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DOOB’S MAXIMAL IDENTITY, MULTIPLICATIVE
DECOMPOSITIONS AND ENLARGEMENTS OF

FILTRATIONS

ASHKAN NIKEGHBALI AND MARC YOR

In the memory of J.L. Doob

Abstract. In the theory of progressive enlargements of filtrations, the
supermartingale Zt = P(g > t | Ft) associated with an honest time g,
and its additive (Doob-Meyer) decomposition, play an essential role. In
this paper, we propose an alternative approach, using a multiplicative
representation for the supermartingale Zt, based on Doob’s maximal
identity. We thus give new examples of progressive enlargements. More-
over, we give, in our setting, a proof of the decomposition formula for
martingales , using initial enlargement techniques, and use it to obtain
some path decompositions given the maximum or minimum of some

processes.

1. Introduction

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual
hypotheses (right continuous and complete). Given the end L of an (Ft)
predictable set Γ, i.e.,

L = sup {t : (t, ω) ∈ Γ} ,

(these times are also referred to as honest times), M. Barlow [4] and Jeulin
and Yor [10] have shown that the supermartingale

ZLt = P (L > t | Ft) ,

chosen to be càdlàg, plays an essential role in the enlargement formulae with
respect to L, i.e., in expressing a general (Ft) martingale (Mt) as a semi-
martingale in (FLt )t≥0, the smallest filtration which contains (Ft), and makes
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L a stopping time. This enlargement formula is

(1.1) Mt = M̃t +
∫ t∧L

0

d〈M,Z〉s
Zs−

+
∫ t

L

d〈M, 1− Z〉s
1− Zs−

,

where (M̃t)t≥0 denotes an ((FLt ),P) local martingale. Hence it is important
to have an explicit formula for (ZLt )t≥0. In the literature about progressive
enlargements of filtrations, not many examples are fully developed (see, e.g.,
[27], [9] or [8]); indeed, the computation of (ZLt ) is sometimes difficult. More-
over, the examples are developed essentially in the Brownian setting, where,
as we shall see, (ZLt ) is continuous; no examples of discontinuous (ZLt )′s are
known.

In this paper, we first consider a special family of honest times g, and then
prove that this family is generic in the sense that every honest time is in fact
of this form (under some reasonable assumptions).

More precisely, we consider the following class of local martingales.

Definition 1.1. We say that an (Ft) local martingale (Nt) belongs to
the class (C0), if it is strictly positive, with no positive jumps, and satisfies
limt→∞Nt = 0.

Remark 1.2. Let (Nt) be a local martingale of class (C0). Then

St ≡ sup
s≤t

Ns,

its supremum process, is continuous. This property is essential in our pa-
per. Hence, most of the results we shall state remain valid for positive local
martingales, which go to zero at infinity, and whose suprema are continuous.

We associate with a local martingale of class (C0) the supermartingale
(Nt/St)t≥0 and the random time g defined as

g ≡ sup {t ≥ 0 : Nt = S∞}
= sup {t ≥ 0 : St −Nt = 0} .

In Section 2, we prove that the associated supermartingale Z satisfies

(1.2) Zt ≡ P (g > t | Ft) =
Nt
St
,

and then give the decomposition formula (1.1) in terms of the local martin-
gale (Nt). This will provide us with some new and explicit examples of su-
permartingales (Zt) which are discontinuous. We also establish a relationship
between the multiplicative representation (1.2) and the Doob-Meyer (addi-
tive) decomposition of (Zt).

In Section 3, we study the problem of the initial enlargement of (Ft) with
the variable S∞, and then give a new proof of (1.1).
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In Section 4, we show that the formula (1.2) is in fact very general. More
precisely, for any end of a predictable set L, under the following assumptions
(CA) the supermartingale ZLt = P(L > t | Ft) may be represented in the
form (1.2):

(C) All (Ft)-martingales are c ontinuous (e.g., the Brownian filtration).
(A) L avoids every (Ft)-stopping time T , i.e., P [L = T ] = 0,
In Section 5, we give some new examples of enlargements of filtrations.

Moreover, as an illustration of our approach and the method of enlargements
of filtrations, we recover and complete some known results of D. Williams [24]
about path decompositions of some diffusion processes, given their minima.
We add a new contribution to these path decompositions by introducing a
new family of random times, as defined in [18] and called pseudo-stopping
times, which generalize the fundamental notion of stopping times, introduced
by J.L. Doob. We take this opportunity to quote two passages, resp., in the
appendix of Meyer’s book (1966), and in Dellacherie-Meyer’s book, volume I
[6, p. 184]:

Les temps d’arrêt ont été utilisés, sans définition formelle,
depuis le début de la théorie des processus. La notion apparâıt
tout à fait clairement pour la première fois chez Doob en 1936.

Il a sans doute fallu autant de génie aux créateurs du cal-
cul différentiel pour expliciter la notion si simple de dérivée,
qu’à leurs successeurs pour faire tout le reste. L’invention des
temps d’arrêt par Doob est tout à fait comparable.

2. A multiplicative representation formula

2.1. Doob’s maximal identity. Let (Nt)t≥0 be a local martingale which
belongs to the class (C0), with N0 = x. Let St = sups≤tNs. We consider

g = sup {t ≥ 0 : Nt = S∞}(2.1)

= sup {t ≥ 0 : St −Nt = 0} .
To establish our main proposition, we shall need the following variant of

Doob’s maximal inequality, which we call Doob’s maximal identity:

Lemma 2.1 (Doob’s maximal identity). For any a > 0, we have:
(1)

(2.2) P (S∞ > a) =
(x
a

)
∧ 1.

