Illinois Journal of Mathematics Volume 48, Number 3, Fall 2004, Pages 1053–1065 S 0019-2082

AN EXTREMAL FUNCTION FOR THE MULTIPLIER ALGEBRA OF THE UNIVERSAL PICK SPACE

FRANK WIKSTRÖM

ABSTRACT. Let H_m^2 be the Hilbert function space on the unit ball in \mathbb{C}^m defined by the kernel $k(z,w) = (1-\langle z,w\rangle)^{-1}$. For any weak zero set of the multiplier algebra of H_m^2 , we study a natural extremal function, E. We investigate the properties of E and show, for example, that E tends to 0 at almost every boundary point. We also give several explicit examples of the extremal function and compare the behaviour of E to the behaviour of δ^* and g, the corresponding extremal function for H^∞ and the pluricomplex Green function, respectively.

1. Introduction

Let $m \geq 1$ be an integer and define $k : \mathbb{B}^m \times \mathbb{B}^m \to \mathbb{C}$ by $k(z, w) = (1 - \langle z, w \rangle)^{-1}$, where \mathbb{B}^m is the unit ball in \mathbb{C}^n and $\langle z, w \rangle = \sum_{j=1}^m z_j \bar{w}_j$ is the standard inner product on \mathbb{C}^m . It is not difficult to check that k is a positive kernel on \mathbb{B}^m , i.e., that for any choice $\{\lambda_1, \ldots, \lambda_n\}$ of a finite number of points in \mathbb{B}^m the matrix

$$(k(\lambda_j, \lambda_k))_{j,k=1}^n = \left(\frac{1}{1 - \langle \lambda_j, \lambda_k \rangle}\right)_{j,k=1}^n$$

is positive semi-definite. Let H_m^2 denote the Hilbert function space on \mathbb{B}^m defined by k. More explicitly, let $k_w(\cdot) = k(\cdot, w)$ and let H_m^2 be the closed linear span of $\{k_w : w \in \mathbb{B}^m\}$ under the inner product $\langle \sum_j a_j k_{w_j}, \sum_k b_k k_{w_k} \rangle_{H_m^2} = \sum_{i,k} a_j \bar{b}_k k(w_k, w_j)$.

Recently, there has been a substantial amount of interest in the space H_m^2 , the main reason being that k is a *complete Pick kernel* and furthermore that k has a certain universal property among complete Pick kernels. Let us quickly review these notions. If \mathcal{H} is a (complex) Hilbert function space on X, recall

Received January 19, 2004; received in final form February 5, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B32. Secondary 32F45, 32U35, 46E22.

This work was supported by the European Union Research Training Network *Operators* and *Analysis*.

that a function $\phi : X \to \mathbb{C}$ is a *multiplier* of \mathcal{H} if $\phi f \in \mathcal{H}$ for all $f \in \mathcal{H}$. If ϕ is a multiplier of \mathcal{H} , the closed graph theorem implies that the operator $M_{\phi} : \mathcal{H} \to \mathcal{H}$ defined by $M_{\phi}f = \phi f$ is bounded. We define $\text{Mult}(\mathcal{H})$ to be the set of multipliers of \mathcal{H} equipped with the norm $\|\phi\|_{\text{Mult}(\mathcal{H})} = \|M_{\phi}\|_{\text{op}}$, where $\|\cdot\|_{\text{op}}$ is the operator norm. With this definition, one can check that $\text{Mult}(\mathcal{H})$ is a Banach algebra.

Given $\lambda_1, \ldots, \lambda_n \in \mathbb{D}$ and $w_1, \ldots, w_n \in \mathbb{D}$, recall that Pick's classical theorem [10] gives necessary and sufficient conditions for the existence of a function $f \in H^{\infty}(\mathbb{D})$ with $||f||_{H^{\infty}} \leq 1$ such that $f(\lambda_j) = w_j$ for $1 \leq j \leq n$. More precisely, such a function f exists if and only if the Pick matrix

$$\left(\frac{1-w_j\bar{w}_k}{1-\lambda_j\overline{\lambda}_k}\right)_{j,k=1}^n$$

is positive semi-definite. One modern approach to Pick's theorem is to view $H^{\infty}(\mathbb{D})$ as the multiplier algebra of the Hardy space $H^{2}(\mathbb{D})$.

For the abstract formulation of Pick's theorem, assume that \mathcal{H} is a Hilbert function space on X with reproducing kernel K and assume that $\lambda_1, \ldots, \lambda_n \in$ X and $w_1, \ldots, w_n \in \mathbb{C}$. The Pick problem is to give necessary and sufficient conditions on the λ_j 's and the w_j 's for the existence of $\phi \in \text{Mult}(\mathcal{H})$ with $\|\phi\|_{\text{Mult}(\mathcal{H})} \leq 1$ and $\phi(\lambda_j) = w_j$ for $1 \leq j \leq n$. It is not too difficult to verify that a necessary condition is that the matrix

$$\left((1-w_j\bar{w}_k)K(\lambda_j,\lambda_k)\right)_{i,k=1}^n$$

is positive semi-definite. If this condition is also sufficient we say that K is a *Pick kernel*. If the corresponding necessary condition for the matrix-valued version of Pick interpolation is sufficient for all matrix sizes, we say that Kis a *complete Pick kernel*. Pick's classical theorem can now be formulated as saying that the *Szegő kernel* $S(z, w) = (1 - z\bar{w})^{-1}$, i.e., the reproducing kernel for $H^2(\mathbb{D})$, is a Pick kernel. (In fact, the Szegő kernel is a complete Pick kernel.) The kernel k in this paper is just the Szegő kernel for m = 1and our space H_1^2 is just the Hardy space $H^2(\mathbb{D})$. For $m \ge 2$, H_m^2 is not the usual Hardy space in the ball of \mathbb{C}^m but a proper subspace of it.

