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ISOMETRIC IMMERSIONS IN CODIMENSION TWO OF
WARPED PRODUCTS INTO SPACE FORMS

MARCOS DAJCZER AND RUY TOJEIRO

ABSTRACT. We provide a local classification of isometric immersions
fi LP xp M™ — chv+n+k in codimensions k = 1,2 of warped products
of Riemannian manifolds into space forms, under the assumptions that
n >k + 1 and that NP*™ = LP x, M™ has no points with the same
constant sectional curvature ¢ as the ambient space form.

1. Introduction

A basic decomposition theorem due to Nolker [16] states that an isometric
immersion f: NPT" = LP x, M™ — Qf of a warped product of connected
Riemannian manifolds with warping function p € C°°(LP) into a complete
simply-connected space form of constant sectional curvature c is a warped
product of isometric immersions (see [16] or Section 1 for the precise definition
of this concept) whenever its second fundamental form a: TN x TN — T+ N
satisfies

a(X,V)=0 forall X € TL and V € TM.

This generalizes a well-known result for isometric immersions of Riemannian
products into Euclidean space due to Moore [14] as well as its extension by
Molzan [13] for nonflat ambient space forms; see also [18].

It is a natural problem to understand the possible cases in which the iso-
metric immersion f may fail, locally or globally, to be a warped product of
isometric immersions. In high codimensions the warped product structure of
the manifold does not seem to place enough restrictions on the isometric im-
mersion in order to make possible a complete classification in either case. Even
in the much more restrictive situation of Riemannian products, a successful
local analysis has only been carried out in the case in which the codimension
is two and the first factor is one-dimensional; see [3]. This was used therein
to characterize isometric immersions f: LP x M™ — RP1"*+2 of complete Rie-
mannian products none of whose factors is everywhere flat (see Remark 35
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below), carrying through the global results previously obtained by Moore [14]
and Alexander-Maltz [1]. Based on earlier work due to Moore, such subman-
ifolds were shown in [1] to split as products of hypersurfaces under the global
assumption that they do not carry an Euclidean strip.

The main goal of this paper is to provide a local classification of isometric
immersions f: LP x, M™ — QP*"** in codimensions k& = 1,2, under the
assumptions that n > k + 1 and that NPt" = [P X, M™ has no points with
the same constant sectional curvature c as the ambient space form. In the case
of codimension k£ = 1, we prove that f must be a warped product of isometric
immersions. In codimension k = 2 we show that only two other possibilities
may arise. Namely, either f is a composition of a warped product of isometric
immersions into QP+ with a local isometric immersion of Q?*"*! into
QPtn*2 or NPT is a Riemannian manifold of a special type that admits a
second decomposition as a warped product with respect to which f splits as
a warped product of isometric immersions. We leave the precise statement
for Section 3, where we also state its corresponding version for the case of
Riemannian products.

We give examples showing that the restriction on the dimension of M™
is necessary. As for the hypothesis that NPT has no points with constant
sectional curvature ¢, we observe that for manifolds with constant sectional
curvature the assumption that they be warped products places no further
restrictions on them since any such manifold can be realized as a warped
product in many possible ways; see the discussion on warped product repre-
sentations of space forms in Section 2. Therefore, for Riemannian manifolds
with constant sectional curvature our problem reduces to classifying all iso-
metric immersions in codimension two of such manifolds into space forms.
In this regard, recall that if f: U C QF — Q"2 n > 4, is an isometric
immersion, then ¢ > ¢ and, for ¢ > ¢, away from the set of umbilical points
the immersion must be locally a composition of the umbilical inclusion of Q2
into Q! with a local isometric immersion of Q*! into Q**? (see [10], [12]
and [7]). In fact, the latter statement can be derived from our main theorem,
but in that result we exclude from our analysis the case of local isometric
immersions of Q into Q"2 with the same constant sectional curvature. A
local description of these isometric immersions when ¢ = 0 was given in [6].

As striking applications of our main result, we obtain that if LP is a Rie-
mannian manifold no open subset of which can be isometrically immersed
into QP*!, then any isometric immersion f: LP x, M™ — QP2 n > 3, is
either a cylindrical submanifold of Euclidean space or a rotational submani-
fold. Moreover, if LP cannot be locally isometrically immersed in Q?*2, then
LP %, M™ cannot be locally isometrically immersed in Q?*"*2 either for what-
ever Riemannian manifold M™ of dimension n > 3 and warping function p.
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2. Preliminaries

In this section we establish our notation and state some basic facts on
warped products of Riemannian manifolds and their isometric immersions
into the standard real space forms.

Given a a vector bundle E over a Riemannian manifold N, we denote by
['(E) the set of all locally defined smooth sections of E. If N = L x M is a
product manifold, we denote by H and V the horizontal and vertical subbun-
dles of TN, that is, the distributions on N corresponding to the product foli-
ations determined by L and M, respectively. Elements of T'(H) will always be
denoted by the letters X, Y, Z, and those in T'(V) by the letters U, V, W. The
same applies to individual tangent vectors. A vector field X € I'(H) (resp.,
V e I(V)) is said to be the lift of a vector field X € I'(TL) (resp., V € T'(TM))
if 7.,X = Xomyg (resp., T,V = Vo 7 ), where m: L x M — L (resp.,
7wy L x M — M) is the canonical projection onto L (resp., M). We denote
the set of all lifts of vector fields in L (resp., M) by L(L) (resp., L(M)), and
we always denote vector fields in L and M with a tilde and use the same
letters without the tilde to represent their lifts to N.

If L and M are Riemannian manifolds with Riemannian metrics (, ) and
(', ), respectively, the warped product N = L x, M with warping function
p € C*(L) is the product manifold L x M endowed with the warped product
metric

< ) )ZWL*< ) >L+(pO7TL)27TM*< ) >M

We always assume N to be connected. The Levi-Civita connections of N, L
and M are related by (cf. [17])

(1) VxY is the lift of VXY,

(2) VxV =VyX =—(X,n)V,
(3) (VvW)y is the lift of VYW,
(4) (Vv W)y = (V,W)n,

where X, Y € L(L), V,W € L(M) and n = — grad(log por,). Here and in the
sequel, writing a vector field with a vector subbundle as a subscript indicates
taking the section of that vector subbundle obtained by orthogonally project-
ing the vector field pointwise onto the corresponding fiber of the subbundle.
Observe that the formula VxV = —(X,n)V (resp., Vv X = —(X,n)V) is
tensorial in X (resp., V), hence it also holds for horizontal (resp., vertical)
vector fields that are not necessarily lifts. On the other hand, it characterizes
vertical (resp., horizontal) vector fields that are lifts.
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Recall that a vector subbundle E of T'N is called totally geodesic or au-
toparallel if VxY € T'(E) for all X,Y € T'(E). Tt is called totally umbilical if
there exists a vector field n € I'(E+) such that (VxY)g1 = (X,Y)n for all
X,Y e I'(E). If, in addition, the so called mean curvature normal n of E sat-
isfies (Vxn)gr = 0 for all X € T'(E), then E is said to be spherical. A totally
umbilical vector subbundle E of T'N is automatically integrable, and its leaves
are totally umbilical submanifolds of N. If F is totally geodesic or spherical
then the leaves are totally geodesic or spherical submanifolds of N, respec-
tively. By a spherical submanifold we mean a totally umbilical submanifold
whose mean curvature vector field is parallel in the normal connection.

It follows from (1) and (4), respectively, that H is totally geodesic and that
V is totally umbilical with mean curvature normal n = — grad(logp o 7).
Moreover, since 7 is a gradient vector field and H is totally geodesic we have

<VV"7aX> = <VX"7a V> =0

for all X € T'(H) and V' € I'(V), and hence V is spherical. The following
extension due to Hiepko of the well-known decomposition theorem of de Rham
shows that these properties characterize warped products.

THEOREM 1 ([11]). Let N be a Riemannian manifold and let TN = H®V
be an orthogonal decomposition into nontrivial vector subbundles such that H
is totally geodesic and V is spherical. Then, for every point zg € N there exist
an isometry ¥ of a warped product L x, M onto a neighborhood of zy in N
such that U(L x {z}) and V({y} x M) are integral manifolds of H and V,
respectively, for all y € L and x € M. Moreover, if N is simply connected
and complete then the isometry ¥ can be taken onto all of N.

Given a warped product N = L x, M, the lift of the curvature tensor MR
of M to N is the tensor whose value at E1, Fo, B3 € T, N is the unique vector
in V, that projects to ™ R(mar E1, mar E2)mar. E3 in Trri(yM. The lift of
the curvature tensor R of L is similarly defined. Then the curvature tensors
of L, M and N are related by

(5) R(X,Y)Z = *R(X, Y)Z

(6) R(X,Y)V = R(V,W)X

(7) R(X,U)V = (U, V>(VX77_ <777X>n),

(8) R(V, W)U MRV, W)U — [n|>(W, U)V = (V,U)W).

Since Vxn — (n, X)n € H because H is totally geodesic, all the information
of (7) is contained in

(9) (RX, V)W, Y) = (V,W)(Vxn — (X, n)n,Y).

The starting point for the proof of the main results of this paper is the
observation that the curvature relations (5) to (8) impose several restrictions
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on the second fundamental form a: TN x TN — TLN of an isometric
immersion f: N — Qf when combined with the Gauss equation for f.

