
Illinois Journal of Mathematics
Volume 48, Number 3, Fall 2004, Pages 887–907
S 0019-2082

SHARP INEQUALITIES FOR TRIGONOMETRIC SUMS IN
TWO VARIABLES

HORST ALZER AND STAMATIS KOUMANDOS

Abstract. We prove several new inequalities for trigonometric sums in
two variables. One of our results states that the double-inequality

−
2

3
(
√

2− 1) ≤
n∑
k=1

cos((k − 1/2)x) sin((k − 1/2)y)

k − 1/2
≤ 2

holds for all integers n ≥ 1 and real numbers x, y ∈ [0, π]. Both bounds
are best possible.

1. Introduction

The inequalities of Fejér-Jackson and Young,

0 <
n∑
k=1

sin(kx)
k

, −1 <
n∑
k=1

cos(kx)
k

(n ∈ N; 0 < x < π),(1.1)

are well-known examples of inequalities for trigonometric sums; see [15], [25].
Many mathematicians studied (1.1) and presented various proofs, general-
izations, refinements, and numerous counterparts and analogues. Excellent
accounts on this subject are given in the survey paper [6] and the monograph
[23, Chapter 4]. We also refer to the research articles [1]–[4], [7]–[15], [17]–[22],
[24], [25], and the references therein.

Inequalities for trigonometric sums have interesting applications: they play
an important role in Fourier analysis, number theory, and the theory of uni-
valent and p-valent functions, and they can be used to estimate the zeros of
trigonometric polynomials. Moreover, they have a close connection to the
theory of special functions. In fact, certain trigonometric sums are special
cases of sums of Jacobi polynomials. An elegant function theoretic approach
to establish extensions of (1.1) is given in [12] and [24].

Most of the known inequalities for trigonometric sums involve only one real
variable. In this paper we study analogues of (1.1) in two variables. Our work
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has been inspired by a remarkable article published by L. Koschmieder [17]
in 1932. A problem in heat conduction led him to the sums

An(x, y) =
n∑
k=1

cos(kx) sin(ky)
k

,

A∗n(x, y) =
n∑
k=1

cos((k − 1/2)x) sin((k − 1/2)y)
k − 1/2

.

(1.2)

He proved the following inequalities: If 0 < y − x < π and 0 < y + x < π,
then An(x, y) > 0. If 0 < x− y < π and π < y + x < 2π, then An(x, y) < 0.
Moreover, if 0 ≤ x < y < π, then A∗n(x, y) > 0. This inequality is in general
not true if x > y, as the examples A∗2(2π/3, π/3) = −1/6 and A∗3(2π/3, π/3) =
−1/15 reveal.

In R. Askey’s ‘SIAM Conference Lectures’ [5, p. 34] the following interest-
ing theorem is given:

Let P (α,β)
n (x) be the Jacobi polynomial of degree n and order (α, β), where

α ≥ β and either β ≥ −1/2 or α ≥ −β, β > −1. Further, let
∑∞
k=0 |ak| <∞.

Then

F (s, t) =
∞∑
k=0

ak
P

(α,β)
k (s)P (α,β)

k (t)

(P (α,β)
k (1))2

≥ 0 (−1 ≤ s, t ≤ 1),(1.3)

if and only if F (s, 1) ≥ 0 (−1 ≤ s ≤ 1).

The function F plays a role in the theory of partial differential equations.
In fact, G. Gasper [14] proved that F is the solution of a hyperbolic boundary
value problem.

We set

α = β = −1/2,

a0 = 1, ak = 1/k (k = 1, . . . , n), ak = 0 (k ≥ n+ 1),

s = cos(x), t = cos(y),

and

α = 1/2, β = −1/2,

ak = 1/(k + 1/2) (k = 0, . . . , n− 1), ak = 0 (k ≥ n),

s = cos(x), t = cos(y),

respectively. Then (1.3) yields

−1 ≤
n∑
k=1

cos(kx) cos(ky)
k

(n ∈ N; 0 ≤ x, y ≤ π)(1.4)
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and

0 ≤
n∑
k=1

sin((k − 1/2)x) sin((k − 1/2)y)
k − 1/2

(n ∈ N; 0 ≤ x, y ≤ π).(1.5)

If we replace in (1.5) x by π − x and y by π − y, then we see that this is
equivalent to

0 ≤
n∑
k=1

cos((k − 1/2)x) cos((k − 1/2)y)
k − 1/2

(n ∈ N; 0 ≤ x, y ≤ π).(1.6)

The special case α = β = 1/2 leads to a result due to L. Fejér (see [5, p.
33]): We have

0 ≤
∞∑
k=1

ak sin(kx) sin(ky) (0 ≤ x, y ≤ π)

if and only if

0 ≤
∞∑
k=1

kak sin(kx) (0 ≤ x ≤ π).

This theorem, however, gives no information about the best possible lower
bound for

Bn(x, y) =
n∑
k=1

sin(kx) sin(ky)
k

.(1.7)

It is the aim of this paper to present sharp constant bounds for An(x, y),
A∗n(x, y), and Bn(x, y), which hold for all n ≥ 1 and x, y ∈ [0, π]. In order to
prove our inequalities we need several technical lemmas, which we collect in
the next section. The main results are presented in Section 3.

The numerical values have been calculated by the computer programs
‘Maple V Release 5.1’ and ‘Maple V Release 6.01’.

