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BIG DEFORMATIONS NEAR INFINITY

CHRISTOPHER J. BISHOP

Abstract. In a related paper we showed that Ruelle’s property for

a Fuchsian group G fails if the group has a condition we called ‘big
deformations near infinity’. In this paper we give geometric conditions
on R = D/G which imply this condition. In particular, it holds whenever

G is divergence type and R has injectivity radius bounded from below.
We will also give examples of groups which do not have big deformations

near infinity.

1. Introduction

If G is a Fuchsian group and µ is a bounded measurable function on the
unit disk, D, which satisfies ‖µ‖∞ < 1 and µ(g(z)) = µ(z)g′(z)/g′(z), for
every g ∈ G, then we say µ is a G-invariant Beltrami coefficient (or complex
dilatation). It is well known that there is a corresponding quasiconformal
mapping fµ which is analytic outside the disk and which conjugates G to a
quasi-Fuchsian group Gµ. For convenience, we will write δ(µ) = δ(Gµ) and
dim(µ) = dim(Λ(Gµ)) when G is clear from the context (δ denotes the critical
exponent and dim the Hausdorff dimension; see Section 2).

We will say that a G-invariant dilatation µ for a Fuchsian group G is a
big deformation if δ(µ) > 1. Furthermore, we say a Fuchsian group G has
big deformations near infinity if there are ε, δ > 0 so that for any compact
set K ⊂ R = D/G, there is a Beltrami coefficient µ supported in R \K with
‖µ‖∞ ≤ 1 − ε and δ(Gµ) ≥ 1 + δ. This condition arose in [7] as a criterion
for the non-analytic dependence of δ(µ) and dim(µ) on µ. In this paper, we
will give geometric conditions on R which imply that such deformations exist.
For example:

Theorem 1.1. Suppose G is a torsion free, infinitely generated Fuchsian
group and either of the following holds:

(1) the injectivity radius is bounded above and below,
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(2) G is divergence type and the injectivity radius is bounded below.

Then G has big deformations near ∞.

This will follow from a more general result. To state it, we need to introduce
a few more definitions. If {Gn} is a sequence of Kleinian groups acting on
3-dimensional hyperbolic space (consider the ball model), we will say that
{Gn} → G geometrically if Gn(0)∪S2 converges to G(0)∪S2 in the Euclidean
Hausdorff metric. We say that G′ is a geometric boundary group of G (and
write G′ ∈ ∂gG) if there is a sequence of Möbius transformations {gn} such
that gn ◦G◦g−1

n → G′. If the injectivity radius at gn(0) tends to zero then the
resulting limit (if it exists) is elementary and non-discrete. Thus in this paper
we will only take limits over sequences where the injectivity radius is bounded
away from zero. Given any such sequence there is always a subsequence which
converges to a discrete group.

In [8] it is proven that if Gn → G in this sense then lim inf δ(Gn) ≥ δ(G).
Thus if G′ ∈ ∂gG, then δ(G) ≥ δ(G′). Using this one can show (Theorem 3.1)
that if G′ ∈ ∂gG has a big deformation, then G has big deformations near
infinity.

We will call a Fuchsian group exceptional if it is the covering group of
the sphere minus m disks and n points where 1 ≤ m+ n ≤ 3 and denote this
family by E =

⋃
m+n≤3 Em,n. The case m = 0, n = 3 (i.e., the thrice punctured

sphere) plays a special role because it is the only hyperbolic surface for which
the Teichmüller space is trivial. The groups in E are exceptional from our
point of view because by Theorem 3.2 every Fuchsian group not in E has a
big deformation.

Theorem 1.2. Suppose G is a torsion free, infinitely generated Fuchsian
group and either of the following holds:

(1) ∂gG 6⊂ E,
(2) G is divergence type and E0,3 6∈ ∂gG.

Then G has big deformations near ∞.

If G has upper or lower bounds on its injectivity radius then the same
bounds apply to any geometric limits and by examining each of the groups in
E we see that Theorem 1.1 is an immediate corollary.

We shall say a Fuchsian group G has the Ruelle property if whenever {Gt}
is an analytic family of quasiconformal deformations of G then dim(Λ(Gt)) is a
real analytic function of t (dim(Λ) is the Hausdorff dimension of its limit set).
Ruelle [15] showed that every cocompact Fuchsian group has this property
and Astala and Zinsmeister gave various examples of infinitely generated,
convergence type Fuchsian groups for which it fails [2], [3]. In [7] we showed
that if G is a torsion free, infinite area Fuchsian group with big deformations
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near infinity, then the Ruelle property fails. Thus the results of this paper
provide new examples where Ruelle’s property fails.

We will also give examples of infinitely generated groups which do not have
big deformations near infinity. A generalized Y -piece in a Riemann surface
R is a region bounded by three simple closed geodesics (or punctures) which
is homeomorphic to a 2-sphere minus three disks (or points). If all three
boundary components have length ≤ L we say the Y -piece is L-bounded
(punctures count as zero length). We say that R has a L-bounded Y -piece
decomposition if it can be written as a union of L-bounded Y -pieces with
disjoint interiors.

Theorem 1.3. Suppose R = D/G has a L-bounded Y -piece decomposition
and that for every ε > 0 all but finitely many of the Y -pieces are ε-bounded.
Then G does not have big deformations near infinity.

We say that such surfaces “approximate a thrice puncture sphere” near
infinity. It is not hard to see that this is equivalent to saying that ∂gG = E0,3.
It remains open whether such surfaces have Ruelle’s property or not.

The remaining sections are organized as follows. In Section 2 we review
some basic definitions and results. In Section 3 we show that the non-
exception groups have big deformations and prove part (1) of Theorem 1.2. In
Section 4 we record a result on random geodesics. In Section 5, we complete
the proof of Theorem 1.2 using a theorem of Dennis Sullivan about convex
hulls in hyperbolic space. In Section 6, we prove Theorem 1.3.

