
Illinois Journal of Mathematics
Volume 51, Number 3, Fall 2007, Pages 951–976
S 0019-2082

WELL-POSEDNESS FOR EQUATIONS OF BENJAMIN-ONO
TYPE

SEBASTIAN HERR

Abstract. The Cauchy problem ut−|D|αux +uux = 0 in (−T, T )×R,
u(0) = u0, is studied for 1 < α < 2. Using suitable spaces of Bourgain

type, local well-posedness for initial data u0 ∈ Hs(R) ∩ Ḣ−ω(R) for

any s > − 3
4
(α − 1), ω := 1/α − 1/2 is shown. This includes existence,

uniqueness, persistence, and analytic dependence on the initial data.
These results are sharp with respect to the low frequency condition in
the sense that if ω < 1/α− 1/2, then the flow map is not C2 due to the
counterexamples previously known. By using a conservation law, these
results are extended to global well-posedness in Hs(R) ∩ Ḣ−ω(R) for
s ≥ 0, ω = 1/α− 1/2, and real valued initial data.

1. Introduction

We consider the Cauchy problem

ut − |D|αux + uux = 0 in (−T, T )× R,
u(0) = u0,

(1.1)

for 1 < α < 2 and initial data belonging to some L2-based Sobolev space.
Here |D|α denotes the Fourier multiplier operator defined via F|D|αv(ξ) =
|ξ|αFv(ξ).

The case α = 2 coincides with the Korteweg de Vries equation (KdV)
and it is well understood due to the works of Bourgain [2] and Kenig, Ponce
and Vega [17], [18], Christ, Colliander and Tao [4], as well as Colliander, Keel,
Staffilani, Takaoka and Tao [5] and many others. One feature of this problem is
that it is globally well-posed with locally Lipschitz continuous (even analytic)
dependence on the initial data u0 ∈ Hs(R) for s > −3/4; see [18], [5]. The
local result is established by the contraction mapping principle.
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The case α = 1 corresponds to the Benjamin-Ono equation (BO). This
Cauchy problem is differently behaved with respect to the smoothness prop-
erties of the flow map. In [20] Koch and Tzvetkov proved that the flow map
is not uniformly continuous on bounded subsets of Hs(R) for s > 0. On the
other hand, the problem is globally well-posed with continuous dependence on
the (real valued) data in Hs(R) for any s ≥ 0 due to a recent result of Ionescu
and Kenig [12]. This is established by combining the gauge transformation
introduced in the work of Tao [23] with a new bilinear estimate. For some
previous results we refer the reader to [19], [14], [23], [3].

In this work we focus on the cases 1 < α < 2. There are three formally
conserved quantities, namely

∫
u dx, the L2 norm, and the Hamiltonian

1
2

∫ ∣∣|D|α
2 u

∣∣2 dx− 1
6

∫
u3 dx,

and, e.g., Ginibre and Velo [9] constructed global weak solutions by com-
pactness arguments. Here, we are interested in low regularity well-posedness
results which include existence, uniqueness, persistence, and continuous or
smooth dependence on the initial data. It was observed by Molinet, Saut and
Tzvetkov [22] that there is a major obstruction in the range α < 2. They
showed that interactions of linear waves of very low frequency with linear
waves of high frequency cannot be controlled by bilinear estimates based on
Hs(R) information only and that the flow map for Hs(R) data is not C2.
Therefore, we say that these equations are of Benjamin-Ono type. Neverthe-
less, there are well-posedness results in Hs(R) (for real valued initial data)
for these problems due to Kenig, Ponce and Vega [16] (s ≥ (9 − 3α)/4), im-
proved by Kenig and Koenig [14] (s > 3/2 − 3α/8). The proofs are based
on local smoothing, maximal function, Strichartz and energy type estimates.
In [6] Colliander, Kenig and Staffilani1 proved a local well-posedness result
for s ≥ α/2 by a contraction argument for initial data in a weighted Sobolev
space in the range 1 < α < 2.

In light of the aforementioned examples from [22] it seems natural to im-
pose a low frequency condition on the initial data in terms of a homogeneous
Sobolev weight, which is persistent under the time evolution. That this might
be useful was also indicated by Kato [13] for the BO case, and for 1 < α < 2
this was carried out by the author in an earlier version of this paper2, which
turned out to be an improvement of a previous result by Molinet and Ribaud
[21]. Recently, a related low frequency condition was also used by Ionescu and
Kenig [12] in their main bilinear estimate for the BO case.

In the following, we prove a local well-posedness result for data in Hs(R)∩
Ḣ−ω(R) in the range 1 < α < 2, which almost closes the gap to the local

1Notice that α in the present work plays the role of a + 1 in [6].
2This contained a bilinear estimate and a version of Theorem 2.6 (resp. Theorem 2.11)

with the low regularity threshold s ≥ 1− α/2 (resp. s ≥ α/2) and ω = 1/α− 1/2.



WELL-POSEDNESS FOR EQUATIONS OF BENJAMIN-ONO TYPE 953

well-posedness theory for KdV known so far. This includes local existence,
uniqueness, persistence, and the analytic dependence on the data. Moreover,
we derive a global result for real valued data, based on the L2 conservation
law. The low frequency condition in these results is shown to be sharp with
respect to the C2 continuity of the flow map. This will be made precise in
Theorems 2.6, 2.11 and 6.1.

The author is grateful to M. Hadac and H. Koch for a discussion of this
work and valuable suggestions. Moreover, the author would like to thank A.
Ionescu and C. Kenig for interesting remarks on the Benjamin-Ono case.

2. Notation and main results

We denote by S(Rn) the space of Schwartz functions on Rn. Moreover, we
use the notation 〈x〉 = (1 + |x|2) 1

2 and define the Fourier transform by

Ff(ξ) = f̂(ξ) = (2π)−
n
2

∫
Rn

e−ix·ξf(x) dx.

The Fourier transform w.r.t. (t, x) ∈ R2 will be denoted by F , whereas the
Fourier transform w.r.t. t ∈ R (x ∈ R) will be denoted by Ft (Fx = ·̂ ).

We start by defining the space of initial data.

Definition 2.1. For s ∈ R and 0 ≤ ω < 1
2 we define the Sobolev space

H(s,ω) as the completion of S(R) with respect to the norm

(2.1) ‖u‖2H(s,ω) :=
∫

R
〈ξ〉2s+2ω|ξ|−2ω|û(ξ)|2 dξ.

Next, we introduce the resolution space which is an adaption of the Bour-
gain type spaces [2] to our problem.

Definition 2.2. For 0 ≤ ω < 1
2 and s, b ∈ R we define the space Xs,ω,b

as the completion of S(R2) with respect to the norm
(2.2)

‖u‖2Xs,ω,b
:=

∫
R2
|ξ|−2ω〈ξ〉2s−2αω〈|τ |+ |ξ|1+α〉2ω〈τ − ξ|ξ|α〉2b|Fu(τ, ξ)|2 dτdξ.

Moreover, we define for T > 0 the restriction norm space

XT
s,ω,b := {u|[−T,T ] | u ∈ Xs,ω,b}

with norm

‖u‖XT
s,ω,b

= inf
{
‖ũ‖Xs,ω,b

| u = ũ|[−T,T ], ũ ∈ Xs,ω,b

}
.

Remark 2.3. Notice that since 0 ≤ ω < 1
2 we have the continuous em-

bedding
Lp(R) ∩Hs(R) ⊂ H(s,ω)

for 1 ≤ p ≤ 2 and ω < 1
p −

1
2 by Hausdorff-Young.
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Remark 2.4. The additional elliptic weight 〈|τ |+ |ξ|1+α〉 will be used to
control interactions of low frequency waves with a Fourier transform that is
localized far away from the characteristic set

Pα := {(τ, ξ) | τ = ξ|ξ|α}

with essentially linear waves of high frequency which result in an essentially
linear wave of high frequency; see Theorem 4.1. Notice that, informally speak-
ing, for |ξ| ≥ 1 and close to Pα the space Xs,ω,b corresponds to the Xs,b

space of Bourgain, whereas far away from Pα the space Xs,ω,b corresponds to
Xs−(α+1)ω,b+ω.