2. Lemmas

The inequalities given in the first lemma are known in the literature.

Lemma 1. Let

Sn(x) =
n∑
k=1

sin(kx)
k

, S∗n(x) =
n∑
k=1

sin((2k − 1)x)
2k − 1

,(2.1)

and

Tn(x) =
n∑
k=1

cos(kx)
k

.(2.2)

(i) For all integers n ≥ 1 and real numbers x we have |Sn(x)| < Si(π),
where Si(π) =

∫ π
0

sin(t)/tdt = 1.8519 . . . .
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(ii) For all integers n ≥ 1 and real numbers x we have S∗n(x) ≤ 1, with
equality holding if and only if n = 1 and x = (2m+ 1/2)π (m ∈ Z).

(iii) For all integers n ≥ 2 and real numbers x ∈ (0, π) we have Tn(x) ≥
−5/6. If n 6= 3, then the inequality is strict.

Part (i) is proved in [15]. In [2] it is shown that S∗n(x) ≤ 1 for x ∈ [0, π]
with equality only if n = 1 and x = π/2. A refinement of this inequality can
be found in [12] and [24]. The interpretation of these inequalities in geometric
function theory is also stated there. Since S∗n is odd and satisfies S∗n(x) ≥ 0
for x ∈ [0, π], we obtain S∗n(x) ≤ 0 for x ∈ [−π, 0], so that S∗n(x) ≤ 1 holds
for all real x. A proof for (iii) is published in [8].

Lemma 2. Let n, ν, and µ be integers such that 1 ≤ ν < µ ≤ n/2, and let

Pn(t) =
t

2n
cot

t

2n
(0 < t < 2nπ).(2.3)

Then ∫ 2µπ

2νπ

Pn(t)
cos(t)
t

dt ≤
∫ 2νπ+π/2

2νπ

Pn(t)
cos(t)
t

dt.(2.4)

Proof. We define

Ln(ν, µ) =
∫ 2µπ

2νπ

Pn(t)
cos(t)
t

dt,

Mn(ν) =
∫ 2νπ+π/2

2νπ

Pn(t)
cos(t)
t

dt.

Then we get

Ln(ν, µ)−Mn(ν) =
∫ 2µπ

2νπ+π/2

Pn(t)
cos(t)
t

dt(2.5)

=
µ−ν−2∑
j=0

Ψn(j, ν) + Φn(µ),

where

Ψn(j, ν) =
∫ 2νπ+(4j+5)π/2

2νπ+(4j+1)π/2

Pn(t)
cos(t)
t

dt,

Φn(µ) =
∫ 2µπ

(2µ−3/2)π

Pn(t)
cos(t)
t

dt.
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Let j be an integer with 0 ≤ j ≤ µ− ν− 2. Since Pn is decreasing on (0, 2nπ)
and non-negative on (0, nπ], we obtain

Ψn(j, ν) =
∫ 2(ν+j)π+5π/2

2(ν+j)π+3π/2

(
Pn(t)

cos(t)
t
− Pn(t− π)

cos(t)
t− π

)
dt(2.6)

≤
∫ 2(ν+j)π+5π/2

2(ν+j)π+3π/2

(Pn(t)− Pn(t− π))
cos(t)
t

dt ≤ 0

and

Φn(µ) =
∫ (2µ−1)π

(2µ−3/2)π

(
Pn(t)
t
− Pn(t+ π)

t+ π

)
cos(t)dt(2.7)

+
∫ (2µ−1/2)π

(2µ−1)π

Pn(t)
cos(t)
t

dt ≤ 0.

From (2.5)–(2.7) we conclude that (2.4) is valid. �

Lemma 3. Let

Qn(t) =
1

(2n+ 1) sin(t/(2n+ 1))
(0 < t < (2n+ 1)π).(2.8)

(i) Let n, ν∗, and µ be integers such that 2 ≤ ν∗ < (n+1)/2, 1 ≤ µ < n/2,
and ν∗/(n+ 1) < µ/n < 1− ν∗/(n+ 1). Then we have∫ 2µπ+µπ/n

2ν∗π−ν∗π/(n+1)

Qn(t)cos(t)dt ≤
∫ 2ν∗π+π/2

2ν∗π−π/2
Qn(t)cos(t)dt.(2.9)

(ii) If n ≥ 5, then

2π
n
Qn

(
2π − π

n

)
<

1
4
.(2.10)

(iii) If n ≥ 7, then(
1 + sin

π

n+ 1

)
Qn

(
2π − π

n+ 1

)
<

1
4
.(2.11)

Proof. (i) We define

ρn(ν∗, µ) =
∫ 2µπ+µπ/n

2ν∗π−ν∗π/(n+1)

Qn(t) cos(t)dt,

σn(ν∗, µ) =
∫ 2µπ+π/2

2ν∗π−π/2
Qn(t) cos(t)dt,

and

τn(ν∗) =
∫ 2ν∗π+π/2

2ν∗π−π/2
Qn(t) cos(t)dt.
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If 2ν∗π − π/2 ≤ t ≤ 2ν∗π − ν∗π/(n + 1) or if 2µπ + µπ/n ≤ t ≤ 2µπ + π/2,
then Qn(t) cos(t) is positive. This implies

σn(ν∗, µ)− ρn(ν∗, µ) =

(∫ 2ν∗π−ν∗π/(n+1)

2ν∗π−π/2
+
∫ 2µπ+π/2

2µπ+µπ/n

)
Qn(t) cos(t)dt ≥ 0.