I give my sincere thanks to the referee whose careful reading of the man-
uscript and numerous helpful comments and corrections are greatly appreci-
ated.

2. Background

Now we review some basic definitions. Given a set E, we define

Hαδ (E) = inf

∑ diam(Uj)α : E ⊂
⋃
j

Uj ,diam(Uj) ≤ δ

 ,

where the infimum is over all coverings of E by sets of diameter ≤ δ. Taking
δ = ∞ gives the Hausdorff content Hα∞(E), and the Hausdorff measure of E
is given by

Hα(E) = lim
δ→0
Hαδ (E).

The Hausdorff dimension of E is

dim(E) = inf{α : Hα(E) = 0} = inf{α : Hα∞(E) = 0}.
A Fuchsian group is cocompact if D/G is compact and is cofinite if the

quotient has finite hyperbolic area. A Fuchsian group is called divergence
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type if ∑
g∈G

exp(−ρ(0, g(0))) =∞,

and otherwise it is called convergence type. There are several other conditions
which are equivalent to divergence type. For example, a Fuchsian group G is
divergence type iff the conical limit set Λc has full Lebesgue measure on the
circle. Similarly G is divergence type iff the geodesic flow for R = D/G is
ergodic (see [13]).

The group is called first kind if the limit set is the entire circle, and is
called second kind otherwise. It is well known that cocompact ⊂ cofinite ⊂
divergence type ⊂ first kind.

Given a Fuchsian group G and a point z ∈ D, the injectivity radius of G
at z is half the distance from z to the nearest distinct G-image of z, i.e.,

inj(z) =
1
2

inf{ρ(z, g(z)) : g(z) 6= z}.

Given ε > 0 we define the ε-thick and ε-thin parts of R = D/G to be the points
where the injectivity radius is ≥ ε or < ε, respectively. There is a εM > 0
(called the Margulis constant) independent of G so that for ε < εM the ε-thin
parts are disjoint and of exactly two possible types: the parabolic thin parts
which are horoballs in D tangent to the unit circle at a parabolic fixed point
and the hyperbolic thin parts which are fixed distance neighborhoods of a
hyperbolic geodesic (see Figure 1). Later we will want to use the following
easy estimate.

Lemma 2.1. Suppose P ⊂ D is a parabolic or hyperbolic thin part not
containing the origin. Then the set of radial geodesics γ(θ) such that the
hyperbolic length of γ ∩ P is ≥ n has angle measure ≤ Cdiam(P )e−n/2.

Proof. For parabolic thin parts this is immediate from the geometry of a
horoball. For hyperbolic thin parts it follows from the previous case and the
observation that any hyperbolic thin part is contained in the union of two
horoballs of comparable diameter (see Figure 1). �

The critical exponent (or Poincaré exponent) of the group is defined as

δ(G) = inf

s :
∑
g∈G

exp(−sρ(0, g(0)))

 <∞.

It is shown in Lemma 2.2 of [9] that if Ω is a bounded simply connected
invariant component then one can also take

δ(G) = inf

s :
∑
g∈G

dist(g(z0), ∂Ω)s <∞

 ,(1)
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Figure 1. Parabolic and hyperbolic thin parts.

for any z0 ∈ Ω and where dist denotes Euclidean distance.
The conical limit set, Λc, is defined to be those limit points x ∈ Λ for which

some subsequence of the orbit of 0 approaches x within a non-tangential cone
with vertex x. Equivalently, x ∈ Λc iff the radial segment ending at x projects
to a geodesic ray on the quotient orbifold which returns to some compact
subset infinitely often (the complement consists of rays which eventually leave
every compact set and is called the escaping limit set Λe). By Theorem 1.1
in [8], δ is equal to the Hausdorff dimension of the conical limit set. It is also
proven there that if Gn → G (in the sense that each point of G(0) is a limit
of points from {Gn(0)}), then

lim inf
n

δ(Gn) ≥ δ(G).

A K-quasiconformal map from R
2 to itself is one which satisfies

lim sup
r→0

max|x−y|=r |f(x)− f(y)|
min|x−y|=r |f(x)− f(y)|

≤ K.

Such a map is well known to be differentiable almost everywhere and we let
µ = fz/fz̄ denote its complex dilatation. It is also known that ‖µ‖∞ ≤
(K − 1)/(K + 1) and that the map f is determined (up to composition with
Möbius transformations) by its dilatation. If we assume three points are fixed
(e.g., 0, 1, ∞) then the map is uniquely determined by µ.

We shall say that a dilatation µ supported on the unit disk is G-invariant
if

µ(g(z)) = µ(z)g′(z)/g′(z),
for every g ∈ G. If µ is invariant under the action of a Fuchsian group G,
then fµ ◦ g ◦ f−1

µ is Möbius for every g ∈ G and fµ is called a quasi-conformal
deformation of G. Given such a µ we let δ(µ) denote the critical exponent of
the group Gµ = fµ ◦ G ◦ f−1

µ and let dim(µ) = dim(Λ(Gµ)). Since any two
groups associated to the same µ are conjugate by a Möbius transformation,
these functions are well defined.
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A quasiconformal conjugacy of G is a quasiconformal mapping of the disk
to itself which conjugates G to another Fuchsian group. Later we will use
the theorem of Pfluger [14] that any quasiconformal conjugate of a divergence
type group is also divergence type.

Given an interval I ⊂ T, the corresponding Carleson “square” is

Q = QI = {z ∈ D : z/|z| ∈ I, 1− |z| ≤ |I|}.

The “top half” of Q is defined as

T (Q) =
{
z ∈ D : z/|z| ∈ I, 1

2
|I| ≤ 1− |z| ≤ |I|

}
.