Hence, x/S∞ is a uniform random variable on (0, 1).
(2) For any stopping time T we have

(2.3) P
(
ST > a | FT

)
=
(
NT
a

)
∧ 1,
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where
ST = sup

u≥T
Nu.

Hence NT /ST is also a uniform random variable on (0, 1), indepen-
dent of FT .

Proof. Formula (2.3) is a consequence of (2.2) when applied to the martin-
gale (NT+u)u≥0 and the filtration (FT+u)u≥0. Formula (2.2) itself is obvious
when a ≤ x, and for a > x, it is obtained by applying Doob’s optional stop-
ping theorem to the local martingale (Nt∧Ta), where Ta = inf{u ≥ 0 : Nu >
a}. �

The next proposition gives an explicit formula for Zt ≡ P(g > t | Ft), in
terms of the local martingale (Nt). Without loss of generality, we assume from
now on that x = 1. Indeed, if N0 = x, we can consider the local martingale
(Nt/x) which starts at 1.

Proposition 2.2.

(1) In our setting, the formula

Zt =
Nt
St
, t ≥ 0,

holds.
(2) The Doob-Meyer additive decomposition of (Zt) is

(2.4) Zt = E [logS∞ | Ft]− log (St) .

Proof. We first note that

{g > t} = {∃ u > t : Su = Nu}
= {∃ u > t : St ≤ Nu}

=
{

sup
u≥t

Nu ≥ St
}
.

Hence, from (2.3), we get P(g > t | Ft) = Nt
St

.
To establish (2.4), we represent (Nt/St) by Ito’s formula to obtain

Zt = 1 +
∫ t

0

1
Ss
dNs −

∫ t

0

Ns

(Ss)
2 dSs.

Now, we remark that the measure dSs is supported by the set {s : Zs = 1};
hence

Zt = 1 +
∫ t

0

1
Ss
dNs −

∫ t

0

1
Ss
dSs,

Nt
St

= 1 +
∫ t

0

1
Ss
dNs − log (St) .



DOOB’S MAXIMAL IDENTITY AND EXPANSIONS OF FILTRATIONS 795

From the uniqueness of the Doob-Meyer decomposition, log(St) is the pre-
dictable increasing part of (Zt) whilst (

∫ t
0

1
Ss
dNs) is its martingale part. As

(Zt) is of class (D), (
∫ t

0
1
Ss
dNs) is a uniformly integrable martingale. Now,

let t→∞. As Z∞ = 0, logS∞ = 1 +
∫∞

0
1
Ss
dNs and thus

(2.5) 1 +
∫ t

0

1
Ss
dNs = E [logS∞ | Ft] ,

which proves (2). �

Remark 2.3. It is well known, and it follows from (2.4), that the martin-
gale in (2.5) is in fact in BMO.

Corollary 2.4. Assuming that all (Ft) martingales are continuous, the
following hold:

(1) log(St) is the dual predictable projection of 1{g≤t}, i.e., for any posi-
tive predictable process (ks),

E (kg) = E
(∫ ∞

0

ks
dSs
Ss

)
.

(2) The random time g is honest and avoids any (Ft) stopping time T ,
i.e., P [g = T ] = 0.

Proof. Under our assumptions, the predictable and optional sigma algebras
are equal. Thus, it suffices to prove that g avoids stopping times, the other
assertions being obvious. Since log(St) is the dual predictable projection of
1{g≤t} and is continuous, for any (Ft) stopping time T ,

E
[
1{g=T}

]
= E [(∆ log (S•))T ] = 0.

Thus we get P (g = T ) = 0. �

We can now write the formula (1.1) in terms of the martingale (Nt).

Proposition 2.5. Let (Xt)t≥0 be a local (Ft) martingale. Then, X has
the following decomposition as a semimartingale in (Fgt ):

Xt = X̃t +
∫ t∧g

0

d〈X,N〉s
Ns−

−
∫ t

g

d〈X,N〉s
S∞ −Ns−

where (X̃t) is an (Fgt ) local martingale.

Proof. This is a consequence of formula (1.1) and Proposition 2.2. �

We shall now give a relationship between (St) and E[logS∞ | Ft]. For this,
we shall need the following easy extension of Skorokhod’s reflection lemma
(see [12, p. 72]):
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Lemma 2.6. Let y be a real-valued càdlàg function on [0,∞), such that y
has no negative jumps, and y(0) = 0. Then, there exists a unique pair (z, a)
of functions on [0,∞) such that:

(1) z=y+a,
(2) z is positive, càdlàg, and has no negative jumps,
(3) a is increasing, continuous, vanishing at zero and the corresponding

measure das is supported by {s : z(s) = 0}.
The function a is moreover given by

a(t) = sup
s≤t

(−y(s)) .

Proposition 2.7. With

µt = E [logS∞ | Ft] ,
we have

log (St) = sup
s≤t

µs − 1 ≡ µt − 1,

or, equivalently,
St = exp (µt − 1) .

Proof. By (2.4), we can write

1− Zt = (1− µt) + log (St) .