(2.12)

Since ν∗ < µ + µ/n < µ + 1/2, we obtain ν∗ ≤ µ. If ν∗ = µ, then τn(ν∗) =
σn(ν∗, µ).

Next, let ν∗ ≤ µ− 1. Then we get

τn(ν∗)− σn(ν∗, µ) = −
∫ 2µπ+π/2

2ν∗π+π/2

Qn(t) cos(t)dt

(2.13)

= −
µ−1∑
j=ν∗

(∫ (2j+3/2)π

(2j+1/2)π

+
∫ (2j+5/2)π

(2j+3/2)π

)
Qn(t) cos(t)dt

=
1

2n+ 1

µ−1∑
j=ν∗

∫ (2j+3/2)π

(2j+1/2)π

cos(t)
(

1
sin((t+ π)/(2n+ 1))

− 1
sin(t/(2n+ 1))

)
dt ≥ 0.

From (2.12) and (2.13) we conclude that (2.9) holds.
(ii) The function φ(x) = sin(9x) − 8x is strictly concave on [0, π/55] with

φ(0) = 0 and φ(π/55) = 0.034 . . . . Thus, if x = π/(n(2n + 1)) with n ≥ 5,
then

sin
(2n− 1)π
n(2n+ 1)

≥ sin
9π

n(2n+ 1)
>

8π
n(2n+ 1)

.

This implies (2.10).
(iii) We set x = 1/(n+ 1) with 0 < x ≤ 1/8. Then (2.11) is equivalent to

0 <
sin(πx)
πx

− 4
π(2− 5x)

= w(x), say.

Since w is decreasing on (0, 1/8], we obtain w(x) ≥ w(1/8) = 0.048 . . . . �

Lemma 4. Let n, ν, ν∗, µ, and µ∗ be integers such that n ≥ 3, 1 ≤ ν <
n/2, 1 ≤ ν∗ < (n+ 1)/2, 1 ≤ µ ≤ n− 1, and 1 ≤ µ∗ ≤ n.

(i) If ν < µ < n− ν, then

1
4

+
n∑
k=1

1
k

[
cos
(

2νπ
n
k

)
− cos

(
2µπ
n
k

)]
> 0.
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(ii) If ν/n < µ∗/(n+ 1) < 1− ν/n, then

1
4

+
n∑
k=1

1
k

[
cos
(

2νπ
n
k

)
− cos

(
2µ∗π
n+ 1

k

)]
> 0.

(iii) If ν∗/(n+ 1) < µ/n < 1− ν∗/(n+ 1), then

1
4

+
n∑
k=1

1
k

[
cos
(

2ν∗π
n+ 1

k

)
− cos

(
2µπ
n
k

)]
> 0.

(iv) If ν∗ < µ∗ < n+ 1− ν∗, then

1
4

+
n∑
k=1

1
k

[
cos
(

2ν∗π
n+ 1

k

)
− cos

(
2µ∗π
n+ 1

k

)]
> 0.

Proof. (i) Let x = 2µπ/n, y = 2νπ/n, and let Tn(x) be the sum defined in
(2.2). We have to show that

1
4

+ Tn(y)− Tn(x) > 0.(2.14)

If µ = n/2, then n is even and n ≥ 4. Applying Lemma 1 (iii) we get

1
4

+ Tn(y)− Tn(x) =
1
4

+ Tn(y)−
n∑
k=1

(−1)k

k
≥ 5

6
+ Tn(y) > 0.

If n/2 < µ ≤ n − 1, then we set µ̃ = n − µ and x̃ = 2µ̃π/n. This leads to
1 ≤ µ̃ < n/2, ν < µ̃ < n− ν, and Tn(x) = Tn(x̃). Hence it suffices to assume
that 1 ≤ µ < n/2. We obtain

Tn(y)− Tn(x) = log(sin(x/2))− log(sin(y/2))−
∫ x

y

cos((n+ 1/2)t)
2 sin(t/2)

dt

(2.15)

≥ −
∫ x

y

cos((n+ 1/2)t)
2 sin(t/2)

dt = −
∫ 2µπ

2νπ

Pn(t)
cos(t)
t

dt,

where Pn(t) is defined in (2.3). Using Lemma 2 and Pn(s) < 1 for 0 < s < 2nπ
we get ∫ 2µπ

2νπ

Pn(t)
cos(t)
t

dt ≤
∫ 2νπ+π/2

2νπ

Pn(t)
cos(t)
t

dt(2.16)

=
∫ π/2

0

Pn(t+ 2νπ)
cos(t)
t+ 2νπ

dt

≤
∫ π/2

0

cos(t)
t+ 2π

dt = 0.146 . . . <
1
4
.

From (2.15) and (2.16) we conclude that (2.14) holds.
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(ii) Let x′ = 2µ∗π/(n+ 1) and y = 2νπ/n. We have to prove that

1
4

+ Tn(y)− Tn(x′) > 0.(2.17)

As in (i) it suffices to establish (2.17) for 1 ≤ µ∗ < (n+1)/2. Let x̄ = 2µ∗π/n.
If x′ ≤ t ≤ x̄, then 0 < t/2 ≤ π/2 and 2µ∗π−π/2 ≤ (n+ 1/2)t ≤ 2µ∗π+π/2.
This yields ∫ x̄

x′

cos((n+ 1/2)t)
2 sin(t/2)

dt ≥ 0.(2.18)

Using (2.18) we get

Tn(y)− Tn(x′) ≥ −
∫ x′

y

cos((n+ 1/2)t)
2 sin(t/2)

dt

=
(
−
∫ x̄

y

+
∫ x̄

x′

)
cos((n+ 1/2)t)

2 sin(t/2)
dt

≥ −
∫ x̄

y

cos((n+ 1/2)t)
2 sin(t/2)

dt > −1
4
.

