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EXPANSION OF SOLUTIONS OF PARAMETERIZED
EQUATIONS AND ACCELERATION OF NUMERICAL

METHODS

ISTVÁN GYÖNGY AND NICOLAI KRYLOV

In the memory of J. Doob

Abstract. A general scheme of parameterized families of equations is
considered, and abstract results on the expansion of the solutions and

on the acceleration of their convergence in terms of the parameter are
presented. These results are applied to fractional step approximations

for linear parabolic PDEs, systems of linear PDEs, and for nonlinear

ordinary differential equations. Applications to accelerating the conver-
gence of finite difference schemes for these equations will be presented

in a subsequent paper.

1. Introduction

We consider for every ‘parameter’ τ ∈ [0, 1] a pair of equations

v = ϕ+A0Θ0(Lv + f),(1.1)

w = ϕ+
m∑
k=1

AkΘk(Lkw + fk)(1.2)

in a separable Banach space W , where

ϕ = ϕ(τ), fk = fk(τ), f = f(τ)

are given elements of W , and

L = L(τ), Lk = Lk(τ), Ak = Ak(τ), A0 = A0(τ),

Θk = Θk(τ), Θ0 = Θ0(τ)
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are given linear operators in W for every τ and k = 1, 2, . . . ,m. The operators
L, Lk may be unbounded. We assume that

L = L1 + L2 + · · ·+ Lm, f = f1 + f2 + · · ·+ fm.(1.3)

Together with equations (1.1) and (1.2) a subset W ∗(τ) of the dual space W ∗

is also assumed to be given for every τ .
Our aim is to investigate the dependence on τ of w−v, the difference of the

solutions of (1.1) and (1.2). Under general conditions we obtain an expansion
for 〈w∗, w〉−〈w∗, v〉 in terms of powers of τ , where 〈w∗, w〉 denotes the duality
product of w = w(τ) and w∗ = w∗(τ) ∈ W ∗(τ). When A0, Θ0, L, and f are
independent of τ , this result reads as follows:

For any integer k ≥ 0 there exists v0 := v, v1, v2, . . . , vk ∈ W , independent
of τ , such that

〈w∗, w〉 =
k∑
i=0

τ i〈w∗, vi〉+O(τk+1)

for all τ ∈ (0, 1] and w∗(τ) ∈W ∗(τ), where

|O(τk+1)| ≤ Nτk+1‖w∗‖

with a constant N independent of τ . This is what Theorems 2.14 and 2.18
below are about. Hence we easily get that under the conditions of this result
there exist some constants λ0, . . . , λk, depending only on k, such that∣∣∣∣∣∣

k∑
j=0

λj〈w∗, wj〉 − 〈w∗, v〉

∣∣∣∣∣∣ ≤ Nτk+1‖w∗‖

for every τ ∈ (0, 1], w∗ ∈
⋂k
j=0W

∗(τj), where τj := 2−jτ , wj = w(τj), and N
is a constant, independent of τ (see Theorem 2.15 below).

These results are motivated by applications to numerical methods of solv-
ing ordinary and partial differential equations. We apply them in the present
paper to accelerating splitting-up approximations for a class of linear PDEs
and also to nonlinear ODEs, and we indicate further applications to finite dif-
ference schemes. We will present applications to accelerating the convergence
of finite difference schemes for linear PDEs in a subsequent paper.

The splitting-up method appears first in the context of semigroups as Trot-
ter’s formula [14], which can be formulated as follows:

lim
n→∞

(
etLm/n . . . etL1/n

)n
= etLϕ, ∀ϕ ∈ B,

where L := L1 + L2 + · · · + Lm and Lk are infinitesimal generators of C0-
semigroups of contractions {etL : t ≥ 0} and {etLk : t ≥ 0} on a Banach space
B, such that the intersection of the domains of the generators Lk is dense in
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B. Clearly, in the context of Cauchy problems Trotter’s formula states the
convergence of the splitting-up approximations, defined by w(t) = S

n(t/n)v0,

S(τ) : = P
(m)
τ . . .P(2)

τ P
(1)
τ , τ > 0,(1.4)

to the solution of the abstract Cauchy problem

d

dt
v(t) = Lv(t), v(0) = v0,

where P(k)
τ ϕ is the solution at τ of

d

dt
u(t) = Lku(t), u(0) = ϕ.

In Section 4 we will see how the splitting-up given by (1.4) can be obtained
from our abstract scheme (1.1)–(1.2).

Under certain conditions one knows that for every fixed T > 0

max
t∈Tτ
‖St/τ (τ)v0 − v(t)‖B ≤ Nτ, ∀τ ∈ (0, 1],

where N is a constant independent of τ and

Tτ := {iτ : i = 0, 1, 2, . . . } ∩ [0, T ].(1.5)

In other words, the error of the splitting-up method S given by (1.4) is pro-
portional to the step size τ . There are splitting-up methods which are more
accurate. A celebrated example is Strang’s method

S(τ) := P
(1)
τ/2P

(2)
τ/2 . . .P

(m)
τ/2P

(m)
τ/2 . . .P

(2)
τ/2P

(1)
τ/2,

introduced in [10], whose error is proportional to τ2. Inspired by this example,
for given k ≥ 2 one looks for splitting-up methods of the form

S(τ) : = P
kξ
sξτ . . .P

k2
s2τP

k1
s1τ(1.6)

with some integer ξ ≥ m, real numbers s1, . . . , sξ and integers k1, . . . , kξ ∈
{1, 2, . . . ,m} such that the error of the methods is proportional to τk. Such
methods, called methods of (at least) order k, are obtained for Hamiltonian
systems and for linear and nonlinear equations by variants of the Trotter and
Baker-Campbell-Hausdorff formulas, and by an adaptation of the method of
rooted trees from the theory of Runge-Kutte approximations (see, e.g., [9] [7],
[12], [15], [17], [8] and the references therein). By [11] and [16], however, the
numbers si in each method (1.6) of order k ≥ 3 cannot be all non-negative.
Thus, by [11] and [16] the above methods of order greater than or equal to
3 cannot be used to approximate the solution of partial differential equations
of parabolic type.

Therefore it is natural to ask if there exists, in the case of parabolic equa-
tions, a method different from the multiplicative one to accelerate the conver-
gence of splitting-up approximations to a higher order.
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In [4] we show, inspired by Richardson’s idea, that using a step size of order
τ , but organizing the computations differently, one can achieve an accuracy
of order τk for any k, even if Lr are (degenerate) elliptic operators with
coefficients depending on time. Namely, we show that each time when one has
any algorithm of implementing a splitting-up method to approximating the
solutions of Cauchy problems for parabolic equations with sufficiently smooth
coefficients and free terms, one can improve the rate of convergence to any
degree, by mixing the splitting-up approximations of different step sizes. Since
we believe that usually in practice one computes several approximations with
different step sizes, we prove that computing, for instance, approximations
with three different step sizes, each of which is of accuracy τ , and just taking
a linear combination of the results, one gets an approximation of accuracy τ3.