A similar weight was used by Bejenaru [1] in the context of certain nonlinear
Schrödinger equations. We try to use only a minimal portion of such a weight
because we focus on a low regularity threshold, but see Remark 4.2 at the end
of Section 4.

Remark 2.5. Xs,ω,b is closed under complex conjugation due to the sym-
metry of the weights.

Within this framework we now state our main results of this paper.

Theorem 2.6. Let 1 < α < 2 and ω = 1
α−

1
2 . Then, for s ≥ s0 > − 3

4 (α−
1) there exists b > 1

2 and a non-increasing function T : (0,∞) → (0,∞), such
that for any u0 ∈ H(s,ω) and T = T (‖u0‖H(s0,ω)), there exists a solution

u ∈ XT
s,ω,b ⊂ C

(
[−T, T ],H(s,ω)

)
of the Cauchy problem

ut − |D|αux + uux = 0 in (−T, T )× R,
u(0) = u0,

which is unique in the class of XT
s0,ω,b solutions. Moreover, for any r > 0

there exists T = T (r), such that for B = {v0 ∈ H(s,ω) | ‖v0‖H(s0,ω) ≤ r} the
flow map

F : H(s,ω) ⊃ B → C
(
[−T, T ],H(s,ω)

)
∩XT

s,ω,b, u0 7→ u

is analytic.

Remark 2.7. By a solution we always mean a fixed point of (an extension
of) the operator

ΦT (u)(t) = ψ(t)Wα(t)u0 −
1
2
ψT (t)

∫ t

0

Wα(t− t′)∂x(u2)(t′) dt′



WELL-POSEDNESS FOR EQUATIONS OF BENJAMIN-ONO TYPE 955

in XT
s,ω,b. These solutions are solutions in the sense of distributions, at least3

for s ≥ 0. Here,

Wα(t) : H(s,ω) → H(s,ω), Ŵα(t)u0(ξ) = eitξ|ξ|α û0(ξ)

for the solution operator of the linear homogeneous problem, which defines a
unitary group on H(s,ω).

Remark 2.8. If u0 ∈ H(s,ω) is real valued, the solution stays real valued.

Remark 2.9. Let F : X1 ⊃ B → X2, where Xi are Banach spaces over
the complex (real) numbers and B is open. We say that F is analytic (real
analytic) if locally we can expand F into a series of continuous symmetric
n-linear maps; see, e.g., [7], Definition 15.1.

Remark 2.10. If α → 1+, the lower bound for s tends to 0, and for
α → 2− the bound converges to −3/4. For all admissible values of α our
result includes the L2 case where a conserved quantity is available.

Lemma 5.2 leads to global well-posedness:

Theorem 2.11. Let 1 < α < 2, ω = 1
α −

1
2 and s ≥ 0. In the case of real

valued initial data in H(s,ω) the conclusions of Theorem 2.6 remain valid for
arbitrarily large T > 0 and with real analytic dependence on the data.

3. Linear estimates and bilinear refinements

In this section we prove estimates for the solutions to the linear homo-
geneous and inhomogeneous equation and recall the Strichartz estimates for
problem (1.1). These are well known for the Bourgain type spaces and we will
adjust them to our setting. Finally, inspired by Grünrock’s bilinear estimates
[10], [11], we will prove a sharp estimate for a bilinear pseudo-differential op-
erator, which provides a highly useful tool for the proof of the main bilinear
estimate.

In the following let ψ ∈ C∞0 ([−2, 2]) be a nonnegative, symmetric function
with ψ|[−1,1] ≡ 1 and let ψT (t) := ψ(t/T ).

In the case b > 1
2 we have

Xs,ω,b ⊂ C
(
R,H(s,ω)

)
with a continuous embedding by an application of Sobolev’s theorem with
respect to time.

Lemma 3.1. Let 0 ≤ ω < 1
2 , s, b ∈ R. Then,

(3.1) ‖ψWαu0‖Xs,ω,b
≤ c‖u0‖H(s,ω)

for all u0 ∈ H(s,ω).

3Even for s < 0 one can still use some smoothing properties to verify this.
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Proof. We may assume u0 ∈ S(R) ⊂ H(s,ω) by density and calculate

F(ψWαu0)(τ, ξ) = cFtψ(τ − ξ|ξ|α)û0(ξ).

Let N ∈ N be a positive integer with b < N − 1. Since Ftψ is a Schwartz
function, we conclude for s = ω = 0

‖ψWαu0‖2X0,0,b
= c

∫
R2
〈τ − ξ|ξ|α〉2b|Ftψ(τ − ξ|ξ|α)û0(ξ)|2 dτdξ

≤ c

∫
R

∫
R
〈τ − ξ|ξ|α〉2b〈τ − ξ|ξ|α〉−2N dτ |û0(ξ)|2 dξ

≤ c‖u0‖2L2 .

Now let ω ≥ 0, s, b ∈ R. By using the inequality

(3.2) 〈|τ |+ |ξ|1+α〉ω ≤ c(〈τ − ξ|ξ|α〉ω + 〈ξ〉(1+α)ω)

we estimate

|ξ|−ω〈ξ〉s−αω〈|τ |+ |ξ|1+α〉ω|û0(ξ)| ≤ c〈τ − ξ|ξ|α〉ω|v̂0(ξ)|,
where v̂0(ξ) = |ξ|−ω〈ξ〉s+ωû0(ξ). With b′ = b+ ω this gives

‖ψWαu0‖Xs,ω,b
≤ c‖ψWαv0‖X0,0,b′ ≤ c‖v0‖L2 = c‖u0‖H(s,ω) . �

The following lemma contains the estimate for the linear, inhomogeneous
problem.

Lemma 3.2. Let 0 ≤ ω < 1
2 , s ∈ R, and − 1

2 < b′ ≤ 0 ≤ b < b′ + 1, as well
as b′ ≤ −ω. There exists ε > 0, such that for all 0 < T ≤ 1

(3.3)
∥∥∥∥ψT (t)

∫ t

0

Wα(t− t′)N(t′) dt′
∥∥∥∥

Xs,ω,b

≤ cT ε‖N‖Xs,ω,b′

for all N ∈ S(R2).

Proof. In the case ω = 0 this is a well known estimate; see, e.g., [8], Lemme
3.2. We will reduce (3.3) to this case. Define

M̂(t)(ξ) := |ξ|−ωN̂(t)(ξ).

Using (3.2) we see that∥∥∥∥ψT

∫ t

0

Wα(t− t′)N(t′) dt′
∥∥∥∥

Xs,ω,b

≤ c

∥∥∥∥ψT

∫ t

0

Wα(t− t′)M(t′) dt′
∥∥∥∥

Xs−αω,0,b+ω

+c
∥∥∥∥ψT

∫ t

0

Wα(t− t′)M(t′) dt′
∥∥∥∥

Xs+ω,0,b

,

where on the right hand side the usual Bourgain type norms appear. Thus, by
our restrictions on b, b′ and ω we may bound this, using the standard estimate,
by

cT ε(‖M‖Xs−αω,0,b′+ω
+ ‖M‖Xs+ω,0,b′

).
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Because of the inequalities

〈τ − ξ|ξ|α〉b
′+ω ≤ 〈τ − ξ|ξ|α〉b

′
〈|τ |+ |ξ|1+α〉ω,

〈ξ〉s+ω ≤ c〈ξ〉s−αω〈|τ |+ |ξ|1+α〉ω

we obtain the upper bound∥∥∥∥ψT (t)
∫ t

0

Wα(t− t′)N(t′) dt′
∥∥∥∥

Xs,ω,b

≤ cT ε ‖N‖Xs,ω,b′

as desired. �

Next, we recall the L4
tL

∞
x Strichartz estimate. Let Js be the Bessel poten-

tial operator defined via FJsf(ξ) = 〈ξ〉sFf(ξ).

Lemma 3.3. For b > 1
2 we have

(3.4) ‖J
α−1

4 u‖L4
t L∞x

≤ c‖u‖X0,0,b
.

Proof. From [15], Theorem 2.1, we know that

(3.5) ‖|D|
α−1

4 Wα(t)u0‖L4
t L∞x

≤ c‖u0‖L2 .

