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A VIRTUALIZED SKEIN RELATION FOR JONES
POLYNOMIALS

NAOKO KAMADA, SHIGEKAZU NAKABO, AND SHIN SATOH

Abstract. We give a skein relation for Jones polynomials among pos-
itive, negative, and virtual crossings with some restrictions. We apply

this relation to study some properties of virtual knots obtained by re-
placing a real crossing by a virtual crossing.

1. Introduction

L. H. Kauffman [4] introduced virtual knot theory as a generalization of
classical knot theory. He defined the Jones polynomials of oriented virtual
links by state-sum models, which are also called f -polynomials. We denote
by VK(A) ∈ Z[A,A−1] the Jones polynomial of an oriented virtual link repre-
sented by a diagram K. It is known that there is a skein relation for virtual
link diagrams,

A4VK+(A)−A−4VK−(A) = (A−2 −A2)VK0(A),

where (K+,K−,K0) is a skein triple as shown in Figure 1.

Figure 1

In this paper, we give a skein relation for (K+,K−,Kv) (see Figure 1 again),
in the case when K+ and K− are classical diagrams, that is, when all their
crossings are classical ones.

Theorem 1. If K+ and K− are classical diagrams, then we have

A3VK+(A) +A−3VK−(A) = (A3 +A−3)VKv (A).
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For a virtual link diagram K we have VK(A) ∈ Z[A2, A−2] in general, and
VK(A) ∈ Z[A4, A−4] · A2µ−2 if K represents a µ-component classical link.
From Theorem 1 we obtain the following result.

Corollary 2. Let K+ and K− be classical diagrams of µ-component
classical links. Then we have VKv (A) ∈ Z[A4, A−4] · A2µ−2 if and only if
VK+(A) = VK−(A) = VKv (A).

By Corollary 2, we see that if VK+(A) 6= VK−(A) then Kv does not repre-
sent a classical link. Hence all virtual knot diagrams illustrated in Figure 2
do not represent classical knots.

Figure 2

This paper is organized as follows. The notion of classical diagrams is
extended to that of normal diagrams, which are defined in [2]. In Section
2, we review the notion of normality for virtual link diagrams. In Section 3,
we prove Theorem 1 and Corollary 2 generalized to the case when K+ and
K− are normal diagrams (Theorem 9 and Corollary 10). Section 4 contains
several applications.

2. Normal diagrams of virtual links

A state of a virtual link diagram K is a union of immersed loops in R2 with
only virtual crossings, which is obtained by splicing all classical crossings of
K. At each spliced crossing we attach a chord labeled A or B to represent
the splicing direction as shown on the left of Figure 3.

For a state σ of a virtual link diagram K, we set 〈K|σ〉 = Aa(σ)Bb(σ)d|σ|−1

with B = A−1 and d = −A2−A−2, where a(σ) and b(σ) denote the number of
A-splices and B-splices of σ, respectively, and |σ| denotes the number of the
immersed loops of σ. For example, we have 〈K|σ〉 = A3B1d2−1 = −A4 − 1
for the state σ illustrated on the right of Figure 3.

Let S denote the set of all states of a virtual link diagram K. For a subset
S ′ of S we set 〈K|S ′〉 =

∑
σ∈S′〈K|σ〉. In particular, the Kauffman bracket

〈K〉 is defined as 〈K|S〉. For a state σ of K and a classical crossing x of K
there are three types with respect to the loop(s) of σ spliced at x as shown in
(1)–(3) of Figure 4, where the label X denotes A or B in the figure.
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Figure 3

Figure 4

Definition 3 (cf. [2]). A state σ of a virtual link diagram K is normal
if for any classical crossing x of K, the loop(s) of σ spliced at x are of type
(1) or (2) in Figure 4. A virtual link diagram K is normal if every state of K
is normal.

By taking another splicing at a classical crossing, the type (1) and (2)
are interchanged and type (3) does not change. Of course, not every virtual
link diagram is normal. For example, all diagrams illustrated in Figure 2 are
not normal. The following lemma shows that the family of normal diagrams
contains that of classical diagrams.

Lemma 4. Any classical diagram is normal.

Proof. Let K be a classical link diagram. Since K has no virtual crossing,
any state σ of K is a disjoint union of loops embedded in R2. Hence σ has
no loops of type (3). �

There exist some characterizations of normality of virtual link diagrams
(cf. [1], [2]). In the present paper, we give another criterion for normality as
follows. For a virtual link diagram K we denote by K the union of immersed
circles in R2 obtained by ignoring the over- and under-information at classical
crossings of K and leaving the virtual information unchanged.

Definition 5. K admits an alternate orientation if all edges (when re-
garding K as a 4-valent planar graph) can be oriented as shown in Figure 5.
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Figure 5

Proposition 6. A virtual link diagram K is normal if and only if K
admits an alternate orientation.