In the present paper we show that the method of [4] is much more universal
in the sense that it covers very many situations in which approximations,
depending on a parameter τ , for the solution of an equation can be embedded
into the solutions of a family of equations satisfying certain properties.

The paper is organized as follows. In the next section we introduce our
general setting, illustrating it by simple examples, and formulate our main
results, Theorems 2.14, 2.15, and 2.18. We remark that these theorems are
presented without proofs in [5]. Theorem 2.15 follows easily from Theorem
2.14. Theorem 2.14 is a simple consequence of Theorem 2.18, which we prove
in Section 3. The rest of the paper is dedicated to applications. In Section
4 we apply the abstract scheme and the theorems of Section 2 to splitting-
up approximations of the solutions of parabolic PDEs. In particular, we
obtain the results of [4] in the time independent case. In Section 5 similar
applications to systems of PDEs, in particular to symmetric systems of first
order hyperbolic PDEs, are given. In Section 6 we formulate some applications
of the general scheme to splitting-up approximations for ordinary (nonlinear)
differential equations. The results of this section are proved in [5].

In conclusion we introduce some notation used everywhere below. Through-
out the paper d,m ≥ 1 are fixed positive integers, K,T are fixed finite positive
constants, Rd is a d-dimensional Euclidean space of points x = (x1, . . . , xd)
and

Di : = ∂/∂xi, Dij := ∂2/∂xi∂xj , Dt := ∂/∂t.

Unless otherwise indicated, we use the summation convention with respect to
repeated indices. We also use the notation δij , the ‘Kronecker delta’, which
is 1 if i = j and 0 if i 6= j.

2. General setting and an illustration

In this section we present three theorems in a very abstract setting. In order
not to lose connection to real things and give the reader some justification of
our assumptions we interrupt a few times the main stream of the section with
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discussions of a simple looking example. The reader will understand much
better also the proofs of our main result in Section 3 if he keeps applying
abstract constructions to Example 2.2, which by the way has nothing to do
with the splitting-up method.

It is probably hard to appreciate Theorems 2.14 and 2.15 looking only at
Example 2.2. We reiterate that the goal of this example is to give the reader
a feeling of what is behind quite abstract assumptions and objects. Later we
will see much more serious applications of our abstract results.

Fix an integer l ≥ 1 and assume that we have a sequence of Banach spaces

W0,W1,W2, . . . ,Wl

such that Wi is continuously embedded into Wi−1, for every i = 1, 2, . . . , l,
and W1 is dense in W0.

For each number τ ∈ (0, 1] we consider the pair of equations (1.1), (1.2)
for v = v(τ) and w = w(τ), respectively, where L = L(τ), Lk = Lk(τ), Ar =
Ar(τ), Θr = Θr(τ) are certain linear operators and f = f(τ), fk = fk(τ),
ϕ = ϕ(τ) are elements from Wl, for all r = 0, 1, . . . ,m and k = 1, 2, . . . ,m.
Almost everywhere below in the article we drop the argument τ .

Assumption 2.1.

(i) For all i = 0, . . . , l the operators Ar, Θr are bounded operators from
Wi to Wi such that

‖Θru‖i ≤ K‖u‖i, ‖Aru‖i ≤ K‖u‖i
for r = 0, . . . ,m and u ∈Wi.

(ii) For all i = 0, . . . , l − 1 the operators L, Lk are bounded operators
from Wi+1 to Wi such that

‖Lu‖i ≤ K‖u‖i+1, ‖Lku‖i ≤ K‖u‖i+1.

for k = 1, . . . ,m and u ∈Wi+1.
(iii) ‖ϕ‖i ≤ K, ‖fk‖i ≤ K for all i = 1, 2, . . . , l and k = 1, 2, . . . ,m.
(iv) Equations (1.3) hold.

Example 2.2. Let

W0 = · · · = Wl = D([0, T ],Rd)(2.1)

be the space of Rd-valued bounded functions on [0, T ] having right limits on
[0, T ) and left limits on (0, T ]. We provide these spaces with the uniform
norm.

Let m = 1, a0(t) = t, a1(t) = τ [t/τ ], and define the operators Ak by

(Aku)(t) =
∫

(0,t]

u(s) dak(s).(2.2)
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Next, take a d × d-matrix valued cadlag function L(t), t ∈ [0, T ], and define
the operators L,L1 by

(Lu)(t) = (L1u)(t) = L(t)u(t).

Finally, take a function ϕ ∈ Rd and consider the two equations

v(t) = ϕ+
∫ t

0

L(s)v(s) ds,(2.3)

w(t) = ϕ+
∫

(0,t]

L(s−)w(s−) da1(s),(2.4)

which in our notation can be written as (1.1) and (1.2), respectively, with
m = 1, i.e.,

v = ϕ+A0Θ0Lv, w = ϕ+A1Θ1Lw,

where Θ0 is the unit operator and Θ1 is the operator defined by

(Θ1u)(t) = u(t−) t ∈ (0, T ], (Θ1u)(0) = 0.(2.5)

Our goal is to compare w and v. �

Assumption 2.3. For each k = 0, . . . ,m there is a bounded linear opera-
tor Rk : W0 →W0 such that

(i) we have Rk : Wi →Wi for all i = 0, . . . , l and

‖Rkg‖i ≤ K‖g‖i, g ∈Wi,(2.6)

(ii) (existence) for any g ∈W1 the function u = Rkg satisfies

u = A0Θ0Lu+Akg,(2.7)

(iii) (uniqueness) if gk ∈W0, k = 0, . . . ,m, u ∈W1 and

u = A0Θ0Lu+
m∑
k=0

Akgk,

then

u =
m∑
k=0

Rkgk.

Remark 2.4. Assumption 2.3 is satisfied in Example 2.2. To see this it
suffices to notice that for ū = u−Akg equation (2.7) becomes

ū = A0(Lū+ h),
dū

dt
= Lū+ h,

where h = LAkg.
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In order to be able to compare the solutions v and w of equations (1.1)
and (1.2) we need to relate not only the operators L, Lk (see (iv) in As-
sumption 2.1), but also the operators A0, Ak and Θ0, Θk. To formulate the
corresponding conditions we need to introduce some further objects.

We call a sequence of numbers α = α1α2 . . . αi a multi-number of length
|α| := i, if αj ∈ {0, 1, 2, . . . ,m}. The reader should notice the difference
between multi-numbers and multi-indices. The set of all multi-numbers is
denoted by N .

For each τ ∈ (0, 1] and α ∈ N let b+α = b+α (τ), b−α = b−α (τ) be linear
operators on W0, let cα = cα(τ) be a real number, and let Bα = Bα(τ) be a
linear operator introduced by

τBα = AαΘα −A0Θ0, |α| = 1,

τBαk = Akb
−
αΘk − cαkA0Θ0, k = 0, . . . ,m.