(iii) We may assume that 1 ≤ µ < n/2. We show that

1
4

+ Tn(y′)− Tn(x) > 0,(2.19)

where x = 2µπ/n and y′ = 2ν∗π/(n + 1). Let Qn(t) be defined in (2.8). As
above we get

Tn(y′)− Tn(x) ≥ −
∫ x

y′

cos((n+ 1/2)t)
2 sin(t/2)

dt = −
∫ b

a

Qn(t) cos(t)dt,

where a = 2ν∗π − ν∗π/(n+ 1) and b = 2µπ + µπ/n. Since ν∗/(n+ 1) < µ/n
and 1 ≤ µ < n/2, it follows that ν∗ < µ + 1/2, that is, ν∗ ≤ µ. Next, we
consider two cases.

Case 1. ν∗ = µ.
If ν∗ = 1, then we get

1
4

+ T3(y′)− T3(x) =
1
6
,

1
4

+ T4(y′)− T4(x) =
1
48

(5
√

5− 1).

Let n ≥ 5. Applying (2.10) we obtain∫ b

a

Qn(t) cos(t)dt <
∫ 2π+π/n

2π−π/n
Qn(t) cos(t)dt =

∫ π/n

−π/n
Qn(t+ 2π) cos(t)dt

≤
∫ π/n

−π/n
Qn(t+ 2π)dt ≤ 2π

n
Qn(2π − π/n) <

1
4
.

Thus, (2.19) holds.
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Now, we assume that ν∗ ≥ 2. Then n ≥ 5. From (2.9) we get∫ b

a

Qn(t) cos(t)dt ≤
∫ 2ν∗π+π/2

2ν∗π−π/2
Qn(t) cos(t)dt =

∫ π/2

−π/2
Qn(t+ 2ν∗π) cos(t)dt

≤ 2Qn(2ν∗π − π/2) ≤ 2Qn(7π/2) <
1
4
.

This settles Case 1.

Case 2. ν∗ < µ.
First, let ν∗ = 1. Then n ≥ 5 and we obtain∫ b

a

Qn(t) cos(t)dt <
∫ 2µπ+π/2

2π−π/(n+1)

Qn(t) cos(t)dt

≤
∫ 5π/2

2π−π/(n+1)

Qn(t) cos(t)dt = Jn, say.

We have J5 = 0.243 . . . and J6 = 0.227 . . . . Let n ≥ 7. Then (2.11) yields

Jn =
∫ π/2

−π/(n+1)

Qn(t+ 2π) cos(t)dt

≤
(

1 + sin
π

n+ 1

)
Qn

(
2π − π

n+ 1

)
<

1
4
.

Next, let ν∗ ≥ 2. Using (2.9) gives∫ b

a

Qn(t) cos(t)dt ≤
∫ 2ν∗π+π/2

2ν∗π−π/2
Qn(t) cos(t)dt,

so that this reduces to Case 1.
(iv) Let y′ = 2ν∗π/(n+1) and x′ = 2µ∗π/(n+1). Since 1 ≤ ν∗ < (n+1)/2,

1 ≤ µ∗ ≤ n, and ν∗ < µ∗ < n+ 1− ν∗, we conclude from (i):
1
4

+ Tn(y′)− Tn(x′) =
1
4

+ Tn+1(y′)− Tn+1(x′) > 0.

This completes the proof of Lemma 4. �

Lemma 5. The function

f(x) =
1

sin(x)
− 1
x

(2.20)

is strictly absolutely monotonic on (0, π), that is, we have f (n)(x) > 0 for all
x ∈ (0, π) and n = 0, 1, 2, . . . .

Proof. The series representation

f(x) =
∞∑
k=1

(−1)k−1 (4k − 2)B2k

(2k)!
x2k−1 (|x| < π),
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where B0, B2, B4, . . . are Bernoulli numbers (see [16, p. 209]), and the inequal-
ity (−1)k−1B2k > 0 for k = 1, 2, . . . imply that f (n)(x) > 0 for 0 < x < π and
n = 0, 1, 2, . . . . �

Lemma 6.

(i) Let f be the function defined in (2.20). The sequence n 7→ f((1 −
2/n)π)/n is strictly increasing for n ≥ 3 and converges to 1/(2π) as
n→∞.

(ii) The function

g(t) =
π

2t2(sin(2π/t))2
+

2
π(2t− 4)2

+
1

t sin(3π/t)
(2.21)

is strictly decreasing on (3,∞).

Proof. (i) We define for x ∈ (0, 1/2)

h(x) = xf(π(1− 2x)) =
x

sin(2πx)
− x

π(1− 2x)
.(2.22)

Differentiation gives

h′(x) = u(x)− v(x),

where

u(x) =
sin(2πx)− 2πx cos(2πx)

(sin(2πx))2
,

v(x) =
1

π(1− 2x)2
.