Now we use a general property of Bourgain spaces X0,0,b with b > 1
2 ; see, e.g.,

[8], Lemme 3.3. By the Fourier inversion formula we may write u ∈ X0,0,b as

u(t) = c

∫
eitτWα(t)Ft(Wα(−·)u)(τ) dτ,(3.6)

and this implies

‖|D|
α−1

4 u‖L4
t L∞x

≤ c

∫
‖|D|

α−1
4 Wα(t)Ft(Wα(−·)u)(τ)‖L4

t L∞x
dτ.

Using (3.5) and Cauchy-Schwarz, we arrive at

‖|D|
α−1

4 u‖L4
t L∞x

≤ c

(∫
〈τ〉−2bdτ

) 1
2

(∫
〈τ〉2b‖Ft(Wα(−·)u)(τ)‖2L2

x
dτ

) 1
2

≤ c

(∫∫
〈τ − ξ|ξ|α〉2b|Fu(τ, ξ)|2 dτdξ

) 1
2

,

since b > 1
2 and therefore

(3.7) ‖|D|
α−1

4 u‖L4
t L∞x

≤ c‖u‖X0,0,b
.

By smooth cutoffs in frequency, we split u into a low frequency part ulow

Fulow(τ, ξ) = ψ(ξ)Fu(τ, ξ)
and a high frequency part uhigh := u− ulow. Then,

‖J
α−1

4 u‖L4
t L∞x

≤ ‖J
α−1

4 ulow‖L4
t L∞x

+ ‖J
α−1

4 uhigh‖L4
t L∞x

.
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By an application of the Sobolev inequality, the first part is bounded by

c‖J
α+1

4 +εulow‖L4
t L2

x
≤ c‖u‖L4

t L2
x
≤ c‖u‖X0,0,b

,

whereas the second part is bounded by

c‖|D|−
α−1

4 J
α−1

4 uhigh‖X0,0,b
≤ c‖u‖X0,0,b

due to (3.7). This gives the desired estimate. �

The next lemma is the main tool in the proof of the crucial bilinear estimate
(cf. [10], Definition 2.1, and [11], Lemma 1). For δ > 0 we define

|x|δ := ζ(x/δ)|x|
with an even function ζ ∈ C∞ with ζ|[−1,1] ≡ 0, ζ|R\[−2,2] ≡ 1, and 0 ≤ ζ ≤ 1.

Lemma 3.4. We define the bilinear operator Is
δ via

Fx I
s
δ (u1, u2)(ξ) =

∫
ξ=ξ1+ξ2

∣∣|ξ1|2s − |ξ2|2s
∣∣ 1
2

δ
û1(ξ1)û2(ξ2) dξ1

for all u1, u2 ∈ S(R). Then, for all δ > 0

(3.8)
∥∥∥I α

2
δ (Wαu1,Wαu2)

∥∥∥
L2

xt

≤
√

2
1 + α

‖u1‖L2
x
‖u2‖L2

x
.

Proof. For fixed t ∈ R we use Plancherel in x and calculate

∥∥∥I α
2

δ (Wα(t)u1,Wα(t)u2)
∥∥∥2

L2
x

(3.9)

=
1
2π

∫ ∣∣∣∣∫
ξ=ξ1+ξ2

||ξ1|α − |ξ2|α|
1
2
δ e

it(ξ1|ξ1|α+ξ2|ξ2|α)û1(ξ1)û2(ξ2) dξ1

∣∣∣∣2 dξ
=

1
2π

∫∫∫
eitP (ξ,ξ1,η1)φ(ξ, ξ1, η1) dη1dξ1dξ

with the phase function

P (ξ, ξ1, η1) = ξ1|ξ1|α + (ξ − ξ1)|ξ − ξ1|α − η1|η1|α − (ξ − η1)|ξ − η1|α

and

φ(ξ, ξ1, η1)

= ||ξ1|α − |ξ − ξ1|α|
1
2
δ ||η1|

α − |ξ − η1|α|
1
2
δ û1(ξ1)û2(ξ − ξ1)û1(η1)û2(ξ − η1).

For fixed ξ, ξ1 the function P1(η1) = P (ξ, ξ1, η1) has only two simple roots ξ1,
ξ − ξ1 in the support of φ. Moreover,

(3.10) |P ′1(η1)| = (1 + α)||ξ − η1|α − |η1|α| ≥ (1 + α)δ in supp(φ)

and
|P ′1(ξ1)| = |P ′1(ξ − ξ1)| = (1 + α)||ξ − ξ1|α − |ξ1|α|.



WELL-POSEDNESS FOR EQUATIONS OF BENJAMIN-ONO TYPE 959

With the help of the function g(x) = π−
1
2 e−x2

we construct the approximate
identity gε(x) = ε−1g(ε−1x) with Fgε ↑ (2π)−

1
2 . By Fubini’s theorem and

the Fourier inversion formula

I(ε) := (2π)−
1
2

∫
Fgε(t)

∫∫∫
eitP (ξ,ξ1,η1)φ(ξ, ξ1, η1) dη1dξ1dξdt

=
∫∫∫

gε(P (ξ, ξ1, η1))φ(ξ, ξ1, η1) dη1dξ1dξ.

Now, because of (3.10) we may use the dominated convergence theorem to
conclude

lim
ε→0

I(ε) =
∫∫

lim
ε→0

∫
gε(P (ξ, ξ1, η1))φ(ξ, ξ1, η1) dη1dξ1dξ

=
∫∫

φ(ξ, ξ1, ξ1)
|P ′1(ξ1)|

+
φ(ξ, ξ1, ξ − ξ1)
|P ′1(ξ − ξ1)|

dξ1dξ

≤ 1
1 + α

∫∫
|û1(ξ1)|2|û2(ξ − ξ1)|2 + |û1(ξ1)û2(ξ1)||û1(ξ − ξ1)û2(ξ − ξ1)| dξ1dξ

≤ 2
1 + α

‖u1‖2L2
x
‖u2‖2L2

x
.

On the other hand, by the monotone convergence theorem and (3.9) we see
that

lim
ε→0

I(ε) =
∥∥∥I α

2
δ (Wαu1,Wαu2)

∥∥∥2

L2
xt

.

This implies (3.8). �

Remark 3.5. Roughly speaking, the bilinear operator Iα/2
δ controls α/2

derivatives on the product of two solutions at different frequency.

Remark 3.6. The proof shows that the above estimate is sharp in the
sense that for u ∈ S(R)

lim
δ→0

∥∥∥I α
2

δ (Wαu,Wαu)
∥∥∥

L2
xt

=

√
2

1 + α
‖u‖2L2 .

Corollary 3.7. For u1, u2 ∈ S(R2) we define the bilinear operator Is
∗

via

F Is
∗(u1, u2)(τ, ξ) =

∫
ξ=ξ1+ξ2
τ=τ1+τ2

∣∣|ξ1|2s − |ξ2|2s
∣∣ 1
2 Fu1(τ1, ξ1)Fu2(τ2, ξ2) dτ1dξ1.

For b > 1
2 there exists a unique, bilinear extension I

α
2
∗ with

(3.11)
∥∥∥I α

2
∗ (u1, u2)

∥∥∥
L2

xt

≤ c‖u1‖X0,0,b
‖u2‖X0,0,b

, u1, u2 ∈ X0,0,b.
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For u1, u2 ∈ S(R2) we define the operator K
α
2
∗ by

F K
α
2
∗ (u1, u2)(τ, ξ) =

∫
ξ=ξ1+ξ2
τ=τ1+τ2

||ξ|α − |ξ1|α|
1
2 Fu1(τ1, ξ1)Fu2(τ2, ξ2) dτ1dξ1.

K
α
2
∗ is the formal adjoint of u2 7→ I

α
2
∗ (u1, u2) with respect to L2

xt, and for
b > 1

2 there exists a unique, bilinear extension K
α
2
∗ with

(3.12)
∥∥∥K α

2
∗ (u1, u2)

∥∥∥
X0,0,−b

≤ c‖u1‖X0,0,b
‖u2‖L2

xt
, u1 ∈ X0,0,b, u2 ∈ L2

xt.

