
Illinois Journal of Mathematics
Volume 48, Number 3, Fall 2004, Pages 875–885
S 0019-2082

THE AUTOMORPHISM GROUP OF DOMAINS WITH
BOUNDARY POINTS OF INFINITE TYPE

MARIO LANDUCCI

Abstract. Let Ω ⊂ C
2 be a smoothly bounded domain. We prove

that if ∂Ω contains a (small) smooth curve of points of infinity type,
then the automorphism group Aut(Ω) is compact. This result implies

the Greene-Krantz conjecture for a special class of domains. The proof
makes no use of scaling techniques.

1. Introduction

Let Ω be a bounded domain in Cn, n > 1, and denote by Aut(Ω) its
holomorphic automorphisms group. It is known that, in the compact-open
topology, Aut(Ω) is a Lie group and is non-compact if and only if there exists
a point P ∈ Ω and a sequence {Fn} ⊂ Aut(Ω) such that

lim
n→∞

Fn(P ) = Q ∈ ∂Ω.(1.1)

Several important results have been proved for bounded domains with non-
compact automorphism group (for an extensive review see, e.g., [IK]). In
particular, for a domain Ω ⊂ C2 with a boundary ∂Ω, which satisfies some ad-
ditional regularity conditions, the following fact holds ([Br], [BP]): if Aut(Ω)
is non-compact and if the limit point Q ∈ ∂Ω in (1.1) is of finite type, then Ω
is biholomorphic to a domain of the form

Ω ∼= {Rew + q(z, z) < 0},(1.2)

where q is a homogeneous polynomial in z and z.
For a result for the unbounded case see also [Ef].
On the other hand, the following conjecture was formulated by R. Greene

and S. Krantz [GK].

Greene-Krantz Conjecture. If the automorphism group Aut(Ω) of a
smoothly bounded domain Ω ⊂ Cn is non-compact, then any point Q ∈ ∂Ω,
which is limit of a sequence Fn(P ) as in (1.1), is of finite type.
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In several papers, this conjecture has been proved under additional assump-
tions on the domain Ω or on the boundary ∂Ω (see, e.g., [GK], [Ka], [KK]).
All these results provide strong evidence that the Greene-Krantz conjecture
is true in full generality, but, at the moment, a complete proof is still lacking.
In this paper we make a new contribution in the area of the Greene-Krantz
conjecture. Namely, we prove the following result.

Theorem 1.1. Let Ω ⊂ C2 be a smoothly bounded pseudoconvex domain,
with C∞ boundary, and satisfying the following two conditions:

(a) There exists a point P ∈ ∂Ω and a system of complex coordinates
(z, w) defined on a connected neighborhood U of P so that (z(P ), w(P ))
= (0, 0) and

Ω ∩ U = { Q ∈ U : Rew(Q) + φ(z(Q), z(Q)) < 0 },(1.5)

where φ is smooth, subharmonic and strictly positive at all points dif-
ferent from the origin, where it vanishes at any order, i.e.,

lim
z→0

φ(z)
|z|N

= 0, ∀N ≥ 0.(1.6)

(b) Any point P ∈ ∂Ω \ U is a boundary point of finite type.
Then Aut(Ω) is compact.

We remark that in Theorem 1.1 any point Q ∈ U ∩ ∂Ω with coordinate
z(Q) = 0 is a point of infinite type (see Definition 2.3 below). Therefore, our
result can be considered as a proof of the Greene-Krantz conjecture for the
case in which the set of points of infinite type constitute a special smooth
curve contained in ∂Ω.

We point out that similar results have been proved by H. Kang [Ka] and
by K.-T. Kim and S. Krantz [KK].

H. Kang proved the compactness of Aut(Ω) for a bounded domain Ω ⊂ C2

which is globally defined by

{(z, w) : |w|2 + φ(z) < 0},(1.7)

where φ satisfies the hypothesis (a) of Theorem 1.1. Kang’s proof depends
strongly on the fact that, by the existence of a global defining function of
the form (1.7), the automorphism group Aut(Ω) contains the compact, 1-
parameter group of automorphisms Γ = { (z, w) → (z, eitw), t ∈ R }. Our
results may be considered as a generalization of Kang’s theorem, which makes
no hypothesis on Aut(Ω).