A stopping time region is a domain of the form W = QI \
⋃
j QIj where Ij is

a collection of pairwise disjoint intervals in I.
We will also need the following result from [10]. It basically says that at

points far from the support of µ the corresponding map fµ behaves like a
Hölder function with exponent close to 1. Given z ∈ S2, let z∗ denote it
reflection across the unit circle, T.

Lemma 2.2. Given K < ∞ and η > 0 there are C < ∞ and r < ∞
so that the following holds. Suppose f is a conformal map of the disk with
a K-quasiconformal extension to the plane with Beltrami coefficient µ. Also
suppose that diam(f(D)) ≤ K|f ′(0)|. Suppose W = Q \

⋃
j Qj is a stopping

time region, W ∗ = {z∗ : z ∈ W}, and ρ(W ∗, supp(µ)) ≥ r. Then for any
collection C ⊂ {Qj}∑

C
diam(f(Qj))1+η ≤ Cdiam(f(Q))1+η

∑
C

diam(Qj)
diam(Q)

.

Two Y -pieces, with a pairing of the boundary components, are close to
each other if their boundary lengths are close, i.e., we define

d(Y1, Y2) = max
(∣∣∣∣log

a1

a2

∣∣∣∣ , ∣∣∣∣log
b1
b2

∣∣∣∣ , ∣∣∣∣log
c1
c2

∣∣∣∣) .
For generalized Y -pieces we interpret | log a1/a2| as zero if a1 = a2 = 0 and
as +∞ if one is zero and the other is not. Similarly for the b and c terms.
The following is Corollary 6.3 of [6].

Lemma 2.3. Suppose Y1 and Y2 are two L-bounded generalized Y -pieces
and let D = d(Y1, Y2). Then there is a quasiconformal map f : Y1 → Y2 with
constant K = K(L,D) which is affine on each of the boundary components.
Moreover, the dilatation Kf of f satisfies

|Kf (z)| ≤ 1 + C(L,D) exp(−2dist(z, ∂Y1)).
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In particular, if Y1 is 1-bounded and D is fixed, then the quasiconformal
dilatation is ≤ 1 + ν except on a A-neighborhood of the boundary, where
A <∞ depends only on D and ν. If Y1 has very short boundaries, this means
the dilatation is concentrated near the boundaries and the map is almost
conformal on most of Y1.

3. Groups with big deformations

Lemma 3.1. Suppose {Gn} is a sequence of Fuchsian groups which con-
verges geometrically to a group G. If G has a deformation Gµ such that
δ(Gµ) > s > 1, then so does Gn for all sufficiently large n.

Proof. Let {Kj} be a compact exhaustion of a convex, open fundamental
domain F for the group G (also note that F has boundary of zero area by
convexity). By considering the deformations µj = µχKj and using the lower
semi-continuity of δ to deduce

lim inf
j

δ(µj) ≥ δ(µ) > s,

we may assume that µ is compactly supported on a compact set K ⊂ F . Then
for n large enough K is a subset of a fundamental domain Fn for Gn and thus
may be extended to a Gn invariant dilatation. Moreover, the corresponding
dilatations on the disk converge to µ and hence the corresponding quasicon-
formal maps converge uniformly to the map corresponding to µ. Thus the
deformations of Gn converge geometrically to the deformation of G and so by
the lower semi-continuity of δ we have δ > s for all sufficiently large n. �

Next we recall that Em,n denotes the class of Fuchsian groups which covers
the sphere minus m disks and n punctures and we let E =

⋃
m+n≤3 Em,n.

These groups are “exceptional” in the following sense.

Theorem 3.2. If G is a torsion free Fuchsian group not in E then G has
a deformation Gµ with δ(Gµ) > 1.

Proof. The classification theorem for hyperbolic Riemann surfaces given
in [1] says that every such surface is a union of funnels, half-disks and an
open set which can be exhausted by geodesic domains, and only the disk and
annulus have no Y -pieces. The geodesic domains, in turn, are finite unions of
geodesic Y -pieces (where one or more of the boundaries may be a puncture).
This easily implies that every hyperbolic surface not in E is either (1) a genus
1 torus with a puncture, (2) a genus 1 torus with a disk removed, or (3) it
contains two Y -pieces joined along a common boundary geodesic. In case (1),
there is a big deformation because the punctured torus has finite area and the
Teichmüller space is not trivial. In case (2), the surface can be deformed so
it converges to the punctured torus, and then we apply the previous case and
Lemma 3.1.
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In case (3), when there are two Y -pieces joined along a common geodesic,
the interior of this union is topologically the sphere minus k simple closed
geodesics and j punctures where k + j = 4. If k = 0, then R is the 4-
punctured sphere and thus has non-trivial Teichmüller space [12] and hence
has a deformation with δ > 1. If k > 0 then the k closed geodesics can
be deformed to punctures by quasiconformal deformations and hence G has a
sequence of deformations {Gn} which converge geometrically to a 4-punctured
sphere group. Thus some Gn has a deformation with δ > 1 by Lemma 3.1.
Since Gn is a deformation of G we see that G also has a deformation with
δ > 1. �

Corollary 3.3. Suppose G is a torsion free Fuchsian group and ∂gG
contains a group G′ 6∈ E. Then G has big deformations near ∞, i.e., there
are dilatations {µn} whose supports leave every compact set in R = D/G, and
lim infn δ(µn) > 1.