Proof. We may assume that u1, u2, v ∈ S(R2). We write u1, u2 as in (3.6)
and estimate

‖I
α
2
∗ (u1, u2)‖L2

xt
= lim

δ→0
‖I

α
2

δ (u1, u2)‖L2
xt

≤ c lim
δ→0

∫∫ ∥∥∥I α
2

δ (WαFt(Wα(−·)u1)(τ1),WαFt(Wα(−·)u2)(τ2))
∥∥∥

L2
xt

dτ1dτ2

≤ c

∫∫
‖Ft(Wα(−·)u1)(τ1)‖L2

x
‖Ft(Wα(−·)u2)(τ2)‖L2

x
dτ1dτ2,

where we used the estimate (3.8) for the last inequality. Next, we insert
〈τi〉−2b〈τi〉2b in each integral and use Cauchy-Schwarz to obtain∥∥∥I α

2
∗ (u1, u2)

∥∥∥
L2

xt

≤ c‖u1‖X0,0,b
‖u2‖X0,0,b

.

Now we calculate the adjoint of I
α
2
∗ (u1, ·) with respect to L2

xt for Schwartz
functions. By Plancherel(
I

α
2
∗ (u1, u2), v

)
L2

xt

=
∫
||ξ1|α − |ξ − ξ1|α|

1
2Fu1(τ1, ξ1)Fu2(τ − τ1, ξ − ξ1) dτ1dξ1Fv(τ, ξ) dτdξ

=
∫
Fu2(τ − τ1, ξ − ξ1)||ξ1|α − |ξ − ξ1|α|

1
2Fu1(−τ1,−ξ1)Fv(τ, ξ) dτ1dξ1dτdξ.

The change of variables (τ1, ξ1, τ, ξ) 7→ (−τ1,−ξ1, τ − τ1, ξ − ξ1) yields(
I

α
2
∗ (u1, u2), v

)
L2

xt

=
∫
Fu2(τ, ξ)

∫
||ξ1|α − |ξ|α|

1
2Fu1(τ1, ξ1)Fv(τ − τ1, ξ − ξ1) dτ1dξ1 dτdξ

=
(
u2,K

α
2
∗ (u1, v)

)
L2

xt

due to the Plancherel identity. Therefore, (3.12) is dual to (3.11). �
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The Bourgain type approach to nonlinear dispersive equations such as (1.1)
relies heavily on the specific resonance relation. This is analyzed in the next
lemma.

Lemma 3.8. Let 1 < α < 2. Define

(3.13) h(ξ1, ξ2, ξ) = ξ|ξ|α − ξ1|ξ1|α − ξ2|ξ2|α.

Then, for ξ = ξ1 + ξ2 we have

(3.14) |h(ξ1, ξ2, ξ)| ≥ c|ξmin||ξmax|α,

where |ξmin| := min{|ξ1|, |ξ2|, |ξ|} and |ξmax| := max{|ξ1|, |ξ2|, |ξ|}.

Proof. For β ≥ 0 we define f(β) := (1 + β)1+α − β1+α − 1. This function
satisfies f(0) = 0 and f ′(β) = (1 + α)((1 + β)α − βα) > 0, as well as f ′′(β) =
(1 + α)α((1 + β)α−1 − βα−1) > 0 for β > 0. This implies

f(β) ≥ f ′(0)β = (1 + α)β for β ∈ [0, 1].

We observe that f(β) = β1+αf(1/β) for all β > 0, which implies

f(β) = β1+αf(1/β) ≥ (1 + α)βα for β ≥ 1.

Now we start we the proof of (3.14). We suppose the constraint ξ = ξ1 + ξ2
holds and consider two cases:

Case 1: ξ1ξ2 > 0: Since h is symmetric with respect to ξ1 and ξ2, it suffices
to consider ξ1 = βξ2 with β ≥ 1. Then,

|h(ξ1, ξ2, ξ)| = f(β)|ξ2|1+α ≥ cβα|ξ2|1+α = c|ξ1|α|ξ2|.

Since |ξ| ≤ |ξ1|+ |ξ2| ≤ 2|ξ1|, we have |ξ1| ≥ 1/2|ξmax|, and this implies (3.14).

Case 2: ξ1ξ2 < 0: By symmetry we may assume ξ2ξ < 0 and ξ1ξ > 0. Then
ξ1 = βξ for some β > 1. We calculate

|h(ξ1, ξ2, ξ)| = |1− β|β|α − (1− β)|1− β|α||ξ|1+α

= f(β − 1)|ξ|1+α

≥ c

{
|β − 1||ξ|1+α, 1 < β ≤ 2
|β − 1|α|ξ|1+α, β > 2

= c

{
|ξ2||ξ|α, 1 < β ≤ 2
|ξ2|α|ξ|, β > 2.

We have |ξ1| = |ξmax|. If 1 < β ≤ 2, then 2|ξ| ≥ |ξ1|, which implies (3.14). In
the case β > 2 we use |ξ2| = (1− 1/β)|ξ1| ≥ 1/2|ξ1| to conclude (3.14). �
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4. The bilinear estimate

This section is devoted to a proof of the following theorem.

Theorem 4.1. Let 1 < α < 2, s ≥ s0 > − 3
4 (α − 1), and ω = 1

α − 1
2 .

There exists b′ > − 1
2 and b ∈ (1/2, b′ + 1) such that

(4.1) ‖∂x(u1u2)‖Xs,ω,b′ ≤ c‖u1‖Xs,ω,b
‖u2‖Xs0,ω,b

+ ‖u1‖Xs0,ω,b
‖u2‖Xs,ω,b

holds true for all u1, u2 ∈ S(R2).

Proof. Let us fix notation. We define σ = |τ |+|ξ|1+α and σi = |τi|+|ξi|1+α,
as well as λ = τ − ξ|ξ|α and λi = τi − ξi|ξi|α. Moreover, we set

fi(τi, ξi) = |ξi|−ω〈ξi〉s−αω〈λi〉b〈σi〉ωFui(τi, ξi)

and
Fvi(τi, ξi) := fi(τi, ξi)〈λi〉−b.

For brevity we write∫
∗
g(τ1, ξ1)h(τ2, ξ2) :=

∫
ξ=ξ1+ξ2
τ=τ1+τ2

g(τ1, ξ1)h(τ2, ξ2) dτ1dξ1.

We first consider the case s = s0 = − 3
4 (α − 1) + ε for small ε > 0. Our

goal is to bound

‖∂x(u1u2)‖Xs,ω,b′ =

∥∥∥∥∥|ξ|1−ω〈ξ〉s−αω〈λ〉b
′
〈σ〉ω

∫
∗

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

τ,ξ

by the product of the L2 norms of the fi, where we may assume that 0 ≤ fi ∈
S(R2).

Due to the symmetry in ξ1, ξ2 it suffices to consider the subregion of the
domain of integration where |ξ1| ≤ |ξ2|. By the convolution constraint ξ =
ξ1 + ξ2 we then have |ξ| ≤ 2|ξ2|. The associated region is split up as follows:

(1) Region D1: 4|ξ1| ≤ |ξ2|. There, |ξ1| ≤ 1
4 |ξ2| ≤

1
3 |ξ| ≤

2
3 |ξ2|.

(2) Region D2: |ξ1| ≤ |ξ2| ≤ 4|ξ1|. There, |ξ| ≤ 2|ξ2|, |ξ| ≤ 5|ξ1|.
Let A,A1, A2 be the subregions of the domain of integration such that in
A we have 〈λ〉 ≥ 〈λ1〉, 〈λ2〉; in A1 we have 〈λ1〉 ≥ 〈λ〉, 〈λ2〉; and in A2 the
inequalities 〈λ2〉 ≥ 〈λ〉, 〈λ1〉 hold.