From Lemma 2.6, we deduce that

log (St) = sup
s≤t

µs − 1. �

2.2. Some hidden Azéma-Yor martingales. We shall now associate
with the two dimensional process

(log (St) , Zt)t≥0

a family of martingales reminiscent of the Azéma-Yor martingales (see, e.g.,
[3]) which we shall now discuss. In fact, once again, we have to introduce
a slightly generalized version of what are usually called Azéma-Yor martin-
gales. Indeed, these martingales were originally defined for continuous local
martingales (see [21, Chapter VI]), while we would like to define them for lo-
cal martingales without positive jumps. This extension can be obtained using
the following balayage argument:

Lemma 2.8. Let Y = M + A be a special semimartingale, where M is a
càdlàg local martingale, and A a continuous increasing process. Set H = {t :
Yt = 0}, and define gt ≡ sup{s < t : Ys = 0}. Then, for any locally bounded
predictable process (kt), (kgt) is predictable and

(2.6) kgtYt = k0Y0 +
∫ t

0

kgsdYs.
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Proof. The proof is the same as the proof for continuous semimartingales.
The reader can refer to [5, p. 144] for even more general versions of the
balayage formula. �

Now, we can state the following generalization of the classical Azéma-Yor
martingales:

Proposition 2.9. Let (Nt)t≥0 be a local martingale such that its supre-
mum process (St) is continuous (this is the case if Nt is in the class C0). Let
f be a locally bounded Borel function and define F (x) =

∫ x
0
dyf(y). Then,

Xt ≡ F (St)− f(St)(St −Nt) is a local martingale and

(2.7) F (St)− f (St) (St −Nt) =
∫ t

0

f (Ss) dNs + F (S0) .

Proof. In (2.6), take kt ≡ f(St), and Yt ≡ St −Nt. Then, we have

f (Sgt) (St −Nt) =
∫ t

0

f (Sgs) d (Ss −Ns) .

But Sgt = St, hence

F (St)− f (St) (St −Nt) =
∫ t

0

f (Ss) dNs + F (S0) .

In conclusion, for any locally bounded function f ,

F (St)− f (St) (St −Nt) =
∫ t

0

f (Ss) dNs + F (S0)

is a local martingale. �

Remark 2.10. Although very simple, these martingales played an essen-
tial role in the resolution by Azéma and Yor of Skorokhod’s embedding prob-
lem (see [21, Chapter VI] for more details and references).

Remark 2.11. In [15], a special case of Proposition 2.9, for spectrally
negative Lévy martingales is obtained by different means.

Now, we associate with the two dimensional process (log(St), Zt)t≥0, a
canonical family of local martingales which are in fact of the form (2.7).

Proposition 2.12. Let f be a locally bounded Borel function, and let
F (x) =

∫ x
0
dyf(y).

(1) The following processes are local martingales:

(2.8) F (log (St))− f (log (St)) (1− Zt) , t ≥ 0.
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(2) Denoting K(x) = F (x− 1) and k(x) = f(x− 1), the local martingales
in (2.8) are seen to be equal to

(2.9) K (µt)− k (µt) (µt − µt) , t ≥ 0.

Proof. (1) The fact that (2.8) defines a local martingale may be seen as an
application of Ito’s lemma (when f is regular), followed by a monotone class
argument.

(2) Formula (2.9) is obtained by a trivial change of variables, and the fact
that 1− Zt = µt − µt, which was derived in Proposition 2.7. �

Remark 2.13. Similar formulas are derived in [17] from different consid-
erations.

3. Initial expansion with S∞ and enlargement formulae

In this section, we shall deal with the question of initial enlargement of the
filtration (Ft) with the variable S∞ . This problem cannot be dealt with using
the powerful enlargement theorem of Jacod (see [9]), but can be treated by
a careful combination of different propositions in [8]. However, we shall give
a simple proof which can also be adapted to deal with some other situations.
Eventually, we will use our result about the initial expansion of (Ft) with the
variable S∞ to recover formula (1.1).

Let us define the new filtration

Fσ(S∞)
t ≡

⋂
ε>0

(Ft+ε ∨ σ (S∞)) ,

which satisfies the usual assumptions. The new information σ(S∞) is brought
in at the origin of time and g is a stopping time for this larger filtration. More
precisely, we have:

Lemma 3.1. The following hold:
(1) We have

g = inf {t : Nt = S∞} ,

and hence g is an (Fσ(S∞)
t ) stopping time.

(2) Consequently,
Fgt ⊂ F

σ(S∞)
t .

Proof. (1) The measure dSt is supported by the set {t : Nt = St}. As
g = sup{t : Nt = St}, the process (St) does not grow after g, which also
satisfies

g = inf {t : St = S∞} ;

hence g is an (Fσ(S∞)
t ) stopping time.

(2) This is obvious. �
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Now we introduce some standard terminology.

Definition 3.2. We shall say that the pair of filtrations (Ft,Fσ(S∞)
t )

satisfies the (H ′) hypothesis if every (Ft) (semi)martingale is an (Fσ(S∞)
t )

semimartingale.

We shall now show that the pair of filtrations (Ft,Fσ(S∞)
t ) satisfies the

(H ′) hypothesis and give the decomposition of an (Ft) local martingale in
(Fσ(S∞)

t ). For this, we need to know the conditional law of S∞ given Ft.

Proposition 3.3. For any Borel bounded or positive function f , we have

E (f (S∞) |Ft) = f (St)
(

1− Nt
St

)
+
∫ Nt/St

0

dxf

(
Nt
x

)
(3.1)

= f (St)
(

1− Nt
St

)
+Nt

∫ ∞
St

dx
f (x)
x2

.

Proof. The proof is based on Lemma 2.1; in the following, U is a random
variable which follows the standard uniform law and which is independent of
Ft.