(2.8)

We impose the following assumptions, in which Kα ≥ 0, α ∈ N , are some
fixed finite constants, independent of τ .

Assumption 2.5. For all i = 0, . . . , l the operators b+α , b−α are bounded
operators from Wi to Wi and

‖b+αu‖i ≤ Kα‖u‖i, ‖b−αu‖i ≤ Kα‖u‖i(2.9)

for all α ∈ N and u ∈Wi.

Assumption 2.6. For any α ∈ N and k = 0, . . . ,m

BαAk = b+αAk −Akb−α , A0Θ0b
+
α = A0b

−
αΘ0.(2.10)

Assumption 2.7. For any α ∈ N and k = 1, . . . ,m and r = 0, . . . ,m

LkΘr = ΘrLk, Lkb
±
α = b±αLk, ArLk = LkAr,

Bαϕ = b+αϕ, Bαfk = b+αfk.

Definition 2.8. We say that g ∈ W0 is time independent if Bαg = b+α g
for all α ∈ N .

Remark 2.9. Since L =
∑
k Lk, the operator L commutes with Θr, b±α ,

and Ar as well. Also it follows from the definition of Bα and Assumption 2.7
that Bα commutes with L, Lk for all α and k.

Remark 2.10. In Example 2.2 the requirement that A0L = LA0 means
that L(t) is independent of t. We want to introduce b±α , Bα, and cα in this
example by formulas ready for use later on. In more general situations along
with Θk we also need operators Θ̄k and Θ̄α, which we define in Example 2.2
to be the identity operators. So we let k vary in {0, 1} and for α ∈ N define
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recursively

bk(t) =
1
τ

[ak(t)− a0(t)], cαk =
1
τ

∫
(0,τ ]

Θ̄αbα(s) dak(s),

bαk(t) =
1
τ

(∫
(0,t]

Θ̄αbα(s) dak(s)− cαka0(t)

)
.

(2.11)

It is easy to prove (see, however, Lemma 2.13 in a more general setting) that
cα are independent of τ , bα(t) are τ -periodic in t and bα(iτ) = 0 for integers
i ≥ 0.

Next, introduce b±α as the operator of multiplying by the function bα and
define Bα by the formula

(Bαu)(t) =
∫

(0,t]

u(s−) dbα(s).

These definitions are consistent with what is done in the general scheme.
Indeed, (2.8) holds obviously, as does the second relation in (2.10). The first
relation is a consequence of the well known fact that for two right-continuous
functions of bounded variation

d(b(t)a(t)) = a(t−) db(t) + b(t) da(t),(2.12)

so that

d

(
bα(t)

∫
(0,t]

u(s) dak(s)

)
=
∫

(0,t)

u(s) dak(s) dbα(t) + bα(t)u(t) dak(t).

Remark 2.11. If we modify the definition of Θ1 in (2.5) to

(Θ1u)(t) = ϑu(t) + (1− ϑ)u(t−)(2.13)

with a fixed constant ϑ ∈ R, then for ϑ 6= 0 the operators b+α and b−α which
we need to use are not equal. We show this in the following generalization of
Example 2.2.

Example 2.12. Consider Example 2.2 with L independent of t, and with
Θ1 defined by (2.13) in place of (2.5), so that if ϑ = 0 we just have the same
situation as in Example 2.2. Interestingly enough, even if below ϑ = 0, this
time we take the operators Θ̄α different from the identity. As in Example 2.2
we define Θ0 to be the identity operator and introduce the operators Ak as
before by (2.2). Then clearly Assumptions 2.1 and 2.3 still hold. For future
use we introduce further notation. We set ϑ0 = 1 and ϑ1 = ϑ and let k vary
in {0, 1}. We define the operators Θ̄k by

(Θ̄ku)(t) = (1− ϑk)u(t) + ϑku(t−),

and set for α = α1 . . . αj ∈ N
Θα = Θαj , Θ̄α = Θ̄αj .
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Notice that for right-continuous functions of bounded variation, say a and b,
we have by (2.12) that

d(b(t)a(t)) = Θαa(t) db(t) + Θ̄αb(t) da(t).(2.14)

Next, we use formulas (2.11) to define the functions bα and the numbers cα.
Observe that by Lemma 2.13 below the numbers cα do not depend on τ .
Define for every α ∈ N the operator Bα by

(Bαu)(t) =
∫

(0,t]

Θαu(s) dbα(s),

and let b−α be the operator of multiplying by the function Θ̄αbα. Then this
definition of the operator Bα is the same as the general definition of Bα given
by (2.8), by virtue of the above definition of bα. Using (2.14) with b = bα and
a = Aku we get

d

(
bα(t)

∫
(0,t]

u(s) dak(s)

)
= d(BαAku)(t) + d(Akb−αu)(t).

Thus, defining the operator b+α as the multiplication by bα, we have

b+αAk = BαAk +Akb
−
α ,

i.e., the first identity in Assumption 2.6. Notice that b+α 6= b−α if ϑ 6= 0 in
(2.13). Clearly, the second identity in Assumption 2.6 and Assumption 2.7
hold also for this example. �

Next we formulate a lemma which ensures that for a large class of appli-
cations of the general scheme the numbers cα are independent of the param-
eter τ .

Let H0,H1, . . . ,Hm be right-continuous functions on R which have finite
variation on every finite interval. Assume that

Hr(0) = 0, Hr(t+ 1)−Hr(t) = Hr(1) = 1, ∀t ∈ R, r = 0, 1, . . . ,m.

For each τ ∈ (0, 1] we define the functions

ar(t) = τHr(t/τ), t ≥ 0, r = 0, 1, . . . ,m.

Let Λα(τ) be an operator for every α ∈ N and τ ∈ (0, 1), mapping Bτ (R+)
into itself, where Bτ (R+) denotes the class of τ -periodic bounded functions
on R+ = [0,∞) having left and right limits at every t ∈ (0,∞). We assume
that (Λα(τ)u)(tτ), t ≥ 0, is independent of τ for every α ∈ N and every
u ∈ Bτ (R+).

For every α ∈ N we define a function bα : [0,∞) → R and a number cα
recursively, starting as follows:

bγ = τ−1(aγ − a0), cγ = 0 for γ = 0, 1, 2, . . . ,m.(2.15)
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If for every multi-number β = β1 . . . βi of length i the function bβ and the
number cβ are defined, then we set

cαγ =
1
τ

∫ τ

0

Λαbα(t) daγ(t),(2.16)

bαγ(t) =
1
τ

(∫ t

0

Λαbα(s) daγ(s)− cαγa0(t)
)
.(2.17)

Lemma 2.13. For every α ∈ N the function bα is τ -periodic, i.e., bα(t+
τ) = bα(t) for all t ≥ 0, and bα(iτ) = 0 for all integers i ≥ 0. Moreover, the
numbers cα, the functions Cα(t) := bα(τt), and

sup
t≥0
|bα(t)| = sup

t≥0
|Cα(t)|

are finite and do not depend on τ .