We first consider the region D1 and subdivide it into two parts, D1 =
D11 ∪D12, where in D11 we have |ξ1| ≤ 2 and in D12 we have |ξ1| ≥ 2. In D1

we see by Lemma 3.8

|λ− λ1 − λ2| = |h(ξ1, ξ2, ξ)| ≥ c|ξ1||ξ|α

because |ξ1| ≤ |ξ|, |ξ2|.
Now we start the analysis in the subregion D11. We exploit the inequality

|ξ|1−α
2 = |ξ|αω ≤ c|ξ1|−ω(χA〈λ〉ω + χA1〈λ1〉ω + χA2〈λ2〉ω).
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Therefore in D11 the bilinear estimate follows from

(4.2)
2∑

k=0

‖J11,k‖L2 ≤ c

2∏
i=1

‖fi‖L2 ,

where

J11,0 =
∫
∗
χD11∩A|ξ|

α
2−ω〈ξ〉s−αω〈λ〉b

′+ω〈σ〉ω|ξ2|ω
2∏

i=1

fi(τi, ξi)〈ξi〉αω−s

〈λi〉b〈σi〉ω

and for k = 1, 2

J11,k =
∫
∗
χD11∩Ak

|ξ|α
2−ω〈ξ〉s−αω〈λ〉b

′
〈σ〉ω|ξ2|ω〈λk〉ω

2∏
i=1

fi(τi, ξi)〈ξi〉αω−s

〈λi〉b〈σi〉ω
.

We observe that in D11

(4.3) 〈ξ2〉αω−s〈ξ〉s−αω ≤ c and 〈ξ1〉αω−s ≤ c.

In addition, we use b′ + ω ≤ 0 and |ξ2|ω ≤ c|ξ|ω to show that

‖J11,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD11∩A|ξ|

α
2 〈σ〉ω

2∏
i=1

fi(τi, ξi)
〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

.

Because of the convolution constraint (τ, ξ) = (τ1, ξ1) + (τ2, ξ2) we also have

(4.4)
〈σ〉

〈σ1〉〈σ2〉
≤ c

1
mini=1,2〈σi〉

≤ c,

which implies

‖J11,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD11∩A|ξ|

α
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

.

We observe that in D11

|ξ|α
2 ≤ c||ξ2|α − |ξ1|α|

1
2 ,

such that, with (3.11),

‖J11,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ2|α − |ξ1|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c
∥∥∥I α

2
∗ (v1, v2)

∥∥∥
L2
≤ c

2∏
i=1

‖vi‖X0,0,b
= c

2∏
i=1

‖fi‖L2 ,

since b > 1/2. For J11,1 we use (4.3) and (4.4) again and get

‖J11,1‖L2 ≤ c

∥∥∥∥∫
∗

χD11∩A1 |ξ|
α
2

mini=1,2〈σi〉ω
〈λ〉b

′
f1(τ1, ξ1)〈λ1〉ω−bf2(τ2, ξ2)〈λ2〉−b

∥∥∥∥
L2

.
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We may assume that |λ1| ≥ 2|λ|, because otherwise the same argument as for
J11,0 applies. If 〈σ1〉 ≤ 〈σ2〉, then 〈λ1〉ω ≤ mini=1,2〈σi〉ω. If 〈σ2〉 ≤ 〈σ1〉, then

|λ1| = |τ1 − ξ1|ξ1|α| = |τ − τ2 − ξ|ξ|α + ξ|ξ|α − ξ1|ξ1|α| ≤ |λ|+ 16|σ2|

since we are in region D11. This implies 〈λ1〉 ≤ c〈σ2〉, and we also have

〈λ1〉ω ≤ c min
i=1,2

〈σi〉ω.

Therefore,

‖J11,1‖L2 ≤ c

∥∥∥∥∫
∗
χD11∩A1 |ξ|

α
2 〈λ〉b

′
f1(τ1, ξ1)〈λ1〉−bf2(τ2, ξ2)〈λ2〉−b

∥∥∥∥
L2

.

In D11 we have |ξ|α
2 ≤ c||ξ2|α − |ξ1|α|

1
2 and by assumption b′ ≤ 0. Thus we

may proceed as above with J11,0 and use the estimate (3.11) to conclude

‖J11,1‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ2|α − |ξ1|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c

2∏
i=1

‖fi‖L2 .

For J11,2, we have by (4.3) and (4.4)

‖J11,2‖L2 ≤ c

∥∥∥∥∫
∗
χD11∩A2 |ξ|

α
2 〈λ〉b

′
f1(τ1, ξ1)〈λ1〉−bf2(τ2, ξ2)〈λ2〉ω−b

∥∥∥∥
L2

.

In D11 ∩A2 we have

|ξ|α
2 ≤ c||ξ|α − |ξ1|α|

1
2 and 〈λ2〉ω−b ≤ 〈λ〉ω−b,

such that, because of b′ + ω ≤ 0,

‖J11,2‖L2 ≤ c
∥∥∥K α

2
∗ (v1,F−1f2)

∥∥∥
X0,0,−b

≤ c‖v1‖X0,0,b
‖F−1f2‖L2 = c

2∏
i=1

‖fi‖L2

for b > 1/2 by the estimate (3.12).
Let us now consider the region D12. We define the contributions

J12,0 =
∫
∗
χD12∩A|ξ|1−ω〈ξ〉s−αω〈λ〉b

′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

and, for k = 1, 2,

J12,k =
∫
∗
χD12∩Ak

|ξ|1−ω〈ξ〉s−αω〈λ〉b
′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

.

In the subregion D12 ∩A we use

|ξ|−αb′〈ξ1〉−b′ ≤ c〈λ〉−b′
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and ‖J12,0‖L2 is bounded by∥∥∥∥∥
∫
∗
χD12∩A|ξ|1−ω+αb′〈ξ〉s−αω〈σ〉ω〈ξ1〉b

′+αω−s〈ξ2〉αω−s
2∏

i=1

fi(τi, ξi)|ξi|ω

〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

.

Using 〈ξ2〉αω−s〈ξ〉s−αω ≤ c and (4.4) this is bounded by∥∥∥∥∥
∫
∗
χD12∩A|ξ|1+αb′ 〈ξ1〉b

′+αω−s+ω

mini=1,2〈σi〉ω
2∏

i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

.

Now, for b′ + ω ≤ 0 we estimate

|ξ|1+αb′ ≤ c|ξ|α
2 〈ξ1〉1−

α
2 +αb′ ,

since 1− α
2 + αb′ ≤ 0. Moreover,

1− α

2
+ αb′ + b′ + αω − s+ ω − (1 + α)ω = 1− α

2
+ αb′ + b′ − s,

which is negative for

s ≥ α(−1
2

+ b′) + 1 + b′

Therefore, choosing b′ ≤ min{−ω,− 1
4}, we continue for s ≥ −3

4 (α− 1) with∥∥∥∥∥
∫
∗
χD12∩A|ξ|

α
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c
∥∥∥I α

2
∗ (v1, v2)

∥∥∥
L2
≤ c

2∏
i=1

‖fi‖L2 .

Next, we study the contribution of J12,1. We may assume that 〈λ1〉 ≥ 2〈λ〉,
because otherwise we can use the same argument as in D12 ∩A. In D12 ∩A1

we exploit the inequality

|ξ|〈ξ1〉
1
α ≤ c〈λ1〉

1
α .

We observe that

|λ1| = |τ1 − ξ1|ξ1|α| ≤ |λ|+ c〈σ2〉 ⇒ 〈λ1〉 ≤ c〈σ2〉

and therefore
〈λ1〉ω ≤ c min

i=1,2
〈σi〉ω.

This shows

‖J12,1‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD12∩A1〈λ〉b

′
〈ξ1〉−

1
α +ω+αω−s〈λ1〉

1
2−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

.

We choose b > 1
2 and in D12 we have |ξ1| ≤ |ξ2|. Since we only consider

s ≤ 1
2 −

α
2 (which means ε ≤ α−1

4 ), we have

‖J12,1‖L2 ≤ c

∥∥∥∥∥
∫
∗
〈λ〉b

′
〈ξ2〉

1
2−

α
2−s〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

.



966 S. HERR

With b′ ≤ −1
4 and using Sobolev in time, we see that

‖J12,1‖L2 ≤ c
∥∥∥F−1f1J

1
2−

α
2−sv2

∥∥∥
L

4/3
t L2

x

≤ c ‖f1‖L2
t L2

x
‖J 1

2−
α
2−sv2‖L4

t L∞x
.

Finally, by (3.4) we have

‖J 1
2−

α
2−sv2‖L4

t L∞x
≤ c‖v2‖X0,0,b

= ‖f2‖L2

if 1
2 −

α
2 − s ≤ α−1

4 , which is equivalent to s ≥ −3
4 (α− 1).

Now we turn to the contribution of D12 ∩A2, where we use the inequality

|ξ|−αb′〈ξ1〉−b′ ≤ c〈λ2〉−b′ .