We have

(sin(2πx))3

2π
u′(x) = 3πx+ πx cos(4πx)− sin(4πx).

A short calculation yields 3t/4 + (t/4) cos(t) − sin(t) > 0 for t ∈ (0, π], so
that u′ is positive on (0, 1/4]. Thus, u and v are increasing on (0, 1/4]. This
implies for x ∈ (0, 1/8]

h′(x) ≤ u(1/8)− v(0) = −0.014 . . . .

Since h(1/(k + 1)) > h(1/k) for k = 3, . . . , 7, we conclude that the sequence
n 7→ h(1/n) is strictly increasing for n ≥ 3. Moreover, from (2.22) we get
limn→∞ h(1/n) = 1/(2π).

(ii) Let t > 3 be a real number. We set s = π/t. Differentiation gives

g′(t) = α(t) + β(t),
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where

α(t) = −
(

s

π sin(3s)

)2

(sin(3s)− 3s cos(3s)) ,

β(t) = − s3

π2(sin(2s))3

(
sin(2s)− 2s cos(2s) + π

(
sin(2s)
π − 2s

)3
)
.

Since sin(x)− x cos(x) > 0 for 0 < x < π, we get g′(t) < 0. �

Lemma 7. Let ν and µ be positive integers with ν < µ and let

I(ν, µ) =
∫ µπ

νπ

sin(t)
t

dt.(2.23)

(i) If ν is even and µ is odd, then I(ν, µ) > 0.
(ii) If ν and µ are odd, then I(ν, µ) >

∫ (ν+1)π

νπ
sin(t)/t dt.

(iii) If ν and µ are even, then I(ν, µ) > 0.

Proof. (i) Let ν = 2K, µ = 2M + 1, where K ≤M . Then we obtain

I(ν, µ) =
M−1∑
j=K

(∫ (2j+1)π

2jπ

+
∫ (2j+2)π

(2j+1)π

)
sin(t)
t

dt+
∫ (2M+1)π

2Mπ

sin(t)
t

dt.

Since ∫ (2j+2)π

(2j+1)π

sin(t)
t

dt = −
∫ (2j+1)π

2jπ

sin(t)
π + t

dt,

we get

I(ν, µ) = π
M−1∑
j=K

∫ (2j+1)π

2jπ

sin(t)
t(π + t)

dt+
∫ (2M+1)π

2Mπ

sin(t)
t

dt > 0.

(ii) Applying part (i) we obtain

I(ν, µ)−
∫ (ν+1)π

νπ

sin(t)
t

dt = I(ν + 1, µ) > 0.

(iii) Let ν = 2K, µ = 2M , where K + 1 ≤M . Then we get

I(ν, µ) = π
M−1∑
j=K

∫ (2j+1)π

2jπ

sin(t)
t(π + t)

dt > 0. �

Lemma 8. Let n, ν, and µ be integers such that n ≥ 3 and 1 ≤ ν < µ <
2n. Further, let

Rn(ν, µ) =
1

2n

∫ µπ

νπ

f(t/(2n))sin(t)dt,(2.24)

where f is defined in (2.20).
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(i) If ν is even and µ is odd, then Rn(ν, µ) > 0.
(ii) If ν and µ are odd, then Rn(ν, µ) > 0.
(iii) If ν and µ are even, then

Rn(ν, µ) >
1

2n

∫ µπ

(µ−1)π

f(t/(2n))sin(t)dt.

Proof. (i) Let ν = 2K, µ = 2M + 1, where K ≤M . Then we obtain

2nRn(ν, µ) =
∫ (2K+1)π

2Kπ

f(t/(2n)) sin(t)dt

(2.25)

+
M−1∑
j=K

(∫ (2j+2)π

(2j+1)π

+
∫ (2j+3)π

(2j+2)π

)
f(t/(2n))sin(t)dt

=
∫ (2K+1)π

2Kπ

f(t/(2n)) sin(t)dt

+
M−1∑
j=K

∫ (2j+2)π

(2j+1)π

[f(t/(2n))− f((π + t)/(2n))]sin(t)dt.

Applying Lemma 5 we conclude from (2.25) that Rn(ν, µ) is positive.
(ii) Let ν = 2K + 1, µ = 2M + 1, where K + 1 ≤ M . From Lemma 5 we

get

2nRn(ν, µ) =
M−1∑
j=K

∫ (2j+2)π

(2j+1)π

[f(t/(2n))− f((π + t)/(2n))]sin(t)dt > 0.

(iii) Applying part (i) we obtain

2nRn(ν, µ)−
∫ µπ

(µ−1)π

f(t/(2n)) sin(t)dt = 2nRn(ν, µ− 1) > 0. �

Lemma 9. Let n, ν, and µ be integers such that n ≥ 3 and 1 ≤ ν < µ <
2n− ν. Then we have

2
3

(
√

2− 1) +
n∑
k=1

1
2k − 1

[
sin
(

(2k − 1)
µπ

2n

)
− sin

(
(2k − 1)

νπ

2n

)]
> 0.(2.26)

Proof. We denote the sum in (2.26) by ∆n(ν, µ). We let f , I, and Rn
be the functions defined in (2.20), (2.23), and (2.24), respectively, and set
x = µπ/(2n) and y = νπ/(2n). Using the identity

n∑
k=1

sin((2k − 1)x)
2k − 1

=
1
2

∫ x

0

sin(2nt)
sin(t)

dt (x ∈ R)
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we obtain

∆n(ν, µ) =
1
2

∫ x

y

sin(2nt)
sin(t)

dt =
1
2

∫ x

y

sin(2nt)
t

dt+
1
2

∫ x

y

f(t) sin(2nt)dt

=
1
2

∫ µπ

νπ

sin(t)
t

dt+
1

4n

∫ µπ

νπ

f(t/(2n)) sin(t)dt.