Proof. Let Gn = gn ◦ g ◦ g−1
n denote a sequence of renormalizations of G

which converge to G′ and let µ be a deformation of G′ such that δ(µ) > 1.
Just as in the proof of Lemma 3.1 we may assume that µ is supported on a
compact set K in an open fundamental domain for G′. Thus just as before,
K will be a subset of a fundamental domain for Gn, and will extend to a
deformation µn such that δ(µn) > 1 for n sufficiently large. Considering {µn}
as a sequence of dilatations on G instead, we see that they have supports
which leave every compact set, as desired. �

Thus the only infinitely generated Fuchsian groups which might not have
big deformations near ∞ are those with ∂gG ⊂ E . This is the first part of
Theorem 1.2. To prove the second part of Theorem 1.2 we will prove:

Theorem 3.4. If G is a torsion free divergence type group such that
∂gG ⊂ E \ E0,3, then G has big deformations near ∞.

Recall that E0,3 denotes the covering group of the thrice punctured sphere.
Thus for infinitely generated divergence groups, at least, this group is the only
obstruction to the failure of Ruelle’s property. In particular, if G has a lower
bound on its injectivity radius then E0,3 cannot possibly be a boundary group
of G and so we deduce that for such groups Ruelle’s property always fails.

4. Sets hit by a random geodesic

In this section we record a technical result that we will use in the next
section for the proof of Theorem 3.4. It basically says that a set which is
uniformly distributed in R = D/G will frequently be hit by almost every
geodesic ray. This will follow from the strong law of large numbers and a few



BIG DEFORMATIONS NEAR INFINITY 985

simple facts about the geometry of thin parts. This is probably not a new
result, but since I don’t know a reference I will give the proof for completeness.

To be more precise, let γ(t, θ) be the point in the disk which is at hyperbolic
distance t from the origin in the direction eiθ.

Lemma 4.1. Suppose G is an infinite area, torsion free Fuchsian group
and that K ⊂ R = D/G is compact. Suppose B is a collection of hyperbolic ε-
balls in Rthick such that every point in Rthick \K is within hyperbolic distance
M of some ball in B. Let Ω be the lift of

⋃
B B to the disk. Then there is a

η > 0 (depending on ε and M , but not on K) such that

lim inf
t→∞

1
t

∫ t

0

χΩ(γ(s, θ))ds ≥ η > 0,

for (Lebesgue) almost every θ. In other words, a random geodesic ray in R
spends at least a fixed fraction of its time inside Ω.

We will prove this in several steps. The first step says the chance of being
in a compact subset of an infinite area surface is zero.

Lemma 4.2. Suppose G is an infinite area group and suppose E ⊂ D is a
G-invariant set such that E/G is compact. Then

lim sup
t→∞

1
t

∫ t

0

χE(γ(s, θ))ds = 0.

Proof. If G is convergence type there is nothing to do because in this case
the conical limit set has Lebesgue measure zero, i.e., almost every geodesic ray
leaves every compact set eventually. Hence we may assume G is divergence
type. Suppose E ⊂ F and F is also compact and G invariant. Then since
the geodesic flow for G is ergodic (see, e.g., Chapters 7 and 8 of [13]) and
χE , χF ∈ L1, for almost every choice of origin and almost every θ,

lim sup
t→∞

1
t

∫ t

0

χE(γ(s, θ))ds ≤ lim
t→∞

∫ t
0
χE(γ(s, θ))ds∫ t

0
χF (γ(s, θ))ds

=
area(E)
area(F)

,

where area refers to hyperbolic area. Since we can take F to have as large
area as we wish (since R = D/G has infinite area) we deduce that the left
hand side is zero, as desired.

Actually, the ergodicity of the geodesic flow states that the argument above
is valid for almost every choice of base point. However, if we choose two
different base points x and y the geodesic rays from these points which land
at the same point of the boundary come together exponentially fast. Thus by
expanding E to E′ by taking a 1-neighborhood, we see that the ray from x
spends at least as much time in E′ as the one from y spends in E. Thus if
the result is true for base point x, it is also true for y. Thus the result holds
for every base point and not just almost every point. �
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Lemma 4.3. Suppose G is an infinite area Fuchsian group and let W ⊂
D denote the points where the injectivity radius is ≥ ε0 (i.e., W is the lift
of the thick part of R). Assume that ε0 has been chosen so small that the
complementary thin parts are at least hyperbolic distance 10 apart. Then

lim inf
t→∞

1
t

∫ t

0

χW (γ(s, θ))ds = η0 > 0,

for some η0 > 0 which only depends on ε0.

Proof. This follows from the strong law of large numbers and simple geo-
metric properties of thin parts. The version of the law of large numbers we
wish to use is the following well-known result.

Theorem 4.4. Suppose {fn} ⊂ L2(X,µ) is a sequence of orthogonal func-
tions on a finite measure space and supn ‖fn‖2 <∞. Then 1

n

∑n
k=1 fn(x)→ 0

for almost every x.

To apply the result, we will replace W by a subregion V which is the union
of tops of Carleson squares contained in W . It will be enough to prove the
results for angles θ corresponding to an interval I0 such that the corresponding
Carleson square Q0 satisfies T (Q0) ⊂ W , for almost every point of the circle
can be covered by such intervals.

Fix such a Carleson square Q0 and form collections of dyadic subsquares
inductively by saying C(Q) is the maximal collection of dyadic subsquares of
Q′ ⊂ Q such that the top half of Q′ consists entirely of points with injectivity
radius ≥ ε0. We write C =

⋃
n Cn by setting C0 = Q0 and putting Q into Cn

if Q ∈ C and it is a maximal proper subsquare of a square in Cn−1.
By examining parabolic and hyperbolic thin parts, it is easy to check that

the number of squares in C(Q) of size 2−n`(Q) is at most 2n/2 and so their
bases have total length at most 2−n/2`(Q). See Lemma 2.1. This estimate is
the main point; the rest of the proof is a simple calculation.