PRroOPOSITION 2. Let f: L X, M — QF be an isometric immersion of a
warped product. Then the curvature-like tensor
(10) C(E1, E2,Es,Ey) : = (R(E1, E2)Es, Ey) — ¢((E1 N E2)Es, Ey4)
= (a(E1, Ey), a(Es, E3)) — (a(E1, E3),a(Ey, Ey))

satisfies

(11) CX, V. WY) = (V,W)(Vxn— (X,n)n —cX,Y),
(12) C(X,Y,v,2) =0,

(13) CX,)Y, VW) =0,

(14) C(X,U,V,W)=0

We now introduce the notion of a warped product of isometric immersions
into Q¢ which plays a fundamental role in this paper. This relies on the
warped product representations of QF, that is, isometries of warped products
onto open subsets of QFf. All such isometries were described by Nélker for
warped products with arbitrarily many factors; see [16] for details. In partic-
ular, any isometry of a warped product with two factors onto an open subset
of Q! arises as a restriction of an explicitly constructible isometry

T VET(C Q™) %0 Q- Q

onto an open dense subset of Qf, where Q" is a complete spherical sub-
manifold of Qf and V=™ is an open subset of the unique totally geodesic
submanifold Q=™ of Qf (of constant sectional curvature c if £ —m > 2)
whose tangent space at some point z € Q7" is the orthogonal complement of
the tangent space of Q" at z. The isometry U is, in fact, completely deter-
mined by the choice of Q" and of a point z € Q7", and it is called the warped
product representation of Qf determined by (2, Q). If ¢ # 0, we consider
the standard model of Q as a complete spherical submanifold of @ “*!, where
O denotes cither the Euclidean space Rt if ¢ > 0 or the Lorentzian space
L1 if ¢ < 0. Then, for ¢ # 0 the warping function ¢ is the restriction to
V4= of the height function z — (z,a) in O“*!, where —a is the mean curva-
ture vector of Q2 in O**! at z. Similarly, if ¢ = 0 then o(2) = 1+ (2 — 2, a),
where —a is the mean curvature vector of Q" in Qf =R’ at z. In every case
(a,a) = é.

DEFINITION. Let U: V=™ x,. Q" — Qf be a warped product represen-
tation, let hy: L — V" and hy: M — Q7" be isometric immersions, and let
p = oohy. Then the isometric immersion f = Wo(hyxhg): N = Lx,M — Qf
is called the warped product of the isometric immersions hy and ho determined
by .
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VT X, QF
L4
hy ha
O
L Xp:aohl M QCK

f:\I/O(h1><h2)

ExAMPLE 3. If N = L x, M is not a Riemannian product and hy is
an isometry, then f is called a rotational submanifold with profile h;. This
means that V=™ is a half-space of a totally geodesic submanifold Q=™ c Q/f
bounded by a totally geodesic submanifold Q/~™~! and f(IV) is the subman-
ifold of Qf generated by the action on hi(L) of the subgroup of isometries of
Q/f that leave Qf~™~! invariant.

ExampLE 4. If N = L x, M is not a Riemannian product and hy: L —
V=™ is a local isometry then, for ¢ = 0, we have that f(NN) is contained in the
product of an Euclidean factor R*~™~1 with a cone in R™*! over hy. If ¢ # 0,
then f(NN) is the union of open subsets of the totally geodesic submanifolds
of Qf through the points of ho(M) C Q7" whose tangent spaces at the points
of ho(M) are the normal spaces of Q2 in Q/.

Notice that any warped product of isometric immersions in codimension one
must be as in one of the preceding examples. In codimension two only a third
possibility arises, namely, the case in which both h; and ks are hypersurfaces.

Important special cases of warped products of isometric immersions arise as
follows. Let Qf! and Q2 be complete spherical submanifolds of Q/ through
a fixed point z € Q/ whose tangent spaces at Z are orthogonal and whose
mean curvature vectors 11 and o at Z satisfy (i1,12) = —c and ¢ (resp.,
12) is orthogonal to T:Qf2 (resp., T:Qfr). Let ¥: V7% x, Q2 — Qf
be the warped product representation of Q! determined by (2, @f;). Then
Qfr c V¥ and 0 oi = 1, where i: Q — V2 is the inclusion map.
The warped product ¥ o (i x id): Q% x Qf2 — QF of the inclusion and the
identity map is an isometric embedding called the isometric embedding of the
Riemannian product Qfll X ij into Qf as an extrinsic Riemannian product.

The structure of the second fundamental form of a warped product of
isometric immersions is described in the following result.

PROPOSITION 5. Let N = L x, M and N=1L Xp M be warped product
manifolds, and let F: L — L and G: M — M be isometric immersions with
p=poF. Then f = F xG: N — N is an isometric immersion and at
z=(y,x) € N we have

() np, fT.N = F.T,L, 7; TN = TyLL, T fe LN = G. T, M,
T N =T - M.
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(i) (gradp (F(y)))rsr = gradp(F(y)) — F.gradp (y).
(ili) The second fundamental forms of F, G and f are related by

(15)  my,0f (B1, Ey) = a%(ma By, mar Ba),
(16) ﬂ-l_/*af(E]mEQ) = OéF(T['L*E]_’ 7TL*E2)
= p (W) (mar By, mar B (grad p(F(y))) L

Given an isometric immersion f: N — N, a normal vector ( € TN is
called a principal curvature normal vector at z if the subspace

Ac(z) ={T € T.N : o(T,E) = (T, E)( for all E € T.N}

is nontrivial. In this case A¢(z) is called the eigenspace corresponding to (.
If { = 0 then A(z) := Ag(z) is called the relative nullity subspace of f at z.

COROLLARY 6. Let f be an isometric immersion as in Proposition 5.
Then at z = (y,z) € N we have:

(i) V. C Ac(z) for a principal curvature normal vector ( € T+N if
and only if G is umbilical at © with mean curvature vector my;, ¢ and
75, (= —p‘l(gradﬁ)TyLL. In particular, we have that V, C A(z) if
and only if G is totally geodesic at v and (gradﬁ)TyLL = 0.

(il) H. C A(2) if and only if F is totally geodesic at y.

Given a vector a # 0 in either R® or O**!, according as ¢ = 0 or ¢ # 0, let
U be the vector field on Q/ defined by U, = a — c(a, 2)z and let F* be the
1-dimensional totally geodesic distribution generated by U on the open dense
subset W¢ = {z € Qf : U, # 0}. Notice that Qf \ W is empty for ¢ = 0 as
well as for (¢ < 0,{a,a) > 0), and contains one point for (¢ < 0, (a,a) < 0)
and two points for ¢ > 0. Observe also that for ¢ = 0 (resp., ¢ # 0) the
vector field U is the gradient of the function o: Qf — R given by o(z) =
1+ (z — 2,a) for a fixed z € QF (resp., o(z) = (z,a)), which was used in the
definition of a warped product representation of Qf. We say that an isometric
immersion g: LP — Qf is cylindrical with respect to a if g(L) C W and F° is
everywhere tangent to g(L), or equivalently, if Uy, = grad o(g(y)) is nonzero
and tangent to g(L) for any y € L. The last assertion in Corollary 6-(i) yields
the following result.

COROLLARY 7. Let f = Vo (FxG): N=Lx,M — QFf be a warped
product of isometric immersions, where U: V=™ x Q" — Qf is a warped
product representation determined by (Z,QF). If G is totally geodesic and F
1s cylindrical with respect to the mean curvature vector —a of QT at Z in either
R¢ or O, according as ¢ = 0 or ¢ # 0, then the vertical subbundle of TN
is contained in the relative nullity subbundle of f. Conversely, if the vertical
subbundle of TN is contained in the relative nullity subbundle of f then G
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is totally geodesic and F|y is cylindrical with respect to the mean curvature
vector —a of QI' at Z; here U is the open subset of L where grad p does not
vanish.

Iff: Lx, M — Qf is a warped product of isometric immersions, then
it follows from Proposition 5-(ii) that at any point z € L x M its second
fundamental form satisfies

(17) a(X,V)=0 forall X €H, and V € V..

The following theorem due to Nolker states that the converse is also true.
Recall that the spherical hull of an isometric immersion G: M — Qf is the
complete spherical submanifold of least dimension that contains G(M).

THEOREM 8 ([16]). Let f: L x, M — Qf be an isometric immersion
of a warped product whose second fundamental form satisfies condition (17)
everywhere. For a fized point (§,%) € L x, M with p(g) = 1, let F: L —
QFf and G: M — Qf be given by F(y) = f(y,%) and G(z) = f(y,x), and
let QY be the spherical hull of G. Then (f(y,z), Q") determines a warped
product representation W: V=™ x, QM — QF such that F(L) C V=™ and
f=To(F xG), where in the last equation F and G are regarded as maps
into V™ and QZ", respectively.

The preceding theorem is also valid for isometric immersions of warped
products with arbitrarily many factors (see [16]). It contains as a particular
case the following result due to Molzan (cf. Corollary 17 of [16]), which is an
extension to nonflat ambient space forms of the main lemma in [14].

COROLLARY 9 ([13]). Let f: LxM — QF be an isometric immersion of a
Riemannian product whose second fundamental form satisfies condition (17)
everywhere. For a fized point (§,%) € L x M define F: L — QFf and G: M —
Qf by F(y) = f(y,Z) and G(z) = f(y,x), and denote by QL' and Qf2 the
spherical hulls of F(L) and G(M), respectively. Then F and G are isometric
immersions and there exists an isometric embedding P : Qfll X ij — Qf as
an extrinsic Riemannian product such that f = ® o (F' x G), where in the last

equation F and G are regarded as maps into Qfll and ij, respectively.

In applying Theorem 8 one must often be able to determine the dimension
of the spherical hull of G. In the remainder of this section we develop a tool
for computing this dimension.

Given an isometric immersion g: M™ — Qf, a subbundle Z of the normal

bundle of g is called umbilical if there exists § € T'(Z) such that
(@(Ev, E2))z = (B, Ex)0

for all Eq, By € T(TM). We say that 6 is the principal curvature normal of
Z. If n > 2 and the subbundle Z is parallel in the normal connection, then
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the Codazzi equations of g imply that the vector field 6 is also parallel in the
normal connection. In particular, it has constant length. If g(M™) is contained
in a complete spherical submanifold Q2 of Q/ with dimension m and constant
sectional curvature ¢, then the pulled-back subbundle Z = g*TLQ?, where
Tl(@g” is the normal bundle of Q7" in Q/f, is an umbilical parallel subbundle
of T+M of rank £ — m. Conversely, we have the following result due to Yau.

PROPOSITION 10 ([20]). Letg: M™ — Qf, n > 2, be an isometric immer-
sion. Assume that there exists an umbilical parallel subbundle Z of T+ M with
principal curvature normal 6 and rank £ — m. Then there exists a complete
spherical submanifold Q7' of QFf with dimension m and constant sectional
curvature ¢ = ¢+ ||0||? such that g(M™) C Q7.

