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ISOMETRIC IMMERSIONS IN CODIMENSION TWO OF
WARPED PRODUCTS INTO SPACE FORMS

MARCOS DAJCZER AND RUY TOJEIRO

Abstract. We provide a local classification of isometric immersions

f : Lp ×ρMn → Q
p+n+k
c in codimensions k = 1, 2 of warped products

of Riemannian manifolds into space forms, under the assumptions that

n ≥ k + 1 and that Np+n = Lp ×ρ Mn has no points with the same
constant sectional curvature c as the ambient space form.

1. Introduction

A basic decomposition theorem due to Nölker [16] states that an isometric
immersion f : Np+n = Lp ×ρ Mn → Q

`
c of a warped product of connected

Riemannian manifolds with warping function ρ ∈ C∞(Lp) into a complete
simply-connected space form of constant sectional curvature c is a warped
product of isometric immersions (see [16] or Section 1 for the precise definition
of this concept) whenever its second fundamental form α : TN×TN → T⊥N
satisfies

α(X,V ) = 0 for all X ∈ TL and V ∈ TM.

This generalizes a well-known result for isometric immersions of Riemannian
products into Euclidean space due to Moore [14] as well as its extension by
Molzan [13] for nonflat ambient space forms; see also [18].

It is a natural problem to understand the possible cases in which the iso-
metric immersion f may fail, locally or globally, to be a warped product of
isometric immersions. In high codimensions the warped product structure of
the manifold does not seem to place enough restrictions on the isometric im-
mersion in order to make possible a complete classification in either case. Even
in the much more restrictive situation of Riemannian products, a successful
local analysis has only been carried out in the case in which the codimension
is two and the first factor is one-dimensional; see [3]. This was used therein
to characterize isometric immersions f : Lp×Mn → R

p+n+2 of complete Rie-
mannian products none of whose factors is everywhere flat (see Remark 35
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below), carrying through the global results previously obtained by Moore [14]
and Alexander-Maltz [1]. Based on earlier work due to Moore, such subman-
ifolds were shown in [1] to split as products of hypersurfaces under the global
assumption that they do not carry an Euclidean strip.

The main goal of this paper is to provide a local classification of isometric
immersions f : Lp ×ρ Mn → Q

p+n+k
c in codimensions k = 1, 2, under the

assumptions that n ≥ k + 1 and that Np+n = Lp ×ρMn has no points with
the same constant sectional curvature c as the ambient space form. In the case
of codimension k = 1, we prove that f must be a warped product of isometric
immersions. In codimension k = 2 we show that only two other possibilities
may arise. Namely, either f is a composition of a warped product of isometric
immersions into Q p+n+1

c with a local isometric immersion of Q p+n+1
c into

Q
p+n+2
c or Np+n is a Riemannian manifold of a special type that admits a

second decomposition as a warped product with respect to which f splits as
a warped product of isometric immersions. We leave the precise statement
for Section 3, where we also state its corresponding version for the case of
Riemannian products.

We give examples showing that the restriction on the dimension of Mn

is necessary. As for the hypothesis that Np+n has no points with constant
sectional curvature c, we observe that for manifolds with constant sectional
curvature the assumption that they be warped products places no further
restrictions on them since any such manifold can be realized as a warped
product in many possible ways; see the discussion on warped product repre-
sentations of space forms in Section 2. Therefore, for Riemannian manifolds
with constant sectional curvature our problem reduces to classifying all iso-
metric immersions in codimension two of such manifolds into space forms.
In this regard, recall that if f : U ⊂ Q

n
c̃ → Q

n+2
c , n ≥ 4, is an isometric

immersion, then c̃ ≥ c and, for c̃ > c, away from the set of umbilical points
the immersion must be locally a composition of the umbilical inclusion of Qn

c̃

into Qn+1
c with a local isometric immersion of Qn+1

c into Qn+2
c (see [10], [12]

and [7]). In fact, the latter statement can be derived from our main theorem,
but in that result we exclude from our analysis the case of local isometric
immersions of Qn

c into Qn+2
c with the same constant sectional curvature. A

local description of these isometric immersions when c = 0 was given in [6].
As striking applications of our main result, we obtain that if Lp is a Rie-

mannian manifold no open subset of which can be isometrically immersed
into Q p+1

c , then any isometric immersion f : Lp ×ρMn → Q
p+n+2
c , n ≥ 3, is

either a cylindrical submanifold of Euclidean space or a rotational submani-
fold. Moreover, if Lp cannot be locally isometrically immersed in Q p+2

c , then
Lp×ρMn cannot be locally isometrically immersed in Q p+n+2

c either for what-
ever Riemannian manifold Mn of dimension n ≥ 3 and warping function ρ.
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2. Preliminaries

In this section we establish our notation and state some basic facts on
warped products of Riemannian manifolds and their isometric immersions
into the standard real space forms.

Given a a vector bundle E over a Riemannian manifold N , we denote by
Γ(E) the set of all locally defined smooth sections of E. If N = L ×M is a
product manifold, we denote by H and V the horizontal and vertical subbun-
dles of TN , that is, the distributions on N corresponding to the product foli-
ations determined by L and M , respectively. Elements of Γ(H) will always be
denoted by the letters X,Y, Z, and those in Γ(V) by the letters U, V,W . The
same applies to individual tangent vectors. A vector field X ∈ Γ(H) (resp.,
V ∈ Γ(V)) is said to be the lift of a vector field X̃ ∈ Γ(TL) (resp., Ṽ ∈ Γ(TM))
if πL∗X = X̃ ◦ πL (resp., πM ∗V = Ṽ ◦ πM ), where πL : L×M → L (resp.,
πM : L×M →M) is the canonical projection onto L (resp., M). We denote
the set of all lifts of vector fields in L (resp., M) by L(L) (resp., L(M)), and
we always denote vector fields in L and M with a tilde and use the same
letters without the tilde to represent their lifts to N .

If L and M are Riemannian manifolds with Riemannian metrics 〈 , 〉L and
〈 , 〉M , respectively, the warped product N = L ×ρM with warping function
ρ ∈ C∞(L) is the product manifold L×M endowed with the warped product
metric

〈 , 〉 = πL
∗〈 , 〉L + (ρ ◦ πL)2πM

∗〈 , 〉M .
We always assume N to be connected. The Levi-Civita connections of N , L
and M are related by (cf. [17])

∇XY is the lift of ∇L
X̃
Ỹ ,(1)

∇XV = ∇VX = −〈X, η〉V,(2)

(∇VW )V is the lift of ∇M
Ṽ
W̃ ,(3)

(∇VW )H = 〈V,W 〉η,(4)

where X,Y ∈ L(L), V,W ∈ L(M) and η = − grad(log ρ◦πL). Here and in the
sequel, writing a vector field with a vector subbundle as a subscript indicates
taking the section of that vector subbundle obtained by orthogonally project-
ing the vector field pointwise onto the corresponding fiber of the subbundle.
Observe that the formula ∇XV = −〈X, η〉V (resp., ∇VX = −〈X, η〉V ) is
tensorial in X (resp., V ), hence it also holds for horizontal (resp., vertical)
vector fields that are not necessarily lifts. On the other hand, it characterizes
vertical (resp., horizontal) vector fields that are lifts.
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Recall that a vector subbundle E of TN is called totally geodesic or au-
toparallel if ∇XY ∈ Γ(E) for all X,Y ∈ Γ(E). It is called totally umbilical if
there exists a vector field η ∈ Γ(E⊥) such that (∇XY )E⊥ = 〈X,Y 〉η for all
X,Y ∈ Γ(E). If, in addition, the so called mean curvature normal η of E sat-
isfies (∇Xη)E⊥ = 0 for all X ∈ Γ(E), then E is said to be spherical . A totally
umbilical vector subbundle E of TN is automatically integrable, and its leaves
are totally umbilical submanifolds of N . If E is totally geodesic or spherical
then the leaves are totally geodesic or spherical submanifolds of N , respec-
tively. By a spherical submanifold we mean a totally umbilical submanifold
whose mean curvature vector field is parallel in the normal connection.

It follows from (1) and (4), respectively, that H is totally geodesic and that
V is totally umbilical with mean curvature normal η = − grad(log ρ ◦ πL).
Moreover, since η is a gradient vector field and H is totally geodesic we have

〈∇V η,X〉 = 〈∇Xη, V 〉 = 0

for all X ∈ Γ(H) and V ∈ Γ(V), and hence V is spherical. The following
extension due to Hiepko of the well-known decomposition theorem of de Rham
shows that these properties characterize warped products.

Theorem 1 ([11]). Let N be a Riemannian manifold and let TN = H⊕V
be an orthogonal decomposition into nontrivial vector subbundles such that H
is totally geodesic and V is spherical. Then, for every point z0 ∈ N there exist
an isometry Ψ of a warped product L ×ρ M onto a neighborhood of z0 in N
such that Ψ(L × {x}) and Ψ({y} ×M) are integral manifolds of H and V,
respectively, for all y ∈ L and x ∈ M . Moreover, if N is simply connected
and complete then the isometry Ψ can be taken onto all of N .

Given a warped product N = L×ρM , the lift of the curvature tensor MR
of M to N is the tensor whose value at E1, E2, E3 ∈ TzN is the unique vector
in Vz that projects to MR(πM ∗E1, πM ∗E2)πM ∗E3 in TπM (z)M . The lift of
the curvature tensor LR of L is similarly defined. Then the curvature tensors
of L, M and N are related by

R(X,Y )Z = LR(X,Y )Z,(5)

R(X,Y )V = R(V,W )X = 0,(6)

R(X,U)V = 〈U, V 〉(∇Xη − 〈η,X〉η),(7)

R(V,W )U = MR(V,W )U − ‖η‖2(〈W,U〉V − 〈V,U〉W ).(8)

Since ∇Xη − 〈η,X〉η ∈ H because H is totally geodesic, all the information
of (7) is contained in

〈R(X,V )W,Y 〉 = 〈V,W 〉〈∇Xη − 〈X, η〉η, Y 〉.(9)

The starting point for the proof of the main results of this paper is the
observation that the curvature relations (5) to (8) impose several restrictions
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on the second fundamental form α : TN × TN → T⊥N of an isometric
immersion f : N → Q

`
c when combined with the Gauss equation for f .

Proposition 2. Let f : L ×ρ M → Q
`
c be an isometric immersion of a

warped product. Then the curvature-like tensor

C(E1, E2, E3, E4) : = 〈R(E1, E2)E3, E4〉 − c〈(E1 ∧ E2)E3, E4〉(10)

= 〈α(E1, E4), α(E2, E3)〉 − 〈α(E1, E3), α(E2, E4)〉
satisfies

C(X,V,W, Y ) = 〈V,W 〉〈∇Xη − 〈X, η〉η − cX, Y 〉,(11)

C(X,Y, V, Z) = 0,(12)

C(X,Y, V,W ) = 0,(13)

C(X,U, V,W ) = 0.(14)

We now introduce the notion of a warped product of isometric immersions
into Q `

c which plays a fundamental role in this paper. This relies on the
warped product representations of Q `

c , that is, isometries of warped products
onto open subsets of Q `

c . All such isometries were described by Nölker for
warped products with arbitrarily many factors; see [16] for details. In partic-
ular, any isometry of a warped product with two factors onto an open subset
of Q `

c arises as a restriction of an explicitly constructible isometry

Ψ: V `−m(⊂ Q `−m
c )×σ Qm

c̃ → Q
`
c

onto an open dense subset of Q `
c , where Qm

c̃ is a complete spherical sub-
manifold of Q `

c and V `−m is an open subset of the unique totally geodesic
submanifold Q `−m

c of Q `
c (of constant sectional curvature c if ` − m ≥ 2)

whose tangent space at some point z̄ ∈ Qm
c̃ is the orthogonal complement of

the tangent space of Qm
c̃ at z̄. The isometry Ψ is, in fact, completely deter-

mined by the choice of Qm
c̃ and of a point z̄ ∈ Qm

c̃ , and it is called the warped
product representation of Q `

c determined by (z̄,Qm
c̃ ). If c 6= 0, we consider

the standard model of Q `
c as a complete spherical submanifold of O `+1, where

O
`+1 denotes either the Euclidean space R`+1 if c > 0 or the Lorentzian space

L
`+1 if c < 0. Then, for c 6= 0 the warping function σ is the restriction to

V `−m of the height function z 7→ 〈z, a〉 in O `+1, where −a is the mean curva-
ture vector of Qm

c̃ in O `+1 at z̄. Similarly, if c = 0 then σ(z) = 1 + 〈z− z̄, a〉,
where −a is the mean curvature vector of Qm

c̃ in Q `
c = R

` at z̄. In every case
〈a, a〉 = c̃.