Hence we have

∆n(ν, µ) =
1
2

(I(ν, µ) +Rn(ν, µ)).(2.27)

In order to prove (2.26) we distinguish four cases.

Case 1. ν is even and µ is odd.
Using Lemma 7 (i) and Lemma 8 (i) we obtain that I(ν, µ) and Rn(ν, µ)

are positive. Thus, (2.27) implies ∆n(ν, µ) > 0.

Case 2. ν and µ are odd.
Applying Lemma 7 (ii), Lemma 8 (ii), and (2.27) we get

∆n(ν, µ) >
1
2
I(ν, µ) > −1

2

∫ π

0

sin(t)
νπ + t

dt ≥ −1
2

∫ π

0

sin(t)
π + t

dt

= −0.216 . . . > −0.276 . . . = −2
3

(
√

2− 1).

Case 3. ν and µ are even.
From Lemma 8 (iii) and Lemma 5 we obtain

Rn(ν, µ) > − 1
2n

∫ π

0

f

(
t+ (µ− 1)π

2n

)
sin(t)dt(2.28)

≥ − 1
n
f
(µπ

2n

)
≥ − 1

n
f

((
1− 2

π

)
π

)
.

Applying Lemma 6 (i) and (2.28) we get

Rn(ν, µ) > − 1
2π
.(2.29)

Using Lemma 7 (iii), (2.27), and (2.29) we have

∆n(ν, µ) > − 1
4π

= −0.079 . . . > −2
3

(
√

2− 1).

Case 4. ν is odd and µ is even.
First, let n = 3. Then ν = 1 and µ = 2 or µ = 4. A direct computation

yields

∆3(1, 2) = ∆3(1, 4) = −0.240 . . . > −2
3

(
√

2− 1).

Next, we assume that n ≥ 4 and we consider two subcases.

Case 4.1. ν is odd and µ = ν + 1.
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We have

I(ν, µ) = −
∫ π

0

sin(t)
νπ + t

dt ≥ −
∫ π

0

sin(t)
π + t

dt = −0.433 . . .(2.30)

and

Rn(ν, µ) = − 1
2n

∫ π

0

f

(
νπ + t

2n

)
sin(t)dt(2.31)

≥ − 1
n
f

(
(ν + 1)π

2n

)
≥ −1

4
f(π/2) = −0.090 . . . .

From (2.27), (2.30), and (2.31) we get

∆n(ν, µ) ≥ −0.2625 > −2
3

(
√

2− 1).

Case 4.2. ν is odd and µ is even with µ ≥ ν + 3.
We have µ ≤ 2n−(ν+1). If µ = 2n−(ν+1), then ∆n(ν, µ) = ∆n(ν, ν+1),

so that this case reduces to Case 4.1. Thus, it suffices to consider the case
when µ ≤ 2n− (ν + 3) ≤ 2n− 4. Then we obtain

I(ν, µ) ≥
∫ (ν+3)π

νπ

sin(t)
t

dt(2.32)

=
∫ π

0

(
− 1
νπ + t

+
1

(ν + 1)π + t
− 1

(ν + 2)π + t

)
sin(t)dt

≥
∫ π

0

(
− 1
π + t

+
1

2π + t
− 1

3π + t

)
sin(t)dt = −0.359 . . .

and

Rn(ν, µ) ≥ 1
2n

∫ µπ

(µ−3)π

f(t/(2n)) sin(t)dt = − 1
2n

∫ π

0

Kn(t, µ) sin(t)dt,(2.33)

where

Kn(t, µ) = f((t+ (µ− 3)π)/(2n))− f((t+ (µ− 2)π)/(2n))

+ f((t+ (µ− 1)π)/(2n)).

Applying Lemma 5 we conclude thatKn(t, µ) is positive and strictly increasing
with respect to t and µ. Hence (2.33) yields

Rn(ν, µ) ≥ − 1
n
Kn(π, µ) ≥ − 1

n
Kn(π, 2n− 4)

(2.34)

= − 1
n

[
f

(
(2n− 6)π

2n

)
− f

(
(2n− 5)π

2n

)
+ f

(
(2n− 4)π

2n

)]
.
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By the mean-value theorem and Lemma 5 we get

f

(
(2n− 4)π

2n

)
− f

(
(2n− 5)π

2n

)
≤ π

2n
f ′
(

(2n− 4)π
2n

)
.

Next, we define

an =
π

2n2
f ′
(

(2n− 4)π
2n

)
=

π cos(2π/n)
2n2(sin(2π/n))2

+
2

π(2n− 4)2

and

bn =
1
n
f

(
(2n− 6)π

2n

)
=

1
n sin(3π/n)

− 2
π(2n− 6)

.