As a consequence, the dimension of the spherical hull of an isometric im-
mersion can be characterized as follows.

COROLLARY 11. Let g: M™ — QF, n > 2, be an isometric immersion.
Then the dimension of the spherical hull of g is m if and only if £ —m is the
mazimal rank of an umbilical parallel subbundle Z of T+M. Moreover, the
spherical hull of g has constant sectional curvature ¢ = c + ||6]|?, where 0 is
the principal curvature normal of Z.

COROLLARY 12. Let f: NPT" = LP x,M"™ — QF, n > 2, be an isometric
immersion of a warped product whose second fundamental form satisfies (17)
everywhere. Given § € L with p(y) = 1, let G: M — QF be defined by
G = f oig, where izg: M™ — NPT given by iz(z) = (y,z) is the (isometric)
inclusion of M™ into NP*™ as a leaf of the vertical subbundle V. Then the
spherical hull of G has dimension m = { —p — k, where k is the maximal rank
of a parallel subbundle Z of igTLN such that

(18) o (iy, Vyig W)z = (V,W)0

for some 0 € T'(Z) and for all V,W € I'(TM). If Z is such a subbundle, then
0 € T'(Z) is parallel, hence has constant length. Moreover, the spherical hull
of G has constant sectional curvature ¢ + ||]|? + | gradlog p()||*.

Proof. The normal bundle of ij is i;’H, where H is the horizontal subbundle
of TN, hence the normal bundle of G splits as
TeM =i;TEN @ fiirH
and the second fundamental form of G splits accordingly as
(19) aC(V,W) = ol (ig, V,ig W) + (V. W) f(n 0 i),

where n = — grad(log powy) is the mean curvature normal of V. In particular,
it follows that f.iz/H is an umbilical subbundle of Té-M with principal cur-
vature normal f.(n oiz). Moreover, using that the second fundamental form
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of f satisfies (17) it follows that f.i;H is parallel in the normal connection of
G. It is now easily seen that a subbundle Z of i;TLN is parallel and satis-
fies (18) if and only if Z @ f.i;H is a parallel umbilical subbundle of TAM
with principal curvature normal 6 + f.(n oiy). The conclusion follows from
Corollary 11. O

In the sequel only the following two special cases of Corollary 12 will be
needed, in which the assumptions in part (i) (resp., (ii)) easily imply that the
vector subbundle Z equals i TN (resp., {0}).

COROLLARY 13. Under the assumptions of Corollary 12 we have:

(i) If the vertical subbundle V is contained in the eigendistribution cor-
responding to a principal curvature normal ( of f, then the spheri-
cal hull of G has dimension m = n and constant sectional curvature
¢=c+|l¢oigl* + |l grad log p()]*.

(ii) If there exists no local vector field & € D(ifT+N) such that Ag oly, =
Xig, for some X € C°°(M), then the spherical hull of G has dimension
m = £ —p and constant sectional curvature ¢ = c+ || grad log p(7)|?.

3. The results

Our main result provides a complete local classification of isometric immer-
sions f: LP x, M™ — QP2 of a warped product under the assumptions
that n > 3 and that NPT = LP x , M™ is free of points with constant sectional
curvature c. Here and in the sequel it is always assumed that p,n > 1, and
only further restrictions on those dimensions are explicitly stated.

THEOREM 14. Assume that a warped product NPT" = LP x, M™ with
n > 3 is free of points with constant sectional curvature c. Then for any
isometric immersion f: NPT" — QP2 there exists an open dense subset
of NP*™ each of whose points lies in an open product neighborhood U = L} x
MEF C LP x M™ such that one of the following possibilities holds:

(i) flu is a warped product of isometric immersions with respect to a
warped product representation W: VPtk ><UQE""HCz — QP2 ky +
ko = 2.
Vptk i Qrth
g ¢
v

hy ‘ ho .
L X o, Mg Qrt2
f‘U =Vo (hl X hg)




(i)

(iii)
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flu is a composition H o g of isometric immersions, where g is a
warped product of isometric immersions g = W o (hy X hg) determined

. 3 k n+k 1
by a warped product representation W: VPTF x  QITF — QpFnt
with k1 + ko = 1, and H: W — QPT"+2 js an isometric immersion
of an open subset W D g(U) of QpTn+i,

Veth QR v W C Qpinl
hy ‘ ha O H
L§ Xgon, Mg - Q2

f|U:HO\I’O(h1Xh2)

There exist open intervals I,J C R such that Lf, M, U split as
LE =L x, I, My = J x,, M"" and
U= Lg_l Xpy (I X pg J) x5 Mg™H),
where py € C= (LA™Y, py € C®(J), ps € C(I) and p e C®(I x J)
satisfy
p=(prompp-)(psomr) and p= (psomr)(pz2oms),
and there exist warped product representations

Uy VP lxg, QP2 — QPP and Wa: W x,, Q77— Q2T

c
an isometric immersion g: I x 3 J — W* and isometries i : Lg_l —
Wr=t c VPt c QP! andiy: M1 — Wl c Q2 onto open
subsets such that fly = ¥y 0 (i1 x (Vg0 (g X i2))), p = 02 0¢g and
p1 = o10i1. Moreover, L has constant sectional curvature c if p > 2.

fol % Qp+3 \Ill Qp+n+2
g1 C c
U
wr—1
U, O
. W x,, Q&1 flu =10 (i1 x (Vz0(g xi2)))
11 U
Wn—l
g
19

-1 n— n
L X gy — oo (IX py J) X peryog MG Y) = U = LB x, M}
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In case (iii) the isometric immersion g: I x,, J — W* is neither a warped
product g = W30 (a x 3), where Wg: Vithkr » Qész — QfF is a warped
product representation with k1 + ko = 2 and a: I — V'*5 and g: J —
Qél+k2 are unit speed curves with p3 = o3 o o, nor a composition H o G of
such a warped product G = U3 o (a x 3), determined by a warped product
representation Wz: V1th x Qél+k2 — Q2 as before with k; + ke = 1, and
an isometric immersion H of an open subset W O G(I x J) into Q2. It would
be interesting to exhibit an explicit example of such an isometric immersion.
Notice that it must satisfy the additional condition o509 = (p3omy)(p20my)
for some pa € C(J).

Cases (i)—(iii) are disjoint. In fact, we will prove that under the assump-
tions of the theorem there are three distinct possible structures for the second
fundamental form of f, each of which corresponds to one of the cases in the
statement.

Notice that the conclusion of the theorem remains unchanged under the
apparently weaker assumption that the subset of points of NP™" with constant
sectional curvature ¢ has empty interior.

Theorem 14 does not hold without the assumption that n > 3. In fact,
we argue next that local isometric immersions of the round three-dimensional
sphere S3 into R® are generically as in neither of the cases in the statement
with respect to any local decomposition of S® as a warped product.

ExAMPLE 15. It was shown in [8] (cf. Corollary 4 in [9]) that local iso-
metric immersions of S? into R® that are nowhere compositions (i.e., on no
open subset they are compositions of the umbilical inclusion into R* with a
local isometric immersion of R* into R®) are in correspondence with solutions
(V,h) on open simply connected subsets Uy C R? of the nonlinear system of
PDE’s

aV; Ohi,

(Z) aur = hjivvjm (“) au = hijhjka
J J
(1) oo
(%] VK ) ) - - . . .
(iii) au, + du, + Ek hrihi; +VisVis =0, i#j#k#1,

called the generalized elliptic sinh-Gordon equation. Here V: Uy — 01(3)
is a smooth map taking values in the group of orthogonal matrices with re-
spect to the Lorentz metric of signature (+,+,—) and « € Uy +— h(z) is a
smooth map such that h(z) is an off-diagonal (3 x 3)-matrix for every x € U.
More precisely, for any such isometric immersion there exist a local system
of coordinates (uj,uz,us), an orthonormal normal frame {£;,&} and matrix
functions V' and h as above such that

(20) A, X; =V3'Vi Xy, 1<r <2, 1<i<3,
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and
(21) Vojou X; =h;iXi, 1<i#35<3,

where X; is a unit vector field with 9/0u; = V;3X;. The compatibility equa-
tions for f are equivalent to system (I). Conversely, any solution (V,h) of
system () on an open simply connected subset Uy C R? gives rise to such an
isometric immersion by means of the fundamental theorem of submanifolds.

By a theorem of Bourlet (see [4], Théoréme VIII), there exists one and only
one analytic solution (V) h) of system (I) in a neighborhood of an initial value
ug = (uf,u3,ul) such that V(ug) € 01(3) and such that V¥ and hyj, i < j
(resp., i > j) reduce to an arbitrarily given analytic function of u; (resp., u;)
when the remaining variables take their initial values. Thus, for a generic
local analytic solution (V, k) the functions h;; are nowhere vanishing; see the
last section of [9] for explicit isometric immersions with this property.

It follows easily from (20) that no such isometric immersion admits a normal
vector field whose shape operator has rank one. In particular, it can not be
as in case (ii). Also, if f is as in case (i) with respect to a decomposition
U=1" Xp M*2 of U as a warped product, then we must have that ks = 1.
In fact, otherwise the second fundamental form of f would be given by

a(Y,Z) = (Y1, Z1)m + (Ya, Z2)m2

for some normal vector fields 7, 2 satisfying (n1,m2) = 1 = ||n2||, where Y3, Z;,
1 <4 < 2, are the components of Y, Z according to the product decomposition
of U. This easily implies that the shape operator with respect to a normal
vector field orthogonal to 72 has rank one. Thus, the distribution tangent to
the second factor is one-dimensional and invariant by all shape operators of
f, and hence it must be spanned by one of the vector fields X;, 1 < i < 3,
say, X3. In particular, this implies that the distribution spanned by X7, X5
is totally geodesic, and hence the functions hz; and hzo vanish everywhere by
(21). Finally, we claim that the same holds if f is as in case (iii). In effect, in
this case U splits as a warped product

U=L'%,Q%=L"x, (J x5 M') = (L' X J) X(p0m,1) M",

and f is a warped product f = g x ¢ with respect to the last decomposition.
Thus, we have again that the one-dimensional distribution tangent to M?! is
invariant by all shape operators of f, and the same argument used in the
preceding case proves our claim. It follows that f is generically as in neither
of the cases in Theorem 14 with respect to any local decomposition of S? as
a warped product.