Definition. Let Ψ: V `−m ×σ Qm
c̃ → Q

`
c be a warped product represen-

tation, let h1 : L→ V `−m and h2 : M → Q
m
c̃ be isometric immersions, and let

ρ = σ◦h1. Then the isometric immersion f = Ψ◦(h1×h2) : N = L×ρM → Q
`
c

is called the warped product of the isometric immersions h1 and h2 determined
by Ψ.
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L×ρ=σ◦h1 M

h1

- Q
`
c

h2
�

f = Ψ ◦ (h1 × h2)

6 6

V `−m ×σ Qm
c̃ PPPPPPPPPPPPPq

Ψ

Example 3. If N = L ×ρ M is not a Riemannian product and h2 is
an isometry, then f is called a rotational submanifold with profile h1. This
means that V `−m is a half-space of a totally geodesic submanifold Q `−m

c ⊂ Q `
c

bounded by a totally geodesic submanifold Q `−m−1
c and f(N) is the subman-

ifold of Q `
c generated by the action on h1(L) of the subgroup of isometries of

Q
`
c that leave Q `−m−1

c invariant.

Example 4. If N = L×ρM is not a Riemannian product and h1 : L→
V `−m is a local isometry then, for c = 0, we have that f(N) is contained in the
product of an Euclidean factor R`−m−1 with a cone in Rm+1 over h2. If c 6= 0,
then f(N) is the union of open subsets of the totally geodesic submanifolds
of Q `

c through the points of h2(M) ⊂ Qm
c̃ whose tangent spaces at the points

of h2(M) are the normal spaces of Qm
c̃ in Q `

c .

Notice that any warped product of isometric immersions in codimension one
must be as in one of the preceding examples. In codimension two only a third
possibility arises, namely, the case in which both h1 and h2 are hypersurfaces.

Important special cases of warped products of isometric immersions arise as
follows. Let Q `1

c1 and Q `2
c2 be complete spherical submanifolds of Q `

c through
a fixed point z̄ ∈ Q `

c whose tangent spaces at z̄ are orthogonal and whose
mean curvature vectors ψ1 and ψ2 at z̄ satisfy 〈ψ1, ψ2〉 = −c and ψ1 (resp.,
ψ2) is orthogonal to Tz̄Q

`2
c2 (resp., Tz̄Q `1

c1 ). Let Ψ: V `−`2 ×σ Q `2
c2 → Q

`
c

be the warped product representation of Q `
c determined by (z̄,Q `2

c2 ). Then
Q
`1
c1 ⊂ V `−`2 and σ ◦ i = 1, where i : Q `1

c1 → V `−`2 is the inclusion map.
The warped product Ψ ◦ (i × id) : Q `1

c1 × Q
`2
c2 → Q

`
c of the inclusion and the

identity map is an isometric embedding called the isometric embedding of the
Riemannian product Q `1

c1 ×Q
`2
c2 into Q `

c as an extrinsic Riemannian product .
The structure of the second fundamental form of a warped product of

isometric immersions is described in the following result.

Proposition 5. Let N = L ×ρ M and N̄ = L̄ ×ρ̄ M̄ be warped product
manifolds, and let F : L→ L̄ and G : M → M̄ be isometric immersions with
ρ = ρ̄ ◦ F . Then f = F × G : N → N̄ is an isometric immersion and at
z = (y, x) ∈ N we have

(i) πL̄∗f∗TzN = F∗TyL, πL̄∗T
⊥
z N = T⊥y L, πM̄ ∗f∗TzN = G∗TxM ,

πM̄ ∗T
⊥
z N = T⊥x M .
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(ii) (grad ρ̄ (F (y)))T⊥y L = grad ρ̄ (F (y))− F∗ grad ρ (y).
(iii) The second fundamental forms of F , G and f are related by

πM̄ ∗α
f (E1, E2) = αG(πM ∗E1, πM ∗E2),(15)

πL̄∗α
f (E1, E2) = αF (πL∗E1, πL∗E2)(16)

− ρ (y)〈πM ∗E1, πM ∗E2〉(grad ρ̄ (F (y)))T⊥y L.

Given an isometric immersion f : N → N̄ , a normal vector ζ ∈ T⊥z N is
called a principal curvature normal vector at z if the subspace

∆ζ(z) = {T ∈ TzN : α(T,E) = 〈T,E〉ζ for all E ∈ TzN}

is nontrivial. In this case ∆ζ(z) is called the eigenspace corresponding to ζ.
If ζ = 0 then ∆(z) := ∆0(z) is called the relative nullity subspace of f at z.

Corollary 6. Let f be an isometric immersion as in Proposition 5.
Then at z = (y, x) ∈ N we have:

(i) Vz ⊂ ∆ζ(z) for a principal curvature normal vector ζ ∈ T⊥z N if
and only if G is umbilical at x with mean curvature vector πM̄ ∗ζ and
πL̄∗ζ = −ρ−1(grad ρ̄ )T⊥y L. In particular, we have that Vz ⊂ ∆(z) if
and only if G is totally geodesic at x and (grad ρ̄ )T⊥y L = 0.

(ii) Hz ⊂ ∆(z) if and only if F is totally geodesic at y.

Given a vector a 6= 0 in either R` or O `+1, according as c = 0 or c 6= 0, let
U be the vector field on Q `

c defined by Uz = a − c〈a, z〉z and let Fa be the
1-dimensional totally geodesic distribution generated by U on the open dense
subset W a = {z ∈ Q `

c : Uz 6= 0}. Notice that Q `
c \W a is empty for c = 0 as

well as for (c < 0, 〈a, a〉 ≥ 0), and contains one point for (c < 0, 〈a, a〉 < 0)
and two points for c > 0. Observe also that for c = 0 (resp., c 6= 0) the
vector field U is the gradient of the function σ : Q `

c → R given by σ(z) =
1 + 〈z − z̄, a〉 for a fixed z̄ ∈ Q `

c (resp., σ(z) = 〈z, a〉), which was used in the
definition of a warped product representation of Q `

c . We say that an isometric
immersion g : Lp → Q

`
c is cylindrical with respect to a if g(L) ⊂W a and Fa is

everywhere tangent to g(L), or equivalently, if Ug(y) = grad σ(g(y)) is nonzero
and tangent to g(L) for any y ∈ L. The last assertion in Corollary 6-(i) yields
the following result.

Corollary 7. Let f = Ψ ◦ (F × G) : N = L ×ρ M → Q
`
c be a warped

product of isometric immersions, where Ψ: V `−m ×σ Qm
c̃ → Q

`
c is a warped

product representation determined by (z̄,Qmc̃ ). If G is totally geodesic and F
is cylindrical with respect to the mean curvature vector −a of Qmc̃ at z̄ in either
R
` or O `+1, according as c = 0 or c 6= 0, then the vertical subbundle of TN

is contained in the relative nullity subbundle of f . Conversely, if the vertical
subbundle of TN is contained in the relative nullity subbundle of f then G
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is totally geodesic and F |U is cylindrical with respect to the mean curvature
vector −a of Qmc̃ at z̄; here U is the open subset of L where grad ρ does not
vanish.

If f : L ×ρ M → Q
`
c is a warped product of isometric immersions, then

it follows from Proposition 5-(ii) that at any point z ∈ L × M its second
fundamental form satisfies

α(X,V ) = 0 for all X ∈ Hz and V ∈ Vz.(17)

The following theorem due to Nölker states that the converse is also true.
Recall that the spherical hull of an isometric immersion G : M → Q

`
c is the

complete spherical submanifold of least dimension that contains G(M).

Theorem 8 ([16]). Let f : L ×ρ M → Q
`
c be an isometric immersion

of a warped product whose second fundamental form satisfies condition (17)
everywhere. For a fixed point (ȳ, x̄) ∈ L ×ρ M with ρ(ȳ) = 1, let F : L →
Q
`
c and G : M → Q

`
c be given by F (y) = f(y, x̄) and G(x) = f(ȳ, x), and

let Qm
c̃ be the spherical hull of G. Then (f(ȳ, x̄),Qm

c̃ ) determines a warped
product representation Ψ: V `−m ×σ Qm

c̃ → Q
`
c such that F (L) ⊂ V `−m and

f = Ψ ◦ (F × G), where in the last equation F and G are regarded as maps
into V `−m and Qm

c̃ , respectively.

The preceding theorem is also valid for isometric immersions of warped
products with arbitrarily many factors (see [16]). It contains as a particular
case the following result due to Molzan (cf. Corollary 17 of [16]), which is an
extension to nonflat ambient space forms of the main lemma in [14].

Corollary 9 ([13]). Let f : L×M → Q
`
c be an isometric immersion of a

Riemannian product whose second fundamental form satisfies condition (17)
everywhere. For a fixed point (ȳ, x̄) ∈ L×M define F : L→ Q

`
c and G : M →

Q
`
c by F (y) = f(y, x̄) and G(x) = f(ȳ, x), and denote by Q `1

c1 and Q `2
c2 the

spherical hulls of F (L) and G(M), respectively. Then F and G are isometric
immersions and there exists an isometric embedding Φ: Q `1

c1 ×Q
`2
c2 → Q

`
c as

an extrinsic Riemannian product such that f = Φ ◦ (F ×G), where in the last
equation F and G are regarded as maps into Q `1

c1 and Q `2
c2 , respectively.

In applying Theorem 8 one must often be able to determine the dimension
of the spherical hull of G. In the remainder of this section we develop a tool
for computing this dimension.

Given an isometric immersion g : Mn → Q
`
c , a subbundle Z̃ of the normal

bundle of g is called umbilical if there exists θ ∈ Γ(Z̃) such that

(αg(E1, E2))Z̃ = 〈E1, E2〉θ
for all E1, E2 ∈ Γ(TM). We say that θ is the principal curvature normal of
Z̃. If n ≥ 2 and the subbundle Z̃ is parallel in the normal connection, then
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the Codazzi equations of g imply that the vector field θ is also parallel in the
normal connection. In particular, it has constant length. If g(Mn) is contained
in a complete spherical submanifold Qmc̃ of Q `

c with dimension m and constant
sectional curvature c̃, then the pulled-back subbundle Z̃ = g∗T⊥Qmc̃ , where
T⊥Qmc̃ is the normal bundle of Qmc̃ in Q `

c , is an umbilical parallel subbundle
of T⊥M of rank `−m. Conversely, we have the following result due to Yau.

Proposition 10 ([20]). Let g : Mn → Q
`
c , n ≥ 2, be an isometric immer-

sion. Assume that there exists an umbilical parallel subbundle Z̃ of T⊥M with
principal curvature normal θ and rank ` −m. Then there exists a complete
spherical submanifold Qmc̃ of Q `

c with dimension m and constant sectional
curvature c̃ = c+ ‖θ‖2 such that g(Mn) ⊂ Qmc̃ .

As a consequence, the dimension of the spherical hull of an isometric im-
mersion can be characterized as follows.

Corollary 11. Let g : Mn → Q
`
c , n ≥ 2, be an isometric immersion.

Then the dimension of the spherical hull of g is m if and only if `−m is the
maximal rank of an umbilical parallel subbundle Z̃ of T⊥M . Moreover, the
spherical hull of g has constant sectional curvature c̃ = c + ‖θ‖2, where θ is
the principal curvature normal of Z̃.

Corollary 12. Let f : Np+n = Lp×ρMn → Q
`
c , n ≥ 2, be an isometric

immersion of a warped product whose second fundamental form satisfies (17)
everywhere. Given ȳ ∈ L with ρ(ȳ) = 1, let G : M → Q

`
c be defined by

G = f ◦ iȳ, where iȳ : Mn → Np+n given by iȳ(x) = (ȳ, x) is the (isometric)
inclusion of Mn into Np+n as a leaf of the vertical subbundle V. Then the
spherical hull of G has dimension m = `− p−k, where k is the maximal rank
of a parallel subbundle Z of i∗ȳT

⊥N such that

αf (iȳ∗V, iȳ∗W )Z = 〈V,W 〉θ(18)

for some θ ∈ Γ(Z) and for all V,W ∈ Γ(TM). If Z is such a subbundle, then
θ ∈ Γ(Z) is parallel, hence has constant length. Moreover, the spherical hull
of G has constant sectional curvature c+ ‖θ‖2 + ‖ grad log ρ(ȳ)‖2.