For every integer m, the kernel k is a complete Pick kernel on \mathbb{B}^m , and conversely, if \mathcal{H} is a Hilbert function space with reproducing kernel K, and Kis an irreducible complete Pick kernel, then \mathcal{H} can be isometrically embedded in δH_m^2 for some m and some non-vanishing function δ . This was proven by Agler and McCarthy in [1].

In this paper, we will define a certain extremal function for the multiplier algebra of H_m^2 and study its properties. This extremal function is a natural analogue of the Carathéodory function δ^* which has been studied in connection with the pluricomplex Green function. (See, for example, Edigarian and Zwonek [7] and Wikström [12], [13].)

Acknowledgements. This paper was written while the author was a postdoctoral fellow at Departamento de Análisis Matemático, Universidad de La Laguna. I would like to thank the faculty and staff at the department, in particular Prof. Fernando Pérez González, for their kind support and hospitality.

2. H_m^2 and its multiplier algebra

It is straight-forward to check that the monomials $\{z^{\alpha}\}_{\alpha\in\mathbb{N}^m}$ are mutually orthogonal in H^2_m , and from a power series expansion of k we see that $\|z^{\alpha}\|^2_{H^2_m} = \alpha!/|\alpha|!$. (Here, as usual, if $\alpha = (\alpha_1, \ldots, \alpha_m)$ is a multi-index, $z^{\alpha} = z_1^{\alpha_1} \cdots z_m^{\alpha_m}$, $|\alpha| = \alpha_1 + \cdots + \alpha_m$ and $\alpha! = \alpha_1! \cdots \alpha_m!$.) From this it follows that

$$H_m^2 = \left\{ f = \sum_{\alpha} c_{\alpha} z^{\alpha} : \|f\|_{H_m^2}^2 = \sum_{\alpha} \frac{|c_{\alpha}|^2 \alpha!}{|\alpha|!} < \infty \right\}.$$

It is also possible to give integral representations of the norm in H_m^2 . (See Alpay and Kaptanoğlu [3].) If ϕ is a multiplier of H_m^2 , then ϕ must be holomorphic since $\phi = \phi \cdot 1$ and $1 \in H_m^2$. By general Hilbert function space theory it also follows that ϕ must be bounded, so $\operatorname{Mult}(H_m^2) \subset H^{\infty}(\mathbb{B}^m)$. If m > 1, this inclusion is proper. Interestingly enough, the Mult-norm and the H_m^2 -norm agree on monomials.

PROPOSITION 2.1. Let
$$\phi(z) = z^{\alpha}$$
. Then $\|\phi\|_{\text{Mult}(H_m^2)}^2 = \|\phi\|_{H_m^2}^2 = \alpha!/|\alpha|!$.

Proof. For simplicity of notation, assume that m = 2. (The argument can be adapted to work for every m.) Let $\alpha = (\alpha_1, \alpha_2)$. First note that if $j = (j_1, j_2)$ is a multiindex, then

$$\frac{(|j|+|\alpha|)!}{(j+\alpha)!} = \binom{j_1+j_2+\alpha_1+\alpha_2}{j_1+\alpha_1} \ge \binom{j_1+j_2}{j_1}\binom{\alpha_1+\alpha_2}{\alpha_1} = \frac{|j|!}{j!}\frac{|\alpha|!}{\alpha!}.$$

This can be seen from considering the natural expansions of

 $(x+1)^{j_1+j_2+\alpha_1+\alpha_2} = (x+1)^{j_1+j_2}(x+1)^{\alpha_1+\alpha_2},$

and comparing the coefficients of $x^{j_1+\alpha_1}$. Now, if $f \in H_m^2$, $f = \sum c_{j_1j_2} z_1^{j_1} z_2^{j_2}$, then

$$\|\phi f\|_{H^2_m}^2 = \sum_{j_1, j_2=0}^{\infty} \frac{|c_{j_1 j_2}|^2}{\binom{j_1+j_2+\alpha_1+\alpha_2}{j_1+\alpha_1}} \le \sum_{j_1, j_2=0}^{\infty} \frac{|c_{j_1 j_2}|^2}{\binom{j_1+j_2}{j_1}\binom{\alpha_1+\alpha_2}{\alpha_1}} = \frac{\alpha!}{|\alpha|!} \|f\|_{H^2_m}^2.$$

Hence $\|\phi\|^2_{\text{Mult}(H^2_m)} \leq \alpha!/|\alpha|!$. On the other hand, since $1 \in H^2_m$ and $\|1\| = 1$, $\|\phi\|^2_{\text{Mult}(H^2_m)} \geq \|\phi\|^2_{H^2_m} = \alpha!/|\alpha|!$.

As far as the author is aware, there is no explicit description of $Mult(H_m^2)$, but the following result gives a characterization of the multipliers of H_m^2 that can be used to deduce some properties of the multiplier algebra, even though the condition is far from easy to verify for a given $\phi \in H^{\infty}(\mathbb{B}^m)$.

THEOREM 2.2. Assume that ϕ is a holomorphic function on \mathbb{B}^m . Then ϕ is a multiplier of H^2_m with $\|\phi\|_{\mathrm{Mult}(H^2_m)} \leq 1$ if and only if

$$K(z,w) = \frac{1 - \phi(z)\phi(w)}{1 - \langle z, w \rangle}$$

is a positive kernel on \mathbb{B}^m .