We now discuss some further results. The case of hypersurfaces is interest-
ing in its own right. Although it can be proved as a corollary of Theorem 14,
it is easier to derive it as an immediate consequence of Theorem 8 and Propo-
sition 23 of Section 3.
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THEOREM 16. Assume that a warped product LP x, M"™, n > 2, has no
points with constant sectional curvature c. Then any isometric immersion
fr LP x, M™ — QP! is a warped product f = W o (F x G), where
U Vrtk o, QIR QP s o warped product representation with
ki+ko =1and F: LP — VPth G M" — Qg'”” are isometric 1mmersions.

Again, the preceding result is false if the assumption that n > 2 is dropped;
rotation surfaces in R? admit many isometric deformations into nonrotational
surfaces (cf. [2]).

In deriving Theorem 14 we also obtain the following result for the case of
Riemannian products, which extends Theorem 1 in [14] in the case of products
with two factors. Therein, isometric immersions of Riemannian products with
arbitrarily many factors into Euclidean space were shown to split as a product
of isometric immersions under the assumptions that no factor has an open
subset of flat points and that the codimension equals the number of factors.
We point out that in the case of Riemannian products the factors may change
the roles. This observation is applied several times throughout the paper.

THEOREM 17. Let f: LP x M™ — QP+"*2 be an isometric immersion of
a Riemannian product. If ¢ = 0 assume that either LP or M™ has dimension
at least two and is free of flat points. If ¢ # 0 assume that either n > 3 or
p > 3. Then there exists an open dense subset of LP x M"™ each of whose
points lies in an open product neighborhood U = LE x M C LP x M™ such
that one of the following possibilities holds:

Case ¢ = 0.

(i) There exist an orthogonal decomposition RPT"+2 = RpPF+k1 » Rnthe
with k1 + ka = 2 and isometric immersions hy: L) — RP*F gnd
ha: MZ — R"Hk2 sych that fly = hy X ha.

RPH1 Rtk — Rp+n+2

hy b

f|U:h1><h2

Ly x M}

(ii) There exist an orthogonal decomposition RPHnHl = RPHk » Rntkz
k1 + ko = 1, and isometric immersions hy: Lg — RPTF py: Mg —
R™*2 gnd H: W — RPY+2 of an open subset W D (hy % ha)(U) of
RPT L such that fly = H o (hy x hg).
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RPH1 5 RHR2 S W

h1 ha

O
Lg X M(}’ Rp+n+2
f|U =Ho (hl X hg)

Case ¢ # 0.

(i) There exist an embedding ®: QP x QItk2 — QPT+2 a5 an extrin-
sic Riemannian product with ki1 + ko = 1, and isometric immersions
hy: LB — QSH“ and hy: M} — Qc";r’” such that f|ly = ®o(hy xhg).

P

@ngkl XQCZHQ - Qcp+n+2
hy ‘hg O
f|U =do (hl X hg)
Ly x My

(ii) There exist an embedding ®: QF x QF — QP! as an extrinsic
Riemannian product, local isometries iy: Lh — QZF and iz: MY —

oys @nd an isometric immersion H: W — QP+"*2 of an open subset

W D ®o(iy xi2)(U) of QP such that fly = H o ® o (i1 X iz).

®
1
P xQn W c Qptnt
i ‘12 O H
L x Mg Qptnt2

f\U:Hoéo(ilxig)

As an example showing that for ¢ # 0 the assumption that either n > 3 or
p > 3 is indeed necessary, we may take any local isometric immersion of R?
into S that is not a product a x g: I x V — St(ry) x S3(r3), 72 +7r3 =1,
where o I — R? is a unit speed parametrization of an open subset of a circle
of radius r; and g: V — S3(r) is an isometric immersion of an open subset
V C R2. Recall that local isometric immersions of R? into S® were shown in
[19] to be in correspondence with solutions on simply connected open subsets
of R? of the so-called generalized wave equation. As in the previous discussion
on local isometric immersions of S® into R®, one may easily argue that the
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class of local isometric immersions of R3 into S° that are given as products
as just described is only a rather special subclass of the whole class of such
isometric immersions.

We now give precise statements of the applications of Theorem 14 referred
to at the end of the introduction. Recall that an isometric immersion F': LP —
QPT™ is said to be locally rigid if it is rigid restricted to any open subset of
LP.

COROLLARY 18. Let LP be a Riemannian manifold, no open subset of
which can be isometrically immersed in QPTY. If f: LP x, M™ — QPt"+2,
n > 3, is an isometric immersion, then there exist a warped product represen-
tation U: VPT2x QI — QP2 an isometric immersion F: LP — VPT2
and a local isometry i: M™ — QI such that f = U o (F x14). In particular, if
L? is a Riemannian manifold that admits a locally rigid isometric immersion
F: LP — QP*2, then the preceding conclusion holds and, in addition, the
isometric immersion f is also locally rigid.

Proof. By Theorem 14, any isometric immersion f: LP x, M"™ — QFT"+2,
n > 3, must be locally as in one of the three cases described in its statement.
However, under the assumption that LP has no open subset that can be iso-
metrically immersed in QT it follows that f|y can not be as in case (ii)
on any open subset U = Lh x MJ C LP x M™, for there can not exist by
that assumption any isometric immersion hy: L — QPR with 0 < ky < 1.
Moreover, f|y can not be as in case (iii) either on any such open subset, for
in that case Lf would have constant sectional curvature ¢, and hence it would
admit locally an isometric immersion into Q?*!. Therefore f must be globally
as in case (i). The last assertion is now clear. t

We say that a Riemannian manifold can be locally isometrically immersed
in Qf if each point has an open neighborhood that admits an isometric im-
mersion into Qf. Arguing in a similar way as in the proof of Corollary 18
yields the following result.

COROLLARY 19. Let L? be a Riemannian manifold that cannot be locally
isometrically immersed in QP*2. Then LP X, M™ can not be locally isomet-
rically immersed in QPt"*2 for any Riemannian manifold M" of dimension
n > 3 and any warping function p.

In view of Nolker’s result it is also natural to study isometric immersions
of warped products into space forms in the light of the following definition.

DEFINITION. Let f: LP x, M™ — QFf be an isometric immersion of a
warped product. Given z € LP x, M", we set

a(H,,V,) =span{a(Y,V): Y € H, and V € V,}.
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We say that the immersion f at z is of type
(A4) if dima(H,,V,) =0,ie, aY,V)=0foralY e H, and V € V,,
(B) if dima(H,,V,) =1,
(C) it dima(H,,V,) > 2.

Notice that type A is the case of Nolker’s decomposition theorem. There-
fore, it is a natural problem to determine the isometric immersions that are
everywhere of type B. In the following section we obtain a complete solution
to this problem in the codimension two case under the assumption that n > 3
(for the case of Riemannian products it is enough to assume that p+n > 3);
see the two paragraphs before Proposition 27. The proof of Theorem 14 is
then accomplished as follows: type C' is excluded by Proposition 36, type A
corresponding to Theorem 8 gives case (i), and type B splits into two subcases
B, and B handled in Propositions 27 and 31, respectively, which correspond
to the cases (ii) and (ili). Similarly for the proof of Theorem 17: type C is
excluded by Corollary 37, type A corresponding to Theorem 9 gives subcase
(i) in both cases ¢ = 0 and ¢ # 0, type By handled in Corollary 30 gives sub-
case (ii) in either case, and type Bs is excluded in either case by Corollary 34
and Corollary 32, respectively.

4. Immersions of type B

Our main goal in this section is to provide a complete local classification
of isometric immersions f: LP x, M™ — QP*"*2 that are everywhere of type
B under the assumption that n > 3. A similar classification for the special
case of isometric immersions of Riemannian products is also given, for which
it is enough to assume p +n > 3.

First we determine the pointwise structure of the second fundamental forms
of isometric immersions of type B, starting with some general facts that are
valid in arbitrary codimension.

LEMMA 20. Let f: LP x, M™ — Qf be an isometric immersion of a
warped product. Assume that f is not of type A at a point z € NPT" =
LP x, M"™ and that for every Y € 'H, the linear map
(22) By: V, = TIN, Visa(Y,V),

satisfies rank By < 1. Then there exists a unit vector e € V,, uniquely deter-
mined up to its sign, such that

(23) a(Y,V) =(V,e)a(Y,e)
and
(24) a(V.W) = (Vie)(W,e)ale,e) L a(H., V)

forallY € H, and V,W € V,.
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Proof. Let X € H, be such that rank Bx = 1. Then D(X) := ker Bx has
codimension 1 in V,. Let e € V, be one of the unit vectors perpendicular to
D(X) and write Bxe = A\¢, where A # 0 and ¢ € TN is a unit vector. Let
Y € H, and V € D(X) be arbitrary vectors. Then (13) implies

(25) (Bxe, ByV) = (a(X,e),a(Y,V)) = (a(X,V),a(Y,e))
= (BxV,a(Y,e)) =0.

Now consider the linear map Bx iy for arbitrary ¢ € R. By assumption its
rank is at most 1. Therefore the vectors Bxiye = A(+tBye and Bx vV =
tByV are linearly dependent, and hence

(Bxtive, Bxtiye)(Bx vV, Bxt1yV) — (Bxyive, Bx+y'V)? = 0.

As the left hand side of this equation is a polynomial Z?:z a;t?, its coefficients
must vanish; in particular, because of (25) we obtain 0 = ay = \?||By V|2
Hence By |p(x) = 0, and (23) follows.

By means of (14) we derive

(a(V,W),a(Y,e)) = (aY,V),ale, W)) = (V,e)(ale, W), a(Y €)).
Applying this result to a(W, e) instead of a(V, W) we obtain
(a(V,W) = (V,e}(W,e)a(e, ), Y, €)) = 0,
which implies (24) in view of (23). O
LeMMA 21. Let f: LP x, M"™ — Qf be an isometric immersion of a
warped product. Assume that f is of type B at z € NPT™ = LP x, M".