K.-T. Kim and S. Krantz proved that for a domain Ω ⊂ C
2, for which

Aut(Ω) is non-compact, it may never occur that, on a neighborhood of a limit
point Q which satisfies (1.1), the domain Ω is of the form

{ (z, w) ∈ C2 : Rew + φ(|z|2) = 0 },
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where φ is a C∞ function, with φ(x) > 0, φ′′(x) > 0 for any x > 0, and such
that the map

Φ : (0, ε) ⊂ R→ R, Φ(x) def= − 1
log φ(x)

,

extends to a C∞ function over a neighborhood of 0, vanishing up to finite
order at the origin. In contrast to the result of Kim and Krantz, our Theorem
1.1 makes no assumption on the function φ, aside from the positivity and the
vanishing at any order at the origin. On the other hand, in our proof, we need
the hypothesis (b), which is a global property of ∂Ω, while the hypotheses of
Kim and Krantz are of purely local nature. This is mainly due to the fact
that our proof makes no use of scaling techniques, while Kim and Krantz’s
paper is heavily based on them. For this reason, we believe that a suitable
combination of the ingredients of our paper with those of the paper by Kim
and Krantz can produce an important step towards a general solution of the
Greene-Krantz conjecture.

Before concluding this section, we remark that hypothesis (b) in Theo-
rem 1.1 is needed to prove the boundary regularity of the automorphisms in
Aut(Ω) near P . Once such a boundary regularity of the automorphisms is
established, all the other arguments are of purely local nature. On the other
hand, the boundary regularity of the automorphisms is basically obtained by
local subelliptic estimates for the ∂-Neumann problem on a neighborhood of
the point P of weak pseudoconvexity. Such estimates are consequences of hy-
pothesis (b), by means of the results in [Bo] and [Ca]. So, in order to remove
(or to replace) hypothesis (b), it is necessary to find an alternative proof of the
quoted local subelliptic estimates, which is an interesting question in itself.
The interested reader is referred to [Bel], where local subelliptic estimates
similar to those needed here are obtained in neighborhoods of points of strong
pseudoconvexity.

Acknowledgements. We would like to thank Kang-Tae Kim for very
helpful suggestions and for pointing us to the results in [Ka] and especially
Andrea Spiro for stimulating conversations. We are also very grateful to the
referee for his valuable comments and remarks.

2. Preliminaries and basic results

Let Ω ⊂ C
n be a bounded domain and {Fj} ⊂ Aut(Ω) a sequence of

automorphisms of Ω. Observe that, by Montel’s Theorem, there exists a sub-
sequence {Fji} such that both sequences {Fji} and {F−1

ji
} converge uniformly

on compact subsets of Ω to a pair of holomorphic maps F,G : Ω→ C
n.

Moreover, by the results in [BL], if a bounded domain Ω ⊂ Cn is smooth
and satisfies the so-called Condition R, then any automorphism F ∈ Aut(Ω)
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extends smoothly up to the boundary. (For the definition of Condition R, we
refer to [BL].)

These observations are completed by the following theorem by S. Bell,
which represents a major tool for the proof of our result.

Theorem 2.1. [Be] Let Ω ⊂ Cn be a bounded, smooth domain with C∞

boundary and which satisfies Condition R. Let also {Fj} ⊂ Aut(Ω) be a se-
quence such that both {Fj} and {F−1

j } converge uniformly on compact subsets
of Ω to two holomorphic maps F , G : Ω→ C

n, respectively.
Then only one of the following two cases occurs:

(1) F ∈ Aut(Ω) and the smooth extensions to Ω of the automorphisms Fj
converge uniformly on compact subsets of Ω.

(2) There exist two points P1, P2 ∈ ∂Ω such that the smooth extensions to
Ω of the maps Fj converge uniformly on compact subsets of Ω\{P1} to
the constant map F (z1, . . . , zn) ≡ P2; in this case, the determinants
det(JFj) of the holomorphic Jacobians converge to 0 in the C∞ sup
norm on Ω \ {P1}.

This theorem has the following direct corollary.