Proof. The normal bundle of iȳ is i∗ȳH, whereH is the horizontal subbundle
of TN , hence the normal bundle of G splits as

T⊥GM = i∗ȳT
⊥N ⊕ f∗i∗ȳH

and the second fundamental form of G splits accordingly as

αG(V,W ) = αf (iȳ∗V, iȳ∗W ) + 〈V,W 〉f∗(η ◦ iȳ),(19)

where η = − grad(log ρ◦πL) is the mean curvature normal of V. In particular,
it follows that f∗i∗ȳH is an umbilical subbundle of T⊥GM with principal cur-
vature normal f∗(η ◦ iȳ). Moreover, using that the second fundamental form
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of f satisfies (17) it follows that f∗i∗ȳH is parallel in the normal connection of
G. It is now easily seen that a subbundle Z of i∗ȳT

⊥N is parallel and satis-
fies (18) if and only if Z ⊕ f∗i∗ȳH is a parallel umbilical subbundle of T⊥GM
with principal curvature normal θ + f∗(η ◦ iȳ). The conclusion follows from
Corollary 11. �

In the sequel only the following two special cases of Corollary 12 will be
needed, in which the assumptions in part (i) (resp., (ii)) easily imply that the
vector subbundle Z equals i∗ȳT

⊥N (resp., {0}).

Corollary 13. Under the assumptions of Corollary 12 we have:
(i) If the vertical subbundle V is contained in the eigendistribution cor-

responding to a principal curvature normal ζ of f , then the spheri-
cal hull of G has dimension m = n and constant sectional curvature
c̃ = c+ ‖ζ ◦ iȳ‖2 + ‖ grad log ρ(ȳ)‖2.

(ii) If there exists no local vector field ξ̄ ∈ Γ(i∗ȳT
⊥N) such that Af

ξ̄
◦ iȳ∗ =

λiȳ∗ for some λ ∈ C∞(M), then the spherical hull of G has dimension
m = `− p and constant sectional curvature c̃ = c+ ‖ grad log ρ(ȳ)‖2.

3. The results

Our main result provides a complete local classification of isometric immer-
sions f : Lp ×ρ Mn → Q

p+n+2
c of a warped product under the assumptions

that n ≥ 3 and that Np+n = Lp×ρMn is free of points with constant sectional
curvature c. Here and in the sequel it is always assumed that p, n ≥ 1, and
only further restrictions on those dimensions are explicitly stated.

Theorem 14. Assume that a warped product Np+n = Lp ×ρ Mn with
n ≥ 3 is free of points with constant sectional curvature c. Then for any
isometric immersion f : Np+n → Q

p+n+2
c there exists an open dense subset

of Np+n each of whose points lies in an open product neighborhood U = Lp0 ×
Mn

0 ⊂ Lp ×Mn such that one of the following possibilities holds:
(i) f |U is a warped product of isometric immersions with respect to a

warped product representation Ψ: V p+k1×σQn+k2
c̃ → Q

p+n+2
c , k1 +

k2 = 2.

Lp0 ×σ◦h1 M
n
0

h1

- Q
p+n+2
c

h2
�

f |U = Ψ ◦ (h1 × h2)

6 6

V p+k1 ×σ Qn+k2
c̃ PPPPPPPPPPPPPq

Ψ
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(ii) f |U is a composition H ◦ g of isometric immersions, where g is a
warped product of isometric immersions g = Ψ ◦ (h1 × h2) determined
by a warped product representation Ψ: V p+k1 ×σ Qn+k2

c̃ → Q
p+n+1
c

with k1 + k2 = 1, and H : W → Q
p+n+2
c is an isometric immersion

of an open subset W ⊃ g(U) of Q p+n+1
c .

Lp0 ×σ◦h1 M
n
0

h1

- Q
p+n+2
c

h2 �

f |U = H ◦Ψ ◦ (h1 × h2)

6 6

V p+k1 ×σ Qn+k2
c̃ -

Ψ
W ⊂ Q p+n+1

c

H

?

(iii) There exist open intervals I, J ⊂ R such that Lp0, Mn
0 , U split as

Lp0 = Lp−1
0 ×ρ1 I, Mn

0 = J ×ρ2 M
n−1
0 and

U = Lp−1
0 ×ρ1 ((I ×ρ3 J)×ρ̄Mn−1

0 ),

where ρ1 ∈ C∞(Lp−1
0 ), ρ2 ∈ C∞(J), ρ3 ∈ C∞(I) and ρ̄ ∈ C∞(I × J)

satisfy

ρ = (ρ1 ◦ πLp−1
0

)(ρ3 ◦ πI) and ρ̄ = (ρ3 ◦ πI)(ρ2 ◦ πJ),

and there exist warped product representations

Ψ1 : V p−1 ×σ1 Q
n+3
c̃ → Q

p+n+2
c and Ψ2 : W 4 ×σ2 Q

n−1
c̄ → Q

n+3
c̃ ,

an isometric immersion g : I×ρ3 J →W 4 and isometries i1 : Lp−1
0 →

W p−1 ⊂ V p−1 ⊂ Q p−1
c and i2 : Mn−1 → W n−1 ⊂ Qn−1

c̄ onto open
subsets such that f |U = Ψ1 ◦ (i1 × (Ψ2 ◦ (g × i2))), ρ̄ = σ2 ◦ g and
ρ1 = σ1 ◦ i1. Moreover, Lp0 has constant sectional curvature c if p ≥ 2.

W 4 ×σ2 Q
n−1
c̄

i1

i2

g

∪
W n−1

Ψ2

f |U = Ψ1 ◦ (i1 × (Ψ2 ◦ (g × i2)))

6

6

6

�
�
�
�
�
�
�
�
�
�
��

V p−1 ×σ1 Q
n+3
c̃

∪
W p−1

- Q
p+n+2
c

Lp−1
0 ×ρ1=σ1◦i1((I×ρ3J)×ρ̄=σ2◦gM

n−1
0 ) = U = Lp0 ×ρMn

0

Ψ1

�

6
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In case (iii) the isometric immersion g : I ×ρ3 J →W 4 is neither a warped
product g = Ψ3 ◦ (α × β), where Ψ3 : V 1+k1 ×σ3 Q

1+k2
ĉ → Q

4
c̃ is a warped

product representation with k1 + k2 = 2 and α : I → V 1+k1 and β : J →
Q

1+k2
ĉ are unit speed curves with ρ3 = σ3 ◦ α, nor a composition H ◦ G of

such a warped product G = Ψ3 ◦ (α × β), determined by a warped product
representation Ψ3 : V 1+k1 ×σ3 Q

1+k2
ĉ → Q

3
c̃ as before with k1 + k2 = 1, and

an isometric immersion H of an open subset W ⊃ G(I×J) into Q 4
c̃ . It would

be interesting to exhibit an explicit example of such an isometric immersion.
Notice that it must satisfy the additional condition σ2 ◦ g = (ρ3 ◦ πI)(ρ2 ◦ πJ)
for some ρ2 ∈ C∞(J).

Cases (i)–(iii) are disjoint. In fact, we will prove that under the assump-
tions of the theorem there are three distinct possible structures for the second
fundamental form of f , each of which corresponds to one of the cases in the
statement.

Notice that the conclusion of the theorem remains unchanged under the
apparently weaker assumption that the subset of points of Np+n with constant
sectional curvature c has empty interior.

Theorem 14 does not hold without the assumption that n ≥ 3. In fact,
we argue next that local isometric immersions of the round three-dimensional
sphere S 3 into R5 are generically as in neither of the cases in the statement
with respect to any local decomposition of S 3 as a warped product.

Example 15. It was shown in [8] (cf. Corollary 4 in [9]) that local iso-
metric immersions of S 3 into R5 that are nowhere compositions (i.e., on no
open subset they are compositions of the umbilical inclusion into R4 with a
local isometric immersion of R4 into R5) are in correspondence with solutions
(V, h) on open simply connected subsets U0 ⊂ R3 of the nonlinear system of
PDE’s

(I)


(i)

∂Vir
∂uj

= hjiVjr, (ii)
∂hik
∂uj

= hijhjk,

(iii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj + Vi3Vj3 = 0, i 6= j 6= k 6= i,

called the generalized elliptic sinh-Gordon equation. Here V : U0 → O1(3)
is a smooth map taking values in the group of orthogonal matrices with re-
spect to the Lorentz metric of signature (+,+,−) and x ∈ U0 7→ h(x) is a
smooth map such that h(x) is an off-diagonal (3×3)-matrix for every x ∈ U0.
More precisely, for any such isometric immersion there exist a local system
of coordinates (u1, u2, u3), an orthonormal normal frame {ξ1, ξ2} and matrix
functions V and h as above such that

AξrXi = V −1
i3 VirXi, 1 ≤ r ≤ 2, 1 ≤ i ≤ 3,(20)
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and

∇∂/∂uiXj = hjiXi, 1 ≤ i 6= j ≤ 3,(21)

where Xi is a unit vector field with ∂/∂ui = Vi3Xi. The compatibility equa-
tions for f are equivalent to system (I). Conversely, any solution (V, h) of
system (I) on an open simply connected subset U0 ⊂ R3 gives rise to such an
isometric immersion by means of the fundamental theorem of submanifolds.

By a theorem of Bourlet (see [4], Théorème VIII), there exists one and only
one analytic solution (V, h) of system (I) in a neighborhood of an initial value
u0 = (u0

1, u
0
2, u

0
3) such that V (u0) ∈ O1(3) and such that V ki and hij , i < j

(resp., i > j) reduce to an arbitrarily given analytic function of ui (resp., uj)
when the remaining variables take their initial values. Thus, for a generic
local analytic solution (V, h) the functions hij are nowhere vanishing; see the
last section of [9] for explicit isometric immersions with this property.

It follows easily from (20) that no such isometric immersion admits a normal
vector field whose shape operator has rank one. In particular, it can not be
as in case (ii). Also, if f is as in case (i) with respect to a decomposition
U = Lk1 ×ρMk2 of U as a warped product, then we must have that k2 = 1.
In fact, otherwise the second fundamental form of f would be given by

α(Y, Z) = 〈Y1, Z1〉η1 + 〈Y2, Z2〉η2

for some normal vector fields η1, η2 satisfying 〈η1, η2〉 = 1 = ‖η2‖, where Yi, Zi,
1 ≤ i ≤ 2, are the components of Y, Z according to the product decomposition
of U . This easily implies that the shape operator with respect to a normal
vector field orthogonal to η2 has rank one. Thus, the distribution tangent to
the second factor is one-dimensional and invariant by all shape operators of
f , and hence it must be spanned by one of the vector fields Xi, 1 ≤ i ≤ 3,
say, X3. In particular, this implies that the distribution spanned by X1, X2

is totally geodesic, and hence the functions h31 and h32 vanish everywhere by
(21). Finally, we claim that the same holds if f is as in case (iii). In effect, in
this case U splits as a warped product

U = L1 ×ρ Q 2
c̃ = L1 ×ρ (J ×ρ̄M1) = (L1 ×ρ J)×(ρ◦πL1 ) ρ̄M

1,

and f is a warped product f = g × i with respect to the last decomposition.
Thus, we have again that the one-dimensional distribution tangent to M1 is
invariant by all shape operators of f , and the same argument used in the
preceding case proves our claim. It follows that f is generically as in neither
of the cases in Theorem 14 with respect to any local decomposition of S 3 as
a warped product.

We now discuss some further results. The case of hypersurfaces is interest-
ing in its own right. Although it can be proved as a corollary of Theorem 14,
it is easier to derive it as an immediate consequence of Theorem 8 and Propo-
sition 23 of Section 3.
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Theorem 16. Assume that a warped product Lp ×ρ Mn, n ≥ 2, has no
points with constant sectional curvature c. Then any isometric immersion
f : Lp ×ρ Mn → Q

p+n+1
c is a warped product f = Ψ ◦ (F × G), where

Ψ: V p+k1 ×σ Qn+k2
c̃ → Q

p+n+1
c is a warped product representation with

k1+k2 = 1 and F : Lp → V p+k1 , G : Mn → Q
n+k2
c̃ are isometric immersions.

Again, the preceding result is false if the assumption that n ≥ 2 is dropped;
rotation surfaces in R3 admit many isometric deformations into nonrotational
surfaces (cf. [2]).