For a proof of Theorem 2.2, see, for example, [2, Corollary 2.37].

REMARK. Recall that a sesqui-holomorphic kernel K(z, w) is positive if and only if there is a Hilbert space \mathcal{H} and a holomorphic function $H: X \to \mathcal{H}$ such that $K(z, w) = \langle H(z), H(w) \rangle$. (See, for example, Agler-McCarthy [2, Theorem 2.53].)

As a consequence of this characterization of the multiplier algebra of H_m^2 we can prove that the unit ball of $\operatorname{Mult}(H_m^2)$ is biholomorphically invariant. Let $\operatorname{Aut}(\mathbb{B}^m)$ denote the group of biholomorphic self-mappings of \mathbb{B}^m and let $\operatorname{ball}(\operatorname{Mult}(H_m^2)) = \{\phi \in \operatorname{Mult}(H_m^2) : \|\phi\|_{\operatorname{Mult}(H_m^2)} \leq 1\}.$

THEOREM 2.3. Assume that $\phi \in \text{ball}(\text{Mult}(H_m^2))$ and that $T \in \text{Aut}(\mathbb{B}^m)$. Then $\phi \circ T \in \text{ball}(\text{Mult}(H_m^2))$.

Proof. Let $\phi \in \text{ball}(\text{Mult}(H_m^2))$. Recall that $\text{Aut}(B^m)$ is generated by unitary mappings of \mathbb{C}^m and mappings of the form

$$T_a(z) = \left(\frac{a-z_1}{1-\bar{a}z_1}, \frac{(1-|a|^2)^{1/2}z_2}{1-\bar{a}z_1}, \dots, \frac{(1-|a|^2)^{1/2}z_m}{1-\bar{a}z_1}\right),$$

where $a \in \mathbb{D}$. (See, for example, Rudin [11] for a proof of this fact.) It is clear that $||f||_{H^2_m} = ||f \circ U||_{H^2_m}$ for all unitaries U and all $f \in H^2_m$ and hence $||f \cdot \phi \circ U||_{H^2_m} = ||f \circ U^{-1} \cdot \phi||_{H^2_m} \le ||f \circ U^{-1}||_{H^2_m} = ||f||_{H^2_m}$, so $\phi \circ U \in \text{ball}(\text{Mult}(H^2_m))$. To finish the proof, it is enough to show that $\phi \circ T_a \in \text{ball}(\text{Mult}(H^2_m))$ for every $a \in \mathbb{D}$. Note that

$$1 - \langle T_a(z), T_a(w) \rangle = 1 - \frac{(a - z_1)(\bar{a} - \bar{w}_1) + (1 - |a|^2)(z_2\bar{w}_2 + \dots + z_m\bar{w}_m)}{(1 - \bar{a}z_1)(1 - a\bar{w}_1)}$$
$$= \frac{(1 - |a|^2)(1 - \langle z, w \rangle)}{(1 - \bar{a}z_1)(1 - a\bar{w}_1)}.$$

Let $\psi = \phi \circ T_a$. By Theorem 2.2, $\psi \in \text{ball Mult}(H_m^2)$ if and only if

$$K_{\psi}(z,w) = \frac{1 - \psi(z)\psi(w)}{1 - \langle z,w \rangle}$$

is a positive kernel. But

$$K_{\psi}(T_{a}(z), T_{a}(w)) = \frac{1 - \phi(z)\overline{\phi(w)}}{1 - \langle T_{a}(z), T_{a}(w) \rangle}$$

= $\frac{1 - \phi(z)\overline{\phi(w)}}{1 - \langle z, w \rangle} \frac{(1 - \bar{a}z_{1})(1 - a\bar{w}_{1})}{1 - |a|^{2}}$
= $(1 - |a|^{2})^{-1} \langle H(z)(1 - \bar{a}z_{1}), H(w)(1 - \bar{a}w_{1}) \rangle$

for some auxiliary Hilbert space \mathcal{H} and some holomorphic $H : \mathbb{B}^m \to \mathcal{H}$ using the remark following Theorem 2.2. Hence K_{ψ} is a positive kernel, and $\psi \in \text{ball}(\text{Mult}(H^2_m))$.

3. The extremal function

DEFINITION 3.1. Let \mathcal{F} be a set of functions on X and let $A \subset X, A \neq X$. If there is a function $f \in \mathcal{F}$ such that $f^{-1}(0) = A$, we say that A is a zero set for \mathcal{F} . If A is the intersection of zero sets, we say that A is a weak zero set for \mathcal{F} .

DEFINITION 3.2. Let A be a weak zero set for $Mult(H_m^2)$. We define the $(Mult(H_m^2))$ -*extremal function* for A as

$$E(z,A) = \sup\{\log\operatorname{Re}\phi(z) : \phi \in \operatorname{Mult}(H_m^2), \|\phi\|_{\operatorname{Mult}(H_m^2)} \le 1, \phi|_A = 0\}.$$

If $A = \{w\}$ is a singleton, we usually write E(z, w) instead of $E(z, \{w\})$. Similarly, if A is a weak zero set for H_m^2 , we define the (H_m^2) extremal function for A as

$$F(z, A) = \sup\{\log \operatorname{Re} f(z) : f \in H_m^2, \|f\|_{H_m^2} \le 1, f|A = 0\}.$$

In this paper we will be mostly concerned with the $Mult(H_m^2)$ -extremal function, but we will shortly see that E and F are closely related.