Proof. We prove the proposition by an argument similar to that used in
[2]. Assume that a virtual link diagram K is normal. We take a state σ of
K such that |σ| is minimal among all states of K. Let {`1, . . . , `s} be the set
of loops of σ. From the minimality it follows that there is no chord (which
represents a splicing at a classical crossing) between `i and `j for i 6= j. We
give an arbitrary orientation to {`i}i=1,...,s. Since the state σ is normal, the
loop attached by every chord is of type (1). Hence we can give an alternate
orientation to K, which is induced by the above orientation of {`i}i=1,...,s; see
Figure 6.

Figure 6

Conversely, assume that K admits an alternate orientation. Then each
loop of any state σ of K has the orientation which is induced by the alternate
orientation of K. Hence we see that there are no loops of type (3) in σ. �

Corollary 7. Let K = K1 ∪ · · · ∪ Kµ be a virtual link diagram of a
µ-component virtual link. If K is normal, then the number of all classical
crossings between Ki and K \Ki is even.

Proof. This is an immediate consequence of Proposition 6. �

For an oriented virtual link diagram K let w(K) denote the sum of the
signs of all classical crossings of K. The Jones polynomial of K, denoted by
VK(A), is defined to be (−A3)−w(K)〈K〉. We see that VK(A) ∈ Z[A2, A−2].
In particular, we have the following result.
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Proposition 8 (cf. [1]). If K is a normal diagram of a µ-component
virtual link, then we have VK(A) ∈ Z[A4, A−4] ·A2µ−2. �

3. A virtualized skein relation

Let Kv be a virtual link diagram which has a virtual crossing x. We
denote by K+ and K− the diagrams obtained from Kv by replacing x with a
positive crossing and a negative crossing, respectively; see Figure 1. Since any
classical diagram is normal (see Lemma 4), it suffices to prove the following
result, which is a generalization of Theorem 1.

Theorem 9. If K+ and K− are normal diagrams, then we have

A3VK+(A) +A−3VK−(A) = (A3 +A−3)VKv (A).

Proof. Let S+,S− and Sv denote the sets of all states of K+, K−, and Kv,
respectively. Since K+ and K− are normal, Sv falls into two disjoint subsets
S ′ε and S ′′ε as shown in Figure 7. For each state of Kv there are two states of

Figure 7
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Kε (ε = ±) obtained by the type of splicing at the virtual crossing. Let S ′ε
and S ′′ε denote the subsets of Sε, which correspond to S ′v and S ′′v , respectively.
Then we have

〈K+〉 = 〈K+|S ′+〉+ 〈K+|S ′′+〉 = (A+Bd)〈Kv|S ′v〉+ (Ad+B)〈Kv|S ′′v 〉,
〈K−〉 = 〈K−|S ′−〉+ 〈K−|S ′′−〉 = (Ad+B)〈Kv|S ′v〉+ (A+Bd)〈Kv|S ′′v 〉,

and adding these equations we obtain

〈K+〉+ 〈K−〉 = (A+B)(1 + d)(〈Kv|S ′v〉+ 〈Kv|S ′′v 〉) = −(A3 +A−3)〈Kv〉.
Since w(Kv) = w(K+)− 1 = w(K−) + 1, it follows that

(−A3)−w(K+)+1〈K+〉+ (−A3)−w(K−)−1〈K−〉

= −(A3 +A−3)(−A3)−w(Kv)〈Kv〉,
which is equivalent to the desired relation. �

We next prove the following result, which is a generalization of Corollary 2.

Corollary 10. Let K+ and K− be normal diagrams of µ-component
virtual links. Then we have VKv (A) ∈ Z[A4, A−4] · A2µ−2 if and only if
VK+(A) = VK−(A) = VKv (A).

Proof. By Proposition 8 and the assumption, we may put

VK+(A) =

(∑
i∈Z

aiA
4i

)
·A2µ−2,

VK−(A) =

(∑
i∈Z

biA
4i

)
·A2µ−2,

VKv (A) =

(∑
i∈Z

ciA
4i

)
·A2µ−2.

Then it follows from Theorem 9 that∑
i∈Z

aiA
4i+3 +

∑
i∈Z

biA
4i−3 =

∑
i∈Z

ciA
4i+3 +

∑
i∈Z

ciA
4i−3.

Since (4Z + 3) ∩ (4Z− 3) = ∅, we have ai = bi = ci for any i. �

Proposition 8 and Corollary 10 imply that even if K+ and K− are normal
diagrams, Kv is not necessarily a normal diagram. More precisely, we have
the following result.