Corollary 2.2. Let Ω ⊂ C
n be a bounded, smooth domain with C∞

boundary and which satisfies Condition R. Then Aut(Ω) is compact if and
only if, for any sequence {Fj = (f1

j , . . . , f
n
j )} ⊂ Aut(Ω), there exists at least

one index 1 ≤ k ≤ n such that the sequence of holomorphic maps {fkm} admits
a subsequence that converges uniformly in Ω.

Proof. If Aut(Ω) is a compact group, any sequence {Fj} ∈ Aut(Ω) admits
a subsequence {Fji} converging to an element F ∈ Aut(Ω). In addition we
can assume that F−1

ji
too is a converging sequence.

By the previous remarks and Theorem 2.1, the sequence {Fji} and any of
the sequences {fkjn}, 1 ≤ k ≤ n, converge uniformly on compact subsets of Ω.

Conversely, suppose that Aut(Ω) is non-compact and let {Fj = (f1
j , . . . , f

n
j )}

⊂ Aut(Ω) be a sequence with no converging subsequence. In particular, for
any subsequence of Fj , there exists a subsequence which satisfies (2) of The-
orem 2.1. On the other hand, if there exists a value 1 ≤ k ≤ n and a subse-
quence {fkji} ⊂ {f

k
j }, which converges uniformly on compact subsets of Ω, by

considering a suitable subsequence, we may assume that the corresponding
subsequence {Fji} ⊂ {Fj} converges to the constant map F (z1, . . . , zn) ≡ P
and that

lim
n

sup
z∈Ω

|fkji(z)− zk(P )| = 0.(2.1)
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On the other hand, since each Fji is an automorphism, we have that for any n

sup
z∈Ω

|fkji(z)− P | = sup
z∈Ω
|zk − zk(P )| = C > 0(2.2)

for some positive constant C = C(Ω). It is clear that (2.1) and (2.2) are in
contradiction. �

Let us now consider smoothly bounded domains in C2. First, we recall the
definition of boundary points of finite (infinite) type for smooth domains in
C

2.

Definition 2.3. Let Ω ⊂ C2 be a smooth domain with C∞ boundary.
We say that a point P ∈ ∂Ω is a point of type k if there exists at least one
smooth holomorphic curve which has a contact with ∂Ω of order k at P , and
there is no smooth holomorphic curve with contact with ∂Ω of order greater
than k at the same point.

We say that P is a point of infinite type if, for any k ∈ N, there exists at
least one smooth holomorphic curve which has a contact with ∂Ω of order
greater or equal to k at P .

From now on, we will assume that Ω ⊂ C2 is a bounded domain which
satisfies the hypothesis of Theorem 1.1. There is no loss of generality if we
assume that P = (0, 0) and that Ω ∩ U coincides with the set

Ω ∩ U = { (z, w) ∈ U : 2 Rew + φ(z, z) < 0 },(2.3)

where:
(i) φ : U → R depends only on z and z̄ and it is subharmonic in z in a

neighborhood of the origin;
(ii) φ(z, z̄) vanishes at infinite order at 0, i.e., for any N ≥ 0

lim
z→0

φ(z)
|z|N

= 0 ;

(iii) φ(z, z̄) ≥ 0 on U and φ(z, z̄) = 0 if and only if z = 0;
(iv) any P ∈ ∂Ω \ U is a point of finite type.
We will also denote by P∞(∂Ω) the subset of ∂Ω given by all points of

infinite type of ∂Ω. From the previous remarks, it follows immediately that

U ⊃ P∞(∂Ω) ⊃ {(0, iε) ∈ U}.
Moreover the following notation

I = {ε : (0, iε) ∈ P∞(∂Ω)}
will be used.

In particular, all points of ∂Ω, except a 1R-dimensional set, are of finite
type. By a result of H. Boas ([Bo]; see also [Si]), this implies that any domain
Ω ⊂ C2, which satisfies (i)–(iv), also satisfies Condition R.
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For shortness of notation, given F = (f1, f2) ∈ Aut(Ω) will indicate the
components f1, f2 of the composition F ◦ξ−1 of F with the previously system
of coordinates ξ : U → C

2 present in the statement in the theorem. So, all
previous remarks and, in particular, Theorem 2.1 and Corollary 2.2, apply to
our bounded domain Ω ⊂ C.