It follows that

‖J12,2‖L2

≤ c

∥∥∥∥∥
∫
∗
χD12∩A2 |ξ|1+αb′ 〈ξ1〉b

′+ω+αω−s

mini=1,2〈σi〉ω
〈λ〉b

′
〈λ2〉−b′−b〈λ1〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

.

We have
〈λ〉b

′
〈λ2〉−b′−b ≤ 〈λ〉−b

and
min
i=1,2

〈σi〉ω ≥ 〈ξ1〉(1+α)ω,

and if b′ ≤ −ω we have 1 + αb′ − α
2 ≤ 0 and therefore

|ξ|1+αb′ ≤ c|ξ|α
2 〈ξ1〉1+αb′−α

2 .

If b′ ≤ −1
4 and s ≥ −3

4 (α− 1) we estimate b′ − s+ 1 + αb′ − α
2 ≤ 0 and

|ξ|α
2 ≤ c||ξ|α − |ξ1|α|

1
2 .

Therefore, by the dual bilinear Strichartz estimate (3.12),

‖J12,2‖L2 ≤ c

∥∥∥∥∥
∫
∗
||ξ|α − |ξ1|α|

1
2 〈λ〉−b〈λ1〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

≤ c

2∏
i=1

‖fi‖L2 .

This completes the discussion of the subregion D1.
Let us now consider the domain D2, where |ξ1| ≤ |ξ2| ≤ 4|ξ1|, |ξ| ≤ 2|ξ2|

and |ξ| ≤ 5|ξ1|. We subdivide D2 = D21∪D22, where D21 and D22 are defined
by

D21 : ξ1ξ2 > 0 or |ξ| ≥ 1
2
|ξ1| or |ξ2| ≤ 1
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and
D22 : ξ1ξ2 < 0 and |ξ| ≤ 1

2
|ξ1| and |ξ2| ≥ 1.

As above, we define for j = 1, 2

J2j,0 =
∫
∗
χD2j∩A|ξ|1−ω〈ξ〉s−αω〈λ〉b

′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

and for k = 1, 2

J2j,k =
∫
∗
χD2j∩Ak

|ξ|1−ω〈ξ〉s−αω〈λ〉b
′
〈σ〉ω

2∏
i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

.

We start with the discussion of D21, where all frequencies are of a size com-
parable to or smaller than a constant. This shows that

|ξ|1−ω〈ξ〉s−αω|ξ1|ω|ξ2|ω〈σ〉ω

〈ξ1〉s−αω〈ξ2〉s−αω〈σ1〉ω〈σ2〉ω
≤ c〈ξ〉1−s.

Therefore,

‖J21,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD21∩A〈ξ〉1−s〈λ〉b

′
2∏

i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

.

In A we have
〈ξ〉−b′(1+α) ≤ c〈λ〉−b′ ,

and using the Strichartz estimate (3.4) we conclude

‖J21,0‖L2 ≤ c

∥∥∥∥∫
∗
〈ξ〉1−s+b′(1+α)−α−1

4 〈ξ1〉
α−1

4 Fv1(τ1, ξ1)Fv2(τ2, ξ2)
∥∥∥∥

L2

≤ c‖J
α−1

4 v1‖L4
t L∞x

‖v2‖L4
t L2

x
≤ c

2∏
i=1

‖fi‖L2 ,

since 1− s+ b′(1 +α)− α−1
4 ≤ 0, which is equivalent to 5

4 + b′ − α
4 +αb′ ≤ s.

This is fulfilled for b′ ≤ −1
2 + ε

3 . In A1 we have

〈ξ〉b(1+α) ≤ c〈λ1〉b,
and using Sobolev in time and the Strichartz estimate (3.4), we conclude for
b′ ≤ −1

4

‖J21,1‖L2 ≤ c

∥∥∥∥∫
∗
〈ξ〉1−s−b(1+α)−α−1

4 〈λ〉b
′
f1(τ1, ξ1)〈ξ2〉

α−1
4 Fv2(τ2, ξ2)

∥∥∥∥
L2

≤ c‖F−1f1J
α−1

4 v2‖L
4/3
t L2

x
≤ c‖f1‖L2

tx
‖J

α−1
4 v2‖L4

t L∞x

≤ c

2∏
i=1

‖fi‖L2 .

The same argument applies to J21,2 by interchanging the roles of f1, f2.
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Finally, we turn to the contributions from the region D22. Here, we have
ξ1ξ2 < 0. Therefore, we may write ξ1 = βξ2 for β ∈ [−1,− 1

4 ]. By the mean
value theorem, this shows

(4.5) ||ξ1|α − |ξ2|α|
1
2 = ||β|α − 1|

1
2 |ξ2|

α
2 ≥ 1

2
||β| − 1| 12 |ξ2|

α
2 =

1
2
|ξ| 12 |ξ2|

α−1
2 .

Let us start with the subregion A. We have

〈σ〉ω ≤ c〈λ〉ω + cχ|ξ|≥1〈ξ〉ω+αω,

which implies

‖J22,0‖L2 ≤ c

∥∥∥∥∥
∫
∗
χD22∩A|ξ|1−ω〈ξ〉s−αω〈λ〉b

′+ω
2∏

i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

+ c

∥∥∥∥∥
∫
∗
χD22∩Aχ|ξ|≥1〈ξ〉1+s〈λ〉b

′
2∏

i=1

|ξi|ω〈ξi〉αω−sfi(τi, ξi)
〈λi〉b〈σi〉ω

∥∥∥∥∥
L2

.

Using

|ξ|−b′−ω〈ξ2〉−αb′−αω ≤ c〈λ〉−b′−ω,

and (4.5) we see that the first term is bounded by∥∥∥∥∥
∫
∗
χD22∩A|ξ|1+b′〈ξ〉s−αω〈ξ2〉−2s+αb′+αω

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c

∥∥∥∥∥
∫
∗
〈ξ〉 1

2+b′+s−αω〈ξ2〉−2s+αb′+αω−α−1
2 ||ξ1|α − |ξ2|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

.

If b′ ≤ −1
4 and ε ≤ 1

4 , then 1
2 + b′+ s−αω ≤ 0. Moreover, for b′ ≤ −1

2 + ε, we
have −2s+αb′+αω− α−1

2 ≤ 0. Therefore, by the bilinear Strichartz estimate
(3.11), this is bounded by

· · · ≤ c

∥∥∥∥∥
∫
∗
||ξ1|α − |ξ2|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c

2∏
i=1

‖fi‖L2 .

For the second term we use

|ξ|−b′〈ξ2〉−αb′ ≤ c〈λ〉−b′ ,

and with (4.5) obtain the bound

· · · ≤ c

∥∥∥∥∥
∫
∗
χD22∩Aχ|ξ|≥1〈ξ〉s+1+b′〈ξ2〉αb′−2s

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

≤ c

∥∥∥∥∥
∫
∗
〈ξ〉 1

2+s+b′〈ξ2〉αb′−2s−α−1
2 ||ξ1|α − |ξ2|α|

1
2

2∏
i=1

fi(τi, ξi)
〈λi〉b

∥∥∥∥∥
L2

.
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We only consider ε < 3
4 (α− 1). Then, for b′ ≤ −1

2 + 3
4 (α− 1)− ε we observe

that 1
2 + s+ b′ ≤ 0. Moreover, αb′ − 2s− α−1

2 ≤ 0 for b′ ≤ −1
2 + ε. Using the

bilinear Strichartz estimate (3.11), we arrive at

‖J22,0‖L2 ≤ c

2∏
i=1

‖fi‖L2 .

Next, we consider the subregion A1. We have

〈σ〉ω ≤ c〈λ1〉ω + cχ|ξ|≥1〈ξ〉ω+αω,

which shows that ‖J22,1‖L2 is bounded by∥∥∥∥∥
∫
∗
χD22∩A1 |ξ|1−ω〈ξ〉s−αω〈ξ2〉−2s〈λ〉b

′
〈λ1〉−b+ω〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫
∗
χD22∩A1χ|ξ|≥1〈ξ〉1+s〈λ〉b

′
〈λ1〉−b〈λ2〉−b〈ξ2〉−2s

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

.