Then there exist unique, up to their signs, unit vectors X € H,, e € V, and
£ €TEN, and B,y € R with A\ # 0 such that

(26) (@Y, 2),€) = Y, X)(Z, X),
(27) a(Y,V) = MY, X)(V,e)¢,
(28) (a(V,W),&) =7V, e)(W,e),
(29) (Pa(Y, Z), Pa(V,W) — (V,W)Pa(e,e))
= (By = )Y, X)(Z, X)(PV,PW),
where P: T+N — TEN and P: V, — V, denote the orthogonal projections

onto the subspaces {€}+ C TN and {e}*+ C V., respectively. Moreover, if
NP = [P x M"™ is a Riemannian product then

(30)  (Pa(Y,2), Pa(V,W)) + (By = N*){Y, X}{Z, X)(V, e)(W, e)
4 e{Y, Z)(V, W) = 0.
Proof. Let ¢ € TN be a unit vector such that a(H,,V,) = R¢. Given

Y € H., then By takes its values in R¢, and hence rank By < 1. Thus, we
may apply Lemma 20. On the other hand, since the linear map H, — T;}* N
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defined by Y — (Y e) also takes its values in R ¢, it follows that, up to sign,
there exists exactly one unit vector X € H, perpendicular to its kernel. Set
v = {ale,e),&), A = (a(X,e),&) and 5 = (a(X, X),&). Notice that A # 0
because f is of type B at z. We obtain (28) from (24), whereas (27) follows
from (23) and a(Y,e) = (Y, X)a(X,e) = A(Y, X)¢. Using (12) we obtain

Ma(Y; 2),8) = (oY, 2), a(X, e)) = (X, Z), (Y, €)) = MY, X)(a(X, Z), §),

and applying this result to «(Z, X) instead of a(Y, Z) we end up with (26).
We obtain from (11), (26), (27) and (28) that

(V,W)(Vyn — (Y,n)n — cY, Z)
= (a(Y,Z),a(V,W)) = (a(Y,W),a(Z,V))
= (By = XY, X)(Z, X)(V,e) (W, e) + (Pa(Y, Z), Pa(V,W)).

This yields (30) if NPT™ = LP x M" is a Riemannian product. In the general
case, putting W =V = e we get

(Vyn = (Yomn —¢Y, Z) = (By = M*)(Y, X)(Z, X) + (Pa(Y, Z), Pa(e, ¢)).
The two preceding equations yield
(Pa(Y, Z), Pa(V,W) = (V,W)Pa(e, )
= (By = M)V, X)(Z, X)((V, W) — (V. e)(W,e)),
which coincides with (29). O

REMARK AND DEFINITION 22. Equations (26), (27) and (28) are equiva-
lent to

(31) AY = (Y, X)(BX + Ae), AV = (V,e)(AX + ve),
and
(32) Pa(Y,V) = 0.

In particular, it follows from (31) that the rank of A, at z is either 1 or 2,
according as By — A? is zero or not. We say accordingly that f is of type B;
or of type By at z.

We now show that in the case of hypersurfaces f: LP x, M™ — QP!
n > 2, only types A and B; can occur pointwise.

PROPOSITION 23. Let f: LP x, M™ — QP! n > 2, be an isometric
immersion of a warped product. Then, at any point z € NPT = LP X, M™
either f is of type A or of type By. Moreover, in the latter case NPT™ has
constant sectional curvature ¢ at z.
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Proof. Assume that f is not of type A at z. Since n > 2, we may choose a
unit vector V € {e}*+ C V,. Applying (29) for W =V and Z =Y = X, and
using that P = 0, it follows that 8y — A2 = 0. Therefore f is of type By at z.
The last assertion follows from the Gauss equation of f. O

Theorem 16 now follows by putting together the preceding result and The-
orem 8. For Riemannian products we obtain the following corollary.

COROLLARY 24. Let f: LP x M™ — QPT™*L be an isometric immersion
of a Riemannian product. Assume that p+mn > 3 and, if c =0, that either LP
or M™, say, the latter, has dimension at least two and is free of flat points.
Then f is of type A everywhere and we have:

(i) If c = 0 there exist an orthogonal decomposition RPT"+ = RP@RHL
a local isometry i: LP — RP and an isometric immersion h: M"™ —
R™ such that f =i x h.

(ii) If ¢ # 0 there exist an embedding ®: QP x QF — QP+ as an
extrinsic Riemannian product and local isometries i1: LP — QF and
ig: M™ — QL such that f = ® o (i1 X i).

From now on we consider isometric immersions f: LP x, M™ — QFT"+2,
Assume that f is of type B at a point z € NPT™ = LP x, M" and let
X,e, &, 0, )and v be as in Lemma 21. Choose one of the unit vectors 5 €T+N
perpendicular to &, and define the symmetric bilinear forms

B: Mo xH. =R, (Y, Z) = (oY, 2),8)

¥ Vex V. =R, (VW) = (a(V,W), ).
Set also By = B(X,X), o = F(e, e) and 80 := BoYo+B7—A2. Then Lemma 21

can be strengthened as follows.

PROPOSITION 25. Let f: LP x, M™ — QP2 be an isometric immer-
sion. Assume that f is of type B at z € NPT"™ = LP x, M™. With the
preceding notations we have:

(i) If f is of type By at z, then one of the following (not exclusive) pos-
sibilities holds:

FV, W) =(V,W)jo or B=0.
(ii) If n > 2 and f is of type Bs at z, then
(33) BY.2) = (Y, X)(Z.X)Fo with fo £0, and
(34) Bo (V. W) = (V. W)y — (By — A) (V) (W, ).

Proof. Equation (29) now reads
(35) B, Z)FHV,W) = (V,W)Fo) = (By = N)(Y, X)(Z, X)(PV, PW).
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If By — A% = 0 then the preceding equation proves assertion (i). Choosing
Y =7 =X in (35) yields

(36) o (V. W) = (V.W)o) = (By = A)(PV, PW).

Using (36), n > 2 and (#y — A\* # 0 we derive Bo # 0 and from (35) it follows
that 5(Y, Z) = (Y, X)(Z, X)By. Finally, (36) also yields (34). d

Taking into account (30) we have the following additional information in
the case of Riemannian products.

COROLLARY 26. Let f: LP x M™ — QPT"*2 be an isometric immersion
of a Riemannian product. Assume that f is of type B at z € LP x M™. Then,
with the preceding notations, we have that 5g = —c and, in addition:

(i) If f is of type By at z, then
BY,Z) = (Y, Z2)Bo, AV, W)=(V,W)3 and Boo+c=0.
(ii) If p,n > 2 and f is of type By at z, then ¢ = 0,
(37) B, Z) = (Y, X)(Z,X)fo, and A(V,W) = (V,e)(W,e)T.

In the remainder of this section we make a detailed study of isometric im-
mersions f: LP x, M™ — QP2 n > 2, that are everywhere of type B. In
this case we may choose smooth unit vector fields X, e and & (and hence a
smooth unit normal vector field € orthogonal to & ), and smooth functions 3, A
and v that satisfy pointwise the conditions of Lemma 21. In Propositions 27
and 31 below we classify isometric immersions of types B; and Bs, respec-
tively, the latter only for n > 3. In Corollary 33 we determine the special
subclass of isometric immersions of type By for which 8 in (34) is everywhere
vanishing. Isometric immersions of type B; of Riemannian products with di-
mension p + n > 3 are classified in Corollary 30. In Corollary 32 we show
that there exists no isometric immersion f: LP x M™ — QP2 p+n > 3,
of type By if ¢ # 0 and in Corollary 34 we classify such isometric immersions
for ¢ = 0. This yields a local classification of isometric immersions of type B
in codimension two of warped products L? x, M™ for which n > 3, as well as
of Riemannian products LP x M™ for which p+n > 3.

PROPOSITION 27. Let f: NP*" = LP x, M™ — QP2 n > 2, be an
isometric embedding of type B1. Then f is a composition H o g of isometric
immersions, where g = W o (hy X ha) is a warped product of isometric immer-
sions determined by a warped product representation W: VPHFL x le-‘rk?z —
QPtrtl ki +ko =1, and H: W — QPt"*2 is an isometric immersion of an
open subset W D g(NP™™) of QPT"+1 (see the diagram in Theorem 14-(ii)).
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Proof. Set Ey = (BX + Xe)/||BX + Xe||. Since By — A% = 0 we have that
A(BX + de) = B(AX + ve), and hence (31) yields
(38) A¢E = (B+7)(E,E))Ey for all E € (TN).

Observe that 8+ # 0 because 3y — A% > 0. The Gauss equation for f and
the fact that A¢ has rank 1 imply that Aé satisfies the Gauss equation for
an isometric immersion of NP into QP*"*!. We claim that it also satisfies
the Codazzi equation for such an isometric immersion. Define a connection
one-form w on NP*" by w(E) = (V5¢, €). By the Codazzi equation for f we
have

(39) (VElAé)EQ - (VE,‘,A&':)El = w(EQ)AfEl - W(EI)A§E2.

The following fact and (38) imply that the right hand side of (39) vanishes,
and the claim follows.

Fact 28. The one-form w satisfies w(E) = (E, Ey)w(Ep) for all E €
['(TN), or equivalently, w(E) =0 for all E € T'(ker A¢).

In proving Fact 28 it is useful to observe that
(40) ker ¢,y = {Eo(2)}" = span{\(V,e)Y — B(Y, X)V: Y € H.,V € V.}
(41) =span{\Y, X)V —~v(V,e)Y: Y e H,,V € V. }.

By Proposition 25-(i), at each point z € NPT™ either Ag\vz = 4y id, where
id denotes the identity tensor, or Ag[s, = 0. Since w(E) is a continuous
function, it suffices to prove that w(E)(z) = 0 at points z € NPT that are

contained in an entire neighborhood U C NPT in which one of the preceding
possibilities holds everywhere.