Proof. Clearly

τ−1(ar(τ)− a0(τ)) = Hr(1)−H0(1) = 0.

Since Hr(t+ 1) = Hr(t) +Hr(1),

br(t+ τ) = τ−1(ar(t+ τ)− a0(t+ τ))

= Hr

(
t

τ
+ 1
)
−H0

(
t

τ
+ 1
)

= Hr

(
t

τ

)
−H0

(
t

τ

)
= br(t),

i.e., br is τ -periodic, and Cr(s) = br(tτ) = Hr(t) − H0(t) is independent of
τ . Consequently, the assertions of the lemma hold for α = 0, . . . ,m. Assume
now that the statements of the lemma are true for α = β, where β is a
multi-number. Then for every γ = 0, 1, 2, . . . ,m

cβγ =
∫ τ

0

Λβbβ(s) dHγ(s/τ) =
∫ 1

0

(Λβbβ)(τs) dHγ(s).

Thus cβγ , and hence

Cβγ(t) =
∫ τt

0

Λβbβ(s) dHγ(s/τ)− cβγH0(t)

=
∫ t

0

(Λβbβ)(τs) dHγ(s)− cβγH0(t)
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are independent of τ . Moreover, by the definition of cβγ ,

Cβγ(t+ 1) =
∫ t+1

0

(Λβbβ)(τs) dHγ(s)− cβγH0(t+ 1)

=
∫ t+1

1

(Λβbβ)(τs) dHγ(s)− cβγ(H0(t+ 1)−H0(1))

=
∫ t

0

(Λβbβ)(τ(s+ 1)) dHγ(s+ 1)− cβγH0(t)

=
∫ t

0

(Λβbβ)(τs) dHγ(s)− cβγH0(t) = Cβγ(t),

i.e., Cβγ is 1-periodic, and hence bβγ is τ -periodic. Thus induction on the
length |α| finishes the proof of the lemma. �

Theorem 2.14. Let k ≥ 0 be an integer and let Assumptions 2.1, 2.3,
2.5, 2.6 and 2.7 hold with l ≥ 2k + 2. Assume that (for a given τ ∈ (0, 1])
equations (1.1) and (1.2) have solutions v ∈ Wl and w ∈ Wl, respectively,
such that ‖w‖l ≤ K. Then for any continuous linear functional w∗ on W0,
such that w∗b+α = 0 for all α ∈ N , equation

〈w∗, w〉 =
k∑
i=0

τ i〈w∗, vi〉+O(τk+1),(2.18)

holds, where v0 = v, vi ∈W0 are uniquely determined by A0,Θ0, Lr, fr, k, and
cα, and

|O(τk+1)| ≤ Nτk+1‖w∗‖,

with a constant N depending only on Kα,K, and l.

Theorem 2.14 follows immediately from Theorem 2.18 below.
Generally, the solutions of (1.2) and (1.1) depend on τ , i.e, w = w(τ),

v = v(τ). However, if A0,Θ0, Lr, fr, and cα are independent of τ , then v
and other vi’s in (2.18) are independent of τ as well (since they are uniquely
determined by A0,Θ0, Lr, fr, and cα). In this situation we have the following
result on ‘acceleration’.

Theorem 2.15. Let k ≥ 0 be an integer and let Assumptions 2.1, 2.3, 2.5,
2.6, and 2.7 hold with l ≥ 2k + 2. Let A0,Θ0, Lr, fr, and cα be independent
of τ , and assume that (1.1) has a solution v ∈ Wl. Suppose that for a given
τ0 ∈ (0, 1] for all j = 0, 1, . . . , k equation (1.2) with τ = τj := τ02−j has a
solution w = wj such that ‖wj‖l ≤ K. Assume that an element w∗ ∈ W ∗0
satisfies

w∗b+α (τj) = 0, ∀α ∈ N , j = 0, 1, . . . , k.
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Then, for some constants λ0, . . . , λk depending only on k, we have∣∣∣∣∣∣
k∑
j=0

λj〈w∗, wj〉 − 〈w∗, v〉

∣∣∣∣∣∣ ≤ Nτk+1
0 ‖w∗‖,

where N depends only on Kα,K, and l.

Proof. By Theorem 2.14 we have

〈w∗, wj〉 = 〈w∗, v〉+
k∑
i=1

2−jiτ i0〈w∗, vi〉+Rj(w∗, τ0), j = 0, 1, . . . , k,

with

|Rj(w∗, τ0)| ≤ 2−j(k+1)N‖w∗‖τk+1
0 .

Let V denote the square matrix defined by V ij := 2−(i−1)(j−1), i, j = 1, . . . , k+
1. Notice that the determinant of V is the Vandermonde determinant, gener-
ated by 1, 2−1, . . . , 2−k, and hence it is different from 0. Thus V is invertible.
Define

(λ0, λ1, . . . , λk) = (1, 0, 0, . . . , 0)V −1.

Then
k∑
j=0

λj〈w∗, wj〉 =

 k∑
j=0

λj

 〈w∗, v〉+
k∑
j=0

k∑
i=1

λj2−ijτ i0〈w∗, vi〉

+
k∑
j=0

λjRj(w∗, τ)

= 〈w∗, v〉+
k∑
i=1

τ i0〈w∗, vi〉
k∑
j=0

λj2ij +O(τk+1
0 )

= 〈w∗, v〉+O(τk+1
0 ),

since
∑k
j=0 λj = 1 and

∑k
j=0 λj2

ij = 0 for i = 1, 2, . . . , k by the definition of
(λ0, . . . , λk), and∣∣∣∣∣∣

k∑
j=0

λjRj(w∗, τ)

∣∣∣∣∣∣ ≤
k∑
j=0

N2−j |λj |‖w∗‖τk+1
0 ≤ C‖w∗‖τk+1

0 ,

with constants N and C depending only on Kα,K, and l. �

Remark 2.16. In Example 2.2 assume that L(t) is independent of t. Then
by Remark 2.10 the assumptions of Theorem 2.14 are satisfied for any k with
appropriate l, K, and Kα. Also, since bα(jτ) = 0 for all j = 0, 1, . . . , as w∗
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in Theorem 2.14 one can take the restriction of elements in D([0, T ],Rd) to
any of the times in (1.5).

From Theorem 2.14 we now conclude that there exist Rd-valued functions
vi = vi(t), i = 0, 1, . . . , t ∈ [0, T ], independent of τ , with v0 = v such that

sup
t∈Tτ

∣∣∣∣∣w(τ, t)−
k∑
i=0

τ ivi(t)

∣∣∣∣∣ ≤ Nτk+1,(2.19)

where N depends only on T , k, |L|, and |ϕ|.
By the way, under the above time independence assumption we have

v(t) = eLtϕ.