In deriving Theorem 14 we also obtain the following result for the case of
Riemannian products, which extends Theorem 1 in [14] in the case of products
with two factors. Therein, isometric immersions of Riemannian products with
arbitrarily many factors into Euclidean space were shown to split as a product
of isometric immersions under the assumptions that no factor has an open
subset of flat points and that the codimension equals the number of factors.
We point out that in the case of Riemannian products the factors may change
the roles. This observation is applied several times throughout the paper.

Theorem 17. Let f : Lp ×Mn → Q
p+n+2
c be an isometric immersion of

a Riemannian product. If c = 0 assume that either Lp or Mn has dimension
at least two and is free of flat points. If c 6= 0 assume that either n ≥ 3 or
p ≥ 3. Then there exists an open dense subset of Lp ×Mn each of whose
points lies in an open product neighborhood U = Lp0 ×Mn

0 ⊂ Lp ×Mn such
that one of the following possibilities holds:

Case c = 0.

(i) There exist an orthogonal decomposition R p+n+2 = R
p+k1 × Rn+k2

with k1 + k2 = 2 and isometric immersions h1 : Lp0 → R
p+k1 and

h2 : Mn
0 → R

n+k2 such that f |U = h1 × h2.

Lp0 × Mn
0

h1









�

h2 f |U = h1 × h2

6 6

R
p+k1× Rn+k2 = R

p+n+2

(ii) There exist an orthogonal decomposition R p+n+1 = R
p+k1 × Rn+k2 ,

k1 + k2 = 1, and isometric immersions h1 : Lp0 → R
p+k1 , h2 : Mn

0 →
R
n+k2 and H : W → R

p+n+2 of an open subset W ⊃ (h1×h2)(U) of
R
p+n+1 such that f |U = H ◦ (h1 × h2).
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Lp0 × Mn
0

h1

- R
p+n+2

h2
�

f |U = H ◦ (h1 × h2)

6 6

PPPPPPPPPPPq

R
p+k1× Rn+k2⊃W

H

Case c 6= 0.
(i) There exist an embedding Φ: Q p+k1

c1 ×Qn+k2
c2 → Q

p+n+2
c as an extrin-

sic Riemannian product with k1 + k2 = 1, and isometric immersions
h1 : Lp0 → Q

p+k1
c1 and h2 : Mn

0 → Q
n+k2
c2 such that f |U = Φ◦(h1×h2).

Lp0 × Mn
0

h1

��
��
�
��
��*

h2
f |U = Φ ◦ (h1 × h2)

6 6

Q
p+k1
c1 ×Qn+k2

c2
-

�

Φ
Q
p+n+2
c

(ii) There exist an embedding Φ: Q p
c1 × Q

n
c2 → Q

p+n+1
c as an extrinsic

Riemannian product, local isometries i1 : Lp0 → Q
p
c1 and i2 : Mn

0 →
Q
n
c2 , and an isometric immersion H : W → Q

p+n+2
c of an open subset

W ⊃ Φ ◦ (i1 × i2)(U) of Q p+n+1
c such that f |U = H ◦ Φ ◦ (i1 × i2).

Lp0 ×Mn
0

i1

- Q
p+n+2
c

i2

f |U = H ◦ Φ ◦ (i1 × i2)

6 6

Q
p
c1 ×Q

n
c2

- W ⊂ Q p+n+1
c

H

?

Φ

�

As an example showing that for c 6= 0 the assumption that either n ≥ 3 or
p ≥ 3 is indeed necessary, we may take any local isometric immersion of R3

into S 5 that is not a product α× g : I × V → S
1(r1)× S 3(r2), r2

1 + r2
2 = 1,

where α : I → R
2 is a unit speed parametrization of an open subset of a circle

of radius r1 and g : V → S
3(r2) is an isometric immersion of an open subset

V ⊂ R2. Recall that local isometric immersions of R3 into S 5 were shown in
[19] to be in correspondence with solutions on simply connected open subsets
of R3 of the so-called generalized wave equation. As in the previous discussion
on local isometric immersions of S 3 into R5, one may easily argue that the
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class of local isometric immersions of R3 into S 5 that are given as products
as just described is only a rather special subclass of the whole class of such
isometric immersions.

We now give precise statements of the applications of Theorem 14 referred
to at the end of the introduction. Recall that an isometric immersion F : Lp →
Q
p+m
c is said to be locally rigid if it is rigid restricted to any open subset of

Lp.

Corollary 18. Let Lp be a Riemannian manifold, no open subset of
which can be isometrically immersed in Q p+1

c . If f : Lp ×ρ Mn → Q
p+n+2
c ,

n ≥ 3, is an isometric immersion, then there exist a warped product represen-
tation Ψ: V p+2×σQn

c̃ → Q
p+n+2
c , an isometric immersion F : Lp → V p+2

and a local isometry i : Mn → Q
n
c̃ such that f = Ψ ◦ (F × i). In particular, if

Lp is a Riemannian manifold that admits a locally rigid isometric immersion
F : Lp → Q

p+2
c , then the preceding conclusion holds and, in addition, the

isometric immersion f is also locally rigid.

Proof. By Theorem 14, any isometric immersion f : Lp×ρMn → Q
p+n+2
c ,

n ≥ 3, must be locally as in one of the three cases described in its statement.
However, under the assumption that Lp has no open subset that can be iso-
metrically immersed in Q p+1

c , it follows that f |U can not be as in case (ii)
on any open subset U = Lp0 ×Mn

0 ⊂ Lp ×Mn, for there can not exist by
that assumption any isometric immersion h1 : Lp0 → Q

p+k1
c with 0 ≤ k1 ≤ 1.

Moreover, f |U can not be as in case (iii) either on any such open subset, for
in that case Lp0 would have constant sectional curvature c, and hence it would
admit locally an isometric immersion into Q p+1

c . Therefore f must be globally
as in case (i). The last assertion is now clear. �

We say that a Riemannian manifold can be locally isometrically immersed
in Q `

c if each point has an open neighborhood that admits an isometric im-
mersion into Q `

c . Arguing in a similar way as in the proof of Corollary 18
yields the following result.

Corollary 19. Let Lp be a Riemannian manifold that cannot be locally
isometrically immersed in Q p+2

c . Then Lp ×ρMn can not be locally isomet-
rically immersed in Q p+n+2

c for any Riemannian manifold Mn of dimension
n ≥ 3 and any warping function ρ.

In view of Nölker’s result it is also natural to study isometric immersions
of warped products into space forms in the light of the following definition.

Definition. Let f : Lp ×ρ Mn → Q
`
c be an isometric immersion of a

warped product. Given z ∈ Lp ×ρMn, we set

α(Hz,Vz) = span{α(Y, V ) : Y ∈ Hz and V ∈ Vz}.
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We say that the immersion f at z is of type
(A) if dimα(Hz,Vz) = 0, i.e., α(Y, V ) = 0 for all Y ∈ Hz and V ∈ Vz,
(B) if dimα(Hz,Vz) = 1,
(C) if dimα(Hz,Vz) ≥ 2.

Notice that type A is the case of Nölker’s decomposition theorem. There-
fore, it is a natural problem to determine the isometric immersions that are
everywhere of type B. In the following section we obtain a complete solution
to this problem in the codimension two case under the assumption that n ≥ 3
(for the case of Riemannian products it is enough to assume that p+ n ≥ 3);
see the two paragraphs before Proposition 27. The proof of Theorem 14 is
then accomplished as follows: type C is excluded by Proposition 36, type A
corresponding to Theorem 8 gives case (i), and type B splits into two subcases
B1 and B2 handled in Propositions 27 and 31, respectively, which correspond
to the cases (ii) and (iii). Similarly for the proof of Theorem 17: type C is
excluded by Corollary 37, type A corresponding to Theorem 9 gives subcase
(i) in both cases c = 0 and c 6= 0, type B1 handled in Corollary 30 gives sub-
case (ii) in either case, and type B2 is excluded in either case by Corollary 34
and Corollary 32, respectively.

4. Immersions of type B

Our main goal in this section is to provide a complete local classification
of isometric immersions f : Lp×ρMn → Q

p+n+2
c that are everywhere of type

B under the assumption that n ≥ 3. A similar classification for the special
case of isometric immersions of Riemannian products is also given, for which
it is enough to assume p+ n ≥ 3.

First we determine the pointwise structure of the second fundamental forms
of isometric immersions of type B, starting with some general facts that are
valid in arbitrary codimension.

Lemma 20. Let f : Lp ×ρ Mn → Q
`
c be an isometric immersion of a

warped product. Assume that f is not of type A at a point z ∈ Np+n =
Lp ×ρMn and that for every Y ∈ Hz the linear map

BY : Vz → T⊥z N, V 7→ α(Y, V ),(22)

satisfies rankBY ≤ 1. Then there exists a unit vector e ∈ Vz, uniquely deter-
mined up to its sign, such that

α(Y, V ) = 〈V, e〉α(Y, e)(23)

and

α(V,W )− 〈V, e〉〈W, e〉α(e, e) ⊥ α(Hz,Vz)(24)

for all Y ∈ Hz and V,W ∈ Vz.
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Proof. Let X ∈ Hz be such that rankBX = 1. Then D(X) := kerBX has
codimension 1 in Vz. Let e ∈ Vz be one of the unit vectors perpendicular to
D(X) and write BXe = λξ, where λ 6= 0 and ξ ∈ T⊥z N is a unit vector. Let
Y ∈ Hz and V ∈ D(X) be arbitrary vectors. Then (13) implies

〈BXe,BY V 〉 = 〈α(X, e), α(Y, V )〉 = 〈α(X,V ), α(Y, e)〉(25)

= 〈BXV, α(Y, e)〉 = 0.

Now consider the linear map BX+tY for arbitrary t ∈ R. By assumption its
rank is at most 1. Therefore the vectors BX+tY e = λξ+tBY e and BX+tY V =
tBY V are linearly dependent, and hence

〈BX+tY e,BX+tY e〉〈BX+tY V,BX+tY V 〉 − 〈BX+tY e,BX+tY V 〉2 = 0.

As the left hand side of this equation is a polynomial
∑4
i=2 ait

i, its coefficients
must vanish; in particular, because of (25) we obtain 0 = a2 = λ2‖BY V ‖2.
Hence BY |D(X) = 0, and (23) follows.

By means of (14) we derive

〈α(V,W ), α(Y, e)〉 = 〈α(Y, V ), α(e,W )〉 = 〈V, e〉〈α(e,W ), α(Y, e)〉.
Applying this result to α(W, e) instead of α(V,W ) we obtain

〈α(V,W )− 〈V, e〉〈W, e〉α(e, e), α(Y, e)〉 = 0,

which implies (24) in view of (23). �

Lemma 21. Let f : Lp ×ρ Mn → Q
`
c be an isometric immersion of a

warped product. Assume that f is of type B at z ∈ Np+n = Lp ×ρ Mn.
Then there exist unique, up to their signs, unit vectors X ∈ Hz, e ∈ Vz and
ξ ∈ T⊥z N , and β, λ, γ ∈ R with λ 6= 0 such that

〈α(Y,Z), ξ〉 = β〈Y,X〉〈Z,X〉,(26)

α(Y, V ) = λ〈Y,X〉〈V, e〉ξ,(27)

〈α(V,W ), ξ〉 = γ〈V, e〉〈W, e〉,(28)

〈P̃α(Y, Z), P̃α(V,W )− 〈V,W 〉P̃α(e, e)〉(29)

= (βγ − λ2)〈Y,X〉〈Z,X〉〈PV, PW 〉,

where P̃ : T⊥z N → T⊥z N and P : Vz → Vz denote the orthogonal projections
onto the subspaces {ξ}⊥ ⊂ T⊥z N and {e}⊥ ⊂ Vz, respectively. Moreover, if
Np+n = Lp ×Mn is a Riemannian product then

〈P̃α(Y, Z), P̃α(V,W )〉+ (βγ − λ2)〈Y,X〉〈Z,X〉〈V, e〉〈W, e〉(30)

+ c〈Y,Z〉〈V,W 〉 = 0.