E (f (S∞) |Ft) = E
(
f
(
St ∨ St

)
|Ft
)

= E
(
f (St) 1{St≥St}|Ft

)
+ E

(
f
(
St
)
1{St<St}|Ft

)
= f (St) P

(
St ≥ St|Ft

)
+ E

(
f
(
St
)
1{St<St}|Ft

)
= f (St) P

(
U ≤ Nt

St
|Ft
)

+ E
(
f

(
Nt
U

)
1{U<Nt

St
}|Ft

)
= f (St)

(
1− Nt

St

)
+
∫ Nt/St

0

dxf

(
Nt
x

)
.

A straightforward change of variable in the last integral also gives

E (f (S∞) |Ft) = f (St)
(

1− Nt
St

)
+Nt

∫ ∞
St

dy
f (y)
y2

. �

One may now ask if E(f(S∞)|Ft) is of the form (2.7). The answer to this
question is positive. Indeed,

E (f (S∞) |Ft) = f (St)
(

1− Nt
St

)
+Nt

∫ ∞
St

dy
f (y)
y2

= St

∫ ∞
St

dy
f (y)
y2
− (St −Nt)

(∫ ∞
St

dy
f (y)
y2
− f (St)

St

)
.

Hence,
E (f (S∞) |Ft) = H (1) +H (St)− h (St) (St −Nt) ,
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with

H (x) = x

∫ ∞
x

dy
f (y)
y2

,

and

h (x) = hf (x) ≡
∫ ∞
x

dy
f (y)
y2
− f (x)

x
=
∫ ∞
x

dy

y2
(f (y)− f (x)) .

Moreover, again from formula (2.7), we have the following representation of
E(f(S∞)|Ft) as a stochastic integral:

(3.2) E (f (S∞) |Ft) = E (f (S∞)) +
∫ t

0

h (Ss) dNs.

Let us sum up these results, introducing some notations:

λt (f) ≡ E (f (S∞) |Ft) = f (St)
(

1− Nt
St

)
+Nt

∫ ∞
St

dx
f (x)
x2

,(3.3)

and

(3.4) λt (f) = E (f (S∞)) +
∫ t

0

λ̇s (f) dNs,

where

(3.5) λ̇s (f) = hf (Ss) .

Moreover, there exist two families of random measures (λt(dx))t≥0 and
(λ̇t(dx))t≥0, with

λt (dx) =
(

1− Nt
St

)
δSt (dx) +Nt1{x>St}

dx

x2
,(3.6)

λ̇t (dx) = − 1
St
δSt (dx) + 1{x>St}

dx

x2
,(3.7)

such that

λt (f) =
∫
λt (dx) f (x) ,(3.8)

λ̇t (f) =
∫
λ̇t (dx) f (x) .(3.9)

Thus there is an absolute continuity relationship between λt(dx) and λ̇t(dx);
more precisely,

(3.10) λ̇t (dx) = λt (dx) ρ (x, t) ,

with

(3.11) ρ (x, t) =
−1

St −Nt
1{St=x} +

1
Nt

1{St<x}.

Now, we can state the main theorem of this section.
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Theorem 3.4. Let (Nt)t≥0 be a local martingale in the class C0 (recall
that N0 = 1). Then, the pair of filtrations (Ft,Fσ(S∞)

t ) satisfies the (H ′)
hypothesis and every (Ft) local martingale (Xt) is an (Fσ(S∞)

t ) semimartingale
with canonical decomposition

Xt = X̃t +
∫ t

0

1{g>s}
d〈X,N〉s
Ns−

−
∫ t

0

1{g≤s}
d〈X,N〉s
S∞ −Ns−

,

where (X̃t) is an (Fσ(S∞)
t ) local martingale.

Remark 3.5. The following proof is modelled on the arguments found in
[27], although our framework is more general since we do not assume that our
filtration has the predictable representation property with respect to some
martingale nor that all martingales are continuous.

Proof. We can assume that X is in H1; the general case follows by localiza-
tion. Let Λs be an Fs measurable set, and take t > s. Then, for any bounded
test function f , λt(f) is a bounded martingale, hence in BMO, and we have

E (1Λsf (A∞) (Xt −Xs)) = E (1Λs (λt (f)Xt − λs (f)Xs))

= E (1Λs (〈λ (f) , X〉t − 〈λ (f) , X〉s))

= E
(

1Λs

(∫ t

s

λ̇u (f) d〈X,N〉u
))

= E
(

1Λs

(∫ t

s

∫
λu (dx) ρ (x, u) f (x) d〈X,N〉u

))
= E

(
1Λs

(∫ t

s

d〈X,N〉uρ (S∞, u)
))

.

But from (3.11), we have

ρ (S∞, t) =
−1

St −Nt
1{St=S∞} +

1
Nt

1{St<S∞}.

It now suffices to note (from Lemma 3.1) that (St) is constant after g and g
is the first time when S∞ = St, or, in other words,

1{S∞>St} = 1{g>t}, and 1{S∞=St} = 1{g≤t}.

This completes the proof. �

Theorem 3.4 yields a new proof of the decomposition formula in the pro-
gressive enlargement case. More precisely, we have:

Corollary 3.6. The pair of filtrations (Ft,Fgt ) satisfies the (H ′) hypoth-
esis. Moreover, every (Ft) local martingale X decomposes as

Xt = X̃t +
∫ t

0

1{g>s}
d〈X,N〉s

Ns
−
∫ t

0

1{g≤s}
d〈X,N〉s
S∞ −Ns

,
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where (X̃t) is an (Fgt ) local martingale.

