll - |lwi*|| < oo, there exists a ko € N such that
o0
> Nl - i)l < e
k=ko
Since lim,, | Y27, €5 (uk)e; — ug|| = 0 for each k € N, there exists an ng € N

such that for each n > nq,

n

Z e; (ug)e; — ug

i=1

SEH“kHa k:1727"'7k0'

Thus for each n > ng,

ko n
(2], — 2, T)| Z Z — ug, T*wi™)
k=11 i=1
oo n
+ O er(un)es — up, Trwy™)
k=ko | i=1
k‘o n
<D e (e — un | - 1T wi|
k=1 |li=1
oo n
+ >0 1D e tun)er — un| - 1T wi”|
k=ko |l i=1

k‘() oo
<> el AT w4 D lluwll - (1771 flwi”
k=1

k=ko
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oo
< el llunll - llwi*|| + el T
k=1

< el|T((|pl(K) +e) +elT]  (from (8) and (9))
< ]| T(|(1 + &) + &l T
So for each n > ng,
2 = 2llygner < e(1+6)+e
By [12, page 238, Corollary 14], U®X is a subspace of URX**. So z =
lim, 2/, € U®X and ||z]|ygx = [|zlpgx+ < 1. Step 4 is complete.
Steps 1-4 complete the proof of Theorem. O

LEMMA 12. Let S be a closed separable subspace of UX. Then there is
a closed separable subspace Y of X such that S is a closed subspace of URY .

Proof. Let S be a closed separable subspace of U0 X, and let D = (d,,)%>,
be a countably dense subset of S. Then for each fixed m € N, d,, has a
representation

(10) d, = Zuén’m) ®x,(€"’m) , n=12,...
k=1
such that
1) S ™ Yz < Mdallpay +1/m, n=1,2,..
k=1
Let

Y = Span{m,g"’m) in,m,k=1,2,...}.

Then Y is a closed separable subspace of X. Moreover, from (10) and (11),
d, € URY for each n € N and

ldnllyey < lldnllpex +1/m, n=12....

Letting m — o0,

||dn||U®y§ ||dn||U®X> n=12,....
Obviously,

||dn||U®Y > ||dn||U®X7 n=12,....
So

||dn||U®Y: ||dn||U®X7 n=12,....

Thus (S, ||-[|yex) = closure of (D, |||y x ) = closure of (D, ||| ygy) € URY.
Therefore, S is a closed subspace of U®Y . The proof is complete. O
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REMARK 10. Notice that Y in Lemma 12 may be chosen so that UQY
is a subspace of U®X. In fact (see [44]), any separable subspace of X is
contained in a separable closed subspace Y of X such that there exists a
linear Hahn-Banach extension operator from Y* to X*. But, in this case (see
[40, Theorem 1]), URY is a subspace of U X.

Using the “semi-embeddings method” (that is, relying on Theorem 11),
we now give an alternate proof for the following important special case of
Theorem 8.

THEOREM 13. Let G be a compact metrizable abelian group and let A be
a subset of I'. Then U®X, the projective tensor product of U and X, has
I-A-RNP, II-A-RNP or, respectively, the NRNP if X has the same property.

Proof. From [15] and [26], we know that a Banach space has I-A-RNP, II-
A-RNP or, respectively, the NRNP if all its separable closed linear subspaces
have the same property. Also, from [15], [38] and [26] we know that if a
separable Banach space Z semi-embeds in a Banach space which has I-A-
RNP, II-A-RNP or, respectively, the NRNP then Z has the same property.

Now suppose that X has I-A-RNP (respectively, II-A-RNP or NRNP). Take
a closed separable subspace S of U®X. By Lemma 12, there is a separable
subspace Y of X such that S is a subspace of UQY . As a subspace of X, Y has
I-A-RNP (respectively, II-A-RNP or NRNP). By Theorem 6, U(Y') has I-A-
RNP (respectively, II-A-RNP or NRNP). Since U and Y are separable, URQY
is separable, too. By Theorem 11, U®Y semi-embeds in U(Y). Thus, URY
has I-A-RNP (respectively, II-A-RNP or NRNP). Hence, S, as a subspace
of UXY, has I-A-RNP (respectively, II-A-RNP or NRNP), too. Therefore,
we have shown that each closed separable subspace of U&®X has I-A-RNP
(respectively, II-A-RNP or NRNP), which shows that U®X has I-A-RNP
(respectively, II-A-RNP or NRNP), also. The proof is complete. O

Finally, we give an alternate

oo

Proof of Theorem 9. Suppose that X has an unconditional basis (z,)22 ;.
By scaling if necessary, we can assume that (x,)%2; is a normalized basis.
Let (x})52; denote the sequence of biorthogonal functionals associated with
(Zn)nzs