Define fI on I ′ as log `(Q′)/`(Q) and let gI(x) = fI(x)−mI(fI) where mI

denotes the average value over I. Because of our estimates,

0 < m ≤ mI(fI) ≤M <∞,

with m and M independent of I. Let gn =
∑
I∈Cn gI . Then gI has mean

value 0 over the interval I and so gn has mean value zero over intervals where
gk, k < n, is constant. Thus {gn} is an orthogonal sequence and it is easy
to see that these functions are in L2(T) with a uniform bound. Thus by the
strong law of large numbers

1
n

n∑
k=1

gk(θ)→ 0,
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for almost every θ. Unwinding the definitions, this means that for almost
every θ,

mn ≤
n∑
k=1

fk(θ) ≤Mn.

Setting t =
∑n
k=1 fk(θ) , we see that for t large enough (depending on θ) the

geodesic corresponding to angle θ enters at least t/M distinct T (Q)’s in V
and hence spends at least time t/M in the thick part of R, as desired. �

Lemma 4.5. Let G, K, M and B be as in Lemma 4.1. Then there are
C1, C2 <∞ so that the following holds. Suppose Q is a Carleson square such
that T (Q) is in W and the distance from T (Q) to K is ≥ C1. Then there is
a lift of a ball in B which is contained in Q and is at most distance C2 from
T (Q).

Proof. All we have to do is find a point z in W ∩ Q which is more than
distance M from ∂Q and is exactly distance C3 from T (Q) (this describes an
arc L in the interior of Q). Then taking any ball in B which is within distance
M of this point will prove the lemma with C1 = C2 +M , C2 = C3 +M .

If there were no thick points on the line segment L then the whole of L
must be in a single thin component. However, for a fixed M and taking C3

large enough, it is easy to see that this implies T (Q) is contained in the same
thin component (since the component is hyperbolically convex and so contains
the hull of L which contains a point of T (Q) if its Euclidean diameter is close
to that of the base of Q). This proves the lemma. �

Proof of Lemma 4.1. Again we will use the strong law of large numbers.
Let W ′ ⊂ W be the union of top halves of Carleson squares which are more
than distance C1 from K. We can write W =

⋃
Q∈C T (Q), and W ′ =⋃

Q∈C′ T (Q), where C′ ⊂ C is the set of squares Q such that T (Q) is more
than hyperbolic distance C1 from K, i.e., the squares which are disjoint from
the compact set K ′ = {z : ρ(z,K) ≤ C1}. Note that

lim inf
t→∞

1
t

∫ t

0

χW ′(γ(s, θ))ds

≥ lim inf
t→∞

1
t

∫ t

0

χW (γ(s, θ))ds− lim sup
t→∞

1
t

∫ t

0

χK′(γ(s, θ))ds

≥ η1,

by Lemmas 4.2 and 4.3.
Suppose T (Qj) ⊂ W ′ and let Bj ⊂ Qj be the corresponding ball given by

the previous lemma. Let Jj ⊂ Ij be the radial projection of 1
2Bj onto the

circle. Let

fI(θ) = χJj (θ)−
|Jj |
|Ij |

χIj (θ),



988 CHRISTOPHER J. BISHOP

and let
fn =

∑
I∈Cn

fI(θ).

Then the strong law of large numbers applies to {fn} and we deduce that for
almost every θ, ∫ t

0

χΩ(γ(s, θ))ds ≥ C4

∫ t

0

χW (γ(s, θ))ds,

where C4 is a uniform lower bound for |Jj |/|Ij |. Thus the number of times
a ray of length t hits the center half of a ball B ∈ B is bounded below by
a constant times the number of times it hits a Q ∈ C. As noted above, the
latter is bounded below by η1t and this gives the desired result. �

5. Proof of Theorem 3.4

Suppose G is a Fuchsian group of the first kind and that Gµ = fµ ◦G◦f−1
µ

is a quasi-Fuchsian deformation. Suppose Ω = fµ(D) and let C(Λµ) ⊂ H3

denote the hyperbolic convex hull of ∂Ω = Λ(Gµ) = fµ(T) and let S be
the boundary component of C(Λµ) which faces Ω. By a result of Thurston
(see [17] or [11]) the path metric ρS on S makes it isomorphic to the usual
hyperbolic disk. Let ι : D→ S be such an isomorphism.

Thus Gµ acting on S induces a Fuchsian group Hµ = ι−1 ◦ gµ ◦ ι acting
on the disk. Moreover, a theorem of Sullivan ([4], [5], [11], [16]) states that S
with its path metric is quasiconformal to Ω with its hyperbolic metric. Thus
Hµ is quasiconformally conjugate to the group G. By a well known result of
Pfluger [14], this implies that Hµ is divergence type iff G is.

Consider the case of Ω0 = B(0, 1) ∪ ([0, 10] × [−1, 1]) ∪ B(10, 1). Let S0

denote the boundary component of the convex hull of ∂Ω0 which faces Ω0.
Then S0 is easy to describe; it is the union of a Euclidean half cylinder (over
the central rectangle) and two quarter spheres (over each half disk). In the
central portion the only curves where the path metric agrees with the metric
in H3 are the circles which lie in the (y, z) plane. Thus if we choose two
points z1, z2 which are unit distance apart in the path metric but which have
different x coordinates, their distance in H3 is < 1. In particular, it is easy
to see by compactness that if we take two unit balls B1 and B2 on S0 (say
centered at the points above (0, 3) and (0, 6)) then there is an ε > 0 with the
following property: for any z ∈ S0 there is an i ∈ {1, 2} so that if γ0 = [z1, z2]
is a unit length segment of a geodesic ray from z and γ0 ∩ Bi 6= ∅ then
ρH3(z1, z2) ≤ 1 − ε. If Ω1 is another domain which approximates Ω0, the
corresponding surface S1 will approximate S0 and if the approximation is
close enough then we can find balls B1, B2 ⊂ S1 with the same property (but
perhaps with a slightly smaller ε). This is because if Sn → S and there are
points xn, yn ∈ Sn which converge to points x0, y0 ∈ S0, then paths between
xn and yn have a convergent subsequence to a path between x0 and y0. Thus
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the path metric between x0 and y0 is ≤ lim inf ρSn(xn, yn). Moreover, the
three dimensional hyperbolic metric clearly converges.