Proof. Let X be an (Ft) martingale which is in H1; the general case follows
by localization. From Theorem 3.4,

Xt = X̃t +
∫ t

0

1{g>s}
d〈X,N〉s

Ns
−
∫ t

0

1{g≤s}
d〈X,N〉s
S∞ −Ns

,

where (X̃t)t≥0 denotes an (Fσ(S∞)
t ) martingale. Thus, (X̃t), which is equal to

Xt −
(∫ t

0

1{g>s}
d〈X,N〉s

Ns
−
∫ t

0

1{g≤s}
d〈X,N〉s
S∞ −Ns

,

)
,

is (Fgt ) adapted (recall that Fgt ⊂ F
σ(S∞)
t ), and hence is an (Fgt ) martingale.

�

4. A multiplicative characterization of Zt

Usually, in the literature about progressive enlargements of filtrations, it
is assumed that the conditions (CA) are satisfied. Now, we shall prove that
under this assumption the supermartingale ZLt = P(L > t | Ft), associated
with an honest time, can be represented as (Nt/St)t≥0, where Nt is a positive
local martingale. More precisely, we have the following result:

Theorem 4.1. Let L be an honest time. Then, under the conditions
(CA), there exists a continuous and nonnegative local martingale (Nt)t≥0,
with N0 = 1 and limt→∞Nt = 0, such that

Zt = P (L > t | Ft) =
Nt
St
.

Proof. Under the conditions (CA), (Zt)t≥0 is continuous and can be writ-
ten as (see [1] or [5] for details)

Zt = Mt −At,

where (Mt) and (At) are continuous, Z0 = 1 and dAt is supported by {t :
Zt = 1}. Then, for t < T0 ≡ inf{t : Zt = 0}, we have

log (Zt) =
∫ t

0

dMs

Zs
− 1

2

∫ t

0

d〈M〉s
Z2
s

−At,

and hence

(4.1) − log (Zt) = −
(∫ t

0

dMs

Zs
− 1

2

∫ t

0

d〈M〉s
Z2
s

)
+At.

Also, from Skorokhod’s reflection lemma, we have

(4.2) At = sup
u≤t

(∫ u

0

dMs

Zs
− 1

2

∫ u

0

d〈M〉s
Z2
s

)
.
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Now, combining (4.1) and (4.2), we obtain

Zt =
Nt
St
,

where

Nt = exp
(∫ t

0

dMs

Zs
− 1

2

∫ t

0

d〈M〉s
Z2
s

)
is a local martingale starting from 1, and

St = sup
u≤t

(
exp

(∫ u

0

dMs

Zs
− 1

2

∫ u

0

d〈M〉s
Z2
s

))
= exp

(
sup
u≤t

(∫ u

0

dMs

Zs
− 1

2

∫ u

0

d〈M〉s
Z2
s

))
= exp (At) .

Finally, we note that, since ZT0 = 0, limt↑T0 Nt = 0, which allows us to define
Nt for all t ≥ 0. �

Corollary 4.2. The supermartingale Zt = P(L > t | Ft) admits the
following additive and multiplicative representations:

Zt =
Nt
St
,

Zt = Mt −At.

Moreover, these two representations are related as follows:

Nt = exp
(∫ t

0

dMs

Zs
− 1

2

∫ t

0

d〈M〉s
Z2
s

)
,

St = exp (At) ;

and

Mt = 1 +
∫ t

0

dNs
Ss

= E (logS∞ | Ft) ,

At = logSt.

Proof. The result is a consequence of Proposition 2.2 and Theorem 4.1. �

Now, as a consequence of Theorem 4.1, we can recover the enlargement
formulae and the fact that the pair of filtrations (Ft,FLt ) satisfies the (H ′)
hypothesis:

Corollary 4.3. Let L be an honest time. Then under the conditions
(CA), the pair of filtrations (Ft,FLt ) satisfies the (H ′) hypothesis and every
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(Ft) local martingale X is an (FLt ) semimartingale with canonical decompo-
sition

Xt = X̃t +
∫ t∧L

0

d〈X,Z〉s
Zs

+
∫ t

L

d〈X, 1− Z〉s
1− Zs

,

where (X̃t)t≥0 denotes an ((FLt )) local martingale.

Proof. The result is a combination of Theorem 4.1 and Corollary 3.6. �

Remark 4.4. We thus see that under the assumptions (CA) the initial
enlargement of filtrations with A∞ amounts to enlarging initially the filtration
with S∞, the terminal value of the supremum process of a continuous local
martingale in C0.

We shall now outline another nontrivial consequence of Theorem 4.1. In [2],
the authors give explicit examples of dual predictable projections of processes
of the form 1g≤t, where g is an honest time. Indeed, these dual projections
are natural examples of increasing injective processes (see [2] for more details
and references). With Theorem 4.1, we have a complete characterization of
such projections:

Corollary 4.5. Assume the assumption (C) holds, and let (Ct) be an
increasing process. Then C is the dual predictable projection of 1g≤t, for
some honest time g that avoids stopping times, if and only if there exists a
continuous local martingale Nt in the class C0 such that

Ct = logSt.

These results can be naturally extended to the case where the supermartin-
gale Zt has only negative jumps; we considered the special of the hypothesis
(CA) because of its practical importance. We only give here the extension of
Theorem 4.1; the corollaries are easily deduced.