Now, since any point of finite type is mapped onto a point of finite type,
the smooth extension to the boundary of any F = (f1, f2) ∈ Aut(Ω) maps
P∞(∂Ω) bijectively onto itself. In particular, for any F = (f1, f2) ∈ Aut(Ω)
we have that

Re f2(0, iε) = 0, for any ε ∈ I.(2.4)

This observation leads to the following useful lemma.

Lemma 2.4. Let F = (f1, f2) ∈ Aut(Ω) and let V ⊂ C be the set

V = { w ∈ C : (0, w) ∈ U ∩ Ω }.

Then the holomorphic function

f̃2 : V ⊂ C→ C, f̃2(w) = f2(0, w),

extends holomorphically to an open set V̂ ⊂ C, which properly contains V and

{iε, ε ∈
◦
I}. Moreover, the extension f̃2 : V̂ → C satisfies the inequality

sup
w∈V̂
|f̃2(w)| ≤ sup

(z,w)∈Ω∩U
|f2(z, w)|(2.5)

Proof. By construction, the domain of definition V ⊂ C of the holomor-

phic function f̃2 contains the segment iε, ε ∈
◦
I, in the boundary and, by

(2.4), the real part Re f̃2 admits a smooth extension at these points and it
vanishes there. Therefore, f̃2 admits the required holomorphic extension by
Schwartz’s Reflection Principle. The inequality (2.5) is a direct consequence
of the construction by reflection of the extended map f̃2 : V̂ → C. �

A classical argument based on the Hopf Lemma shows that if ρ(z, w) is a
defining function of Ω on a neighborhood UP of a point P , then for any F =
(f1, f2) ∈ Aut(Ω), (ρ ◦F )(z, w) is also a defining function on a neighborhood
UF−1(P ) of F−1(P ). In particular, there exists a smooth function h(z, w)
which is strictly positive on UF (P ) and such that, for any (z, w) ∈ UF (P ),

(ρ ◦ F )(z, w) = h(z, w) · ρ(z, w).

Using this observation and the fact that F (P∞(∂Ω)) = P∞(∂Ω), we get the
existence of a smooth function k(z, w), which is defined on a neighborhood
U ⊆ U of P∞(∂Ω) ∩ U , strictly positive, and such that

2 Rew + φ(z) = k(z, w)[2 Re f2(z, w) + φ(f1(z, w))](2.6)



DOMAINS WITH BOUNDARY POINTS OF INFINITE TYPE 881

at all points (z, w) ∈ U . This fact leads to the second technical lemma, which
is needed for the proof of our main theorem.

Lemma 2.5. Let F = (f1, f2) ∈ Aut(Ω) and U ⊂ U be a neighborhood of
P∞(∂Ω) ∩ U where (2.6) holds. Then, for any (z, w) ∈ U ,

(a) f1(0, w) ≡ 0;
(b) f2(z, w) = f2(w).

Proof. (a) Let k(z, w) > 0 be the smooth positive function which appears

in (2.6). Then, for any ε ∈
◦
I, we have that

0 = k(0, iε)φ(f1(0, iε)),(2.7)

and hence that φ(f1(0, iε)) = 0. Since the function f̃1(w) def= f1(0, w) is
holomorphic on any w which is sufficiently close to 0 and satisfies Rew < 0,
from property (iv) and (2.7) we conclude that f1(0, w) ≡ 0.

(b) We claim that for any N ≥ 1 and any (0, iε) ∈ P∞(∂Ω)

∂N

∂zN

(
2 Re f2(z, w) + φ(f1(z, w), f1(z, w))

)∣∣∣∣
(0,iε)

= 0.(2.8)

In fact, for any (0, iε) ∈ P∞(∂Ω) we have that F (0, iε) ∈ P∞(∂Ω) ⊂ ∂Ω and
hence

0 = 2 Re f2(0, iε) + φ(f1(0, iε), f1(0, iε)).

From (2.6) it follows that

0 = k(0, iε) · ∂
∂z

(
2 Re f2(z, w) + φ(f1(z, w), f1(z, w))

)∣∣∣∣
(0,iε)

,

which implies (2.8) for N = 1. Taking the N -th derivative with respect to
the variable z of (2.6) and using an inductive argument, it follows that (2.8)
holds also for any N > 1.