Proposition 11. If K+, K−, and Kv are normal diagrams, then the vir-
tual links represented by these diagrams have diagrams as shown in Figure 8.
In particular, if both of K+ and K− are classical diagrams, then the three
diagrams represent the same classical link.
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Figure 8

Proof. We put K = K+ = K−. Let x be the crossing of K and Kv such
that x is positive in K+, negative in K−, and virtual in Kv. Let C be a
component of K and Kv such that x is on C. We denote by λ the number of
classical crossings between C and K \ C, and by λv the number of classical
crossings between C andKv\C. Since K andKv admit alternate orientations,
we have λ ≡ λv ≡ 0 (mod 2) by Corollary 7. Hence x is a self-intersection of
C, for we have λ = λv+1 if x is a crossing between C and another component
different from C.

We fix alternate orientations of K and Kv, respectively. By removing the
crossing x from C, we obtain a pair of arcs, say A∪B. We may assume that A
has the same alternate orientation in K and Kv, and that B has the opposite
alternate orientation in K and Kv; see Figure 9. It follows that there are no
classical crossings between A and B.

Figure 9

More generally, we will show the following result. We define a component
of K \{x} = Kv \{x} to be one of the sets A, B, or a component of K and Kv

different from C. Let CA be a component of K\{x} = Kv\{x} such that there
is a finite sequence of components connecting A and CA in which any adjacent
components have a common classical crossing. Similarly, we take a component
CB related to B as above. Then CA has the same alternate orientation in
K and Kv, and CB has the opposite alternate orientation in K and Kv. It
follows that there are no classical crossings between CA and CB . Thus we
have a division of the components of K \ {x} = Kv \ {x} into two classes
such that there are no classical crossings between them. By the argument
used in [3], there is a finite sequence of virtual Reidemeister moves [4] that
preserve a neighborhood of x such that K+, K− and Kv are transformed into
the diagrams illustrated in Figure 8. In particular, if K+ and K− are classical
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diagrams, then we may assume that the boxed tangle diagrams in Figure 8
are classical. It is easy to see that those diagrams represent the same classical
link. �

4. Applications

For a virtual link diagram K we denote by K∗ the virtual link diagram
obtained by interchanging the over- and under-information at all classical
crossings of K while keeping the orientation of K. If K and K∗ represent the
same virtual link, then the virtual link is called amphicheiral. By definition,
we have VK∗(A) = VK(A−1) for any diagram K, and hence VK(A) = VK(A−1)
if K is amphicheiral. The following result gives a necessary condition for Kv

to represent an amphicheiral virtual link; indeed, we see that if VK+(A) 6=
VK−(A−1) for normal diagrams K+ and K−, then Kv does not represent an
amphicheiral virtual link by the corollary.

Corollary 12. Let K+ and K− be normal diagrams. Then we have
VKv (A) = VKv (A−1) if and only if VK+(A) = VK−(A−1).

Proof. Since K+ and K− are normal diagrams, K∗+ and K∗− are also normal
diagrams. Hence we have the skein relation for the triple (K∗−,K

∗
+,K

∗
v ),

A3VK∗−(A) +A−3VK∗+(A) = (A3 +A−3)VK∗v (A),

which is equivalent to

A3VK−(A−1) +A−3VK+(A−1) = (A3 +A−3)VKv (A−1).

From this and the skein relation for (K+,K−,Kv) in Theorem 9 we have
VKv (A) = VKv (A−1) if and only if

A3VK−(A−1) +A−3VK+(A−1) = A3VK+(A) +A−3VK−(A),

which is equivalent to VK+(A) = VK−(A−1) by an argument similar to the
proof of Corollary 10. �

A virtual link diagram K is alternating if, when we travel along each com-
ponent of K, the transverse arcs which we meet are over, under, over, under,
. . . at the consecutive classical crossings. A virtual link is called alternating
if it is represented by some alternating diagram (cf. [1]). From Corollary 12
and the following result we see that none of the diagrams illustrated in Figure
2 represent an amphicheiral, classical, or alternating virtual link.

Corollary 13. Let K+ and K− are normal diagrams. If VK+(A) 6=
VK−(A), then Kv represents neither a classical nor an alternating virtual link.

Proof. If Kv represents a classical or alternating virtual link, then we have
VKv (A) ∈ Z[A4, A−4]·A2µ−2, for any classical or alternating diagram is normal
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(see Lemma 4 and [1]). By Corollary 10, it follows that VK+(A) = VK−(A).
�

We replace a classical crossing of a virtual link diagram K with a virtual
crossing so that we obtain another virtual link diagram Kv. We say that
Kv is obtained from K by virtualizing the classical crossing of K. When we
virtualize all classical crossings of K, we obtain a virtual link diagram that
represents a trivial link (cf. [4]). Hence virtualizing classical crossings is an
unknotting operation for virtual links. The following is also an immediate
consequence of Corollary 10.

Corollary 14. Let K be a normal diagram of a µ-component classical
link. If VK(A) 6= (−A2 − A−2)µ−1, then any virtual link diagram obtained
from K by virtualizing a classical crossing of K does not represent a trivial
link. �
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