Proposition 4.6. Let L be an honest time that avoids stopping times.
Assume that ZLt has no positive jumps. Then, there exists a local martingale
(Nt)t≥0, in the class C0, with N0 = 1, such that(

ZLt =
)
Zt = P (L > t | Ft) =

Nt
St
.

Proof. We use the same notations as in the proof of Theorem 4.1. For
t < T0 ≡ inf{t : Zt = 0}, we have

− log (Zt) = −
(∫ t

0

(
dMs

Zs−
− 1

2
d〈M c〉s
Z2
s−

)

+
∑

0<s≤t

(
log
(

1 +
∆Zs
Zs−

)
− ∆Zs
Zs−

)+At.
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Now, from Lemma 2.6,

At = sup
s≤t

(∫ t

0

(
dMs

Zs−
− 1

2
d〈M c〉s
Z2
s−

)

+
∑

0<s≤t

(
log
(

1 +
∆Zs
Zs−

)
− ∆Zs
Zs−

) .

Combining the last two equalities, we obtain

Zt =
Nt
St
,

where

Nt = exp
(∫ t

0

(
dMs

Zs−
− 1

2
d〈M c〉s
Z2
s−

)) ∏
0<s≤t

(
1 +

∆Zs
Zs−

)
exp

(
−∆Zs
Zs−

)
. �

5. Examples and applications

In this section, we look at some specific local martingales Nt, and use the
initial enlargement formula with S∞ to get the path decompositions given
the maxima or minima of some stochastic processes. Our aim here is to
illustrate how techniques from enlargement of filtrations can be applied. To
have a complete description for the path decompositions, we associate with g a
random time, called pseudo-stopping time, which occurs before g. Eventually,
we give some explicit examples of supermartingales Zt with jumps.

5.1. Pseudo-stopping times. In [18], we have proposed the following
generalization of stopping times:

Definition 5.1. Let ρ : (Ω,F) → R+ be a random time; ρ is called a
pseudo-stopping time if for every bounded (Ft) martingale we have

E (Mρ) = E (M0) .

David Williams [25] gave the first example of such a random time, and the
following systematic construction is established in [18]:

Proposition 5.2. Let L be an honest time. Then, under the conditions
(CA),

ρ ≡ sup
{
t < L : ZLt = inf

u≤L
ZLu

}
,

is a pseudo-stopping time, with

Zρt ≡ P (ρ > t | Ft) = inf
u≤t

ZLu ,

and Zρρ follows the uniform distribution on (0, 1).



806 ASHKAN NIKEGHBALI AND MARC YOR

The following property, also proved in [18], is essential in studying path
decompositions:

Proposition 5.3. Let ρ be a pseudo-stopping time and let Mt be an (Ft)
local martingale. Then (Mt∧ρ) is an (Fρt ) local martingale.

In our setting, Proposition 5.2 gives:

Proposition 5.4. Define the nonincreasing process (rt) by

rt ≡ inf
u≤t

Nu
Su

.

Then,

ρ ≡ sup
{
t < g :

Nt
St

= inf
u≤g

Nu
Su

}
is a pseudo-stopping time, and rρ follows the uniform distribution on (0, 1).

5.2. Path decompositions given the maxima or the minima of a
diffusion. Now, we shall apply the techniques of enlargements of filtrations
to establish some path decompositions results. Some of the following results
have been proved by David Williams in [24], using different methods. Jeulin
has also given a proof based on enlargements techniques in the case of tran-
sient diffusions (see [8]). Here, we complete the results of David Williams by
introducing the pseudo-stopping times ρ defined in Proposition 5.4, and we
give some interesting examples.

5.2.1. The killed Brownian Motion. Let

Nt ≡ Bt,
where (Bt)t≥0 is a Brownian Motion starting at 1, and stopped at T0 = inf{t :
Bt = 0}. Let

St ≡ sup
s≤t

Bs.

Let
g = sup {t : Bt = St}

and

ρ = sup
{
t < g :

Bt
St

= inf
u≤g

Bu
Su

}
.

From Doob’s maximal identity, ST0 = Sg is distributed as the reciprocal of a
uniform distribution (0, 1), i.e., it has the density 1[1,∞)(x)(1/x2).

Proposition 5.5. Let (Bt)t≥0 be a Brownian Motion starting at 1 and
stopped when it first hits 0. Then:

• Bρ/Sρ follows the uniform law on (0, 1), and conditionally on Bρ/Sρ =
r, (Bt) is a Brownian Motion up to the first time when Bt = rSt.
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• (Bt) is an (Fgt ) and (Fσ(ST0 )
t ) semimartingale with canonical decom-

position

(5.1) Bt = B̃t +
∫ t∧g

0

ds

Bs
−
∫ t∧T0

g

ds

ST0 −Bs
,

where (B̃t) is an Fσ(ST0 )
t Brownian Motion, stopped at T0 and inde-

pendent of ST0 . Consequently, we have the following path decomposi-
tion: Conditionally on ST0 = m we have:
(1) The process (Bt; t ≤ g) is a Bessel process of dimension 3,

started from 1, considered up to Tm, the first time when it hits
m.

(2) The process (Sg−Bg+t; t ≤ T0−g) is an (Fg+t) three dimensional
Bessel process, started from 0, considered up to Tm, the first time
when it hits m, and is independent of (Bt; t ≤ g).