Proof. Let ξ ∈ T⊥z N be a unit vector such that α(Hz,Vz) = R ξ. Given
Y ∈ Hz, then BY takes its values in R ξ, and hence rankBY ≤ 1. Thus, we
may apply Lemma 20. On the other hand, since the linear map Hz → T⊥z N
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defined by Y 7→ α(Y, e) also takes its values in R ξ, it follows that, up to sign,
there exists exactly one unit vector X ∈ Hz perpendicular to its kernel. Set
γ = 〈α(e, e), ξ〉, λ = 〈α(X, e), ξ〉 and β = 〈α(X,X), ξ〉. Notice that λ 6= 0
because f is of type B at z. We obtain (28) from (24), whereas (27) follows
from (23) and α(Y, e) = 〈Y,X〉α(X, e) = λ〈Y,X〉ξ. Using (12) we obtain

λ〈α(Y,Z), ξ〉 = 〈α(Y,Z), α(X, e)〉 = 〈α(X,Z), α(Y, e)〉 = λ〈Y,X〉〈α(X,Z), ξ〉,

and applying this result to α(Z,X) instead of α(Y, Z) we end up with (26).
We obtain from (11), (26), (27) and (28) that

〈V,W 〉〈∇Y η − 〈Y, η〉η − cY, Z〉
= 〈α(Y, Z), α(V,W )〉 − 〈α(Y,W ), α(Z, V )〉

= (βγ − λ2)〈Y,X〉〈Z,X〉〈V, e〉〈W, e〉+ 〈P̃α(Y, Z), P̃α(V,W )〉.

This yields (30) if Np+n = Lp×Mn is a Riemannian product. In the general
case, putting W = V = e we get

〈∇Y η − 〈Y, η〉η − cY, Z〉 = (βγ − λ2)〈Y,X〉〈Z,X〉+ 〈P̃α(Y, Z), P̃α(e, e)〉.

The two preceding equations yield

〈P̃α(Y,Z), P̃α(V,W )− 〈V,W 〉P̃α(e, e)〉
= (βγ − λ2)〈Y,X〉〈Z,X〉(〈V,W 〉 − 〈V, e〉〈W, e〉),

which coincides with (29). �

Remark and Definition 22. Equations (26), (27) and (28) are equiva-
lent to

AξY = 〈Y,X〉(βX + λe), AξV = 〈V, e〉(λX + γe),(31)

and

P̃α(Y, V ) = 0.(32)

In particular, it follows from (31) that the rank of Aξ at z is either 1 or 2,
according as βγ − λ2 is zero or not. We say accordingly that f is of type B1

or of type B2 at z.

We now show that in the case of hypersurfaces f : Lp ×ρMn → Q
p+n+1
c ,

n ≥ 2, only types A and B1 can occur pointwise.

Proposition 23. Let f : Lp ×ρ Mn → Q
p+n+1
c , n ≥ 2, be an isometric

immersion of a warped product. Then, at any point z ∈ Np+n = Lp ×ρ Mn

either f is of type A or of type B1. Moreover, in the latter case Np+n has
constant sectional curvature c at z.
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Proof. Assume that f is not of type A at z. Since n ≥ 2, we may choose a
unit vector V ∈ {e}⊥ ⊂ Vz. Applying (29) for W = V and Z = Y = X, and
using that P̃ = 0, it follows that βγ − λ2 = 0. Therefore f is of type B1 at z.
The last assertion follows from the Gauss equation of f . �

Theorem 16 now follows by putting together the preceding result and The-
orem 8. For Riemannian products we obtain the following corollary.

Corollary 24. Let f : Lp ×Mn → Q
p+n+1
c be an isometric immersion

of a Riemannian product. Assume that p+n ≥ 3 and, if c = 0, that either Lp

or Mn, say, the latter, has dimension at least two and is free of flat points.
Then f is of type A everywhere and we have:

(i) If c = 0 there exist an orthogonal decomposition Rp+n+1 = R
p⊕Rn+1,

a local isometry i : Lp → R
p and an isometric immersion h : Mn →

R
n+1 such that f = i× h.

(ii) If c 6= 0 there exist an embedding Φ: Q p
c1 × Q

n
c2 → Q

p+n+1
c as an

extrinsic Riemannian product and local isometries i1 : Lp → Q
p
c1 and

i2 : Mn → Q
n
c2 such that f = Φ ◦ (i1 × i2).

From now on we consider isometric immersions f : Lp ×ρMn → Q
p+n+2
c .

Assume that f is of type B at a point z ∈ Np+n = Lp ×ρ Mn and let
X, e, ξ, β, λ and γ be as in Lemma 21. Choose one of the unit vectors ξ̃ ∈ T⊥z N
perpendicular to ξ, and define the symmetric bilinear forms

β̃ : Hz ×Hz → R, (Y,Z) 7→ 〈α(Y, Z), ξ̃〉
γ̃ : Vz × Vz → R, (V,W ) 7→ 〈α(V,W ), ξ̃〉.

Set also β̃0 = β̃(X,X), γ̃0 = γ̃(e, e) and δ̃0 := β̃0γ̃0+βγ−λ2. Then Lemma 21
can be strengthened as follows.

Proposition 25. Let f : Lp ×ρ Mn → Q
p+n+2
c be an isometric immer-

sion. Assume that f is of type B at z ∈ Np+n = Lp ×ρ Mn. With the
preceding notations we have:

(i) If f is of type B1 at z, then one of the following (not exclusive) pos-
sibilities holds:

γ̃(V,W ) = 〈V,W 〉γ̃0 or β̃ = 0.

(ii) If n ≥ 2 and f is of type B2 at z, then

β̃(Y, Z) = 〈Y,X〉〈Z,X〉β̃0 with β̃0 6= 0, and(33)

β̃0 γ̃(V,W ) = 〈V,W 〉δ̃0 − (βγ − λ2)〈V, e〉〈W, e〉.(34)

Proof. Equation (29) now reads

β̃(Y,Z)(γ̃(V,W )− 〈V,W 〉γ̃0) = (βγ − λ2)〈Y,X〉〈Z,X〉〈PV, PW 〉.(35)
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If βγ − λ2 = 0 then the preceding equation proves assertion (i). Choosing
Y = Z = X in (35) yields

β̃0 (γ̃(V,W )− 〈V,W 〉γ̃0) = (βγ − λ2)〈PV, PW 〉.(36)

Using (36), n ≥ 2 and βγ − λ2 6= 0 we derive β̃0 6= 0 and from (35) it follows
that β̃(Y, Z) = 〈Y,X〉〈Z,X〉β̃0. Finally, (36) also yields (34). �

Taking into account (30) we have the following additional information in
the case of Riemannian products.

Corollary 26. Let f : Lp ×Mn → Q
p+n+2
c be an isometric immersion

of a Riemannian product. Assume that f is of type B at z ∈ Lp×Mn. Then,
with the preceding notations, we have that δ̃0 = −c and, in addition:

(i) If f is of type B1 at z, then

β̃(Y, Z) = 〈Y,Z〉β̃0, γ̃(V,W ) = 〈V,W 〉γ̃0 and β̃0γ̃0 + c = 0.

(ii) If p, n ≥ 2 and f is of type B2 at z, then c = 0,

β̃(Y,Z) = 〈Y,X〉〈Z,X〉β̃0, and γ̃(V,W ) = 〈V, e〉〈W, e〉γ̃0.(37)

In the remainder of this section we make a detailed study of isometric im-
mersions f : Lp ×ρMn → Q

p+n+2
c , n ≥ 2, that are everywhere of type B. In

this case we may choose smooth unit vector fields X, e and ξ (and hence a
smooth unit normal vector field ξ̃ orthogonal to ξ), and smooth functions β, λ
and γ that satisfy pointwise the conditions of Lemma 21. In Propositions 27
and 31 below we classify isometric immersions of types B1 and B2, respec-
tively, the latter only for n ≥ 3. In Corollary 33 we determine the special
subclass of isometric immersions of type B2 for which δ̃0 in (34) is everywhere
vanishing. Isometric immersions of type B1 of Riemannian products with di-
mension p + n ≥ 3 are classified in Corollary 30. In Corollary 32 we show
that there exists no isometric immersion f : Lp ×Mn → Q

p+n+2
c , p+ n ≥ 3,

of type B2 if c 6= 0 and in Corollary 34 we classify such isometric immersions
for c = 0. This yields a local classification of isometric immersions of type B
in codimension two of warped products Lp×ρMn for which n ≥ 3, as well as
of Riemannian products Lp ×Mn for which p+ n ≥ 3.

Proposition 27. Let f : Np+n = Lp ×ρ Mn → Q
p+n+2
c , n ≥ 2, be an

isometric embedding of type B1. Then f is a composition H ◦ g of isometric
immersions, where g = Ψ ◦ (h1 × h2) is a warped product of isometric immer-
sions determined by a warped product representation Ψ: V p+k1 ×σ Qn+k2

c̃ →
Q
p+n+1
c , k1 +k2 = 1, and H : W → Q

p+n+2
c is an isometric immersion of an

open subset W ⊃ g(Np+n) of Q p+n+1
c (see the diagram in Theorem 14-(ii)).
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Proof. Set E0 = (βX + λe)/‖βX + λe‖. Since βγ − λ2 = 0 we have that
λ(βX + λe) = β(λX + γe), and hence (31) yields

AξE = (β + γ)〈E,E0〉E0 for all E ∈ Γ(TN).(38)

Observe that β + γ 6= 0 because βγ − λ2 > 0. The Gauss equation for f and
the fact that Aξ has rank 1 imply that Aξ̃ satisfies the Gauss equation for
an isometric immersion of Np+n into Q p+n+1

c . We claim that it also satisfies
the Codazzi equation for such an isometric immersion. Define a connection
one-form ω on Np+n by ω(E) = 〈∇⊥Eξ, ξ̃〉. By the Codazzi equation for f we
have

(∇E1Aξ̃)E2 − (∇E2Aξ̃)E1 = ω(E2)AξE1 − ω(E1)AξE2.(39)

The following fact and (38) imply that the right hand side of (39) vanishes,
and the claim follows.

Fact 28. The one-form ω satisfies ω(E) = 〈E,E0〉ω(E0) for all E ∈
Γ(TN), or equivalently, ω(E) = 0 for all E ∈ Γ(kerAξ).

In proving Fact 28 it is useful to observe that

kerAξ(z) = {E0(z)}⊥ = span{λ〈V, e〉Y − β〈Y,X〉V : Y ∈ Hz, V ∈ Vz}(40)

= span{λ〈Y,X〉V − γ〈V, e〉Y : Y ∈ Hz, V ∈ Vz}.(41)

By Proposition 25-(i), at each point z ∈ Np+n either Aξ̃|Vz = γ̃0 id, where
id denotes the identity tensor, or Aξ̃|Hz = 0. Since ω(E) is a continuous
function, it suffices to prove that ω(E)(z) = 0 at points z ∈ Np+n that are
contained in an entire neighborhood U ⊂ Np+n in which one of the preceding
possibilities holds everywhere.

Case Aξ̃|V = γ̃0 id. For Y ∈ L(Lp) and V,W ∈ L(Mn) we obtain using (2)
and (4) that

〈(∇YAξ̃)V − (∇VAξ̃)Y,W 〉 = 〈∇YAξ̃V −∇VAξ̃Y −Aξ̃[Y, V ],W 〉(42)

= 〈∇Y (γ̃0V ),W 〉+ 〈Aξ̃Y,∇VW 〉(43)

= (Y (γ̃0) + 〈(Aξ̃ − γ̃0 id)Y, η〉)〈V,W 〉.(44)

On the other hand, by the Codazzi equation we have

〈(∇YAξ̃)V − (∇VAξ̃)Y,W 〉 = 〈ω(V )AξY − ω(Y )AξV,W 〉
= 〈W, e〉ω(λ〈Y,X〉V − γ〈V, e〉Y ),

where in the second equality we have used (31). Thus

(Y (γ̃0) + 〈(Aξ̃ − γ̃0 id)Y, η〉)〈V,W 〉 = 〈W, e〉ω(λ〈Y,X〉V − γ〈V, e〉Y )(45)

for all Y ∈ L(Lp) and V,W ∈ L(Mn). As these equations are tensorial, they
are also valid for arbitrary horizontal (resp., vertical) vector fields Y (resp.,
V,W ). In particular, if we apply (45) for W = V orthogonal to e we obtain



ISOMETRIC IMMERSIONS OF WARPED PRODUCTS 733

that the expression between parentheses on the left-hand-side vanishes. Then,
for W = e this yields

ω(λ〈Y,X〉V − γ〈V, e〉Y ) = 0,

thus proving Fact 28 by (41) in this case.