DEFINITION 3.3. Let $z \in \mathbb{B}^m$ and let A be a weak zero set of B^m . If $\phi \in \text{ball}(\text{Mult}(H_m^2))$ satisfies that $\phi | A = 0$ and $\log \operatorname{Re} \phi(z) = E(z, A)$, we say that ϕ is *E*-extremal (with respect to z and A). Similarly, if $f \in H^m$ with $\|f\| \leq 1, f | A = 0$ and $\log \operatorname{Re} f(z) = F(z, A)$, we say that f is *F*-extremal.

Note that if m = 1, and A consists of a single point, then E(z, w) is just the (negative) Green function for the unit disc $E(z, w) = g(z, w) = \log \left| \frac{z-w}{1-z\overline{w}} \right|$. Also, if we replace ball(Mult(H_m^2)) with ball($H^{\infty}(B^m)$) in the definition of E, we obtain the *Carathéodory function* δ^* . Later on, we will compare E to δ^* and to the *pluricomplex Green function* g, so for completeness let us define these functions here as well.

FRANK WIKSTRÖM

DEFINITION 3.4. Let Ω be a domain in \mathbb{C}^m and let A be a zero set for $H^{\infty}(\Omega)$. We define the *Carathéodory function*, δ^* , by

 $\delta^*(z, A) = \sup\{ \log |f(z)| : f \in H^{\infty}(\Omega), \|f\|_{H^{\infty}} \le 1, f|A = 0 \}.$

DEFINITION 3.5. Let Ω be a domain in \mathbb{C}^m and let ν be a non-negative function on Ω . We define the *pluricomplex Green function* with poles defined by ν by

 $g(z,\nu) = \sup\{u(z) : u \in \mathcal{PSH}(\Omega), u < 0, \nu_u \ge \nu\},\$

where ν_u denotes the *Lelong number* of u, i.e.,

$$\nu_u(x) = \lim_{r \to 0} \frac{\sup_{|\xi - x| = r} u(\xi)}{\log r}$$

Note that if A is a zero set for H^{∞} , then $\delta^*(z, A) \leq g(z, \chi_A)$, and if $\Omega = \mathbb{B}^m$ and A is a zero set for $\operatorname{Mult}(H^2_m)$, then $E(z, A) \leq \delta^*(z, A)$. Let us move on to collect the basic properties of E and F.

THEOREM 3.6. The functions E and F have the following properties:

- (1) E is biholomorphically invariant; more precisely, if $T \in Aut(\mathbb{B}^m)$, then E(z, A) = E(T(z), T(A)).
- (2) For every z ∈ B^m and every weak zero set A for H²_m, there is a unique F-extremal function, which we will denote by EF^z_A, given by EF^z_A = P_Ak_z/||P_Ak_z||, where P_A is the orthogonal projection H²_m → I_A and I_A is the space of functions in H²_m that vanish on A. Hence F(z, A) = log ||P_Ak_z||.
- (3) For every $z \in \mathbb{B}^m$ and every weak zero set A for $\operatorname{Mult}(H_m^2)$, there is a unique E-extremal function, which we will denote by EE_A^z , given by $EF_A^z = EE_A^z k_z / ||k_z||$. Hence $F(z, A) = E(z, A) + \log ||k_z||$. Furthermore, if A is finite, then EE_A^z is a rational function of degree at most |A|.
- (4) $E(\cdot, A)$ and $F(\cdot, A)$ are plurisubharmonic on \mathbb{B}^m and continuous on $\mathbb{B}^m \setminus A$.

Proof. (1) is a direct consequence of Theorem 2.3.

(2) A normal family argument proves the existence of an *F*-extremal function. If f and g are two *F*-extremal functions, then (f + g)/2 is also *F*extremal. Note that an *F*-extremal function must have norm exactly 1. Since every point in the unit sphere of a Hilbert space is an extreme point (in the convex sense), f = g. A variational argument (see [2, Proposition 9.31] for details) shows that any function which is orthogonal to the *F*-extremal function must be orthogonal to $P_A k_z$. Hence, the *F*-extremal function must be the normalization of $P_A k_z$.

(3) Again, a normal family argument proves the existence of an *E*-extremal function ϕ . Let \mathcal{N} be the closed linear span of $\{k_{\zeta} : \zeta \in A\}$ and k_z . The Pick

property of k implies that the linear operator on \mathcal{N} that sends k_{ζ} to 0 for all $\zeta \in A$ and sends k_z to $\phi(z)k_z$ has norm 1. From this it follows from a computation ([2, Proposition 9.33] for details) that $F(z, A) = E(z, A) + \log ||k_z||$ and hence that the function $\phi k_z/||k_z||$ must be *F*-extremal. But since the *F*-extremal function is unique, so is the *E*-extremal function.

Now assume that A is finite, say $A = \{w_1, \ldots, w_n\}$. It is clear that $E(z, A) = \log c$, where c is the (unique) positive real number such that det P = 0, where

$$P = \begin{pmatrix} \frac{1-c^2}{1-||z||^2} & \frac{1}{1-\langle z, w_1 \rangle} & \cdots & \frac{1}{1-\langle z, w_n \rangle} \\ \frac{1}{1-\langle w_1, z \rangle} & \frac{1}{1-\langle w_1, w_1 \rangle} & \cdots & \frac{1}{1-\langle w_1, w_n \rangle} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{1-\langle w_n, z \rangle} & \frac{1}{1-\langle w_n, w_1 \rangle} & \cdots & \frac{1}{1-\langle w_n, w_n \rangle} \end{pmatrix}$$