Proof. The results concerning the decomposition until ρ are consequences
of the results of Subsection 5.1. The decomposition formula is a consequence
of Theorem 3.4. Since (B̃t) is an Fσ(ST0 )

t local martingale, with t ∧ T0 as its
bracket, it follows from Lévy’s theorem that it is an Fσ(ST0 )

t Brownian Motion.
Moreover, it is independent of Fσ(ST0 )

0 = σ(ST0). Now, conditionally on
ST0 = m, with Tm = inf{t : Bt = m}, (Bt) satisfies the following stochastic
differential equation:

Bt = B̃t +
∫ t∧Tm

0

ds

Bs
.

Hence it is a three dimensional Bessel process up to Tm.
It also follows from the decomposition formula that

Bg+t = B̃g+t +
∫ g

0

ds

Bs
−
∫ t∧(T0−g)

0

ds

Sg −Bg+s
.

This equation can also be written as

Sg −Bg+t = −
(
B̃g+t − B̃g

)
+
∫ t∧(T0−g)

0

ds

Sg −Bg+s
.

Now, (B̃g+t − B̃g) is an (Fg+t) Brownian Motion, starting from 0, and is
independent of Fg. Taking β̃t ≡ −(B̃g+t − B̃g), which is also an (Fg+t)
Brownian Motion, starting from 0, independent of Fg, the process ξt ≡ Sg−Bt
satisfies the stochastic differential equation

ξt = β̃t +
∫ t∧(T0−g)

0

ds

ξs
;

hence it is a three dimensional Bessel process, started at 0, and considered up
to Tm, and conditionally on Sg, is independent of Fg. �
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5.2.2. Some recurrent diffusions. The previous example can be general-
ized to a wider class of recurrent diffusions (Xt), satisfying the stochastic
differential equation

(5.2) Xt = x+Bt +
∫ t

0

b (Xs) ds, x > 0,

where (Bt) is the standard Brownian Motion, and b is a Borel integrable func-
tion such that existence and uniqueness holds for equation (5.2) (for example,
b bounded or Lipschitz continuous). The infinitesimal generator L of this
diffusion is

L =
1
2
d2

dx2
+ b (x)

d

dx
.

Let T0 ≡ inf{t : Xt = 0), and denote by s the scale function of X, which is
strictly increasing and which vanishes at zero, i.e.,

s (z) =
∫ z

0

exp
(
−2b̂ (y)

)
dy,

where

b̂ (y) =
∫ y

0

b (u) du.

Hence,

Nt ≡
s (Xt∧T0)
s (x)

is a continuous local martingale belonging to the class C0. If St denotes the
supremum process of Nt and Xt the supremum process of Xt, we have

St =
s
(
Xt∧T0

)
s (x)

.

Now, let

g = sup
{
t < T0 : Xt = Xt

}
,

and

ρ = sup
{
t < g :

Xt

Xt

= inf
u≤g

Xu

Xu

}
.

Proposition 5.6. Let (Xt) be a diffusion process satisfying equation (5.2).
Then:

• Xρ/Xρ follows the uniform law on (0, 1), and conditionally on Xρ/Xρ

= r, (Xt, t ≤ ρ) is a diffusion process, up to the first time when
Xt = rXt, with the same infinitesimal generator as X.



DOOB’S MAXIMAL IDENTITY AND EXPANSIONS OF FILTRATIONS 809

• (Xt) is an (Fgt ) and (Fσ(XT0 )
t ) semimartingale with canonical decom-

position

Xt = B̃t +
∫ t

0

b (Xu) du(5.3)

+
∫ t∧g

0

s′ (Xu)
s (Xu)

du−
∫ t∧T0

g

s′ (Xu)
s
(
XT0

)
− s (Xu)

du,

where (B̃t) is an Fσ(XT0 )
t Brownian Motion, stopped at T0 and inde-

pendent of XT0 . Consequently, we have the following path decompo-
sition: Conditionally on XT0 = m we have:
(1) The process (Xt; t ≤ g) is a diffusion process started from x > 0,

considered up to Tm, the first time when it hits m, with infini-
tesimal generator

1
2
d2

dx2
+
(
b (x) +

s′ (x)
s (x)

)
d

dx
.

(2) The process (Xg+t; t ≤ T0 − g) is an (Fg+t) diffusion process,
started from m, considered up to T0, the first time when it hits
0, and is independent of (Xt; t ≤ g); its infinitesimal generator
is given by

1
2
d2

dx2
+
(
b (x) +

s′ (x)
s (x)− s (m)

)
d

dx
.

(3) XT0 follows the same law as s−1(1/U), where U follows the uni-
form law on (0, 1).

Proof. The proof is exactly the same as the proof of Proposition 5.5, so we
will not reproduce it here. �

5.2.3. Geometric Brownian Motion with negative drift. Let

Nt ≡ exp
(
2νBt − 2ν2t

)
,

where (Bt) is a standard Brownian Motion, and ν > 0. With the notation of
Theorem 3.4, we have

St = exp
(

sup
s≤t

2ν (Bs − νs)
)
,

and

g = sup
{
t : (Bt − νt) = sup

s≥0
(Bs − νs)

}
.

Before stating our proposition, let us mention that we could have worked
with more general continuous exponential local martingales, but we preferred
to keep the discussion as simple as possible (the proof for more general cases
is exactly the same).
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Proposition 5.7. With the assumptions and notations used above, we
have:

(1) The variable sups≥0(Bs−νs) follows the exponential law of parameter
2ν.

(2) Every local martingale X is an (Fσ(S∞)
t ) semimartingale and decom-

poses as

Xt = X̃t + 2ν〈X,B〉t∧g − 2ν
∫ t

g

Ns
S∞ −Ns

d〈X,B〉s,

where X̃t is an (Fσ(S∞)
t ) local martingale.