For x, y ∈ D, set Υ(x, y) = ρH3(ι(x), ι(y)), and note that Υ ≤ ρ. Clearly

δ(Gµ) = inf

s :
∑
h∈Hµ

exp(−sΥ(0, h(0)))

 <∞.

On the other hand, since H is divergence type,

1 = δ(Hµ) = inf

s :
∑
h∈Hµ

exp(−sρ(0, h(0)))

 <∞.

Given a compact set K ⊂ R = D/G, we want to define a dilatation µ sup-
ported off K such that ‖µ‖∞ ≤ k for some k < 1 independent of K and with
δ(µ) > 1 + δ0 for some δ0 > 0 independent of K. To do this we will use our
assumption that ∂gG ⊂ E \ E0,3. This implies that given any r > 0, there is
a compact K1 ⊂ R so that at every point z outside K1, R approximates a
surface from E \ E0,3 on a ball of radius r around z. In particular, given any
r1 > 0 there is a r2 > 0 and a compact K1 ⊂ R such that every thick point
z in R \K1 is within distance r2 of a point w where the injectivity radius is
≥ r1.

This means that we can choose a collection of radius r1 balls in R \ K1

which are topological disks and so that any thick point of R \ K1 is within
distance r3 of one of the balls. The dilatation µ will be supported on the union
of these balls. To define the dilatation µ on a particular ball B, consider a lift
to the unit disk and assume B is centered at the origin. Take a quasiconformal
mapping f of the disk to the region Ω0 described above and which extends
to be conformal outside the unit disk and let µ on B be the restriction of the
dilatation of this map to B. If r1 is large enough then when we extend µ to be
G-invariant, it still maps the disk to a uniform approximation Ω1 of Ω0. Thus
the surface S1 which bounds the convex hull of Ω1 is close to the convex hull
of Ω0. As explained above, this implies that we can choose two unit balls B1,
B2 on S1 about unit distance apart and a ε0 > 0 with the property that given
any z ∈ S there is an i = 1, 2 so that for any geodesic ray γ in S based at z
and any unit length segment γ0 of γ which hits Bi, the hyperbolic distance
between its endpoints is ≤ 1 − ε0. Thus although S1 may contain geodesic
segments for the path metric which also look like geodesics for the hyperbolic
metric, we can always move a short distance and find segments for which this
is not true.

In terms of the group Hµ what we have shown is the following. There is
a Hµ-invariant E ⊂ D which is compact modulo Hµ such that every point
outside E is within a uniformly bounded hyperbolic distance of a unit hyper-
bolic ball B ∈ B with the property that every radial line segment [x, y] of
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unit hyperbolic length which hits B has the property that Υ(x, y) ≤ 1 − ε0.
Now consider the radial geodesic from 0 to γ(n, θ) and let xk = γ(k, θ) for
k = 0, . . . , n. Then since Υ is a metric, the triangle inequality implies

Υ(0, γ(n, θ)) ≤
n−1∑
k=0

Υ(xk, xk+1) ≤ n−N(n, θ)ε0,

whereN(n, θ) is the number of ballsB ∈ B which the segment hits. By Lemma
4.1, N(n, θ) > cn for some c > 0 for almost every θ and all n sufficiently large.
Thus we get that

lim sup
t→∞

1
t
Υ(0, γ(t, θ)) ≤ 1− ε1,

for almost every θ and some ε1 > 0. We claim this implies δ(Gµ) > (1 −
ε1)−1 > 1.

Given a point z ∈ D \ {0} let Iz be the interval on T centered at z/|z| and
of length 1 − |z|. Since Hµ is quasiconformally conjugate to the divergence
type group G, it is also divergence type by a well known result of Pfluger
[14]. Thus orbits of Hµ are non-tangentially dense almost everywhere on the
unit circle and hence the intervals {Ih(0)}h∈Hµ cover almost every point of T
infinitely often. Since

lim sup
t→∞

1
t
Υ(0, γ(t, θ)) ≤ 1− ε1,

for almost every θ, for any ε > 0, the set of intervals {Ih : h ∈ Hµ,Υ(0, h(0)) ≤
(1−ε1 +ε)ρ(0, h(0))} also covers almost every point infinitely often, and hence∑

(1−|h(0|) =∞. Let {hj} be an enumeration of these elements of Hµ. Thus∑
j

exp
(

−1
1− ε1 + ε

Υ(0, hj(0))
)
≥
∑
j

exp(−ρ(0, hj(0))) =∞.

Thus δ(µ) ≥ (1 − ε1 + ε)−1. Taking ε → 0 gives δ(Gµ) ≥ (1 − ε1)−1. This
proves there are big deformations near infinity.

6. Proof of Theorem 1.3

It is convenient to prove Theorem 1.3 in a slightly more general form.
Recall that we say that R has a L-bounded Y -piece decomposition if it can
be written as a union of L-bounded Y -pieces with disjoint interiors. Let Γ
be the union of all simple closed geodesics which occur as boundary arcs in
the Y -piece decomposition and let Γε ⊂ Γ denote all those with lengths ≥ ε.
By the collar lemma there is a C > 0 (depending only on L) so that the
hyperbolic C-neighborhoods of elements of Γ are pairwise disjoint.