From (a), (2.8) and the property (iii) we get that for any N ≥ 1 and any
(0, iε) ∈ P∞(∂Ω)

∂Nf2

∂zN
(0, iε) = 0.(2.9)

Using the same arguments as for (a), we see that (2.9) implies (b). �

From Lemmas 2.4, 2.5, Theorem 2.1 and Corollary 2.2, we finally obtain
the following crucial fact.

Lemma 2.6. Assume that Aut(Ω) is not compact. Let {Fj = (f1
j , f

2
j )} ⊂

Aut(Ω) be a sequence so that the sequences {Fj} and {F−1
j } both converge

uniformly on compact subsets of on Ω and which satisfy (2) of Theorem 2.1.

Then the point P1 of Theorem 2.1 (2) cannot be of the form (0, iε), ε ∈
◦
I.
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Proof. Suppose not and assume, e.g., that P1 is the point P1 = (0, 0).
(The other cases can be treated in the very same way.) We claim that the
hypotheses imply that the sequence of holomorphic maps {f2

j }, given by the
second components of the maps Fj , converges uniformly on Ω. This will give
a contradiction with Corollary 2.2 and will conclude the proof.

By the uniform convergence of the sequence {Fj = (f1
j , f

2
j )} outside P1,

the claim is proved if we show the uniform convergence of the sequence {f2
j }

on a neighborhood of (0, 0). By Lemmas 2.4 and 2.5 (b), we know that
f2
j (z, w) = f2

j (w) and that, for r > 0 sufficiently small, all maps f2
j (w) are

holomorphic on ∆r(0) = { |w| < r } and

sup
∆r(0)

|f2
n| = sup

∆r(0)∩Ω∩U
|f2
j |.

This implies the uniform convergence because of the boundedness of the maps
f2
j |Ω. �

3. Proof of Theorem 1.1

As in the previous section, we will always denote by Ω ⊂ C2 a bounded do-
main which satisfies the hypothesis of Theorem 1.1 and, in particular, satisfies
the conditions (i)–(iv) listed after (2.3).

Let us assume that Aut(Ω) is not compact. Consider a sequence {Fj} ∈
Aut(Ω) which admits no converging subsequence. By the remarks of Section
2, there is no loss of generality if we assume that {Fj} and {F−1

j } converge
on compact subsets of Ω and that case (2) of Theorem 2.1 holds.

We want to show that this leads to a contradiction. The contradiction
will arise by showing that the absolute value of the holomorphic jacobian

determinant of {Fj} is at any P = (0, iε), ε ∈
◦
I, and for every j larger than a

constant c(ε).
From Lemma 2.5 we have that for any n

Fj = (zgj(z, w), hj(w)), F−1
j = (zg̃j(z, w), h̃j(w)),(3.1)

for some holomorphic functions gj , g̃j , hj and h̃j . Furthermore, by (2.6), for
any j there exist two C∞, strictly positive, real functions kj(z, w) and k̃j(z, w)
defined on a neighborhood U of P∞(∂Ω) such that

2 Rew + φ(z) = kj(z, w)[2 Rehj(w) + φ(zgj(z, w))],(3.2)

2 Rew + φ(z) = k̃j(z, w)[2 Re h̃j(w) + φ(zg̃j(z, w))].(3.3)

Claim 3.1. For any ε ∈
◦
I and any j, we have |gj(0, iε)| ≥ 1.

Proof. First we note that gj(0, iε) 6= 0 for εo ∈
◦
I (Fj is an automorphism).
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From (2.4) and (3.2) we have Rehj(iε) = 0 and

φ(z)
φ(zgj(z, iε))

= kj(z, iε)(3.4)

Now, assume that there exists εo ∈
◦
I and a natural number no such that

0 < |gno(0, iεo)| < 1. By continuity, this implies that for any |z| < δ with
δ > 0 sufficiently small,

0 < |gno(z, iεo)| < 1.(3.5)

Let us denote by Co the supremum Co
def= sup|z|<δ kno(z, iεo). From (3.4) we

have that, for any integer M > 0 and any |z| < δ,

φ(z)
|z|M

≤ Co|gno(z, iεo)|M
φ(zgno(z, iεo))
|z|M |gno(z, iεo)|M

.