Also equation (2.4) amounts to saying that

w(0) = ϕ, w(t) = w(jτ) for t ∈ [jτ, (j + 1)τ),

w((j + 1)τ) = w(jτ) + Lw(jτ)τ, j = 0, 1, . . . ,

which is just Euler’s scheme for equation (2.3). It is also an explicit finite-
difference scheme for the equation v′ = Lv. It follows that

w(t) = w(jτ) = (1 + τL)jϕ for t ∈ [jτ, (j + 1)τ), j = 0, 1, . . . .(2.20)

Hence (2.19) means that

max
j:jτ≤T

∣∣∣∣∣(1 + τL)jϕ−
k∑
i=0

τ ivi(jτ)

∣∣∣∣∣ ≤ Nτk+1,

with N depending only on T , k, |ϕ|, and L, and vi independent of τ with
v0 = v. In particular, for τ = 1/n, T = 1, j = n we get that as n→∞

(1 + L/n)nϕ = eLϕ+
k∑
i=1

vi
ni

+O(n−(k+1)),(2.21)

where vi are some vectors. Theorem 2.15 applied to Example 2.2 says that,
as τ ↓ 0,

max
j:jτ≤T

∣∣∣∣∣
k∑
i=0

λi(1 + τ2−iL)2ijϕ− eLjτϕ

∣∣∣∣∣ = O(τk+1).(2.22)

To get a feeling of the acceleration let us play with the following trivial
numerical example. Take d = k = ϕ = L = T = 1, so that λ0 = −1, λ1 = 2,
and use formula (2.22) with j = 1/τ , τ = 1, 1/2, 1/4, to approximate e:

e ≈ −e(τ) + 2e(τ/2), e(τ) := (1 + τ)1/τ .

Let us calculate this approximation rounded to four decimal places, and com-
pare it with the approximation e(τ/2), the better one between the approxi-
mations e(τ) and e(τ/2) for e, since e(τ) ↑ e as τ ↓ 0.
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Case (i) τ = 1. Then e ≈ −2 + 2( 3
2 )2 = 2.5, and the error 0.2183 is more

than 2.1 times smaller than 0.4683 = e−e(1/2) = e−( 3
2 )2, the error of e(1/2).

Case (ii) τ = 1/2. Then e ≈ −( 3
2 )2 + 2( 5

4 )4 ≈ 2.6328 with error 0.0855,
which is more than 3.2 times smaller than 0.2769 the error of e(1/4) = ( 5

4 )4.
Case (iii) τ = 1/4. Then e ≈ −( 5

4 )4 + 2( 9
8 )8 ≈ 2.6902, and the error,

0.0281, is more than 5.4 smaller than 0.1525, the error of e(1/8) = ( 9
8 )8.

Take now k = 2 in this example. Then λ0 = 1
3 , λ1 = −2, λ2 = 8

3 , and by
virtue of the above formula we approximate e by

e ≈ 1
3
e(τ)− 2e(τ/2) +

8
3
e(τ/4).

For τ = 1 we get e ≈ 1
32 − 2( 3

2 )2 + 8
3 ( 5

4 )4 ≈ 2.6771. The error is 0.0412,
which is more than 6.7 times smaller than that of e(1/4) = ( 5

4 )4. For τ = 1/2
we get e ≈ 1

3 ( 3
2 )2 − 2( 5

4 )4 + 8
3 ( 9

8 )8 ≈ 2.7093. The error is 0.0092, which is
more than 16.5 times smaller than 0.1525, the error of e(1/8) = ( 9

8 )8.

We illustrate some directions of further applications in the following exam-
ple.

Example 2.17 (Splitting-up combined with finite differences). For a d×d-
matrix L we want to approximate the solution, v(t) = eLtϕ, of the equation

d

dt
v(t) = Lv(t), v(0) = ϕ ∈ Rd,(2.23)

on the grid (1.5), by splitting-up the equation into m equations
d

dt
v(t) = Lkv(t), k = 1, 2, . . . ,m, L = L1 + L2 + · · ·+ Lm,

and solving them numerically on each fixed interval [jτ, (j+1)τ ], consecutively,
by finite differences. Namely, for each k we take some ϑk ∈ R and approximate
the equation dv(t) = Lkv(t) dt on each [jτ, (j + 1)τ) by the θ-method with
θ = ϑ̄k := 1− ϑk, i.e., for its numerical solution u we take

u(t) = u(jτ), for t ∈ [jτ, (j + 1)τ),

u((j + 1)τ) = u(jτ) + τ ϑ̄kLku(jτ) + τϑkLku((j + 1)τ).

For θ = 1/2 this is the so-called Crank-Nicholson scheme. Thus, assuming
that the matrix I − τϑkLk is invertible, we have the recursion

u((j + 1)τ) = (I − τϑkLk)−1(I + τ ϑ̄kLk)u(jτ).

Using this recursion for each k = 1, 2, . . . ,m consecutively on every interval
[jτ, (j + 1)τ), for j = 0, 1, 2 . . . , i− 1, we get the approximation

w(ti) = w(τ, ti) =
(
Πm
k=1(I − τϑkLk)−1(I + τ ϑ̄kLk)

)i
ϕ(2.24)

for v(ti) = etiLϕ, when ti = iτ .
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Now we describe this approximation in terms of the general setting. In
order to express the splitting-up algorithm, we introduce the absolutely con-
tinuous functions h1,. . . ,hm on R, whose derivatives are periodic with period
m, such that

ḣk(t) := 1[k−1,k)(t) t ∈ [0,m).(2.25)

We define for each τ ∈ [0, 1) the non-decreasing right-continuous functions

ak(t) = τ [hk(mt/τ)], t ≥ 0, k = 1, 2, . . . ,m,

where, as before, [c] denotes the integer part of c. Then the approximation w
given by (2.24) coincides with the solution of the equation

dw(t) =
m∑
k=1

LkΘkw(t) dak(t), w(0) = ϕ,(2.26)

at the points ti = iτ ∈ Tτ , where

(Θkw)(t) := ϑkw(t) + (1− ϑk)w(t−).

Clearly, (2.26) can be written in the form (1.2) and equation (2.23) is of the
form (1.1), if we take f = fk ≡ 0 and introduce Θ0 as the identity and A0,
A1,. . . , Am as the integral operators on the spaces (2.1) defined, as before, by
(2.2) for k = 0, 1, . . . ,m with a0(t) ≡ t.

Now introduce the operators Θα and Θ̄α and define the functions bα, the
numbers cα, and, finally, the operators b±α and Bα by the same formulas which
were used in Example 2.12, allowing there k to vary in {0, 1, . . . ,m}.