Case Agly =70 id. For Y € L(L?) and V,W € L(M") we obtain using (2)
and (4) that
(42) (Vv AV = (Vv Ap)Y, W) = (Vy AV — Vv AsY — A Y, V], W)
(43) =(Vy(%V), W) + (4gY, Vy W)
(44) — (Y (50) + ((Ag — 0 i)Y, ) (V, W).
On the other hand, by the Codazzi equation we have
(Vy AV = (Vv A Y, W) = (w(V)AY —w(Y)AV, W)
= (W e)w(\Y, X)V —(V,e)Y),
where in the second equality we have used (31). Thus
(45) (Y (0) + ((Ag = %0 i)Y, m)(V, W) = (W, e)w(AY, X)V —4(V,€)Y)

for all Y € L(LP) and V,WW € L(M™). As these equations are tensorial, they
are also valid for arbitrary horizontal (resp., vertical) vector fields Y (resp.,
V,W). In particular, if we apply (45) for W = V orthogonal to e we obtain
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that the expression between parentheses on the left-hand-side vanishes. Then,
for W = e this yields

WY, X)V = 4 (V,e)Y) =0,
thus proving Fact 28 by (41) in this case.

Case Agly = 0. Using (1) we obtain for Y,Z € L(LP) and V € L(M")
that

(Vv AV, Z) = (Vy AV, Z) — (AVy V. Z)
=Y(A:V,Z) — (AgV,Vy Z) —(VyV,A¢Z) = 0
and, analogously, that
((VVAé)Y, Z)=0.

Using again that these equations are tensorial, we can replace Z by the vector
field X. We obtain from (31) and the Codazzi equation that

w(MV,e)Y — Y, X)V) =0,

which by (40) proves Fact 28 also in this case.

It follows from Theorem 5’ in [7] and the assumption that f is an embedding
that f is a composition f = H o g, where g: NPT" — QPT"*1 is an isometric
immersion such that Aj = Aé for some unit normal vector field d of g, and
H: W — QPF"+2 is an isometric immersion of an open subset W C QP+ +!
containing g(N?*"). Moreover, since A7 = A satisfies Afly. = J id or
Af|n. =0 at any z € NPT" it follows that g is of type A, and the conclusion
follows from Theorem 8. O

REMARK 29. By Proposition 27, if f: NPT" = [P x, M" — QFt"+2,
n > 2, is an isometric embedding of type Bi, then it must satisfy one of the
conditions in Proposition 25-(i) everywhere. Moreover, for n > 1 we have that
both conditions hold simultaneously if and only if the isometric immersion
g: NPT — QP+n+l satisfies AZ|y = 9o id and AJ|y = 0. By Corollary 6,
this is the case if and only if g = W o (hy X hg) with h; totally geodesic and
hs a local isometry, where U: VPHl x QI — QPF"*+! is a warped product
representation determined by (Q2,z). Furthermore, if in addition 59 = 0,
that is, g is totally geodesic, and grad p has no zeros, then Corollary 7 implies
that hy must be cylindrical with respect to a, where —a is the mean curvature
vector of Q2 at z in either RPT"1 or QPT"+2 according as ¢ = 0 or ¢ # 0.
Conversely, if hy is totally geodesic and cylindrical with respect to a and ho
is a local isometry, then g = W o (h; X hs) is totally geodesic.

By using the main lemma in [14] or Corollary 9, according as ¢ = 0 or ¢ # 0,
instead of Theorem 8, we obtain the following result for isometric immersions
of Riemannian products.
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COROLLARY 30. Let f: LP x M™ — QP*"*2 p+n >3, be an isometric
embedding of type By of a Riemannian product.

(i) If ¢ = 0, then there exist an orthogonal decomposition RPT"T2 =
RPHRL s R™R2 with ky + ko = 1 and isometric immersions hy: Lh —
RPHFL By ME — R™F2 and H: W — RPT"2 of an open subset
W D (hy X he)(U) of RPY7HL such that fly = H o (hy X ha) (see the
diagram in Case ¢ = 0—(ii) of Theorem 17).

(ii) If ¢ # 0 there exist an isometric embedding ®: QF x Q2 — Qp+n+!
as an extrinsic Riemannian product, local isometries i1: LP — QF
and iz: M™ — Q2 , and an isometric immersion H: W — Qptnt2
of an open subset W D ®o(iy xiz)(LP x M™) of QP+ such that f =
Ho®o(iy Xig) (see the diagram in Case ¢ # 0—(ii) of Theorem 17).

We now consider isometric immersions f: LP x,M"™ — QP2 of type Bs.
In the following statement, in order not to have to consider separately the cases
p=1and p > 2, we agree that in the first case all information related to the
splitting LP = LP~! X p, I should be disregarded.

PROPOSITION 31. Let f: LPx,M™ — QP2 be an isometric immersion
of type Bs and assume that n > 3. Then locally we have: LP and M™ split as
warped products LP = LP~1 Xpo I and M™ = J X, M1, where I,J C R are
open intervals, and

NPF = LP7E o (I Xy J) x5 M),
where py € C®(LP71), pa € C°(J), p3 € C*°(I) and p € C°°(I x J) satisfy

p=(promp-1)(psomr) and p = (psomr)(p2omy),
and there exist warped product representations
Uy VP, QFF — QT2 and Wa: W x,, Q2 — QU

isometries iy: LP~1 — Wr=t c VP~ c QP! and ip: Mt — Wt C
QMY onto open subsets, and an isometric immersion g: I Xpg J — W of
type By such that p=o090g, py = 01041 and f = ¥y 0 (i1 X (Vg0 (g X i2))).
Moreover, LP has constant sectional curvature c if p > 2 (see the diagram in
Theorem. 14-(iii)).

Proof. We have by (32), (33) and (34) that
(46) AgY = Fo(Y, X)X and AV =bV + (0 — b)(V,e)e,

where b = /3’61 b0. On the other hand, we have that Ag is given by (31). Thus,

for the relative nullity subspace A(z) at z € NPT there are two possibilities:
(X}t cH if dp(z) # 0,

Az) = i i e F

{X}-CcH)® ({e}— CV) if do(z) =0.
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In the remainder of this proof the letters T and S will always denote vector
fields in T({X}+ C H) and I'({e}* C V), respectively. We also denote by
(As,u,v,w) taking the w-component of the Codazzi equation for As and the
vectors u, v.

We first prove that if p > 2 then L? splits locally as LP = LP~ 1 x, I, where
I is an open interval, and that p = (p1 o mp»-1)(ps o my) for some functions
p1 € C°(LP~1) and p3 € C*°(I). We point out that this fact also holds if
n = 1,2. As a first step, we show that the vector field X is the lift of a vector
field X € T(TL). For that, we must prove that

(47) VyX = —(X,n)V.

Notice that (Ag7 X,V,T) reads

(VxAgV = AVxV = Vv A X + AVy X, T) = (w(V)Ae X — w(X)AV, T).
Then, by means of (31) and (46) we obtain

(48) (VyX,T) = 0.

On the other hand, by means of (4),

(49) (Vv X, W) = —(Vy W, X) = —(V,IW)(X,n).

Using also that (Vy X, X) = 0, for X has unit length, we obtain (47) from
(48) and (49). Notice that X has unit length, because

<X,X>L omy, = <7TL*X,7TL*X>L = <X,X>N =1.

We show next that the distribution {X 1} is totally geodesic in L?. In effect,
for any Ty, T» € T({X}+) we have
<V%T27)~(>L oy = (m. V1, T2, 7. X)L = (V1 T2, X)n =0,
where the last equality follows from the fact that the relative nullity distribu-
tion A is totally geodesic and T, Ty € I'(A), whereas X € T'(A™1).
Our next step is to prove that the vector field ¢ =7 —(X,n)X € r{x}h)
is the lift of a vector field ¢ € T({X}%), ie., V¢ = —(¢,n)V. This follows

from
(Vv W) = =((, Vv W) = =(V,IW)(n,¢), (Vv( X)=—((,VvX) =0,
where we have used (47), and from
(Vv(.T) = (Vyn,T) = VX, mNX, T) — (X, n)(VvX,T) =0,

where we have used (47) for the last term and that V is spherical for the first
term.
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Our final step is to show that the distribution {X } is spherical with mean
curvature vector . We have from (A¢, X,e,T) and A # 0 that (VxX,T) =
(Vee,T) = (n,T), and hence

V?{X oy =m5, VxX =7, =C.
On the other hand, we obtain from (11) for Y =T and V = W # 0 that
(Vxn,T) = (X, n)(T,n).
Thus,
(Vx(,T) =(Vxn,T) = (X,n(VxX,T) =0,
and therefore,
<V§~(§, Ty omp = (m0.Vx(m. D) = (Vx(, T)y =0 for T e D({X}H),
which completes the proof of the step.

By Theorem 1, we have that locally L? splits as LP = L~ x,, I, where [
is an open interval and ¢ = — gradlog(p; o 7f»—1). In particular, the lift ¢ of
¢ to NPT is

¢ = —gradlog(pi oTpp-1 0TLp).
Since we also have n = —gradlog(p o m), we obtain (X,n)X =n—( =
—gradlog(ponr) with p = p(p; o wpe—1)"1 € C°(LP). Moreover, since
(T(log 5)) 0 m1s = T(log(p o T1)) = —(X, ))(X,T) =0,
it follows that there exists p3 € C°°(I) such that p = p3 o 7y.

Let us now prove that locally M™ also splits as M™ = J X, M™~1, where
J is an open interval. First, we obtain from (AE,Y,e,S) and b # o that
(Vye,S) =0. Since also (Vye,e) =0, for e has unit length, and (Vye, Z) =
—(VyZ,e) =0, we have
(50) Vye=0.

It follows that
Vy(porr)e=Y(pomp)e=—(Y,n)(pomr)e.

This implies that (pomy)e is the lift of a vector field € € T'(M™). Notice that
€ is a unit vector field, for

(€,8)n o mar = (mars(pe), mars (pe))ar = p~2(pe, pe)n = 1.

Thus, in order to show that locally M™ splits as claimed, by Theorem 1 it
suffices to prove that the distribution {é} is totally geodesic and that {&}* is
spherical.