Theorem 6.1. Given L,K < ∞ and η > 0 there are ε > 0 and r <
∞ so that the following holds. Suppose R = D/G is a Riemann surface
which has a decomposition into L-bounded Y -pieces. Suppose F : R → S is
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a K-quasiconformal map with Beltrami coefficient µ and dist(supp(µ),Γε) >
r. Then the corresponding quasi-Fuchsian deformation of G has limit set of
dimension ≤ 1 + η.

Theorem 1.3 follows because Γε is compact and hence eventually the sup-
ports of {µn} will be far from it and because δ(G) ≤ dim(Λ). Note that the
following is also a special case of Theorem 6.1.

Corollary 6.2. Given K <∞ and η > 0 there is an ε > 0, so that if R =
D/G is a Riemann surface which has an ε-bounded Y -piece decomposition,
then dim(f(T)) ≤ 1 + η for every K-quasiconformal deformation of G.

We can think of this as a quantified version of the well known fact that the
thrice punctured sphere has trivial Teichmüller space, i.e., there are no quasi-
Fuchsian deformations of E0,3. We now proceed with the proof of Theorem
6.1.

Suppose F : R→ S is K-quasiconformal and let f : D→ D be a lift to the
unit disk. Suppose Y1 ⊂ R is a Y -piece. Let Ω1 be a lift of (the interior of)
Y1 to the unit disk. See Figure 2. Suppose γ is a boundary geodesic of Y1 and
that γ lifts to (−1, 1) ⊂ ∂Ω1. Normalize f so that it fixes −1 and 1.

Figure 2. Ω, a lift of a Y -piece

Let E1 = ∂Ω1 ∩ T and let E2 = f(E1). Let Ω2 be the hyperbolic convex
hull of E2. Then Ω2 projects to a Y -piece Y2 in S and by Lemma 2.3 there is
a quasiconformal map g : Ω1 → Ω2 which agrees with f on E1 and projects
to a map from Y1 to Y2. The map g is affine on the components of ∂Ω1 ∩ D
and has quasiconformal constant depending only on dist(Y1, Y2). Let Γ be as
in the introduction, and given γ ∈ Γ, let λγ = `(g(γ))/`(γ).
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By piecing together maps corresponding to all lifts of all Y -pieces in the
decomposition of R, we obtain a map of the disk to the disk which agrees
with f on the boundary, but which may be discontinuous across the lift of
any boundary geodesic γ ∈ Γ. The maps on either side of γ are both affine, so
the discontinuity consists of a translation along γ, say of length tγ (we think
of γ as oriented and tγ as a signed distance). Thus the map can be made
continuous across γ by composing with a skew map of the following form.
Assume γ is the positive imaginary axis in the upper half plane and Ω lies in
the right quadrant. Define

τ(z) =

{
ea(z)z, π/2− θ0 arg(z) ≤ π/2,
z, arg(z) < π/2− θ0,

where θ0 is chosen so small that {z : π/2 − θ0 arg(z) ≤ π/2} lies inside
the C-neighborhood of γ which is disjoint from the C-neighborhoods of all
other boundary geodesics and a(z) is the linear function of arg(z) which is
−tγ when arg(z) = π/2 and is 0 when arg(z) = π/2 − θ0. The map τ is
clearly quasiconformal with constant tγ/θ0 except for a discontinuity along of
the imaginary axis (which is a hyperbolic translation of size −tγ) and is the
identity outside a C-neighborhood of γ.

Lemma 6.3. Suppose R = D/G is a Riemann surface with a L-bounded
Y -piece decomposition and suppose γ is a boundary arc for one of the Y -
pieces. Suppose f : D→ D is a K-quasiconformal conjugation of G to another
Fuchsian group and the Beltrami coefficient of f is µ. Then 1

1+C ≤ λγ ≤ 1+C
and −C ≤ tγ ≤ C for some C which depends only on K and L. Given any
ε > 0 there is an r < ∞ (depending only on ε, K and L) so that C ≤ ε if
ρ(γ, supp(µ)) ≥ r.

Proof. First we would like to identify λγ and tγ in terms of f ’s action on
the circle. Assume γ lifts to (−1, 1) ⊂ D. Suppose γ is the boundary of two
Y -pieces Y1 and Y2 (not necessarily distinct) and choose a second boundary
component γ1 ∈ ∂Y1 and γ2 ∈ ∂Y2 (these may be punctures) and let σ1 and σ2

be the shortest curves connecting γ to γ1 and γ2, respectively. Let γ̃j , j = 1, 2,
be a lift of γj which is connected to (−1, 1) by a lift σ̃j . If γj is a puncture
then γ̃j will be a point on the circle. Since γ has length ≤ L, we may also
choose these lifts so that σ̃1 and σ̃2 both hit (−1, 1) within hyperbolic distance
L/2 of the origin. Let g ∈ G be an element with translation axis (−1, 1). By
replacing g by a power of itself we may assume that 1 ≤ ρ(0, g(0)) ≤ 1 + L.

Given an ordered set of six points on the unit circle E = (x1, x2, y1, y2,
z1, z2), let γx, γy and γz denote the hyperbolic geodesics in D with endpoints
(x1, x2), (y1, y2) and (z1, z2), respectively. We allow y1 = y2 or z1 = z2; in
either case, the geodesics γy and γz are just interpreted as the points on the
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circle. However, all other pairs must be distinct. Let py and pz be the points
on γx which are closest to γy and γz. Let d(E) = ρ(py, pz). See Figure 3.

•

•

••

• •

•

•

x1

y1

z1

pz
2x

2y
2z

y
p d

Figure 3. Definitions of d(E).