As above, using

|ξ|−b′−ω〈ξ2〉−αb′−αω ≤ c〈λ1〉−b′−ω

we see that the first term is bounded by∥∥∥∥∥
∫
∗
χD22∩A|ξ|1+b′〈ξ〉s−αω〈ξ2〉−2s+αb′+αω〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

,

which in turn is controlled by∥∥∥∥∥
∫
∗
〈ξ〉1+b′+s−αω〈ξ2〉−2s+αb′+αω−α

2 ||ξ|α − |ξ2|α|
1
2 〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

.

Here, we used that due to the inequalities |ξ| ≤ 3
4 |ξ2| and |ξ2| ≥ 1 we have

||ξ|α − |ξ2|α|
1
2 ≥ c〈ξ2〉

α
2 .

By estimating 〈ξ〉 1
2 ≤ 〈ξ2〉

1
2 and with the same restrictions on s, b′ as above

we may apply the dual bilinear Strichartz estimate (3.12) and get

· · · ≤ c

∥∥∥∥∥
∫
∗
||ξ|α − |ξ2|α|

1
2 〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

≤ c

2∏
i=1

‖fi‖L2 .

For the second term we use

|ξ|−b′〈ξ2〉−αb′ ≤ c〈λ1〉−b′ ,
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and obtain

· · · ≤ c

∥∥∥∥∥
∫
∗
〈ξ〉1+s+b′〈ξ2〉αb′−2s−α

2 ||ξ|α − |ξ2|α|
1
2 〈λ〉−b〈λ2〉−b

2∏
i=1

fi(τi, ξi)

∥∥∥∥∥
L2

≤ c

2∏
i=1

‖fi‖L2

by (3.12) with the same restrictions on s, b′, b as in the region A, since 〈ξ〉 1
2 ≤

〈ξ2〉
1
2 .

Finally, we turn to the region A2. In D22 the frequencies ξ1 and ξ2 are of
comparable size and due to the inequalities |ξ| ≤ 1

2 |ξ1| and |ξ1| ≥ 1
4 |ξ2| ≥

1
4

we have
||ξ|α − |ξ1|α|

1
2 ≥ c〈ξ1〉

α
2 .

Now we use the same argument as for A1 with the roles of f1, f2 interchanged.
This finishes the proof of the bilinear estimate for s = s0 = − 3

4 (α− 1) + ε,
for ε ≤ α−1

4 . The restrictions on b′ can be summarized by

b′ ≤ min
{
−1

4
,−ω,−1

2
+
ε

3
,−1

2
+

3
4
(α− 1)− ε

}
.

For b we assumed 1
2 < b < b′ + 1. Now we turn to the case s > s0 =

− 3
4 (α− 1) + ε. Let ρ = s− s0. Because of the inequality

(4.6) 〈ξ〉ρ ≤ c〈ξ1〉ρ + c〈ξ2〉ρ

we see that

‖∂x(u1u2)‖Xs,ω,b′ ≤ c‖∂x(Jρu1u2)‖Xs0,ω,b′ + ‖∂x(u1J
ρu2)‖Xs0,ω,b′

≤ c‖u1‖Xs,ω,b
‖u2‖Xs0,ω,b

+ ‖u1‖Xs0,ω,b
‖u2‖Xs,ω,b

.

This proves that for all s ≥ s0 > − 3
4 (α − 1) we can find suitable numbers

b′ ∈ (− 1
2 , 0) and b ∈ ( 1

2 , b
′ + 1) such that the bilinear estimate holds true. �

Remark 4.2. Instead of (4.6) one could also perform a similar argument
with an elliptic weight in order to increase regularity in t and x simultaneously.

5. Proof of the main results

In this section we prove Theorems 2.6 and 2.11. The proofs will be a
standard application of methods which are well known from the literature.
Throughout this section let 1 < α < 2, s ≥ s0 > − 3

4 (α−1), and ω = 1/α−1/2.
Moreover, we fix b′, b according to Theorem 4.1. We may restrict ourselves
to 0 < T ≤ 1, since the same arguments apply on any compact time interval.
For u ∈ S(R2) we define

ΦT (u)(t) := −1
2
ψT (t)

∫ t

0

Wα(t− t′)∂x(u2)(t′) dt′.
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An application of Lemma 3.2 and the bilinear estimate (4.1) allows us to
extend ΦT uniquely to

ΦT : Xs,ω,b → Xs,ω,b,

such that

(5.1) ‖ΦT (u)− ΦT (v)‖Xs,ω,b
≤ cT ε(‖u‖Xs,ω,b

+ ‖v‖Xs,ω,b
)‖u− v‖Xs,ω,b

holds true. We can also define

ΦT |[−T,T ]: XT
s,ω,b → XT

s,ω,b,

since ΦT (u) |[−T,T ] only depends on u |[−T,T ].

Definition 5.1. We say that u ∈ XT
s,ω,b ⊂ C([−T, T ],H(s,ω)) is a solution

of our problem (1.1) on [−T, T ], if

(5.2) u(t) = Wα(t)u0 + ΦT (u)(t), for t ∈ [−T, T ].

We divide the proof of Theorems 2.6 and 2.11 into four parts.

Proof of Theorem 2.6: local existence and analytic dependence. For 0 < T
≤ 1 we define

ΛT : H(s,ω) ×Xs,ω,b → Xs,ω,b,

ΛT (u0, u) := ψWαu0 + ΦT (u).

Obviously, ΛT is an analytic map (see [7], Definition 15.1), since it is a
composition of bounded linear and bilinear maps. Let u0 ∈ H(s,ω) with
‖u0‖H(s,ω) ≤ r and u ∈ Xs,ω,b with ‖u‖Xs,ω,b

≤ R. Then, by (3.1) and
the estimate (5.1),

‖ΛT (u0, u)‖Xs,ω,b
≤ cr +RcT ε‖u‖Xs,ω,b

< R

for R = 2cr and T ε = (8c2r)−1. With these choices of R and T we restrict
ΛT to closed balls Br × BR ⊂ H(s,ω) × Xs,ω,b. The bilinear estimate (5.1)
shows that

ΛT (u0, ·) : BR → BR

is a strict contraction, uniformly in u0 ∈ Br. Therefore we obtain

F : H(s,w) ⊃ Br → BR ⊂ Xs,ω,b

with
ΛT (u0, u) = u ∈ BR ⇐⇒ u = F (u0)

for all u0 ∈ Br. An application of the implicit function theorem (see [7],
Theorem 15.3) to Id−ΛT yields the analyticity of F and also that of F

∣∣
[−T,T ]

:

H(s,w) → XT
s,ω,b. Moreover, the functions F (u0)

∣∣
[−T,T ]

∈ XT
s,ω,b are solutions

of (5.2). �
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Proof of Theorem 2.6: persistence and uniqueness. The persistence prop-
erty follows from the embedding Xs,ω,b ⊂ C(R,H(s,ω)). Assume that u, v ∈
XT

s0,ω,b are two solutions of (5.2) with extensions ũ, ṽ ∈ Xs0,ω,b, such that

T ′ := sup{t ∈ [0, T ] | u(t) = v(t)} < T.

Define u∗(t) := ũ(t + T ′), v∗(t) := ṽ(t + T ′) for −T ′ ≤ t ≤ T − T ′. Because
both u and v are solutions of (5.2), we see by approximation with smooth
functions that

u∗(t)− v∗(t) = ΦT (u∗)(t)− ΦT (v∗)(t)(5.3)

for −T ′ ≤ t ≤ T − T ′. Therefore, for small δ > 0 we have

‖ψδ(u∗ − v∗)‖Xs0,ω,b
≤ cδε ‖ψδ(u∗ − v∗)‖Xs0,ω,b

(‖u∗‖Xs0,ω,b
+ ‖v∗‖Xs0,ω,b

).

By choosing δ small enough we conclude u∗(t) = v∗(t) for |t| ≤ δ, which
implies u(t+ T ′) = v(t+ T ′) for |t| ≤ δ. This contradicts the definition of T ′.
If u, v did not coincide on [−T, 0], we would obtain a similar contradiction. �

Lemma 5.2. Let s ≥ 0. There exists C > 0, such that for all smooth, real
valued solutions u of (1.1), we have

(5.4) sup
t∈[−T,T ]

‖u(t)‖H(0,ω) ≤ C‖u(0)‖H(0,ω) + CT‖u(0)‖2H(0,ω) .