From (3.5) it follows that for any M sufficiently large,

φ(z)
|z|M

<
φ(zgn0(z, iεo))
|z|M |gn0(z, iεo)|M

.(3.6)

On the other hand, (3.5) implies also that |zgn0(z, iεo)| < |z| < δ. Hence (3.6)
holds also if we replace everywhere z by zgno(z, iεo). In this way we obtain
the inequality

φ(zgno(z, iεo))
|z|M |gn0(z, iεo)|M

<
φ(zgno(z, iεo)gno(zgno(z, iεo), iεo))

|z|M |gno(z, iεo)|M |gno(zgno(z, iεo), iεo)|M
,(3.7)

which holds for any |z| < δ. Combining (3.6) with (3.7) we get

φ(z)
|z|M

<
φ(zgno(z, iεo)gno(zgno(z, iεo), iεo)

|z|M |gno(z, iεo)|M |gno(zgno(z, iεo), iεo)|M
=
φ(zψ1(z, iεo))
|zψ1(z, iεo)|M

,(3.8)

where we denoted by ψ1(z, iεo) the value

ψ1(z, iεo) = gno(z, iεo)gno(zgno(z, iεo), iεo)

Iterating the above argument N times, we obtain the inequality
φ(z)
|z|M

<
φ(zψN (z, iεo))
|zψN (z, iεo)|M

,(3.9)

where ψN (z, iεo) is defined recursively for any N ≥ 1 by

ψN (z, iεo) = gjo(z, iεo)ψN−1(zgjo(z, iεo), iεo).

For a fixed value of z, the sequence {zψN (z, iεo)} tends to 0 when N goes to
infinity, while the left hand side of (3.9) is a positive real number. This gives
a clear contradiction with condition (ii) in Section 2 and concludes the proof
of the claim. �

Claim 3.2. For any ε ∈
◦
I there exists a positive constant C(ε) > 0 such

that |∂hj∂w (0, iε)| > C(ε) for any j.
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Proof. Inserting the automorphism F−1
j (z, w) into (3.2) and using (3.3),

we have for any (z, w) in a suitable neighborhood of the origin

kj(F−1
j (z, w))[2 Rew + φ(z)] = 2 Re h̃j(w) + φ(zg̃j(z, w))

=
1

k̃j(z, w)
[2 Rew + φ(z)].

From this it follows that

kj(z, w) =
1

k̃j(Fj(z, w))
=

1
k̃j(zgj(z, w), hj(w))

and, in particular, that for any ε ∈
◦
I

kj(0, iε)k̃j(0, hj(iε)) = 1.(3.10)

For a fixed value ε ∈
◦
I, identity (3.10) implies that either the sequence

{kj(0, iεo)} or the sequence {k̃j(0, h̃j(iεo)} is bounded by some constant C >
0. Assume that kj(0, iεo) < C for all n. Then, by taking the derivative of
both sides of (3.2) with respect to w at the point (0, iεo), we get that

1 =
∣∣∣∣kj(0, iεo)∂hj(iεo)∂w

∣∣∣∣ < C

∣∣∣∣∂hj(iεo)∂w

∣∣∣∣ ,
and this implies the claim with C(ε) = 1/C.

On the other hand, if we assume that k̃j(0, h̃j(iεo)) < C for all j, then
by replacing iεo by h̃j(iεo) at all places, the same argument proves again the
claim with C(ε) = 1/C. �

From Claims 3.1 and 3.2 and (3.1) we have that for any j and any ε ∈
◦
I,

|det(JFj)(0, iε)| =
∣∣∣∣det

[
gj(0, iε) 0

0 ∂hj
∂w (0, iε)

]∣∣∣∣(3.11)

=
∣∣∣∣gj(0, iε) · ∂hj∂w

(0, iε)
∣∣∣∣ > C(ε) > 0.

On the other hand, by Theorem 2.1 (2) and Lemma 2.6, we have that, for any

ε ∈
◦
I, the value of the determinant det(JFj)(0, iε) tends to 0 when j goes to

infinity. This fact clearly contradicts (3.11) and it concludes the proof.
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