Notice that by Lemma 2.13 the numbers cα do not depend on τ and, as in
Example 2.12, it is easy to check that all assumptions of the general scheme are
satisfied. Furthermore, we have bα(jτ) = 0 for all integers j ≥ 0. Therefore we
can apply Theorem 2.14 with w∗, the restriction of functions u ∈ D([0, T ],Rd)
to any tj ∈ Tτ . Then we obtain that there exist v0, v1, . . . , vk ∈ D([0, T ],Rd),
independent of τ , with v0 = v, such that

max
t∈Tτ

∣∣∣∣∣w(τ, t)−
k∑
i=0

vi(t)τ i
∣∣∣∣∣ ≤ Nτk+1 for τ ∈ (0, 1],(2.27)

where w(τ, ·) = w is the approximation defined by (2.24), and N is a constant
depending only on T , k, m, |L|, |ϕ|, and ϑ1, . . . , ϑm. From Theorem 2.15 we
get

max
t∈Tτ

∣∣∣∣∣eLtϕ−
k∑
i=0

λiw(2−iτ, t)

∣∣∣∣∣ = O(τk+1). �

We will see that Theorem 2.14 follows from an expansion of w into a power
series with respect to τ . To state the corresponding result we need more
notation.
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For γ ∈ N we define fγ ∈W0 and a linear operator Lγ as follows:

L0 = 0, f0 = 0, Lγ = Lr, fγ = fr for γ = r ∈ {1, 2, . . . ,m},(2.28)

Lγ0 = LLγ , Lγr = −LγLr, fγ0 = Lfγ , fγr = −Lγfr,(2.29)

for r = 1, 2, . . . ,m, γ ∈ N . Notice that Lα is a bounded linear operator from
Wj into Wj−|α| if |α| ≤ j and fα ∈Wl−|α|+1 if |α| ≤ l + 1.

Observe that fα are time independent due to Assumption 2.7, because by
Remark 2.9 we have

BγLkfα = LkBγfα

and one can use induction on |α|.
Let M denote the set of multi-numbers γ1γ2 . . . γi with γj ∈ {1, 2, . . . ,m},

j = 1, 2, . . . , i, and integers i ≥ 1. Observe thatM⊂ N and in contrast with
N the entries in γ ∈M are not allowed to equal zero.

Next, we introduce sequences σ = (β1, β2, . . . , βi) of multi-numbers βj ∈
M, where i ≥ 1 is any integer, and set

|σ| = |β1|+ |β2|+ · · ·+ |βi|.

We consider also the ‘empty sequence’ e of length |e| = 0, and denote the set
of all these sequences by J . For σ = (β1, β2, . . . , βi), i ≥ 1, we define

Sσ = RLβ1 · · · · · RLβi , where R := R0Θ0,(2.30)

and for σ = e we set Se = R. Notice that Sσ is well-defined as bounded linear
operator from Wj+|σ| to Wj if j + |σ| ≤ l. If we have a collection of gν ∈W0

indexed by a parameter ν taking values in a set A, then we use the notation∑*

ν∈A
gν(2.31)

for any linear combination of gν with coefficients depending only on cα, A,
and ν. For instance,∑*

A

Sσwγ =
∑*

(σ,γ)∈A

Sσwγ =
∑

(σ,γ)∈A

c(σ, γ)Sσwγ ,

where c(σ, γ) are certain functions of cα, α ∈ N , and (σ, γ) ∈ A. These
functions are allowed to change from one occurrence to another.

For µ = 0, . . . , l, κ ≥ 0, and functions u = uα(τ) depending on the param-
eters α ∈ N and τ we write

u = Oµ(τκ) if ‖uα(τ)‖µ ≤ Nτκ,
where the constant N < ∞ depends only on α,Kβ , β ∈ N , µ, l, and K.
Finally, we set

A(i) = {(σ, β) : σ ∈ J , β ∈M, |σ|+ |β| ≤ i},(2.32)

B∗(i, j) = {(α, β) : α ∈ N , β ∈M, |α| ≤ i, |β| ≤ j},(2.33)
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and vβ = Lβv + fβ , wβ = Lβw + fβ .

Theorem 2.18. Under the assumptions of Theorem 2.14 we have

w = v +
k∑
i=1

τ i
∑*

A(2i)

Sσvβ +
k∑
i=1

τ i
∑*

B∗(i,i+j)

b+α1
wβ1 +O0(τk+1).(2.34)

Furthermore, if k ≥ 1, then∑*

A(2)

Sσvβ =
m∑

i,j=1

(cij − cj0)Rvij

in (2.34), so that it vanishes if cij = cj0 for all i, j = 1, . . . ,m.

Remark 2.19. In Example 2.17 with m = 1 and θ = 1/2, that is, for the
Crank-Nicholson scheme, we have c11 = c10, which implies that the coefficient
of τ in (2.27) vanishes and w = v + O0(τ2) on Tτ , and we rediscover the
well-known fact that the scheme is of second order accuracy.

Remark 2.20. If the coefficient of τ in the first sum in (2.34) is zero, then
to accelerate to get order of accuracy τ3 it suffices to mix two grids instead of
three as in the general case because one can find two universal constants such
that the expansion in powers of τ of the corresponding linear combination has
first term proportional to τ3 and thus has error of order τ3.

Indeed, let τ0 ∈ (0, 1] and assume that equation (1.2) with τ0 and τ1 := τ0/2
has a solution w0 and w1, respectively. Then by virtue of Theorem 2.18, under
the assumptions of Theorem 2.15, and if cij = cj0 for all i, j, we have∣∣∣∣43 〈w1, w

∗〉 − 1
3
〈w0, w

∗〉 − 〈v, w∗〉
∣∣∣∣ ≤ Nτ3

0 ‖w∗‖(2.35)

for all w∗ ∈W ∗0 , satisfying w∗b+α (τj) = 0 for all α ∈ N , j = 0, 1. We say more
about such situations in Remark 4.5 below.

Example 2.21. We apply the two previous remarks to Example 2.17 with
m = 1 and θ = 1/2, that is, to the Crank-Nicholson scheme. By (2.24) and
(2.35) we have

max
t∈Tτ

∣∣∣∣∣etLϕ+
1
3

((
I − τ

2
L
)−1 (

I +
τ

2
L
))t/τ

−4
3

((
I − τ

4
L
)−1 (

I +
τ

4
L
))2t/τ

∣∣∣∣∣ = O(τ3).

Let us see what this acceleration does in the trivial numerical example
d = k = ϕ = L = T = 1, chosing τ = 1, 1/2, 1/4. Thus, we approximate the



490 I. GYÖNGY AND N. KRYLOV

number e now by

e ≈ −1
3
ē(τ) +

4
3
ē(τ/2), ē(τ) :=

(
2 + τ

2− τ

)1/τ

, for τ = 1,
1
2
,

1
4
.