Choose $v = (v_0, \ldots, v_n)^T \in \mathbb{C}^{n+1}$ such that Pv = 0. Take any $\zeta \in \mathbb{B}^m$. Since there exists a function $\phi \in \text{ball}(\text{Mult}(H_m^2))$ with $\phi(z) = c$ and $\phi(w_1) = \cdots = \phi(w_n) = 0$, the matrix

$$\tilde{P} = \begin{pmatrix} \frac{1-c\bar{\alpha}}{1-\langle z,\zeta\rangle} \\ P \\ \frac{1}{1-\langle w_1,\zeta\rangle} \\ \vdots \\ \frac{1}{1-\langle w_1,\zeta\rangle} \\ \vdots \\ \frac{1}{1-\langle w_n,\zeta\rangle} \\ \frac{1}{1-\langle \zeta,w_1\rangle} \\ \cdots \\ \frac{1}{1-\langle \zeta,w_n\rangle} \\ \frac{1-|\alpha|^2}{1-|\zeta|^2} \end{pmatrix}$$

must be positive semi-definite for some choice of α (namely for $\alpha = \phi(\zeta)$). Take any $\eta \in \mathbb{C}$ and let $v_{\eta} = v \oplus \eta$. Hence

$$0 \le v_{\eta}^{*} \tilde{P} v_{\eta} = |\eta|^{2} \frac{1 - |\alpha|^{2}}{1 - \|\zeta\|^{2}} + 2\operatorname{Re} \bar{\eta} \left(v_{0} \frac{1 - c\bar{\alpha}}{1 - \langle z, \zeta \rangle} + \sum_{j=1}^{n} \frac{v_{j}}{1 - \langle w_{j}, \zeta \rangle} \right)$$

for all η . Consequently,

(3.1)
$$v_0 \frac{1 - c\bar{\alpha}}{1 - \langle z, \zeta \rangle} + \sum_{j=1}^n \frac{v_j}{1 - \langle w_j, \zeta \rangle} = 0,$$

and this equation determines α uniquely, since it is straight-forward to check that v_0 must be non-zero. Furthermore, we see from Equation (3.1) that $\alpha = \phi(\zeta)$ is a rational function in ζ of degree at most n.

FRANK WIKSTRÖM

(4) Take a sequence z_j in $\mathbb{B}^m \setminus A$ converging to $z \in \mathbb{B}^m \setminus A$ and consider $EE_A^{z_j}$. By passing to a subsequence, we may assume that $EE_A^{z_j}$ converges locally uniformly to some $\phi \in \text{Mult}(H_m^2)$. Clearly $\phi|_A = 0$, so $E(z, A) \geq \log |\phi(z)| = \lim_j \log |EE_A^{z_j}(z_j)| = \lim_j E(z_j, A)$. Hence E is upper semicontinuous. On the other hand, on compact subsets of $\mathbb{B}^m \setminus A$, E is the supremum of a class of continuous functions, and consequently E is lower semicontinuous. Since E is the supremum of a class of plurisubharmonic functions and Eis upper semicontinuous, E must be plurisubharmonic. Also, since

$$F(z, A) = E(z, A) + \log ||k_z|| = E(z, A) + \frac{1}{2} \log \frac{1}{1 - ||z||^2},$$

so plurisubharmonic and continuous on $\mathbb{B}^m \setminus A$.

F is also plurisubharmonic and continuous on $\mathbb{B}^m \setminus A$.

The fact that the E-extremal function is unique gives another proof that there is no Pick kernel whose multiplier algebra is H^{∞} . More precisely:

COROLLARY 3.7. There is no Pick kernel on \mathbb{B}^m for $m \geq 2$ whose multiplier algebra is $H^{\infty}(\mathbb{B}^m)$.

Proof. Recall that the extremal functions for δ^* in general are not unique, not even when A is a singleton. In fact, if w = 0 and $z = (\lambda, 0)$, then $f = z_1 + cz_2^2$ is extremal for δ^* and all c with |c| < 1/2.

Note that the proof of uniqueness for the E-extremal function in Theorem 3.6 only uses the fact that k is a Pick kernel. Hence, there is no Pick kernel on \mathbb{B}^m whose multiplier algebra is $H^{\infty}(\mathbb{B}^m)$.

THEOREM 3.8. Let A be a weak zero set for H^2_m , and let $a \in \mathbb{B}^m \setminus A$. Then

$$F(z, A \cup \{a\}) = \frac{1}{2} \log \left(\exp(F(z, A))^2 - |EF_A^a(z)|^2 \right).$$

Consequently,

$$E(z, A \cup \{a\}) = \frac{1}{2} \log \left(\exp(E(z, A))^2 - (1 - ||z||^2) |EF_A^a(z)|^2 \right).$$

Proof. Let $A' = A \cup \{a\}$. Recall that if X is a weak zero set for H_m^2 , I_X denotes the subspace $\{f \in H_m^2 : f | X = 0\}$. Using the reproducing kernel property, we see that I_X is the orthogonal complement of the closed linear hull of $\{k_{\lambda} : \lambda \in X\}$. Hence, for $f \in H_m^2$,

$$P_{A'}f = f - P_{A'}^{\perp}f = P_Af - \frac{\langle f, P_Ak_a \rangle}{\|P_Ak_a\|^2} P_Ak_a.$$

In particular,

$$\begin{aligned} \|P_{A'}k_z\|^2 &= \langle P_{A'}k_z, k_z \rangle = \langle P_Ak_z, k_z \rangle - \frac{\langle k_z, P_Ak_a \rangle}{\|P_Ak_a\|^2} \langle P_Ak_a, k_z \rangle \\ &= \|P_Ak_z\|^2 - |EF_A^a(z)|^2, \end{aligned}$$

since $EF_A^a = P_A k_a / ||P_A k_a||$. Using Theorem 3.6, we obtain the formula for F(z, A'). The expression for E(z, A') follows from the fact that $E(z, A') = F(z, A') - \log ||k_z||$.