We obtain from (A¢, X, e, S) and (50) that

(51) (Vee,S) = 0.
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In particular, it follows that V.e = 1. We conclude that the distribution {é}
is totally geodesic from

<Vé~wé, S>M OCTpn = <7TM*vpep€,7rM*S>M = <Vee, S>N =0
for any S € T'({€}*). On the other hand, we obtain from (Ag, S1,e,52) that
<Vsl SQ? €> = 90<Sl7 52>a

where ¢ = (b—40) " 'e(b). Thus, the distribution {e}+ C V is totally umbilical.
Moreover,

(VY 55, &) 0 mar = (T Vs, Sa, marwpe) i = p~ (Vs So, €)
= p (81, Sa) N = pp(St, Sa)ar o T

The preceding equality implies that there exists ¢ € C°°(M™) such that
pp = pomy and that the distribution {¢}+ is totally umbilical with mean
curvature normal @é. In particular, if l~), or equivalently, 50, vanishes on an
open subset LY x M C NP+ then {é} is a totally geodesic distribution in
M. In the general case, in order to show that {¢}* is spherical, it remains
to prove that 5(@) = 0 or, equivalently, that S(p) = 0. First, using that V is
umbilical and invariant by Ag, and that A # 0, we obtain from (Ag,e, S, X)
that V&€ = 0. Now, choosing linearly independent sections Sy, Sy € T'({e}*)
we obtain from (Ag, 1,52, 51) that S(b) = 0. We point out that the assump-

tion that n > 3 is only used here. In particular, if 0y is everywhere vanishing
then it is enough to assume thatn > 2. Using (51) we obtain from (Ag, e, S, €)
that S(J9) = 0. Since V.S € {e}* and Vge € {e}*, as follows from (51) and
the fact that V is totally umbilical, then

Se(b) = eS(b) + V.S(b) — Vse(b) = 0,
and hence S(yp) = 0. Therefore, locally NP+ splits as
NP = Pt MY with M= M? x; M™ ! and M? =1 x,, J,

where J C R is an open interval and p = (pgomy)(p2 omy). Notice that f is of
type A with respect to this decomposition of N?*". We claim that there exist
a warped product representation ¥y : VP~!x, Q2 — QPF"+2 an isometric
immersion G: M"+1 — le% and a local isometry i;: LP~! — VP~ such
that py = 01 041 and f = ¥y o (i1 X é)

Fix g € LP~! with p1(y) = 1 and let i;: M™T! — N™*P be the (isometric)
inclusion of M™*! into N"*? as a leaf of the vertical subbundle V according
to the latter decomposition of N"*P. Define G: M"H1 — QP+"*2 by G =
f oig. By Corollary 13-(ii), in order to show that the spherical hull of G
has dimension n + 3, it suffices to prove that for no point z € N™*P there

exists a unit vector £ € T:-N such that Aglp,: Vo — V, is a multiple of the
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identity tensor. Write £ = cos 0¢ +sin #¢. Then (AgX,e) = 0and (AgX, X) =
(Age,e) = (AgS, S) for any unit vector S € ({e}; C V) if and only if

Acosf =0 and Bosin9+ﬂc030:fycosﬂ+7yosin0 = bsinb.

Since A # 0, we obtain that 5o = b, a contradiction to the fact that 8y—\2 # 0.
Our claim then follows from Theorem 8 by letting Q5”+3 be the spherical hull
of G and defining G: M™*! — Q2 by G = j o G, where j is the inclusion
of @6n+3 into QP+n+2,

We now study the isometric immersion G: M+ - Q5”+3. First observe
that the second fundamental form of G = j o G is given by

ac(V,\W) = ay(izg, Viig W) + (V,W)fi(foig) forall V,W eT(TM"),

where 7 denotes the mean curvature normal of V. Let V denote the vertical
subbundle of TM" ! according to the decomposition M+ = M2 x; M"~1,
Using that A£|iy*f, = 0 and that AQ%Y) = b id, where id denotes the identity
tensor, it follows that

ag(V,V) = (V,V)((boig)(€ oig) + fu(fjoiy)) for all V € T(TM™1), V e V.

Therefore /) = (b o iz)(€ 0 iy) + fu(fj 0 iy) is a principal curvature normal
of G and V is contained in the corresponding eigendistribution. Since j is
umbilical, it follows that ﬁTQgH»S is a principal curvature normal of G with the
same eigendistribution as 7. By means of Corollary 13-(i) and Theorem 8,
we conclude that there exist a warped product representation Wy: W4 x,,

271 — QF®, an isometric immersion g: M? — W* and a local isometry
in: M™ 1 — Q2! such that 5 = g5 0 g and G = ¥y 0 (g X iy). Moreover,
since the second fundamental form of g is determined by the restriction of
a¢ to the horizontal subbundle H of TM™+! according to the decomposition
M"™t = M? x; M™!, and hence by the restriction of ay to span{X, e} (see
formula (15)), it follows that g is of type Bs.

Finally, since {X}+ C ‘H is contained in A, we obtain that the curvature-
like tensor C' defined in Proposition 2 satisfies

C(YhYQ,Yg,n) =0 for all Yl,YQ,Yg,Y4 S F(H)

The last assertion then follows from the fact that, for a fixed z € M™, the
inclusion iz: LP — NPT given by iz(y) = (v, Z) is a totally geodesic isometric
immersion. O

COROLLARY 32. Let NPt™ = LPx M™ be a Riemannian product of dimen-
sion p+n > 3. Then there exists no isometric immersion f: NPT" — QPFn+2
of type By if ¢ # 0.
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Proof. We may assume p > 2. It follows from Proposition 31 that locally
LP splits as a Riemannian product L? = LP~! x I. The statement now follows
from the fact that LP has constant sectional curvature c. O

In order to complete the classification of isometric immersions f: LP x
M™ — QP2 of type B of Riemannian products of dimension p +n > 3, it
remains to determine those that are of type Bs for ¢ = 0. Observe that for
such isometric immersions equation (34) in Proposition 25 holds with 5 =0
(see Corollary 26). In the following result we solve the more general problem
of classifying isometric immersions of type By of warped products satisfying
this condition.

COROLLARY 33. Let f: NP*" = [P x, M" — QP2 n > 2, be an
isometric immersion of type Ba for which dg vanishes everywhere. Then ¢ <0,
NPT has constant sectional curvature ¢ and one of the following holds locally:

(i) Ifc =0 then LP and M™ split as Riemannian products LP = LP~1 x I
and M™ = J x M™ 1, where I,J C R are open intervals, and there
exist isometries i,: LP~Y — U Cc RP™! and iy: M™ ' -V c R*!
onto open subsets and an isometric immersion g: I x J — R* such
th(ltf:il XgXiQ.

RP! x RY x R~ = RpHn+2

U u
U V

ey B

LP~1 x (I xJ)x M"~1 = Nptn

f:ilng’L'Q

<

(ii) If ¢ < O then LP splits as a warped product LP = LP= x, I, M™
splits as a Riemannian product M™ = J x M™~ ', where I,J C R are
open intervals and p = py o wrp—1, and there exist a warped product
representation W: VP~1 x, R"3 — QPtnt2 isometries iy: LP~1 —
Uc VPl andig: M1 = W c R"! onto open subsets, and an
isometric immersion g: I x J — R* such that f = Wo (i; x (g X i2))
and p1 = 0 oi.

VPl x, (R* x R
U U

U W v
9
i | 0
L7~ x, (I x J) x Mn~1) Qptn+?

f=To (i1 x (g xi2))
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Proof. First observe that for the statement of Proposition 31 to hold in this
case it is enough to require that n > 2, as follows from the second italicized
statement in its proof. In order to prove that NP*t" has constant sectional
curvature ¢, we must show that the curvature-like tensor C' defined in Propo-
sition 2 vanishes identically. Since the relative nullity distribution of f is
A = (span{X,e})t, we have that C(E1, Es, E3, E;) = 0 whenever two of the
vectors Fy, F, E3, E4 belong to (span{ X, e})*. Thus it remains to show that
C(X,e,e, X) =0, because C is a curvature-like tensor. But this follows from
(31), (46) and the assumption that 6y = 0.

We have from Proposition 31 that locally LP and M™ split as warped
products LP = LP~! x, I, M™ = J x,, M" ' and NPt = Lr~1 x
(I X py J) x5 M 1), where I, J C R are open intervals and p; € C>(LP~1),
p2 € C®(J), p3 € C(I) and p € C°(I x J) satisty

p=(promrs-1)(psomr) and p= (p3om)(p20my)

But now (X,n) = (VsS,X) = 0, because A is totally geodesic. Hence we
may assume that pg = 1 (recall the proof of Proposition 31), and therefore
p = p1omre—1. On the other hand, by the first italicized statement in the
proof of Proposition 31, the distribution {é}* in M™ is now totally geodesic,
and hence py = 1, which implies that also p = 1. Summing up, we have

NPF = P, M™ with M= M2 x M™" P and M? =1 x J.

Now, for a fixed point § € LP with p(y) = 1, let i5: M™ — NP*" denote the
(isometric) inclusion of M™ into NP*™ as a leaf of V. The second fundamental
form of iy is o, (V,W) = (V,W)(n o iy) for all V,W € I'(TM"), where n =
— grad log(pomy ) is the mean curvature normal of V. Since NPT has constant
sectional curvature c, it follows from the Gauss equation for iy that M™ has
constant sectional curvature ¢+ ||[noiz||? = ¢+ || gradlog p(y)|>. We conclude
from the fact that M™ = J x M"~! is a Riemannian product that it must be
flat, hence M"™~! must be flat when n > 3 and ¢+ || grad log p(%)||*> = 0. Now
choose any other point y* € LP and modify the warped product representation
of N™P g0 that the modified warping function p* satisfies p*(y*) = 1. By this
modification n = — grad log(p o 7r,) does not change. Therefore the preceding
argument yields || grad log p(y*)||?> = —c.
We now distinguish the two possible cases:

Case ¢ = 0. Here n = —grad(log p o mz») vanishes, hence p = 1, conse-
quently also p; = 1 and therefore NP*? = [P~ x M2 x M"~!, with LP~!
and M"~! flat and M? = I x J. Using that A = (span{X,e})" is the relative
nullity distribution of f, the main lemma in [14] implies that f splits as

f=i1xgxig: LP7Ex M2 x M" 1 - RPTH x R* x R"™! = RPHH2)

where i;: LP~' - U C RP~ M and i5: M™ ! — V C R*! are isometries onto
open subsets, and g: M? — R* is an isometric immersion.
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Case ¢ < 0. For G = f oiy as in the proof of Proposition 31, we have from
Corollary 13-(ii) that its spherical hull Q2" has constant sectional curvature
é = c+| gradlog p()||? = 0. Therefore Q2" is a horosphere R"*+3 ¢ Qr+n+2,
Let G: M"t! — R = Q™ be such that G = j o G, where j denotes the
inclusion of Q2 into QP*"+2. Using that the vertical subbundle of M"*!
corresponding to the splitting M"+! = M2 x M"~! is contained in the relative
nullity distribution of G, the conclusion now follows from the main lemma in
[14] applied to G: M? x M1 — R™+3, g

COROLLARY 34. Let NP™™ = LP x M™ be a Riemannian product of di-
mension p +n > 3. Then any isometric immersion f: NPt? — RPnt+2 of
type Bs is locally given as in Corollary 33-(i).