Rounding up to four decimal places we have

ē(1) = 3, ē(1/2) =
(

5
3

)2

≈ 2.7778,

ē(1/4) =
(

9
7

)4

≈ 2.7326, ē(1/8) =
(

17
15

)8

≈ 2.7218.

Case (i) τ = 1. Then e ≈ − 1
3 ē(1) + 4

3 ē(1/2) ≈ 2.7037, and the error is
0.0146, which is more than 4 times smaller than 0.0595, the error of ē(1/2).

Case (ii) τ = 1/2. Then e ≈ −1
3 ē(1/2) + 4

3 ē(1/4) ≈ 2.7176. The error is
0.0007, which is more than 20 times smaller than 0.00143, the error of ē(1/4).

Case (iii) τ = 1/4. Then e ≈ −1
3 ē(1/4)+ 4

3 ē(1/8) ≈ 2.71823872. Rounded
to 10 decimal places the error is 0.000043108, which is more than 82 times
smaller than the error of ē(1/8).

3. Proof of Theorem 2.18

Recall that the operator R is defined in (2.30) and introduce

Qk =
1
τ

(RkΘk −R), Qαk =
1
τ

(Rkb−αΘk − cαkR)

for α ∈ N and k = 0, . . . ,m.

Lemma 3.1. For any α ∈ N we have:
(i) The operators

Qα : Wi →Wi, i = 0, . . . , l,

are bounded.
(ii) If g ∈W1, then u := Qαg satisfies

u = A0Θ0Lu+Bαg.(3.1)

(iii) If C is a finite set of multi-numbers, f, gα ∈W0, u ∈W1 and

u = A0Θ0(Lu+ f) +
∑
C

Bαgα,

then

u = Rf +
∑
C

Qαgα.

Proof. This lemma follows immediately from our definitions of Bα, Qα and
from Assumption 2.3 about Rk. �
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Remark 3.2. For any α ∈ N , k = 0, . . . ,m, and g ∈W0 we have

QαRkg = b+αRkg −Rkb−α g.(3.2)

Indeed, since both parts are continuous functions on W0 and W1 is dense
in W0 we may assume that g ∈ W1, so that u := Rkg ∈ W1 satisfies u =
A0Θ0Lu+Akg and, since

b+αA0Θ0 = BαA0Θ0 +A0b
−
αΘ0 = BαA0Θ0 +A0Θ0b

+
α , Lb+α = b+αL,

b+αAkg = BαAkg +Akb
−
α g,

it holds that

b+αu = b+αA0Θ0Lu+BαAkg +Akb
−
α g

= Bα(A0Θ0Lu+Akg) +A0Θ0L(b+αu) +Akb
−
α g

= A0Θ0L(b+αu) +Bαu+Akb
−
α g.

It follows that b+αu = Rkb−α g +Qαu, and this is (3.2).

Formula (3.2) and assumptions (2.6) and (2.9) yield the following.

Lemma 3.3. For any α ∈ N , k = 0, . . . ,m, i = 0, . . . , l, and g ∈ Wi we
have

‖QαRkg‖i ≤ 2KKα‖g‖i.(3.3)

Remark 3.4. For any α ∈ N and g ∈W1 we have

Qαg = RLBαg +Bαg.(3.4)

Indeed, since u := Qαg ∈W1 satisfies u = A0Θ0Lu+Bαg, w := u−Bαg ∈W1

satisfies

w = A0Θ0(Lw + hα)

with hα := LBαg ∈W0. Hence w = RLBαg, and this is (3.4).

Lemma 3.5. Let i = 1, . . . , l, g ∈ Wi be time independent, and α ∈ N .
Then

‖Qαg‖i−1 ≤ K2Kα‖g‖i +Kα‖g‖i−1.

The lemma follows immediately from Remark 3.4 and our assumptions.
The following lemma exhibits our two main tools, which in the framework

of differential equations translate to centering the integrand (assertion (i))
and integrating by parts (assertion (ii)).

Lemma 3.6.

(i) Let g ∈W0 and α ∈ N . Then

Rb+α g = cα0Rg + τQα0g.(3.5)
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(ii) Let u ∈W1, g0 = 0, g1, . . . , gm ∈W0, h be time independent, and

u =
∑
r

ArΘrgr + h.

Then for any α ∈ N

Qαu = R(cα0Lu− cαrgr) + τQα0Lu− τQαrgr + b+αu.(3.6)

Proof. (i) Since both parts of (3.5) are continuous functions of g and W1 is
dense inW0, it suffices to prove (3.5) for g ∈W1. In that case w := Rb+α g ∈W1

is the unique solution of w = A0Θ0(Lw+b+α g), which owing to our assumptions
and definitions implying that

A0Θ0b
+
α = A0b

−
αΘ0 = τBα0 + cα0A0Θ0,

can be written as

w = A0Θ0(Lw + cα0g) + τBα0g,

and (3.5) follows by the definition of R and Qα0.
(ii) Observe that p := Qαu ∈ W1 satisfies p = A0Θ0Lp + Bαu, where by

(2.10) and (2.8)

Bαu = BαArΘrgr + b+αh = (b+αAr −Arb−α )Θrgr + b+αh

= b+αu−Arb−αΘrgr = b+αu− cαrA0Θ0gr − τBαrgr.

Also note that Lu ∈W0 and

A0Θ0b
+
αLu = A0b

−
αΘ0Lu = cα0A0Θ0Lu+ τBα0Lu.

Hence for q := p− b+αu ∈W1 we obtain

q = A0Θ0(Lq + b+αLu)− cαrA0Θ0gr − τBαrgr
= A0Θ0Lq + cα0A0Θ0Lu+ τBα0Lu− cαrA0Θ0gr − τBαrgr,

and (3.6) follows by Lemma 3.1 (iii). The lemma is proved. �

From now on the operators Bα will no longer be needed in our considera-
tions.

We have the following statement regarding the function w from Theorem
2.14. Recall the notation wβ = Lβw + fβ for β ∈ N .

Lemma 3.7. Let α, β ∈ N and |β|+ 1 ≤ l. Then

Qαwβ = cαrRwβr + τQαrwβr + b+αwβ .(3.7)

Proof. Apply formula (3.6) to u := wβ ∈W1, after noting that

u = Lβϕ+ LβArΘr(Lrw + fr) + fβ = ArΘrgr + h,
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where gr := Lβwr, and h := Lβϕ+fβ is time independent. Then the left-hand
side of (3.6) equals

R(cα0Lwβ − cαrLβwr) + τQα0Lwβ − τQαrLβwr + b+αwβ ,

which is easily seen to be equal to the right-hand side of (3.7). �

We derive from (3.7) one of the most important formulas.