Case Aξ̃|H = 0. Using (1) we obtain for Y, Z ∈ L(Lp) and V ∈ L(Mn)
that

〈(∇YAξ̃)V,Z〉 = 〈∇YAξ̃V,Z〉 − 〈Aξ̃∇Y V,Z〉
= Y 〈Aξ̃V,Z〉 − 〈Aξ̃V,∇Y Z〉 − 〈∇Y V,Aξ̃Z〉 = 0

and, analogously, that

〈(∇VAξ̃)Y, Z〉 = 0.

Using again that these equations are tensorial, we can replace Z by the vector
field X. We obtain from (31) and the Codazzi equation that

ω(λ〈V, e〉Y − β〈Y,X〉V ) = 0,

which by (40) proves Fact 28 also in this case.
It follows from Theorem 5’ in [7] and the assumption that f is an embedding

that f is a composition f = H ◦ g, where g : Np+n → Q
p+n+1
c is an isometric

immersion such that Agδ = Aξ̃ for some unit normal vector field δ of g, and
H : W → Q

p+n+2
c is an isometric immersion of an open subset W ⊂ Q p+n+1

c

containing g(Np+n). Moreover, since Agδ = Aξ̃ satisfies Agδ |Vz = γ̃0 id or
Agδ |Hz = 0 at any z ∈ Np+n, it follows that g is of type A, and the conclusion
follows from Theorem 8. �

Remark 29. By Proposition 27, if f : Np+n = Lp ×ρ Mn → Q
p+n+2
c ,

n ≥ 2, is an isometric embedding of type B1, then it must satisfy one of the
conditions in Proposition 25-(i) everywhere. Moreover, for n ≥ 1 we have that
both conditions hold simultaneously if and only if the isometric immersion
g : Np+n → Q

p+n+1
c satisfies Agδ |V = γ̃0 id and Agδ |H = 0. By Corollary 6,

this is the case if and only if g = Ψ ◦ (h1 × h2) with h1 totally geodesic and
h2 a local isometry, where Ψ: V p+1 ×σ Qn

c̃ → Q
p+n+1
c is a warped product

representation determined by (Qn
c̃ , z̄). Furthermore, if in addition γ̃0 = 0,

that is, g is totally geodesic, and grad ρ has no zeros, then Corollary 7 implies
that h1 must be cylindrical with respect to a, where −a is the mean curvature
vector of Qn

c̃ at z̄ in either Rp+n+1 or O p+n+2, according as c = 0 or c 6= 0.
Conversely, if h1 is totally geodesic and cylindrical with respect to a and h2

is a local isometry, then g = Ψ ◦ (h1 × h2) is totally geodesic.

By using the main lemma in [14] or Corollary 9, according as c = 0 or c 6= 0,
instead of Theorem 8, we obtain the following result for isometric immersions
of Riemannian products.
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Corollary 30. Let f : Lp ×Mn → Q
p+n+2
c , p+ n ≥ 3, be an isometric

embedding of type B1 of a Riemannian product.
(i) If c = 0, then there exist an orthogonal decomposition R

p+n+2 =
R
p+k1×Rn+k2 with k1 +k2 = 1 and isometric immersions h1 : Lp0 →

R
p+k1 , h2 : Mn

0 → R
n+k2 and H : W → R

p+n+2 of an open subset
W ⊃ (h1 × h2)(U) of R p+n+1 such that f |U = H ◦ (h1 × h2) (see the
diagram in Case c = 0—(ii) of Theorem 17 ).

(ii) If c 6= 0 there exist an isometric embedding Φ: Q p
c1 ×Q

n
c2 → Q

p+n+1
c

as an extrinsic Riemannian product, local isometries i1 : Lp → Q
p
c1

and i2 : Mn → Q
n
c2 , and an isometric immersion H : W → Q

p+n+2
c

of an open subset W ⊃ Φ◦(i1×i2)(Lp×Mn) of Q p+n+1
c such that f =

H ◦Φ◦ (i1× i2) (see the diagram in Case c 6= 0—(ii) of Theorem 17 ).

We now consider isometric immersions f : Lp×ρMn → Q
p+n+2
c of type B2.

In the following statement, in order not to have to consider separately the cases
p = 1 and p ≥ 2, we agree that in the first case all information related to the
splitting Lp = Lp−1 ×ρ1 I should be disregarded.

Proposition 31. Let f : Lp×ρMn → Q
p+n+2
c be an isometric immersion

of type B2 and assume that n ≥ 3. Then locally we have: Lp and Mn split as
warped products Lp = Lp−1×ρ1 I and Mn = J ×ρ2 M

n−1, where I, J ⊂ R are
open intervals, and

Np+n = Lp−1 ×ρ1 ((I ×ρ3 J)×ρ̄Mn−1),

where ρ1 ∈ C∞(Lp−1), ρ2 ∈ C∞(J), ρ3 ∈ C∞(I) and ρ̄ ∈ C∞(I × J) satisfy

ρ = (ρ1 ◦ πLp−1)(ρ3 ◦ πI) and ρ̄ = (ρ3 ◦ πI)(ρ2 ◦ πJ),

and there exist warped product representations

Ψ1 : V p−1 ×σ1 Q
n+3
c̃ → Q

p+n+2
c and Ψ2 : W 4 ×σ2 Q

n−1
c̄ → Q

n+3
c̃ ,

isometries i1 : Lp−1 → W p−1 ⊂ V p−1 ⊂ Q p−1
c and i2 : Mn−1 → W n−1 ⊂

Q
n−1
c̄ onto open subsets, and an isometric immersion g : I ×ρ3 J → W 4 of

type B2 such that ρ̄ = σ2 ◦ g, ρ1 = σ1 ◦ i1 and f = Ψ1 ◦ (i1 × (Ψ2 ◦ (g × i2))).
Moreover, Lp has constant sectional curvature c if p ≥ 2 (see the diagram in
Theorem 14-(iii)).

Proof. We have by (32), (33) and (34) that

Aξ̃Y = β̃0〈Y,X〉X and Aξ̃V = b̃V + (γ̃0 − b̃)〈V, e〉e,(46)

where b̃ = β̃−1
0 δ̃0. On the other hand, we have that Aξ is given by (31). Thus,

for the relative nullity subspace ∆(z) at z ∈ Np+n there are two possibilities:

∆(z) =
{
{X}⊥ ⊂ H if δ̃0(z) 6= 0,
({X}⊥ ⊂ H)⊕ ({e}⊥ ⊂ V) if δ̃0(z) = 0.
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In the remainder of this proof the letters T and S will always denote vector
fields in Γ({X}⊥ ⊂ H) and Γ({e}⊥ ⊂ V), respectively. We also denote by
(Aδ, u, v, w) taking the w-component of the Codazzi equation for Aδ and the
vectors u, v.

We first prove that if p ≥ 2 then Lp splits locally as Lp = L p−1×ρ1 I, where
I is an open interval, and that ρ = (ρ1 ◦ πL p−1)(ρ3 ◦ πI) for some functions
ρ1 ∈ C∞(L p−1) and ρ3 ∈ C∞(I). We point out that this fact also holds if
n = 1, 2. As a first step, we show that the vector field X is the lift of a vector
field X̃ ∈ Γ(TL). For that, we must prove that

∇VX = −〈X, η〉V.(47)

Notice that (Aξ̃, X, V, T ) reads

〈∇XAξ̃V −Aξ̃∇XV −∇VAξ̃X +Aξ̃∇VX,T 〉 = 〈ω(V )AξX − ω(X)AξV, T 〉.

Then, by means of (31) and (46) we obtain

〈∇VX,T 〉 = 0.(48)

On the other hand, by means of (4),

〈∇VX,W 〉 = −〈∇VW,X〉 = −〈V,W 〉〈X, η〉.(49)

Using also that 〈∇VX,X〉 = 0, for X has unit length, we obtain (47) from
(48) and (49). Notice that X̃ has unit length, because

〈X̃, X̃〉L ◦ πL = 〈πL∗X,πL∗X〉L = 〈X,X〉N = 1.

We show next that the distribution {X̃}⊥ is totally geodesic in L p. In effect,
for any T̃1, T̃2 ∈ Γ({X̃}⊥) we have

〈∇L
T̃1
T̃2, X̃〉L ◦ πL = 〈πL∗∇T1T2, πL∗X〉L = 〈∇T1T2, X〉N = 0,

where the last equality follows from the fact that the relative nullity distribu-
tion ∆ is totally geodesic and T1, T2 ∈ Γ(∆), whereas X ∈ Γ(∆⊥).

Our next step is to prove that the vector field ζ = η−〈X, η〉X ∈ Γ({X}⊥)
is the lift of a vector field ζ̃ ∈ Γ({X̃}⊥), i.e., ∇V ζ = −〈ζ, η〉V . This follows
from

〈∇V ζ,W 〉 = −〈ζ,∇VW 〉 = −〈V,W 〉〈η, ζ〉, 〈∇V ζ,X〉 = −〈ζ,∇VX〉 = 0,

where we have used (47), and from

〈∇V ζ, T 〉 = 〈∇V η, T 〉 − V (〈X, η〉)〈X,T 〉 − 〈X, η〉〈∇VX,T 〉 = 0,

where we have used (47) for the last term and that V is spherical for the first
term.
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Our final step is to show that the distribution {X̃} is spherical with mean
curvature vector ζ̃. We have from (Aξ, X, e, T ) and λ 6= 0 that 〈∇XX,T 〉 =
〈∇ee, T 〉 = 〈η, T 〉, and hence

∇L
X̃
X̃ ◦ πL = πL∗∇XX = πL∗ζ = ζ̃.

On the other hand, we obtain from (11) for Y = T and V = W 6= 0 that

〈∇Xη, T 〉 = 〈X, η〉〈T, η〉.

Thus,

〈∇Xζ, T 〉 = 〈∇Xη, T 〉 − 〈X, η〉〈∇XX,T 〉 = 0,

and therefore,

〈∇L
X̃
ζ̃, T̃ 〉L ◦ πL = 〈πL∗∇Xζ, πL∗T 〉L = 〈∇Xζ, T 〉N = 0 for T̃ ∈ Γ({X̃}⊥),

which completes the proof of the step.
By Theorem 1, we have that locally Lp splits as Lp = L p−1×ρ1 I, where I

is an open interval and ζ̃ = − grad log(ρ1 ◦ πL p−1). In particular, the lift ζ of
ζ̃ to Np+n is

ζ = − grad log(ρ1 ◦ πL p−1 ◦ πL p).

Since we also have η = − grad log(ρ ◦ πL), we obtain 〈X, η〉X = η − ζ =
− grad log(ρ̂ ◦ πL) with ρ̂ = ρ(ρ1 ◦ πLp−1)−1 ∈ C∞(Lp). Moreover, since

(T̃ (log ρ̂)) ◦ πLp = T (log(ρ̂ ◦ πLp)) = −〈X, η〉〈X,T 〉 = 0,

it follows that there exists ρ3 ∈ C∞(I) such that ρ̂ = ρ3 ◦ πI .
Let us now prove that locally Mn also splits as Mn = J ×ρ2 M

n−1, where
J is an open interval. First, we obtain from (Aξ̃, Y, e, S) and b̃ 6= γ̃0 that
〈∇Y e, S〉 = 0. Since also 〈∇Y e, e〉 = 0, for e has unit length, and 〈∇Y e, Z〉 =
−〈∇Y Z, e〉 = 0, we have

∇Y e = 0.(50)

It follows that

∇Y (ρ ◦ πL)e = Y (ρ ◦ πL)e = −〈Y, η〉(ρ ◦ πL)e.

This implies that (ρ ◦ πL)e is the lift of a vector field ẽ ∈ Γ(Mn). Notice that
ẽ is a unit vector field, for

〈ẽ, ẽ〉M ◦ πM = 〈πM ∗(ρe), πM ∗(ρe)〉M = ρ−2〈ρe, ρe〉N = 1.

Thus, in order to show that locally Mn splits as claimed, by Theorem 1 it
suffices to prove that the distribution {ẽ} is totally geodesic and that {ẽ}⊥ is
spherical.

We obtain from (Aξ, X, e, S) and (50) that

〈∇ee, S〉 = 0.(51)
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In particular, it follows that ∇ee = η. We conclude that the distribution {ẽ}
is totally geodesic from

〈∇Mẽ ẽ, S̃〉M ◦ πM = 〈πM ∗∇ρeρe, πM ∗S〉M = 〈∇ee, S〉N = 0

for any S̃ ∈ Γ({ẽ}⊥). On the other hand, we obtain from (Aξ̃, S1, e, S2) that

〈∇S1S2, e〉 = ϕ〈S1, S2〉,

where ϕ = (b̃−γ̃0)−1e(b̃). Thus, the distribution {e}⊥ ⊂ V is totally umbilical.
Moreover,

〈∇M
S̃1
S̃2, ẽ〉M ◦ πM = 〈πM ∗∇S1S2, πM ∗ρe〉M = ρ−1〈∇S1S2, e〉N

= ρ−1ϕ〈S1, S2〉N = ρϕ〈S̃1, S̃2〉M ◦ πM .