REMARK 35. By making use of global arguments from [1], a complete
description of the possible cases in which an isometric immersion f: LP X
M" — RPT"H2 5 > 2 and n > 2, of a Riemannian product of complete
nonflat Riemannian manifolds may fail locally to be a product of isometric
immersions was given in [3]. Namely, it was shown therein that there exists
an open dense subset of LP x M™ each of whose points lies in an open product
neighborhood Uy = L§ x M restricted to which f is either (i) a product
of isometric immersions, (ii) an isometric immersion of type Bs given as in
Corollary 33 - (i), or (iii) an isometric immersion of type B of the following
special type: either LE or M, say, the latter, splits as MJ = I x R"~!, the
manifold L¥ is free of flat points and f|y, splits as

flo, = F xid: (Lh x I) x R"™1 — RPT3 x Rn—1 = RPH+2,
Moreover, F: LB x I — RP*3 is a composition F = H o F, where
F=Gxi: LhxT—RPH xR =RPH?

is a cylinder over a hypersurface G: L§ — RP™! and H: W — RP? is an
isometric immersion of an open subset W > F(L? x I) of RPH2.

We take the opportunity to point out that the main theorem in [3] misses
the conditions that Lf is free of flat points and that Fis a cylinder F = G x4,
which follow from Corollary 24.

5. Immersions of type C

The aim of this section is to prove the following pointwise result for iso-
metric immersions of type C.

PROPOSITION 36.  Let f: LPx,M"™ — QP2 be an isometric immersion
of a warped product. If f is of type C at z € NPT" = LP x, M"™ and n > 3,
then NP*" has constant sectional curvature c at z.
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Proof. We must prove that the curvature like tensor C' on T, N defined in
Proposition 2 vanishes identically. Two possible cases may occur:

Case 1. For every X € H, the linear map Bx defined in (22) satisfies
rank Bx < 1.

Case 2. There exists X € H, such that rank Bx = 2.
We first prove the following facts.

(i) In Case 1, for any X € H, with rank Bx = 1 we have
(52) a(E,V)=0 foral VeD(X)=kerBx and E € T,N,

that is, D(X) is contained in the relative nullity subspace A of f at z.
(ii) In Case 2, condition (52) is true for any X € H, such that rank Bx = 2.

Proof of (i). Here Lemma 20 applies and we have by (23) that D(Y) =
{e}*+ for any Y € H. with rank By = 1. In particular, this shows that
(52) is satisfied for any E € H,. On the other hand, (24) yields a(V, W) =
(V,e)(W,e)a(e, e), and hence (52) also holds for any E € V,.

Proof of (). If rank Bx = 2, i.e., Bx(V,) = T:- N, then (52) is equivalent
to

<Oé(E, V)a OL(X, W)> =0

forall V € D(X), W € V, and F € T,N. But this follows from (13) for
E € H, and from (14) for F € V,.

We now prove that
(53) C(El, Vl,VQ,Eg) =0 for all Ei,E; €T,N and Vi,Vo e V,.

We obtain from (14) that (53) holds whenever one of the vectors Ey, Es lies in
H. and the other in V.. On the other hand, if we are in Case 1 (resp., Case 2)
and X € 'H, satisfies rank Bx = 1 (resp., rank Bx = 2), then it follows
from (52) that (53) is also satisfied if any of the vectors Ei, Es, Vi or Vs
belongs to D(X). In particular, C(E1,V,V, E3) = 0 holds for any V € D(X).
Notice that D(X) # {0} by our assumption that n > 3. Applying (11) for
0#£W =V e D(X) yields

(54) Vyn—{Y,n)yn—cY =0 for any Y € H,.

Notice that if NP*™ is a Riemannian product then this implies that ¢ = 0.
Moreover, since for ¢ = 0 this equation holds automatically for Riemannian
products, in this case it is enough to assume that either n > 2 or p > 2.

Therefore, (53) is satisfied for all Fy,Fy € H, and Vi,Va € V,. This
completes the proof of (53) in Case 1 and shows that in Case 2 it remains to
prove that (53) is satisfied if Fy, Es, Vi, Vs all belong to the two-dimensional
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subspace D(X)*. Since C is a curvature like tensor, this will follow once we
prove the existence of an orthonormal basis {e1, ea} of D(X)* such that

(55) 0(61,62762,61) =0.

In order to prove (55) take an orthonormal basis ey, es of D(X)* such that
e1 is one of the two points on the unit circle S in D(X)* where ¢: S* — R
given by ¢(V) = | BxV||? assumes its maximum value. Differentiating ¢ (t) =
¢(coste; + sintey) yields

0= 1#’(0) = 2<BXe1,BXe2>.

Thus, there exist an orthonormal basis {¢1,&} of TN and positive real
numbers A1, Ay such that Bxe, = \.§, for r = 1,2. We have from (14) that

(56) )\1 <Oé(€2, er)7£1> = )\2<O[(€1, e'f)a§2>7 r= 17 2.
Using that (53) holds for B} = E; = X, V; =e; and Vo = ¢, 1 < s,t < 2, we
obtain

<O[(X7 X)7 a(eTv 67")> = <OL(X, 67“)5 Q(Xv 67«)> = /\72”7

<a(Xa X)7 04(61, 62)> = <04(X, 61)’ CV(X, 62)> =0.
Setting 77, = (a(es,e), &) = 0y ap = ((X,X), &) and D = v{1v3, —
V21759, where 1 < s,t < 2, it follows that
(57) aryy, +asyr, = A2 and  aiyiy + a2y = 0.

If we compute Da; and Das from the first equation in (57) and put the result
into the second we obtain an equation which because of (56) is equivalent to

MAz((aer; e1), ales; e2)) — {afer, e2), aler, €2))) =0,
and this gives (55) and concludes the proof of (53).
Because of Proposition 2 it remains to show that
(58) C(Yl,}/Q,Y;),,Y;L):O for all Y1,Y5,Y3,Y, e H,.
We divide the proof into the same two cases considered before.
Case 1. By Lemma 20 the linear map H, — TN, Y — «a(Y,e) is
surjective. Hence p > 2, and we can take X1, Xo € H, such that the vectors

& = a(Xj,e), j = 1,2, form an orthonormal normal basis and a(Z,e) = 0
for all Z € {X1, X2}+. We have from (12) and (13) that

0 = C(Z, Xj,e,E) = <14§J.Z7 E>
for all Z ¢ ~{X1,X2}L and any E € T.N. Therefore, A¢;Z = 0 for all

Z € {X1,X5}t, that is, {X;,Xo}t C A(z). Hence (58) holds whenever
Y; € {X1, Xo}+ for some 1 < i < 4. Thus, it remains to prove that

(59) C(X1, X2, X2, X1) =0.
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Because of (53) we have

(60) (a(Xi, X;), ale e)) = (& &5)-

We now may assume that a(e, e) = a € with a # 0. We obtain from (60) that
(61) (Ag, X1, X2) =0

and

a(Ae,X;, X;) =1, j=1,2.
Since a # 0, it follows from the last equation that
(62) (Ae, X1, X1) = (A, X2, Xo).
In addition, (12) yields
(63) 0=C(Xi, Xj,e,X;) = (Ag,; X3, Xi) — (A, X4, Xj), 1 # 7.
Then (59) follows from (61), (62) and (63), and the proof is completed in this
case.

Case 2. Since (55) holds, it follows from a result of E. Cartan ([5]; cf.
Theorem 1 in [15]), that we may choose nonzero vectors vy, vz in D(X)* (not
necessarily orthogonal) such that (a(vy,v1), a(ve,v2)) = 0 and «a(vq,vs) = 0.
From (53) we have

0= C(Z7 U17U27Y) = *<OZ(Z, UQ),OZ(Y, v1)>'

Therefore, the subspaces a(H,v1), a(H.,v2) are orthogonal lines spanned by
m = a(X,v1) and 72 = a(X, v2), respectively, which we may assume to have
unit length by rescaling v; and v, if necessary. In particular, the kernel H;
of the linear map Fj: H, — T;-N given by F;(Y) = a(Y,v;), j = 1,2, has
codimension one in H,. On the other hand, for Y € H; and any Z € H, we
obtain using (12) that

(An,Y, Z) = (a(Y, Z), (X, v))) = (a(Y, v)), (X, Z)) = (F}(Y),a(X, Z)) = 0.
Let Z; be a unit vector in H, orthogonal to H;, j = 1,2. Then
O(Yla }/27Y37Y4) = <a(Ylan)7 Oé(YQ, }/3)> - <Oé(Y1, }/3)705(}/27)/4)>
2

Z(<A77j Yi, Y4> <A77j Ya, Y3> - <A77jY17 Y3><A77jy27 Y4>)
=1

J

(1, Z5)(Ya, Z5) ((Ay, 25, Ya) (An; Z5, Ys)

<
I
—

[
'M“

- <A"7j Zj?Y3><A77j Zj7Y4>) =0. U

Proposition 36 and the italicized statement in its proof yield the following
result for the case of Riemannian products.
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COROLLARY 37. Let f: LP x M"™ — QPt"*2 be an isometric immersion
of a Riemannian product. Assume that f is of type C at z € NPT™ = LPx M™.
Then we have:

(1]

2]
(3]

(4]

(i) If either p > 3 orn > 3 then ¢ = 0.
(ii) Ifp+n >3 and c =0 then NPT is flat at z.
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