Using this notation we obtain from (2.34)

Rn(ν, µ) ≥ −(an + bn) = −cn, say.(2.35)

A direct calculation gives

c4 = 0.075 . . . , c5 = 0.090 . . . , c6 = 0.099 . . . , c7 = 0.106 . . . .(2.36)

From (2.27), (2.32), (2.35), and (2.36) we obtain that ∆n(ν, µ) > −(2/3)(
√

2
− 1) for 4 ≤ n ≤ 7.

Suppose now that n ≥ 8. Then we get cn ≤ g(n), where g is defined in
(2.21). Applying Lemma 6 (ii) we obtain cn ≤ g(8) = 0.188 . . . . This result
combined with (2.27), (2.32), and (2.35) leads to

∆n(ν, µ) ≥ −0.2745 > −2
3

(
√

2− 1).

This completes the proof of Lemma 9. �

3. Main results

With the help of the lemmas proved in the previous section we are now
in a position to present sharp bounds for the trigonometric sums given in
(1.2) and (1.7). First, we complement Koschmieder’s inequalities for An(x, y)
mentioned in Section 1.

Theorem 1. For all natural numbers n and real numbers x, y ∈ [0, π] we
have

− Si(π) <
n∑
k=1

cos(kx) sin(ky)
k

< Si(π).(3.1)

Both bounds are best possible.

Proof. We have

An(x, y) =
1
2

(Sn(y − x) + Sn(x+ y)) ,
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where Sn(x) is defined in (2.1). Applying Lemma 1 (i) it follows that (3.1) is
valid. Furthermore, the limit relation

lim
n→∞

Sn

(
π

n+ 1

)
= Si(π)

and the formulas

An

(
0,

π

n+ 1

)
= Sn

(
π

n+ 1

)
, An

(
π,

nπ

n+ 1

)
= −Sn

(
π

n+ 1

)
yield that the bounds in (3.1) are sharp. �

Remark 1. The proof of Theorem 1 reveals that (3.1) holds for all real
numbers x, y.

Now, we study the sum given in (1.7). The following analogue of (1.4) and
(3.1) holds.

Theorem 2. For all natural numbers n and real numbers x, y ∈ [0, π] we
have

−1
8
≤

n∑
k=1

sin(kx) sin(ky)
k

.(3.2)

The equality sign holds in (3.2) if and only if n = 2, x = 5π/6, y = π/6 or
n = 2, x = π/6, y = 5π/6.

Proof. We have B1(x, y) = sin(x) sin(y) ≥ 0. Let n ≥ 2 and M = {(x, y) ∈
R2| 0 ≤ y ≤ x ≤ π}. Since Bn(t, t) ≥ 0 and Bn(t, 0) = Bn(π, t) = 0 for t ∈
[0, π], we conclude that Bn attains only non-negative values on the boundary
of M. Next, we assume that Bn attains its absolute minimum at (x0, y0),
where 0 < y0 < x0 < π. Let α = x0 − y0 and β = x0 + y0. Then we obtain

0 = −∂Bn(x, y)
∂x

∣∣∣
(x,y)=(x0,y0)

+
∂Bn(x, y)

∂y

∣∣∣
(x,y)=(x0,y0)

=
n∑
k=1

sin(kα)(3.3)

and

0 =
∂Bn(x, y)

∂x

∣∣∣
(x,y)=(x0,y0)

+
∂Bn(x, y)

∂y

∣∣∣
(x,y)=(x0,y0)

=
n∑
k=1

sin(kβ).(3.4)

Using the identity
n∑
k=1

sin(a+ kb) = − sin(a) +
sin(a+ nb/2) sin((n+ 1)b/2)

sin(b/2)
(3.5)
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as well as (3.3) and (3.4) we get

α =
2νπ
n

(ν ∈ N; 1 ≤ ν < n/2) or

α =
2ν∗π
n+ 1

(ν∗ ∈ N; 1 ≤ ν∗ < (n+ 1)/2)

and

β =
2µπ
n

(µ ∈ N; 1 ≤ µ ≤ n− 1) or

β =
2µ∗π
n+ 1

(µ∗ ∈ N; 1 ≤ µ∗ ≤ n).

This leads to the following four cases:

x0 =
(ν + µ)π

n
, y0 =

(µ− ν)π
n

(ν < µ < n− ν),(i)

x0 =
(
ν

n
+

µ∗

n+ 1

)
π, y0 =

(
µ∗

n+ 1
− ν

n

)
π(ii)

(ν/n < µ∗/(n+ 1) < 1− ν/n),

x0 =
(

ν∗

n+ 1
+
µ

n

)
π, y0 =

(
µ

n
− ν∗

n+ 1

)
π(iii)

(ν∗/(n+ 1) < µ/n < 1− ν∗/(n+ 1)),

x0 =
(ν∗ + µ∗)π
n+ 1

, y0 =
(µ∗ − ν∗)π
n+ 1

(ν∗ < µ∗ < n+ 1− ν∗).(iv)

If n = 2, then only case (iii) holds and we get x0 = 5π/6, y0 = π/6 with
B2(x0, y0) = −1/8. Thus, it remains to show that if n ≥ 3, then 1/8 +
Bn(x0, y0) > 0, where (x0, y0) is given in (i)–(iv). This means we have to
establish that

1
8

+
1
2

n∑
k=1

1
k

[
cos
(

2νπ
n
k

)
− cos

(
2µπ
n
k

)]
> 0,(3.6)

1
8

+
1
2

n∑
k=1

1
k

[
cos
(

2νπ
n
k

)
− cos

(
2µ∗π
n+ 1

k

)]
> 0,(3.7)

1
8

+
1
2

n∑
k=1

1
k

[
cos
(

2ν∗π
n+ 1

k

)
− cos

(
2µπ
n
k

)]
> 0,(3.8)

and

1
8

+
1
2

n∑
k=1

1
k

[
cos
(

2ν∗π
n+ 1

k

)
− cos

(
2µ∗π
n+ 1

k

)]
> 0.(3.9)

Applying Lemma 4 we conclude that the inequalities (3.6)–(3.9) are valid.
This completes the proof of Theorem 2. �
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Remark 2. Since B2m+1(π/2, π/2) =
∑m
k=0 1/(2k+ 1), we conclude that

there is no upper bound for Bn(x, y), which is independent of n, x, and y.