The preceding equality implies that there exists ϕ̃ ∈ C∞(Mn) such that
ρϕ = ϕ̃ ◦ πM and that the distribution {ẽ}⊥ is totally umbilical with mean
curvature normal ϕ̃ẽ. In particular, if b̃, or equivalently, δ̃0, vanishes on an
open subset Lp0 ×Mn

0 ⊂ Np+n, then {ẽ}⊥ is a totally geodesic distribution in
Mn

0 . In the general case, in order to show that {ẽ}⊥ is spherical, it remains
to prove that S̃(ϕ̃) = 0 or, equivalently, that S(ϕ) = 0. First, using that V is
umbilical and invariant by Aξ̃, and that λ 6= 0, we obtain from (Aξ̃, e, S,X)
that ∇⊥S ξ̃ = 0. Now, choosing linearly independent sections S1, S2 ∈ Γ({e}⊥)
we obtain from (Aξ̃, S1, S2, S1) that S(b̃) = 0. We point out that the assump-
tion that n ≥ 3 is only used here. In particular, if δ̃0 is everywhere vanishing
then it is enough to assume that n ≥ 2. Using (51) we obtain from (Aξ̃, e, S, e)
that S(γ̃0) = 0. Since ∇eS ∈ {e}⊥ and ∇Se ∈ {e}⊥, as follows from (51) and
the fact that V is totally umbilical, then

Se(b̃) = eS(b̃) +∇eS(b̃)−∇Se(b̃) = 0,

and hence S(ϕ) = 0. Therefore, locally Np+n splits as

Np+n = Lp−1 ×ρ1 M
n+1 with Mn+1 := M2 ×ρ̄Mn−1 and M2 := I ×ρ3 J,

where J ⊂ R is an open interval and ρ̄ = (ρ3 ◦πI)(ρ2 ◦πJ). Notice that f is of
type A with respect to this decomposition of Np+n. We claim that there exist
a warped product representation Ψ1 : V p−1×σ1Q

n+3
c̃ → Q

p+n+2
c , an isometric

immersion G̃ : Mn+1 → Q
n+3
c̃ and a local isometry i1 : Lp−1 → V p−1 such

that ρ1 = σ1 ◦ i1 and f = Ψ1 ◦ (i1 × G̃).
Fix ȳ ∈ Lp−1 with ρ1(ȳ) = 1 and let iȳ : Mn+1 → Nn+p be the (isometric)

inclusion of Mn+1 into Nn+p as a leaf of the vertical subbundle V̄ according
to the latter decomposition of Nn+p. Define G : Mn+1 → Q

p+n+2
c by G =

f ◦ iȳ. By Corollary 13-(ii), in order to show that the spherical hull of G
has dimension n + 3, it suffices to prove that for no point z ∈ Nn+p there
exists a unit vector ξ̄ ∈ T⊥z N such that Aξ̄|V̄z : V̄z → V̄z is a multiple of the
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identity tensor. Write ξ̄ = cos θξ+sin θξ̃. Then 〈Aξ̄X, e〉 = 0 and 〈Aξ̄X,X〉 =
〈Aξ̄e, e〉 = 〈Aξ̄S, S〉 for any unit vector S ∈ ({e}⊥z ⊂ Vz) if and only if

λ cos θ = 0 and β̃0 sin θ + β cos θ = γ cos θ + γ̃0 sin θ = b̃ sin θ.

Since λ 6= 0, we obtain that γ̃0 = b̃, a contradiction to the fact that βγ−λ2 6= 0.
Our claim then follows from Theorem 8 by letting Qn+3

c̃ be the spherical hull
of G and defining G̃ : Mn+1 → Q

n+3
c̃ by G = j ◦ G̃, where j is the inclusion

of Qn+3
c̃ into Q p+n+2

c .
We now study the isometric immersion G̃ : Mn+1 → Q

n+3
c̃ . First observe

that the second fundamental form of G = j ◦ G̃ is given by

αG(V,W ) = αf (iȳ∗V, iȳ∗W ) + 〈V,W 〉f∗(η̄ ◦ iȳ) for all V,W ∈ Γ(TMn+1),

where η̄ denotes the mean curvature normal of V̄. Let V̂ denote the vertical
subbundle of TMn+1 according to the decomposition Mn+1 = M2 ×ρ̄Mn−1.
Using that Afξ |iȳ∗V̂ = 0 and that Af

ξ̃
|iȳ∗V̂ = b̃ id, where id denotes the identity

tensor, it follows that

αG(V, V̄ ) = 〈V, V̄ 〉((b̃ ◦ iȳ)(ξ̃ ◦ iȳ) + f∗(η̄ ◦ iȳ)) for all V ∈ Γ(TMn+1), V̄ ∈ V̂.

Therefore η̂ = (b̃ ◦ iȳ)(ξ̃ ◦ iȳ) + f∗(η̄ ◦ iȳ) is a principal curvature normal
of G and V̂ is contained in the corresponding eigendistribution. Since j is
umbilical, it follows that η̂TQn+3

c̃
is a principal curvature normal of G̃ with the

same eigendistribution as η̂. By means of Corollary 13-(i) and Theorem 8,
we conclude that there exist a warped product representation Ψ2 : W 4 ×σ2

Q
n−1
c̄ → Q

n+3
c̃ , an isometric immersion g : M2 →W 4 and a local isometry

i2 : Mn−1 → Q
n−1
c̄ such that ρ̄ = σ2 ◦ g and G̃ = Ψ2 ◦ (g × i2). Moreover,

since the second fundamental form of g is determined by the restriction of
αG to the horizontal subbundle Ĥ of TMn+1 according to the decomposition
Mn+1 = M2 ×ρ̄Mn−1, and hence by the restriction of αf to span{X, e} (see
formula (15)), it follows that g is of type B2.

Finally, since {X}⊥ ⊂ H is contained in ∆, we obtain that the curvature-
like tensor C defined in Proposition 2 satisfies

C(Y1, Y2, Y3, Y4) = 0 for all Y1, Y2, Y3, Y4 ∈ Γ(H).

The last assertion then follows from the fact that, for a fixed x̄ ∈ Mn, the
inclusion ix̄ : Lp → Np+n given by ix̄(y) = (y, x̄) is a totally geodesic isometric
immersion. �

Corollary 32. Let Np+n = Lp×Mn be a Riemannian product of dimen-
sion p+n ≥ 3. Then there exists no isometric immersion f : Np+n → Q

p+n+2
c

of type B2 if c 6= 0.
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Proof. We may assume p ≥ 2. It follows from Proposition 31 that locally
Lp splits as a Riemannian product Lp = Lp−1×I. The statement now follows
from the fact that Lp has constant sectional curvature c. �

In order to complete the classification of isometric immersions f : Lp ×
Mn → Q

p+n+2
c of type B of Riemannian products of dimension p+ n ≥ 3, it

remains to determine those that are of type B2 for c = 0. Observe that for
such isometric immersions equation (34) in Proposition 25 holds with δ̃0 = 0
(see Corollary 26). In the following result we solve the more general problem
of classifying isometric immersions of type B2 of warped products satisfying
this condition.

Corollary 33. Let f : Np+n = Lp ×ρ Mn → Q
p+n+2
c , n ≥ 2, be an

isometric immersion of type B2 for which δ̃0 vanishes everywhere. Then c ≤ 0,
Np+n has constant sectional curvature c and one of the following holds locally:

(i) If c = 0 then Lp and Mn split as Riemannian products Lp = Lp−1×I
and Mn = J ×Mn−1, where I, J ⊂ R are open intervals, and there
exist isometries i1 : Lp−1 → U ⊂ Rp−1 and i2 : Mn−1 → V ⊂ Rn−1

onto open subsets and an isometric immersion g : I × J → R
4 such

that f = i1 × g × i2.

Lp−1 × (I × J)×Mn−1 = Np+n

i1

f = i1 × g × i2g

i2
6

66

6

∪
U

∪
V

R
p−1 × R4 × R

n−1 = R
p+n+2

(ii) If c < 0 then Lp splits as a warped product Lp = Lp−1 ×ρ1 I, Mn

splits as a Riemannian product Mn = J ×Mn−1, where I, J ⊂ R are
open intervals and ρ = ρ1 ◦ πLp−1 , and there exist a warped product
representation Ψ: V p−1 ×σ Rn+3 → Q

p+n+2
c , isometries i1 : Lp−1 →

U ⊂ V p−1 and i2 : Mn−1 →W ⊂ Rn−1 onto open subsets, and an
isometric immersion g : I × J → R

4 such that f = Ψ ◦ (i1 × (g × i2))
and ρ1 = σ ◦ i1.

Lp−1 ×ρ1 ((I × J)×Mn−1)

g

Q
p+n+2
c

f = Ψ ◦ (i1 × (g × i2))

i1 i2

6

6 6

∪
U

∪
W

V p−1 ×σ (R4 × R
n−1)

�

Ψ
PPPPPPPPPPPPPPq

-
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Proof. First observe that for the statement of Proposition 31 to hold in this
case it is enough to require that n ≥ 2, as follows from the second italicized
statement in its proof. In order to prove that Np+n has constant sectional
curvature c, we must show that the curvature-like tensor C defined in Propo-
sition 2 vanishes identically. Since the relative nullity distribution of f is
∆ = (span{X, e})⊥, we have that C(E1, E2, E3, E4) = 0 whenever two of the
vectors E1, E2, E3, E4 belong to (span{X, e})⊥. Thus it remains to show that
C(X, e, e,X) = 0, because C is a curvature-like tensor. But this follows from
(31), (46) and the assumption that δ̃0 = 0.

We have from Proposition 31 that locally Lp and Mn split as warped
products Lp = Lp−1 ×ρ1 I, Mn = J ×ρ2 M

n−1, and Np+n = Lp−1 ×ρ1

((I ×ρ3 J)×ρ̄Mn−1), where I, J ⊂ R are open intervals and ρ1 ∈ C∞(Lp−1),
ρ2 ∈ C∞(J), ρ3 ∈ C∞(I) and ρ̄ ∈ C∞(I × J) satisfy

ρ = (ρ1 ◦ πLp−1)(ρ3 ◦ πI) and ρ̄ = (ρ3 ◦ πI)(ρ2 ◦ πJ).

But now 〈X, η〉 = 〈∇SS,X〉 = 0, because ∆ is totally geodesic. Hence we
may assume that ρ3 = 1 (recall the proof of Proposition 31), and therefore
ρ = ρ1 ◦ πLp−1 . On the other hand, by the first italicized statement in the
proof of Proposition 31, the distribution {ẽ}⊥ in Mn is now totally geodesic,
and hence ρ2 = 1, which implies that also ρ̄ = 1. Summing up, we have

Np+n = Lp−1 ×ρ1 M
n+1, with Mn+1 := M2 ×Mn−1 and M2 := I × J.

Now, for a fixed point ȳ ∈ Lp with ρ(ȳ) = 1, let iȳ : Mn → Np+n denote the
(isometric) inclusion of Mn into Np+n as a leaf of V. The second fundamental
form of iȳ is αiȳ (V,W ) = 〈V,W 〉(η ◦ iȳ) for all V,W ∈ Γ(TMn), where η =
− grad log(ρ◦πL) is the mean curvature normal of V. Since Np+n has constant
sectional curvature c, it follows from the Gauss equation for iȳ that Mn has
constant sectional curvature c+‖η ◦ iȳ‖2 = c+‖ grad log ρ(ȳ)‖2. We conclude
from the fact that Mn = J ×Mn−1 is a Riemannian product that it must be
flat, hence Mn−1 must be flat when n ≥ 3 and c+ ‖ grad log ρ(ȳ)‖2 = 0. Now
choose any other point y∗ ∈ Lp and modify the warped product representation
of Nn+p so that the modified warping function ρ∗ satisfies ρ∗(y∗) = 1. By this
modification η = − grad log(ρ ◦ πL) does not change. Therefore the preceding
argument yields ‖ grad log ρ(y∗)‖2 = −c.