PROPOSITION 3.9. If A and B are weak zero sets of \mathbb{B}^m , then $E(z, A \cup B) \geq E(z, A) + E(z, B)$ with equality if and only if $EE_{A \cup B}^z = EE_A^z EE_B^z$.

Proof. Take $z \in \mathbb{B}^m$. If $z \in A \cup B$, then clearly $E(z, A \cup B) = E(z, A) + E(z, B) = -\infty$. Otherwise, $\phi = EE_A^z EE_B^z$ vanishes on $A \cup B$, so $E(z, A \cup B) \ge \log |\phi(z)| = E(z, A) + E(z, B)$. Furthermore, if $E(z, A \cup B) = E(z, A) + E(z, B)$, then $\phi = EE_A^z EE_B^z$ is *E*-extremal for $(z, A \cup B)$. Conversely, if $EE_{A\cup B}^z$ can be factorized as $EE_{A\cup B}^z = EE_A^z EE_B^z$, it is clear that $E(z, A \cup B) = E(z, A) + E(z, B)$.

PROPOSITION 3.10. If $A \subset B$ are weak zero sets of \mathbb{B}^m , then $E(z, A) \geq E(z, B)$ with equality if and only if $EE_A^z|B = 0$.

Proof. Since $EE_B^z|A = 0$, $E(z, A) \ge E(z, B)$. Assume that E(z, A) = E(z, B). Then EE_B^z must be *E*-extremal for (z, A), so the *E*-extremal function for (z, A) vanishes on *B*. Conversely, if $EE_A^z|_B = 0$, then $E(z, B) \ge E(z, A)$, so E(z, A) = E(z, B).

THEOREM 3.11. Let A be a weak zero set for $Mult(H_m^2)$. Then for almost all $p \in \partial \mathbb{B}^m$, $\lim_{z\to p} E(z, A) = 0$. (Here, the limit is to be taken in a Korányi region; see, for example, [11].)

Proof. Let $\mathcal{M} = \{f \in H_m^2 : f | A = 0\}$. Then \mathcal{M} is a $\operatorname{Mult}(H_m^2)$ -invariant subspace of H_m^2 . (Note that \mathcal{M} is non-empty, since $\operatorname{Mult}(H_m^2) \subset H_m^2$.) By a theorem of Arveson [4], there is a sequence $\{\phi_i\} \subset \operatorname{Mult}(H_m^2) \cap \mathcal{M}$ such that

$$P_{\mathcal{M}} = \sum_{j} M_{\phi_j} M_{\phi_j}^*$$

where the sum converges in the SOT-topology. Hence

$$P_{\mathcal{M}}k_z = \sum_j M_{\phi_j} M_{\phi_j}^* k_z = \sum_j M_{\phi_j} \overline{\phi_j(z)} k_z = \sum_j \overline{\phi_j(z)} \phi_j k_z.$$

But $||P_{\mathcal{M}}k_z||^2 = \langle P_{\mathcal{M}}k_z, P_{\mathcal{M}}k_z \rangle = \langle P_{\mathcal{M}}k_z, k_z \rangle + \langle P_{\mathcal{M}}k_z, P_{\mathcal{M}}k_z - k_z \rangle$ = $\langle P_{\mathcal{M}}k_z, k_z \rangle$, so

$$||P_{\mathcal{M}}k_z||^2 = \langle P_{\mathcal{M}}k_z, k_z \rangle = \sum_j |\phi_j(z)|^2 ||k_z||^2.$$

By Theorem 3.6,

$$E(z, A) = \log \frac{\|P_{\mathcal{M}} k_z\|}{\|k_z\|} = \frac{1}{2} \log \sum_j |\phi_j(z)|^2.$$

On the other hand, Green, Richter and Sundberg [8] have shown that the sequence $\{\phi_j\}$ can be chosen to be inner, i.e., that $\sum_j |\phi_j(z)|^2 \to 1$ as $z \to p$ for almost every $p \in \partial \mathbb{B}^m$.

REMARK. It is natural to conjecture that $E(z, A) \to 0$ as $z \to p$ for all $p \in \partial \mathbb{B}^m \setminus \overline{A}$. Of course, if A is finite, then $E(z, A) \to 0$ everywhere on $\partial \mathbb{B}^m$.

4. Examples

PROPOSITION 4.1. If $w \in \mathbb{B}^m$, then

$$E(z,w) = \frac{1}{2} \log \left(1 - \frac{(1 - ||z||^2)(1 - ||w||^2)}{|1 - \langle z, w \rangle|^2} \right)$$

Proof. Clearly $E(z, w) = \log c_0$, where c_0 is the supremum over all |c| such that

$$A = \begin{pmatrix} \frac{1 - |c|^2}{1 - ||z||^2} & \frac{1}{1 - \langle z, w \rangle} \\ \frac{1}{1 - \langle w, z \rangle} & \frac{1}{1 - ||w||^2} \end{pmatrix} \ge 0.$$

Clearly $A \ge 0$ if and only if $|c| \le 1$ and det $A \ge 0$, i.e., iff

$$1 - |c|^2 \ge \frac{(1 - ||z||^2)(1 - ||w||^2)}{|1 - \langle z, w \rangle|^2}.$$

Note that $E(z, w) = \delta^*(z, w) = g(z, w)$, where δ^* and g are the Carathéodory function and the pluricomplex Green function, respectively.