If X has the Radon-Nikodym property, the analytic Radon-Nikodym prop-
erty, the near Radon-Nikodym property, or does not contain a copy of ¢y, then
X does not contain a copy of ¢y. By James’s Theorem (see Section 3), the
basis (z,,)22 is also boundedly complete. We can equivalently renorm X by
letting

||x||new:sup{ :m € N and |ﬁi§17i€N}, reX

S fia (@)
i=1
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(see [45, page 463, Theorem II1.16.1]). It is straightforward that ||z, ||new =
lzn|| = 1 and (z,)5; is a l-unconditional basis for (X, || - |lnew). Conse-
quentially, X is isomorphic to (X, || - |lnew) which has a normalized bound-
edly complete, 1-unconditional basis with normalized biorthogonal function-
als. Note that X®Y is isomorphic to (X, || ||new)®Y . Therefore, by Theorem
13, (X, ]| - |lnew)®Y, and hence X®Y', has the Radon-Nikodym property, the
analytic Radon-Nikodym property, the near Radon-Nikodym property or, re-
spectively, contains no copy of ¢y if Y has the same property. This completes
the proof. O

5. Applications to concrete Banach spaces

It is well known and easy to verify that the unit vectors form a boundedly
complete unconditional basis in £, for 1 < p < co. So we have:

Fact 1. The classical sequence space €, (1 < p < o0) has a boundedly
complete unconditional basis.

From [30, Theorem 2.c.5] we know that the Haar system forms an uncon-
ditional basis of L,[0,1] for 1 < p < co. By a classical result of James [24]
(see [29, Theorem 1.b.4]) every basis in a reflexive Banach space is boundedly
complete. So we have:

FACT 2. The classical Lebesgue function space L,[0,1] (1 < p < c0) has a
boundedly complete unconditional basis.

From [29, Proposition 4.a.4] we know that if M € Ag, then the unit vectors
form a boundedly complete symmetric basis of £5;. Also from [29, page 113]
we know that every symmetric basis is an unconditional basis. Thus we have:

Fact 3. The Orlicz sequence space £y (M € Ag) has a boundedly com-
plete unconditional basis.

From [11, Corollary 1.46 and Theorem 1.98] we know that if M € A, and
M* € Ay, then the Orlicz function space Ljs[0, 1] is a reflexive space with the
Haar system as its an unconditional basis. Thus we have:

FacT 4. The Orlicz function space Lps[0,1] (M, M* € As) has a bound-
edly complete unconditional basis.

Let 1 < p < oo and let w = (w;)$2, be a non-increasing sequence of positive
numbers such that wy; = 1, lim; w; = 0 and Zfil w; = 0o. The Banach space
of all sequences of scalars x = (a1, as,...) for which

o 1/p
||| = sup (Z |aw(i)pwi> < 00,

i=1
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where 7 ranges over all the permutations of integers, is denoted by d(w, p) and
is called a Lorentz sequence space. By [8], the unit vectors form a boundedly
complete unconditional basis of d(w,1). By [1], [19], [20], d(w,p), 1 < p < oo,
is a reflexive Banach space and the unit vectors form a symmetric basis. Thus
we have:

FacT 5. The Lorentz sequence space d(w,p) (1 < p < o0) has a boundedly
complete unconditional basis.

Let m denote the Lebesgue measure on [0,1]. For a real-valued Lebesgue
measurable function f on [0,1] we denote the distribution function of |f| by
dy, that is,

dy(t) = m({z : |f(z)| > t});
and we denote by f* the decreasing rearrangement of | f|, that is,
fr () =inf{x > 0:ds(z) <t}
A function w on [0,1] will be called a Lorentz weight on [0,1] if w is non-
negative, non-increasing, w(1l) > 0, and folw(t) dt = 1. Given a Lorentz
weight w and 1 < p < oo, the Lorentz function space L., ,[0,1] is defined

to be the set of all equivalence classes of measurable functions f on [0,1] for
which || f]|w,p < 0o, where

1= ( | ) dt)l/p.

If w(z) = 1, then L, p[0,1] = L,[0,1]. If w(z) = %x(q/p)_l, 1 <gqgc<
p < oo, then L, ,[0,1] is the classical Lorentz space Ly 4[0,1]. If w(x) =
c(p,q, @)z /P11 + |logz|)™, 1 < ¢ < p < 00, 0 < a < oo, where ¢(p, g, @)
is a constant chosen to satisfy fol w(t)dt =1, then L,, ,[0,1] is the so-called
Lorentz-Zygmund space Ly ¢ o[0,1] (see [2]).