Proof. We easily verify the conservation law

‖u(t)‖2L2 = ‖u(0)‖2L2 , t ∈ (−T, T ).

Therefore it suffices to prove an a priori estimate for the low frequency part in
Ḣ−ω. Let ψ ∈ C∞0 ([−2, 2]) be nonnegative and symmetric with ψ|[−1,1] ≡ 1.
We define

Fxv(t)(ξ) = ψ(ξ)|ξ|−ωFxu(t)(ξ).
The function v solves the equation

vt − |D|αvx = f in (−T, T )× R,
v(0) = v0,

where v0, f are defined via Fxv0(ξ) = ψ(ξ)|ξ|−ωFxu(0)(ξ) and Fxf(t)(ξ) =
− i

2ψ(ξ)ξ|ξ|−ωFxu
2(t)(ξ), respectively. For fixed t we estimate

‖f(t)‖L2
x
≤ c‖ψ(ξ)Fxu

2(t)(ξ)‖L2
ξ
≤ c‖Fxu

2(t)‖L∞ξ

≤ c‖u2(t)‖L1
x
≤ c‖u(t)‖2L2

x
.

This shows that

‖v‖L∞T L2
x
≤ c‖v0‖L2

x
+ c‖f‖L1

T L2
x
≤ c‖u(0)‖H(0,ω) + cT‖u‖2L∞T L2

x

≤ c‖u(0)‖H(0,ω) + cT‖u(0)‖2H(0,ω) ,

as desired. �
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Proof of Theorem 2.6: time of existence. We fix s ≥ s0 and a ball

Br,rs = {v0 ∈ H(s,ω) | ‖v0‖H(s0,ω) ≤ r and ‖v0‖H(s,ω) ≤ rs}
and define Ts as the supremum of all T ∈ [0, 1] such that the following state-
ment is true: There exists an analytic map F : Br,rs → Xs,ω,b, such that

ΛT (v0, F (v0)) = F (v0),

and if u ∈ XT
s0,ω,b is a solution of (5.2), then

u
∣∣
[−T,T ]

= F (v0)
∣∣
[−T,T ]

.

Parts 1 and 2 of the proof show that Ts > 0. Let v = F (v0) ∈ Xs,ω,b. If
T ε

s ≤ (8c2s0
r)−1 < 1, we see from the proof of part 1 that ‖v‖Xs0,ω,b

≤ 2cs0r.
An application of our bilinear estimate (4.1) together with (3.1), (3.3) gives

‖v‖Xs,ω,b
≤ csrs + csT

ε
s ‖v‖Xs0,ω,b

‖v‖Xs,ω,b
.

Therefore,
‖v‖Xs,ω,b

≤ csrs + 2cscs0rT
ε
s ‖v‖Xs,ω,b

,

and if additionally T ε
s ≤ (4cs0csr)

−1, then we conclude

(5.5) sup
|t|≤Ts

‖v(t)‖H(s,ω) ≤ c‖v‖Xs,ω,b
< Csrs.

If these assumptions about Ts hold, we can apply parts 1 and 2 of the proof.
We find a δ > 0 and an analytic map G : H(s,ω) ⊃ BCsrs → Xs,ω,b such that

Λ2δ(w0, G(w0)) = G(w0),

and if u ∈ X2δ
s0,ω,b is a solution of (5.2) with initial datum w0 ∈ BCsrs

, then

u
∣∣
[−2δ,2δ]

= G(w0)
∣∣
[−2δ,2δ]

.

Define

H : v0 7→ χδF (v0) + χ+
δ G(F (v0)(Ts))(· − Ts) + χ−δ G(F (v0)(−Ts))(·+ Ts)

as a map from Br,rs to Xs,ω,b with smooth cutoff functions χδ, χ
+
δ , χ

−
δ , such

that χδ + χ+
δ + χ−δ = 1 on [−Ts − δ, Ts + δ] with

supp(χδ) ⊂ [−Ts + δ, Ts − δ], supp(χ±δ ) ⊂ [±Ts − 2δ,±Ts + 2δ].

It is not hard to verify that H is analytic, since it is a composition of analytic
maps, and that H satisfies

ΛTs+δ(v0,H(v0)) = H(v0).

If u ∈ XTs+δ
s0,ω,b is a solution of (5.2), then part 2 of the proof also gives

u
∣∣
[−Ts−δ,Ts+δ]

= H(v0)
∣∣
[−Ts−δ,Ts+δ]

,

which contradicts the definition of Ts, and we conclude that

T ε
s ≥ min{(4cs0csr)

−1, (8c2s0
r)−1}.
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This lower bound shows that if Ts < 1, then

(5.6) lim
t↑Ts

‖u(t)‖H(s0,ω) = ∞

because otherwise we could iterate the argument above. �

Proof of Theorem 2.11. The same proof as above applies in the closed sub-
spaces of real valued functions in H(s,ω), Xs,ω,b and XT

s,ω,b. We regard these
as Hilbert spaces over the real numbers and the analytic flow maps as real
analytic. Using (5.6) and the a priori bound (5.4) this proves that Ts = 1 for
all s ≥ 0. As already mentioned at the beginning of this section, the same
arguments may be applied to any compact time interval. �

6. Sharpness of the low frequency condition

In this section we modify the counterexamples from Molinet, Saut and
Tzvetkov [22] (which imply that the flow map is not C2 without any low
frequency condition) in order to prove the sharpness of our choice of ω. Here,
we also include the Benjamin-Ono case (α = 1).

Theorem 6.1. Let 1 ≤ α < 2 and suppose that ω < 1
α − 1

2 . For any
s ∈ R, there does not exist T > 0, such that the flow map of (1.1)

F : Hs(R) ∩ Ḣ−ω(R) → C([0, T ],Hs(R)), u0 7→ u,

if it exists, is C2 (i.e., two times Fréchet-differentiable) at the origin. In
particular, the bilinear estimate corresponding to (4.1) fails.

Proof. We only describe the modifications of the argument of Molinet, Saut
and Tzvetkov. For the details of the calculation4 we refer the reader to the
original work [22]. Define a sequence of initial data via

φ̂N := N (α+ε)( 1
2−ω)χ1 +N

α+ε
2 −sχ2,

where
χ1(ξ) = χ 1

2 N−α−ε≤ξ≤N−α−ε , χ2(ξ) = χN≤ξ≤N+N−α−ε .

Notice that ‖φN‖H(s,ω) ≤ 2. As shown in [22] we have∥∥∥∥∫ t

0

Wα(t− t′)∂x(Wα(t′)φN )2 dt′
∥∥∥∥

Hs

≥ c‖F‖Hs

with

F̂ (t)(ξ)

=
Nα+εξeitξ|ξ|α

Ns+(α+ε)ω

∫
(χ1(ξ1)χ2(ξ − ξ1) + χ2(ξ1)χ1(ξ − ξ1))

eitr(ξ1,ξ) − 1
r(ξ1, ξ)

dξ1,

4Notice that our notation slightly differs from [22].
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where
r(ξ1, ξ) = ξ1|ξ1|α + (ξ − ξ1)|ξ − ξ1|α − ξ|ξ|α

is essentially our resonance function from Lemma 3.8. In the domain of inte-
gration we have |r(ξ1, ξ)| ≤ cN−α−εNα = cN−ε. A Taylor expansion shows
that ∣∣∣∣eitr(ξ1,ξ) − 1

r(ξ1, ξ)

∣∣∣∣ = |t|+O(N−ε),

which implies

‖F‖Hs ≥ cNNsN−α−εN−α+ε
2 Nα+εN−s−(α+ε)ω.

This tends to infinity if 1− α+ε
2 − (α+ ε)ω > 0, which is equivalent to

ω <
1

α+ ε
− 1

2
→ 1

α
− 1

2
(ε→ 0).

This calculation implies that the bilinear expression, which corresponds to a
second derivative at the origin in direction φN , is unbounded as N →∞, but
on the other hand ‖φN‖H(s,ω) ≤ 2. This contradicts the C2 regularity of the
flow and the bilinear estimate. �
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