PROPOSITION 4.2. Let $r \in \mathbb{D}$ and let $w_1 = (r, 0)$, $w_2 = (-r, 0)$ and set $A = \{w_1, w_2\} \subset \mathbb{B}^2$. Then

$$E(z,A) = \frac{1}{2} \log \left(1 - \frac{(1-|r|^4)(1+|z_1|^2)(1-||z||^2)}{|1+z_1\bar{r}|^2|1-z_1\bar{r}|^2} \right)$$

Proof. Again, $E(z, w) = \log c_0$, where c_0 is the solution to

$$\det \begin{pmatrix} \frac{1-|c|^2}{1-||z||^2} & \frac{1}{1-\langle z, w_1 \rangle} & \frac{1}{1-\langle z, w_2 \rangle} \\ \frac{1}{1-\langle w_1, z \rangle} & \frac{1}{1-\langle w_1, w_1 \rangle} & \frac{1}{1-\langle w_1, w_2 \rangle} \\ \frac{1}{1-\langle w_2, z \rangle} & \frac{1}{1-\langle w_2, w_1 \rangle} & \frac{1}{1-\langle w_2, w_2 \rangle} \end{pmatrix}$$
$$= \det \begin{pmatrix} \frac{1-|c|^2}{1-||z||^2} & \frac{1}{1-z_1\bar{r}} & \frac{1}{1+z_1\bar{r}} \\ \frac{1}{1-r\bar{z}_1} & \frac{1}{1-|r|^2} & \frac{1}{1+|r|^2} \\ \frac{1}{1+r\bar{z}_1} & \frac{1}{1+|r|^2} & \frac{1}{1-|r|^2} \end{pmatrix} = 0.$$

1063

An elementary but somewhat tedious computation leads to the formula given above. Alternatively, we could use Theorem 3.8 to prove this proposition. \Box

REMARK. In the two pole setting, Coman [5] has computed g and it follows from results in [7] that in this case $\delta^* = g$. However, E is strictly less than these functions unless $z_2 = 0$ or $z_1 = \pm r$.

THEOREM 4.3. Let $A = \{z_2 = 0\} \subset \mathbb{B}^2$. Then

$$E(z, A) = \frac{1}{2} \log \frac{|z_2|^2}{1 - |z_1|^2}$$

Proof. From Proposition 3.10, we see that $E(z, A) \leq \inf_{w \in A} E(z, w)$. Let $w = (z_1, 0)$. The mapping

$$T(\zeta_1, \zeta_2) = \left(\frac{z_1 - \zeta_1}{1 - \zeta_1 \bar{z}_1}, \frac{\sqrt{1 - |z_1|^2} \zeta_2}{1 - \zeta_1 \bar{z}_1}\right)$$

satisfies $T \in Aut(\mathbb{B}^2)$, T(w) = 0 and $T(z) = (0, z_2/\sqrt{1 - |z_1|^2})$. Hence

$$E(z, w) = \log \frac{|z_2|}{\sqrt{1 - |z_1|^2}}$$

by Proposition 4.1. Furthermore $f(\zeta) = \zeta_2$ is the *E*-extremal function for T(z) and 0 and hence $f_w = f \circ T^{-1}$ is the *E*-extremal function for *z* and *w*. On the other hand, the zero set of *f* is *A* and $T^{-1}(A) = A$, so $f_w^{-1}(0) = A$. By Proposition 3.10, E(z, A) = E(z, w).

REMARK. In this setting, we again have that $E = \delta^* = g$. See Lárusson and Sigurdsson [9] for the derivation of g in this case.

REMARK. The fact that $E(z, A) = \inf_{w \in A} E(z, w)$ when $A = \{z_2 = 0\}$ is not an example of a general principle at work. In fact, the equality $E(z, A) = \inf_{w \in A} E(z, w)$ holds if and only if A is the intersection of \mathbb{B}^m with a complex hyperplane. This can be seen using Proposition 3.10 and the fact that the zero set of a function that is E-extremal for a singleton is just a hyperplane.

PROPOSITION 4.4. Let $A = \{z_2 = 0\} \subset \mathbb{B}^2$ and let $a \in \mathbb{B}^2 \setminus A$. Define $A' = A \cup \{a\}$. Then

$$E(z,A') = \frac{1}{2} \log \left(\frac{|z_2|^2}{1-|z_1|^2} - \frac{|z_2|^2(1-|a_1|^2)(1-||a||^2)(1-||a||^2)}{|1-z_1\bar{a}_1|^2|1-\langle z,a\rangle|^2} \right)$$

Proof. Let $z \in \mathbb{B}^2$. From the proof of Theorem 4.3 we see that

$$EE_A^z(\zeta) = \frac{e^{i\theta}\zeta_2\sqrt{1-|z_1|^2}}{1-\zeta_1\bar{z}_1}$$

where $\theta \in \mathbb{R}$ is chosen so that $EE_A^z(z)$ is positive real. Hence, using Theorem 3.6, we obtain

$$EF_A^z(\zeta) = \frac{k_z(\zeta)}{\|k_z\|} EE_A^z(\zeta) = \frac{e^{i\theta}\zeta_2\sqrt{1-|z_1|^2}\sqrt{1-\|z\|^2}}{(1-\zeta_1\bar{z}_1)(1-\langle\zeta,z\rangle)},$$

and consequently, by Theorem 3.8,

$$E(z,A') = \frac{1}{2} \log \left(\exp(E(z,A))^2 - (1 - ||z||^2) |EF_X^a(z)|^2 \right)$$

= $\frac{1}{2} \log \left(\frac{|z_2|^2}{1 - |z_1|^2} - \frac{|z_2|^2 (1 - |a_1|^2) (1 - ||a||^2) (1 - ||z||^2)}{|1 - z_1 \bar{a}_1|^2 |1 - \langle z, a \rangle|^2} \right). \square$