Associated to a Lorentz weight w is the function S(z) = [ w(t)dt. The
weight w is called regular if there is a constant K > 1 such that S(2z)/S(z) >
K for all x with 2z € [0, 1]. Note that in each of the Lorentz spaces L, 4[0, 1]
and Ly, 4 [0, 1] mentioned above, the weight is regular (see [10, page 8]).

From [10, page 25] we know that for 1 < p < oo, the Haar system forms an
unconditional basis for L, ,[0,1] exactly when w is regular. Also from [31],
Ly p[0,1], 1 < p < 00, is reflexive. Thus we have:

FACT 6. The Lorentz function space Ly, ,[0,1] (1 < p < 0o, w is regular)
has a boundedly complete unconditional basis.

From [9], [32], [47] we know that the classical Hardy space on the unit disk
in the complex plane, Hq(D), has an unconditional basis. Since H;(D) is a
subspace of Lq(T) and L1 (T) does not contain a copy of ¢g, Hy(D) does not
contain ¢y. Thus an application of James’s Theorem (see Section 3) yields:
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Fact 7. The Hardy space Hi(D) has a boundedly complete unconditional
basis.

Now from Facts 1-7, and Theorem 9 or Theorem 8 together with Remarks
1 and 2, we have:

COROLLARY 14. Let X be any Banach space and U be ¢, (1 < p < 00),
L,[0,1] (1 <p < o0), by (M € Ag), Lpg[0,1] (M, M* € Ay), d(w,p) (1 <
p < 0), Lypl0,1] (1 < p < oo, w is regular), or Hy(D). Then URX,
the projective tensor product of U and X, has the Radon-Nikodym property
(respectively, the analytic Radon-Nikodym property, the near Radon-Nikodym
property, contains no copy of co) if and only if X has the same property.

REMARK 11. Tt is shown in [5], [6], [7] that for 1 < p < oo, L,[0,1]®X
has the Radon-Nikodym property (respectively, the analytic Radon-Nikodym
property, the near Radon-Nikodym property, contains no copy of ¢y) whenever
X has the same property. For p = 1, it is known that L;[0,1]®X is isometri-
cally isomorphic to the Bochner integrable function space L;([0, 1], X') which
is known to have the analytic Radon-Nikodym property (respectively, the near
Radon-Nikodym property, contain no copy of ¢g) whenever X has the same
property [13], [28], [39].

It follows from [14] that H;(D)®X has the Radon-Nikodym property when-
ever X has the Radon-Nikodym property. It can also be seen that H 1(D)®X
has the analytic Radon-Nikodym property (respectively, the near Radon-
Nikodym property, contains no copy of ¢p) whenever X has the same property,
by noting that H;(D)®X is a subspace of L;(T, X) and using the results of
the last paragraph. It should be noted that, unlike the case of L;(T)®X,
H1(D)®X is not necessarily isomorphic to the function space Hy (D, X) (see
22], [27)).

Let M be a semifinite von Neumann algebra acting on a separable Hilbert
space and let 7 be a normal faithful semifinite trace on M. For 1 < p < o0,
let L,(M,T) be the vector space of all T-measurable operators A, such that
7(|A|P) < oo, where |A| = (A*A)'/2. The space L,(M, ) is a Banach space
when equipped with the norm [|All, = (7(]A|?))/? [18]. A von Neumann
algebra M is called hyperfinite if M is the weak closure of the union of an
increasing sequence of finite dimensional von Neumann algebras. It follows
from [37], [46] that if M is hyperfinite and 1 < p < oo, then L, (M, 7) has an
unconditional finite dimensional decomposition. Since L, (M, 7) is reflexive
for 1 < p < oo, by an extension of James’s result due to Sanders [43], it
follows that the FDD of L,(M, 7) is boundedly complete. In particular, when
M = B(¢?), the space of bounded linear operators on ¢2, then L,(M,T) = C,,
the Schatten p-classes. Since B(¢?) is hyperfinite, we have that the Schatten
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p-classes C, have a boundedly complete FDD when 1 < p < co. Therefore
from Theorem 7 and Remarks 1 and 2 we have:

COROLLARY 15. Let1l < p < oo and let X be Cp or L,(M, 1), where M
s a hyperfinite von Neumann algebra acting on a separable Hilbert space and
T 1s a normal faithful semifinite trace on M, and let' Y be any Banach space.
Then X®Y , the projective tensor product of X and Y, has the Radon-Nikodym
property (respectively, the analytic Radon-Nikodym property, the near Radon-
Nikodym property, contains no copy of co) if and only if Y has the same

property.

Acknowledgement. The authors thank Narcisse Randrianantoanina for
his helpful comments related to Corollary 15.
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