Our third theorem presents sharp upper and lower bounds for Koschmieder’s
sum A∗n(x, y) defined in (1.2).

Theorem 3. For all natural numbers n and real numbers x, y ∈ [0, π] we
have

−2
3

(
√

2− 1) ≤
n∑
k=1

cos((k − 1/2)x) sin((k − 1/2)y)
k − 1/2

≤ 2.(3.10)

The equality sign holds in the left-hand inequality of (3.10) if and only if
n = 2, x = 3π/4, y = π/4, and in the right-hand inequality if and only if
n = 1, x = 0, y = π.

Proof. Let S∗n(x) be the expression defined in (2.1). Applying Lemma 1
(ii) we get

A∗n(x, y) = S∗n

(
y − x

2

)
+ S∗n

(
x+ y

2

)
≤ 2,

with equality if and only if S∗n((y − x)/2) = S∗n((x+ y)/2) = 1, which is true
if and only if n = 1, x = 0, y = π.

Next, we establish the left-hand side of (3.10). We have

A∗1(x, y) = 2 cos(x/2) sin(y/2) ≥ 0 (x, y ∈ [0, π]).

In [17] it is proved that A∗n(x, y) ≥ 0 if 0 ≤ x ≤ y ≤ π. We have A∗n(t, t) ≥ 0
and A∗n(t, 0) = A∗n(π, t) = 0 for t ∈ [0, π]. This implies that A∗n attains only
non-negative values on the boundary of M = {(x, y) ∈ R2| 0 ≤ y ≤ x ≤ π}.
We assume that there exist numbers x1, y1 with 0 < y1 < x1 < π such that
A∗n(x, y) ≥ A∗n(x1, y1) for all (x, y) ∈M . Let α∗ = x1 − y1 and β∗ = x1 + y1.
Then we get

0 = −∂A
∗
n(x, y)
∂x

∣∣∣
(x,y)=(x1,y1)

+
∂A∗n(x, y)

∂y

∣∣∣
(x,y)=(x1,y1)

(3.11)

=
n∑
k=1

cos((k − 1/2)α∗)

and

0 =
∂A∗n(x, y)

∂x

∣∣∣
(x,y)=(x1,y1)

+
∂A∗n(x, y)

∂y

∣∣∣
(x,y)=(x1,y1)

(3.12)

=
n∑
k=1

cos((k − 1/2)β∗).
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Applying
n∑
k=1

cos(a+ kb) = − cos(a) +
cos(a+ nb/2) sin((n+ 1)b/2)

sin(b/2)

and

cos((n− 1)a) sin((n+ 1)a)− cos(a) sin(a) =
1
2

sin(2na)

we obtain from (3.11) and (3.12)

sin(nα∗) = 0, sin(nβ∗) = 0.

Thus, we have

x1 = (ν + µ)
π

2n
, y1 = (µ− ν)

π

2n
,

where

ν, µ ∈ N, 1 ≤ ν < µ < 2n− ν.

If n = 2, then we get x1 = 3π/4, y1 = π/4, and A∗2(x1, y1) = −(2/3)(
√

2− 1).
Applying Lemma 9 we obtain for n ≥ 3

A∗n(x1, y1) =
n∑
k=1

1
2k − 1

[
sin
(

(2k − 1)
µπ

2n

)
− sin

(
(2k − 1)

νπ

2n

)]
> −2

3
(
√

2− 1).

This completes the proof of Theorem 3. �

Remark 3. The method of proof we have applied to establish Theorems
2 and 3 can also be used to prove the inequalities (1.4)–(1.6) and to cover all
cases of equality. We obtain that the equality sign holds in (1.4) if and only
if n = 1, x = π, y = 0 or n = 1, x = 0, y = π; in (1.5) if and only if x = 0 or
y = 0; and in (1.6) if and only if x = π or y = π. This reveals that the given
lower bounds are sharp. We note that there are no constant upper bounds for
the sums in (1.4)–(1.6).

Remark 4. If we replace in (3.10) the variable x by π−x, then we obtain
a counterpart of (1.5):

For all natural numbers n and real numbers x, y ∈ [0, π] we have

−2
3

(
√

2− 1) ≤
n∑
k=1

(−1)k+1 sin((k − 1/2)x) sin((k − 1/2)y)
k − 1/2

≤ 2.(3.13)

The equality sign holds in the left-hand inequality of (3.13) if and only if
n = 2, x = y = π/4, and in the right-hand inequality if and only if n = 1,
x = y = π.
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Similarly, from (1.4)–(1.6), (3.1), (3.2) we get further inequalities for alter-
nating sums.
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