Let x1 = −1, x2 = 1, let y1 and y2 be the endpoints of γ̃1 and let z1 and
z2 be the endpoints of g(γ̃1). Then clearly, λγ = d(f(E))/d(E). Since f is
quasisymmetric on the circle it is easy to see that this will be bounded and
bounded away from zero depending only on the quasiconformal constant of
f . If ρ(γ, supp(µ)) ≥ r, then with our normalization, µ is supported in the
annulus {z : 1−Ce−r ≤ |z| ≤ 1+Ce−r} for some absolute C <∞. As r →∞
and K remains fixed, the compactness of the family of K-quasiconformal
mappings implies f must tend to the identity (we have normalized f so it fixes
−1, 1 and∞). Thus for r large enough, every point on the unit circle is moved
less than ε by f and hence it is easy to see that d(f(E)) differs from d(E) by at
most Cε. Since ρ(py, pz) ≥ 1 and both points are at most hyperbolic distance
L/2 from the orgin, it is easy to deduce that 1−Cε ≤ d(f(E))/d(E) ≤ 1+Cε.

We can compute tγ in almost exactly the same way, except that now we
let z1 and z2 be the endpoints of γ̃2 and then tγ = d(f(E))−d(E). As above,
this is bounded in terms of K and if γ is far from the support of µ, the same
proof as above shows |tγ | ≤ Cε. This proves the lemma. �

Applying these estimates and Lemma 2.3 to the map g constructed above
we obtain a quasiconformal map h of the disk to itself which agrees with f on
the circle and which satisfies the following properties:

(1) h maps Y -pieces to Y -pieces.
(2) The quasiconformal constant C(K) of h is bounded depending only

on K, the quasiconformal constant of f .
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(3) Given K there is an ε > 0 such that on any ε-bounded Y -piece the
quasiconformal dilatation Kh(z) of h is bounded by
1 + C1(K) exp(−2dist(z, ∂Y )).

(4) Given any K < ∞ and ν > 0 there is an r < ∞ such that on any
Y -piece whose finite boundary is at least distance r from the support
of µ, Kh(z) is bounded by 1 + ν.

By the assumption in Theorem 6.1, every Y -piece in the decomposition of
R is either ε-bounded or has boundary geodesics at least distance r from the
support of µ. Thus the quasiconformal map h can be factored as h = h2 ◦ h1

where h1 is also C(K)-quasiconformal and has dilatation supported in a C
neighborhood of the ε-geodesics and h2 is (1+ν)-quasiconformal. Hence h2 is
Hölder continuous with exponent (1 + η)−1 (if ν is small enough) and hence
can only raise the Hausdorff dimension on any set by at most a factor of 1+η.
Thus it suffices to show h1(T) has dimension at most 1 + η (and hence h(T)
has dimension at most (1 + η)2). All we need to prove is the following (which
does not involve any group).

Lemma 6.4. Suppose we are given K < ∞, η > 0 and s < ∞. Then
there is a r = r(K, η, s) < ∞ so that the following holds. Suppose {γn} is
a collection of geodesics in the hyperbolic disk such that any two of them are
at least hyperbolic distance r apart. Suppose f is a quasiconformal map of
the plane which is conformal inside the disk and whose dilatation outside the
disk satisfies Kf (z) ≤ K if ρ(z∗,

⋃
n γn) ≤ s and is = 1 otherwise. Then the

Hausdorff dimension of f(T) is less than 1 + η.

Proof. Divide the disk into two types of regions; those which are near a
geodesic and those which are not. More precisely, let t ≥ s (to be chosen
below) and let {An} be the t-neighborhoods of these geodesics. By taking
r large enough (e.g., ≥ 2t + 2s + 10) we may assume that if n 6= m then
ρ(An, Am) ≥ 2t + 10. We will say a dyadic Carleson square Q is type 1 if
T (Q) hits A =

⋃
nAn and Q is type 2 if T (Q) is disjoint from A. For each type

1 square form a stopping time region W ⊂ Q by removing all maximal type
2 squares. If Q is type 2, then define W ⊂ Q by removing all maximal type
1 subsquares. This process divides the disk into type 1 and type 2 regions, as
illustrated in Figure 4.

Note that if W = Q\
⋃
j Qj is a type 2 region, then T (Q) is within distance

t + 1 of one geodesic and T (Qj) is within distance t + 1 of a different one.
Thus the top halves of these squares are more than r − 2t− 4 apart. Thus

diam(Qj) ≤ C exp(−r + 2t)diam(Q) ≤ C exp(−r/2)diam(Q),(2)

if we assume r ≥ 4t. Now suppose η > 0. The map f is Hölder of some
positive order (since it is K-quasiconformal). So if W = Q \

⋃
j Qj is a type
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Figure 4. Type 1 and type 2 regions

1 region then ∑
j

diam(f(Qj))1+η ≤Mdiam(f(Q))1+η,

where M depends only on K, η and s, since the diameters of the Qj ’s decay
geometrically. If W is a type 2 region, we claim that for any m > 0,∑

j

diam(f(Qj))1+η ≤ mdiam(f(Q))1+η,

holds if r is large enough (depending on K, η, s). To prove the claim, choose
r0 so that Lemma 2.2 holds for K and η/2. Then for r ≥ 4r0, Lemma 2.2 and
(2) imply∑

j

(
diam(f(Qj))
diam(f(Q))

)1+η

≤ C(K, η)
∑
j

(
diam(Qj)

diamQ

)1+η/2

≤ C(K, η) sup
j

(
diam(Qj)
diam(Q)

)η/2∑
j

diam(Qj)
diamQ

≤ C(K, η)Ce−rη/4.

This proves the claim if r is large enough (depending only on η and K).
If we take m so small that mM < 1 then dropping down n generations

we get a covering of f(T) by balls Bj which satisfies
∑
j diam(Bj)1+η <

(mM)n → 0. Thus δ(µ) ≤ dim(fµ(T)) ≤ 1 + η. This completes the proof of
Theorem 6.1. �
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