We now distinguish the two possible cases:

Case c = 0. Here η = − grad(log ρ ◦ πLp) vanishes, hence ρ = 1, conse-
quently also ρ1 = 1 and therefore Np+n = Lp−1 ×M2 ×Mn−1, with Lp−1

and Mn−1 flat and M2 = I×J . Using that ∆ = (span{X, e})⊥ is the relative
nullity distribution of f , the main lemma in [14] implies that f splits as

f = i1 × g × i2 : Lp−1 ×M2 ×Mn−1 → R
p−1 × R4 × Rn−1 = R

p+n+2,

where i1 : Lp−1 → U ⊂ Rp−1 and i2 : Mn−1 → V ⊂ Rn−1 are isometries onto
open subsets, and g : M2 → R

4 is an isometric immersion.
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Case c < 0. For G = f ◦ iȳ as in the proof of Proposition 31, we have from
Corollary 13-(ii) that its spherical hull Qn+3

c̃ has constant sectional curvature
c̃ = c+‖ grad log ρ(ȳ)‖2 = 0. Therefore Qn+3

c̃ is a horosphere Rn+3 ⊂ Q p+n+2
c .

Let G̃ : Mn+1 → R
n+3 = Q

n+3
c̃ be such that G = j ◦ G̃, where j denotes the

inclusion of Qn+3
c̃ into Q p+n+2

c . Using that the vertical subbundle of Mn+1

corresponding to the splitting Mn+1 = M2×Mn−1 is contained in the relative
nullity distribution of G̃, the conclusion now follows from the main lemma in
[14] applied to G̃ : M2 ×Mn−1 → R

n+3. �

Corollary 34. Let Np+n = Lp ×Mn be a Riemannian product of di-
mension p + n ≥ 3. Then any isometric immersion f : Np+n → R

p+n+2 of
type B2 is locally given as in Corollary 33-(i).

Remark 35. By making use of global arguments from [1], a complete
description of the possible cases in which an isometric immersion f : Lp ×
Mn → R

p+n+2, p ≥ 2 and n ≥ 2, of a Riemannian product of complete
nonflat Riemannian manifolds may fail locally to be a product of isometric
immersions was given in [3]. Namely, it was shown therein that there exists
an open dense subset of Lp×Mn each of whose points lies in an open product
neighborhood U0 = Lp0 × Mn

0 restricted to which f is either (i) a product
of isometric immersions, (ii) an isometric immersion of type B2 given as in
Corollary 33 - (i), or (iii) an isometric immersion of type B1 of the following
special type: either Lp0 or Mn

0 , say, the latter, splits as Mn
0 = I × Rn−1, the

manifold Lp0 is free of flat points and f |U0 splits as

f |U0 = F × id : (Lp0 × I)× Rn−1 → R
p+3 × Rn−1 = R

p+n+2.

Moreover, F : Lp0 × I → R
p+3 is a composition F = H ◦ F̃ , where

F̃ = G× i : Lp0 × I → R
p+1 × R = R

p+2

is a cylinder over a hypersurface G : Lp0 → R
p+1, and H : W → R

p+3 is an
isometric immersion of an open subset W ⊃ F̃ (Lp0 × I) of Rp+2.

We take the opportunity to point out that the main theorem in [3] misses
the conditions that Lp0 is free of flat points and that F̃ is a cylinder F̃ = G× i,
which follow from Corollary 24.

5. Immersions of type C

The aim of this section is to prove the following pointwise result for iso-
metric immersions of type C.

Proposition 36. Let f : Lp×ρMn → Q
p+n+2
c be an isometric immersion

of a warped product. If f is of type C at z ∈ Np+n = Lp ×ρMn and n ≥ 3,
then Np+n has constant sectional curvature c at z.
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Proof. We must prove that the curvature like tensor C on TzN defined in
Proposition 2 vanishes identically. Two possible cases may occur:

Case 1. For every X ∈ Hz the linear map BX defined in (22) satisfies
rankBX ≤ 1.

Case 2. There exists X ∈ Hz such that rankBX = 2.
We first prove the following facts.

(i) In Case 1, for any X ∈ Hz with rankBX = 1 we have

α(E, V ) = 0 for all V ∈ D(X) = kerBX and E ∈ TzN,(52)

that is, D(X) is contained in the relative nullity subspace ∆ of f at z.
(ii) In Case 2, condition (52) is true for any X ∈ Hz such that rankBX = 2.

Proof of (i). Here Lemma 20 applies and we have by (23) that D(Y ) =
{e}⊥ for any Y ∈ Hz with rankBY = 1. In particular, this shows that
(52) is satisfied for any E ∈ Hz. On the other hand, (24) yields α(V,W ) =
〈V, e〉〈W, e〉α(e, e), and hence (52) also holds for any E ∈ Vz.

Proof of (ii). If rankBX = 2, i.e., BX(Vz) = T⊥z N , then (52) is equivalent
to

〈α(E, V ), α(X,W )〉 = 0

for all V ∈ D(X), W ∈ Vz and E ∈ TzN . But this follows from (13) for
E ∈ Hz and from (14) for E ∈ Vz.

We now prove that

C(E1, V1, V2, E2) = 0 for all E1, E2 ∈ TzN and V1, V2 ∈ Vz.(53)

We obtain from (14) that (53) holds whenever one of the vectors E1, E2 lies in
Hz and the other in Vz. On the other hand, if we are in Case 1 (resp., Case 2)
and X ∈ Hz satisfies rankBX = 1 (resp., rankBX = 2), then it follows
from (52) that (53) is also satisfied if any of the vectors E1, E2, V1 or V2

belongs to D(X). In particular, C(E1, V, V,E2) = 0 holds for any V ∈ D(X).
Notice that D(X) 6= {0} by our assumption that n ≥ 3. Applying (11) for
0 6= W = V ∈ D(X) yields

∇Y η − 〈Y, η〉η − cY = 0 for any Y ∈ Hz.(54)

Notice that if Np+n is a Riemannian product then this implies that c = 0.
Moreover, since for c = 0 this equation holds automatically for Riemannian
products, in this case it is enough to assume that either n ≥ 2 or p ≥ 2.

Therefore, (53) is satisfied for all E1, E2 ∈ Hz and V1, V2 ∈ Vz. This
completes the proof of (53) in Case 1 and shows that in Case 2 it remains to
prove that (53) is satisfied if E1, E2, V1, V2 all belong to the two-dimensional
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subspace D(X)⊥. Since C is a curvature like tensor, this will follow once we
prove the existence of an orthonormal basis {e1, e2} of D(X)⊥ such that

C(e1, e2, e2, e1) = 0.(55)

In order to prove (55) take an orthonormal basis e1, e2 of D(X)⊥ such that
e1 is one of the two points on the unit circle S1 in D(X)⊥ where φ : S1 → R

given by φ(V ) = ‖BXV ‖2 assumes its maximum value. Differentiating ψ(t) =
φ(cos te1 + sin te2) yields

0 = ψ′(0) = 2〈BXe1, BXe2〉.

Thus, there exist an orthonormal basis {ξ1, ξ2} of T⊥z N and positive real
numbers λ1, λ2 such that BXer = λrξr for r = 1, 2. We have from (14) that

λ1〈α(e2, er), ξ1〉 = λ2〈α(e1, er), ξ2〉, r = 1, 2.(56)

Using that (53) holds for E1 = E2 = X, V1 = es and V2 = et, 1 ≤ s, t ≤ 2, we
obtain

〈α(X,X), α(er, er)〉 = 〈α(X, er), α(X, er)〉 = λ2
r,

〈α(X,X), α(e1, e2)〉 = 〈α(X, e1), α(X, e2)〉 = 0.

Setting γrst = 〈α(es, et), ξr〉 = γrst, αr = 〈α(X,X), ξr〉 and D = γ1
11γ

2
22 −

γ2
11γ

1
22, where 1 ≤ s, t ≤ 2, it follows that

a1γ
1
rr + a2γ

2
rr = λ2

r and a1γ
1
12 + a2γ

2
12 = 0.(57)

If we compute Da1 and Da2 from the first equation in (57) and put the result
into the second we obtain an equation which because of (56) is equivalent to

λ1λ2(〈α(e1, e1), α(e2, e2)〉 − 〈α(e1, e2), α(e1, e2)〉) = 0,

and this gives (55) and concludes the proof of (53).
Because of Proposition 2 it remains to show that

C(Y1, Y2, Y3, Y4) = 0 for all Y1, Y2, Y3, Y4 ∈ Hz.(58)

We divide the proof into the same two cases considered before.

Case 1. By Lemma 20 the linear map Hz → T⊥z N , Y 7→ α(Y, e) is
surjective. Hence p ≥ 2, and we can take X1, X2 ∈ Hz such that the vectors
ξj := α(Xj , e), j = 1, 2, form an orthonormal normal basis and α(Z, e) = 0
for all Z ∈ {X1, X2}⊥. We have from (12) and (13) that

0 = C(Z,Xj , e, E) = 〈AξjZ,E〉

for all Z ∈ {X1, X2}⊥ and any E ∈ TzN . Therefore, AξjZ = 0 for all
Z ∈ {X1, X2}⊥, that is, {X1, X2}⊥ ⊂ ∆(z). Hence (58) holds whenever
Yi ∈ {X1, X2}⊥ for some 1 ≤ i ≤ 4. Thus, it remains to prove that

C(X1, X2, X2, X1) = 0.(59)
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Because of (53) we have

〈α(Xi, Xj), α(e, e)〉 = 〈ξi, ξj〉.(60)

We now may assume that α(e, e) = a ξ2 with a 6= 0. We obtain from (60) that

〈Aξ2X1, X2〉 = 0(61)

and

a〈Aξ2Xj , Xj〉 = 1, j = 1, 2.

Since a 6= 0, it follows from the last equation that

〈Aξ2X1, X1〉 = 〈Aξ2X2, X2〉.(62)

In addition, (12) yields

0 = C(Xi, Xj , e,Xi) = 〈AξjXi, Xi〉 − 〈AξiXi, Xj〉, i 6= j.(63)

Then (59) follows from (61), (62) and (63), and the proof is completed in this
case.

Case 2. Since (55) holds, it follows from a result of E. Cartan ([5]; cf.
Theorem 1 in [15]), that we may choose nonzero vectors v1, v2 in D(X)⊥ (not
necessarily orthogonal) such that 〈α(v1, v1), α(v2, v2)〉 = 0 and α(v1, v2) = 0.
From (53) we have

0 = C(Z, v1, v2, Y ) = −〈α(Z, v2), α(Y, v1)〉.

Therefore, the subspaces α(Hz, v1), α(Hz, v2) are orthogonal lines spanned by
η1 = α(X, v1) and η2 = α(X, v2), respectively, which we may assume to have
unit length by rescaling v1 and v2 if necessary. In particular, the kernel Hj
of the linear map Fj : Hz → T⊥z N given by Fj(Y ) = α(Y, vj), j = 1, 2, has
codimension one in Hz. On the other hand, for Y ∈ Hj and any Z ∈ Hz we
obtain using (12) that

〈AηjY,Z〉 = 〈α(Y,Z), α(X, vj)〉 = 〈α(Y, vj), α(X,Z)〉 = 〈Fj(Y ), α(X,Z)〉 = 0.

Let Zj be a unit vector in Hz orthogonal to Hj , j = 1, 2. Then

C(Y1, Y2, Y3, Y4) = 〈α(Y1, Y4), α(Y2, Y3)〉 − 〈α(Y1, Y3), α(Y2, Y4)〉

=
2∑
j=1

(〈AηjY1, Y4〉〈AηjY2, Y3〉 − 〈AηjY1, Y3〉〈AηjY2, Y4〉)

=
2∑
j=1

〈Y1, Zj〉〈Y2, Zj〉(〈AηjZj , Y4〉〈AηjZj , Y3〉

− 〈AηjZj , Y3〉〈AηjZj , Y4〉) = 0. �

Proposition 36 and the italicized statement in its proof yield the following
result for the case of Riemannian products.
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Corollary 37. Let f : Lp ×Mn → Q
p+n+2
c be an isometric immersion

of a Riemannian product. Assume that f is of type C at z ∈ Np+n = Lp×Mn.
Then we have:

(i) If either p ≥ 3 or n ≥ 3 then c = 0.
(ii) If p+ n ≥ 3 and c = 0 then Np+n is flat at z.
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[12] W. Henke, Über die isometrische Fortsetzbarkeit isometrischer Immersionen der
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