THEOREM 4.5. Let $A = \{z_1 z_2 = 0\} \subset \mathbb{B}^2$. Then

$$E(z, A) = \frac{1}{2} \log \left(\frac{|z_1|^2 |z_2|^2 (2 - ||z||^2)}{(1 - |z_1|^2)(1 - |z_2|^2)} \right).$$

Proof. Let $z \in \mathbb{B}^2$ and let $B = \{z_2 = 0\} \cup \{(0, z_2)\}$. Then

$$\begin{split} E(z,A) &\leq E(z,B) = \frac{1}{2} \log \left(\frac{|z_2|^2}{1 - |z_1|^2} - \frac{|z_2|^2 (1 - |z_2|^2) (1 - ||z||^2)}{1 - |z_2|^2} \right) \\ &= \frac{1}{2} \log \left(\frac{|z_1|^2 |z_2|^2 (2 - ||z||^2)}{(1 - |z_1|^2) (1 - |z_2|^2)} \right), \end{split}$$

by Propositions 3.10 and 4.4. On the other hand, if $X = \{z_2 = 0\}, z \in \mathbb{B}^2$ and $a = (0, z_2)$, then

$$P_X k_z(\zeta) = \exp(E(z, X)) E E_X^z(\zeta) = \frac{\bar{z}_2 \zeta_2}{(1 - \zeta_1 \bar{z}_1)(1 - \langle \zeta, z \rangle)}$$

From the proof of Theorem 3.8 it follows that

(4.1)
$$P_B k_z = P_X k_z - \frac{\langle k_z, P_X k_a \rangle}{\|P_X k_a\|^2} P_X k_a \\ = \frac{\bar{z}_2 \zeta_2}{(1 - \zeta_1 \bar{z}_1)(1 - \langle \zeta, z \rangle} - \frac{\bar{z}_2 \zeta_2}{1 - \zeta_2 \bar{z}_2}.$$

Now, $EF_B^z = P_B k_z / ||P_B k_z||$, so the zero set of EF_B^z equals the zero set of $P_B k_z$, and from Theorem 3.6 if also follows that the zero set of EE_B^z equals the zero set of $P_B k_z$ since the kernel function k_z is zero free. From Equation (4.1) we see that $P_B k_z$ and hence EE_B^z vanishes on A. Thus

$$E(z,A) = E(z,B) = \frac{1}{2} \log \left(\frac{|z_1|^2 |z_2|^2 (2 - ||z||^2)}{(1 - |z_1|^2)(1 - |z_2|^2)} \right),$$

by Proposition 3.10.

REMARK. In this setting, E is smaller than g. The pluricomplex Green function with poles along $A = \{z_1z_2 = 0\}$ has been computed by Nguyen Quang Dieu [6], and even though δ^* is not completely known, it is clear that $\delta^*(z, A) \geq \log |2z_1z_2|$ (since $f(z) = 2z_1z_2$ is a H^{∞} function bounded by one and f vanishes on A). In fact, on $D = \{z \in \mathbb{B}^2 : |z_1| \leq 1/\sqrt{2}, |z_2| \leq 1/\sqrt{2}\}, \delta^*(z, A) = \log |2z_1z_2|.$

References

- J. Agler and J. E. McCarthy, Complete Nevanlinna-Pick kernels, J. Funct. Anal. 175 (2000), 111–124. MR 2001h:47019
- [2] _____, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002. MR 2003b:47001
- [3] D. Alpay and H. T. Kaptanoğlu, Integral formulas for a sub-Hardy Hilbert space on the ball with complete Nevanlinna-Pick reproducing kernel, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 285–290. MR 2002g:46038
- [4] W. Arveson, The curvature invariant of a Hilbert module over $\mathbf{C}[z_1, \cdots, z_d]$, J. Reine Angew. Math. **522** (2000), 173–236. MR 2003a:47013
- [5] D. Coman, The pluricomplex Green function with two poles of the unit ball of Cⁿ, Pacific J. Math. 194 (2000), 257–283. MR 2001g:32081
- [6] N. Q. Dieu, Remarks on pluricomplex Green functions with a pole along a hypersurface, preprint, 2000.
- [7] A. Edigarian and W. Zwonek, Invariance of the pluricomplex Green function under proper mappings with applications, Complex Variables Theory Appl. 35 (1998), 367– 380. MR 99d:32017
- [8] D. C. V. Greene, S. Richter, and C. Sundberg, The structure of inner multipliers on spaces with complete Nevanlinna-Pick kernels, J. Funct. Anal. 194 (2002), 311–331. MR 2003h:46038
- F. Lárusson and R. Sigurdsson, Plurisubharmonic extremal functions, Lelong numbers and coherent ideal sheaves, Indiana Univ. Math. J. 48 (1999), 1513–1534. MR 2001g:32082
- [10] G. Pick, Über eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche, Math. Ann. 77 (1916), 7–23.
- [11] W. Rudin, Function theory in the unit ball of Cⁿ, Grundlehren der Mathematischen Wissenschaften, vol. 241, Springer-Verlag, New York, 1980. MR 82i:32002
- [12] F. Wikström, Jensen measures, duality and pluricomplex Green functions, Doctoral thesis, Umeå University, 1999.
- [13] _____, Computing the pluricomplex Green function with two poles, Experiment. Math. 12 (2003), 375–384. MR 2 034 400

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain

 $Current \ address:$ University of Michigan, Department of Mathematics, 525 E. University, Ann Arbor, MI 48109, USA

E-mail address: fwikstro@umich.edu