(3) Conditionally on S∞ = m, the process (Bt− νt; t ≤ g) is a Brownian
Motion with drift +ν up to the first hitting time of its maximum m/2ν.

Proof. From Doob’s maximal equality, (exp(sups≤g(2νBs − 2ν2s)))−1 fol-
lows the uniform law and hence sups≥0(Bs − νs) follows the exponential law
of parameter 2ν.

The decomposition formula is a consequence of Theorem 3.4 and the fact
that dNt = 2νNtdBt.

To show (3), it suffices to notice that Bt−νt is equal to B̃t+νt in the filtra-
tion (Fσ(S∞)

t ), with (B̃t) an (Fσ(S∞)
t ) Brownian Motion which is independent

of S∞. �

5.2.4. General transient diffusions. Now, we consider (Rt), a transient dif-
fusion with values in [0,∞), which has {0} as entrance boundary. Let s be a
scale function for R, which we can choose such that

s (0) = −∞, and s (∞) = 0.

Then, under the law Px, for any x > 0, the local martingale (Nt = s(Rt)/s(x),
t ≥ 0) satisfies the conditions of Theorem 3.4, and we have

Px (g > t|Ft) =
s (Rt)
s (It)

,

where
g = sup {t : Rt = It} ,

and
It = inf

s≤t
Rs.

We thus recover results of Jeulin [8, Proposition 6.29, p. 112] by other means.
Jeulin used this formula and gave a quick proof of a theorem of David Williams
[24], using initial enlargement of filtrations arguments. Our proof follows the
same lines, and so we refer to the book of Jeulin for the argument and instead
describe an interesting example, the three dimensional Bessel process.
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Proposition 5.8. Let (Rt) be a three dimensional Bessel process starting
from 1, and set, as above, It = infs≤tRs, and g = sup{t : Rt = It}. Define
ρ by

ρ = sup
{
t < g :

It
Rt

= inf
u≤g

Iu
Ru

}
.

Then:

(1) The variable Iρ/Rρ follows the uniform law on (0, 1) and, condition-
ally on Iρ = rRρ, (Rt, t ≤ Tr) is a three dimensional Bessel process
starting from 1, up to the first time Tr when It = rRt.

(2) I∞ ≡ Ig follows the uniform law on (0, 1).
(3) Conditionally on I∞ = r, the process (Rt, t ≤ g) is a Brownian

Motion starting from 1 and stopped when it first hits r.

Proof. There exists (β)t≥0, a Brownian Motion, such that

Rt = 1 + βt +
∫ t

0

ds

Rs
.

(1) follows easily from the results of Subsection 5.1. Now, from Ito’s for-
mula, it follows that

1
Rt

= 1−
∫ t

0

dβs
R2
s

;

hence, it is a local martingale. In (Fσ(I∞)
t ),

βt∧g = β̃t −
∫ t∧g

0

ds

Rs
,

where (β̃t) is an (Fσ(I∞)
t ) Brownian Motion independent of I∞. Hence, Rt∧g

decomposes as

Rt∧g = β̃t

in (Fσ(I∞)
t ), and this completes the proof of (3). (2) is an immediate conse-

quence of Doob’s maximal identity. �

Remark 5.9. The previous method applies to any transient diffusion
(Rt)t≥0, with values in (0,∞), and which satisfies

Rt = x+Bt +
∫ t

0

duc (Ru) ,

where c : R+ → R allows uniqueness in law for this equation. These diffusions
were studied in [23] to obtain an extension of Pitman’s theorem (see also [27]).
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5.3. Some examples of Zt with jumps. We shall conclude this paper
by giving some explicit examples of discontinuous Z ′s. Let X be a Poisson
process with parameter c and let Nt = Xt − ct. N is a martingale in the
natural filtration (Ft) of X. Every local martingale Y in this filtration may
be written as

Yt = Y0 +
∫ t

0

ksdNs,

where k is an (Ft) predictable process. Now, for f : R+ → R+ a locally
bounded and Borel function, let

Eft = exp
(
−
∫ t

0

f (s) dXs + c

∫ t

0

(1− exp (−f (s))) ds
)
.

Eft is an Ft local martingale which can be represented as

Eft = 1 +
∫ t

0

Efs− (exp (−f (s))− 1) dNs.

If
∫∞

0
f(s)ds =∞, then limt→∞ Eft = 0.

Proposition 5.10. Let f be a nonnegative locally bounded and Borel func-
tion on R+, such that limt→∞ Eft = 0. Define

g = sup
{
t : Eft = Eft

}
,

where
Eft = sup

s≤t
Efs .

Then:
(1) sups≥0(−

∫ t
0
f(s)dXs+c

∫ t
0
(1−exp(−f(s)))ds) is distributed as a ran-

dom variable with the exponential law with parameter 1.
(2) The supermartingale Zgt associated with g is given by

P (g > t | Ft) =
Eft
Eft
.

(3) Every Ft local martingale Yt(=
∫ t

0
ksdNs) is a semimartingale in the

filtration Fσ(Ef∞)
t , with canonical decomposition

Yt = Ỹt + c

∫ t∧g

0

ks (exp (−f (s))− 1) ds

− c
∫ t

g

ks (exp (−f (s))− 1)
Efs

Ef∞ − E
f
s

ds,

where Ỹt is an Fσ(Ef∞)
t local martingale.
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