Proposition 3.8. Let κ ≥ 0 be an integer and l ≥ κ+ 1. Then

w = v +
κ∑
i=1

τ i
∑
|α|=i

b+αwα +
κ∑
i=1

τ i
∑
|α|=i+1

cαRwα + τκ+1r(κ+1)(3.8)

for all t ∈ [0, T ], where

r(κ+1) =
∑

|α|=κ+1

Qαwα.

Proof. First notice that for u := w − v ∈W1 we have

u = ArΘr(Lrw + fr)−A0Θ0(Lv + f)

= (ArΘr −A0Θ0)Lrw +A0Θ0

(∑
r

Lrw − Lv

)

+ (ArΘr −A0Θ0)fr +A0Θ0

(∑
r

fr − f

)
= A0Θ0Lu+ τBrwr,

which proves (3.8) for κ = 0. Next we fix some κ ≥ 1 and transform r(i), for
i = 1, . . . , κ, by applying (3.7) with α = β and |α| = i when |α|+1 ≤ κ+1 ≤ l.
Then we get

r(i) =
∑

|α|=i,|β|=1

cαβRwαβ + τ
∑

|α|=i,|β|=1

Qαβwαβ +
∑
|α|=i

b+αwα

=
∑
|α|=i

b+αwα +
∑
|α|=i+1

cαRwα + τr(i+1).

This shows how r(1), r(2), . . . , r(κ+1) are related to each other and proves the
proposition. �

Our next step is to “solve” (3.8) with respect to w by the method of suc-
cessive iterations, i.e., by substituting w given by (3.8) into the right-hand
side of the same equation. In the process of doing so we encounter only one
difficulty when the second term on the right is plugged into the third one
and we have to develop expressions like R(b+αw) into power series in τ . We
transform these terms by using (3.5) and (3.6). First we note the following:
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Lemma 3.9. If κ ≥ 0 is an integer and α, β ∈ N and |β|+ κ ≤ l, then

R(b+αwβ) =
κ∑
i=0

τ i
∑
|γ|=i

cα0γRwβγ(3.9)

+
κ∑
i=1

τ i
∑
|γ|=i−1

b+α0γwβγ + τκ+1
∑
|γ|=κ

Qα0γwβγ ,

where for any multi-numbers µ, ν∑
|γ|=0

cνγRwµγ := cνRwµ,
∑
|γ|=0

b+νγwµγ := b+ν wµ,∑
|γ|=0

Qνγwµγ : = Qνwµ.

Proof. If κ = 0, then wβ ∈ W0 and (3.9) follows from (3.5). If κ ≥ 1, we
first claim that

Qαwβ =
κ−1∑
i=0

τ i
∑
|γ|=i+1

cαγRwβγ(3.10)

+
κ−1∑
i=0

τ i
∑
|γ|=i

b+αγwβγ + τκ
∑
|γ|=κ

Qαγwβγ .

Indeed, if κ = 1, formula (3.10) is just (3.7). If (3.10) is true for some κ ≥ 1
and |β| + κ + 1 ≤ l, then we use (3.7) with βγ in place of β and for |γ| = κ
transform the last term in (3.10) to obtain

Qαγwβγ = cαγrRwβγr + b+αγwβγ + τQαγrwβγr.

We substitute this result into (3.10) and see that induction on κ proves our
claim. For κ ≥ 1 we use (3.10) with α0 in place of α and finish the proof of
the lemma by referring to (3.5). �

In the above sums with respect to γ this term was running through N . It
is more convenient to restrict γ to M, introduced after Definition 2.8.

Lemma 3.10. The following statements hold.

(i) Let γ = γ1γ2 . . . γi ∈M, |γ| ≤ l. Then on Wl we have

Lγ = (−1)|γ|−1Lγ1 . . . Lγi and fγ = (−1)|γ|−1Lγ1 . . . Lγi−1fγi ,

(ii) Let β, γ ∈M, |β|+ |γ| ≤ l. Then on Wl we have

LβLγ = −Lβγ and Lβfγ = −fβγ .
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(iii) Let α ∈ N , |α| ≤ l. Then there exist constants c(γ) = c(α, γ) ∈
{0,±1} defined for all γ ∈M with |γ| = |α|, such that

Lα =
∑

γ∈M,|γ|=|α|

c(γ)Lγ , fα =
∑

γ∈M,|γ|=|α|

c(γ)fγ .(3.11)

Proof. Part (i) follows immediately from the definition of Lγ , fγ by induc-
tion on |γ|. Part (i) obviously implies Part (ii). Part (iii) clearly holds for
α = 0 and α = r ∈ {1, . . . ,m}. Assume that equations (3.11) hold for some
α ∈ N , |α| < l. Then

Lαr = −LαLr = −
∑

γ∈M,|γ|=|α|

c(γ)LγLr =
∑

γ∈M,|γ|=|α|

c(γ)Lγr,

fαr = −Lαfr = −
∑

γ∈M,|γ|=|α|

c(γ)Lγfr =
∑

γ∈M,|γ|=|α|

c(γ)fγr,

for r ∈ {1, 2 . . . ,m}, and

Lα0 = LLα =
m∑
r=1

Lr
∑

γ∈M,|γ|=|α|

c(γ)Lγ = −
m∑
r=1

∑
γ∈M,|γ|=|α|

c(γ)Lrγ ,

fα0 = Lfα =
m∑
r=1

Lr
∑

γ∈M,|γ|=|α|

c(γ)fγ = −
m∑
r=1

∑
γ∈M,|γ|=|α|

c(γ)frγ ,

which prove (iii) by induction on |α|. �

Lemma 3.11. For any α, β ∈ N with |β|+ µ+ 1 ≤ l we have

Qαwβ = Oµ(1).

Proof. Observe that for w̄ := w − ϕ

Lβw̄ = AkΘk(LβLkw + Lβfk) = A0Θ0(LLβw̄ − u) +AkΘk(LβLkw + Lβfk),

where u := LLβw̄. Hence

Lβw̄ = −RLLβw̄ +RkΘk(LβLkw + Lβfk).

Now it only remains to recall that wβ = Lβw̄ + fβ + ϕβ , where fβ , ϕβ :=
Lβϕ are time independent, and to use Lemmas 3.3 and 3.5. The lemma is
proved. �

Recall that the operators Sσ are defined in (2.30) and the sets A(i) in
(2.32), and denote

B(i, j) = {(α, β) : α ∈ N , β ∈M, |α| = i, |β| ≤ j}.
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Lemma 3.12. Let κ, µ ≥ 0 be integers and α ∈ N , β ∈M, σ ∈ J . Assume
that

|σ|+ |β|+ κ+ µ+ 1 ≤ l.(3.12)

Then

Sσ(b+αwβ) =
κ∑
i=0

τ i
∑*

A(|σ|+|β|+i)

Sσ1wβ1(3.13)

+
κ∑
i=1

τ i
∑*

B(|α|+i,|σ|+|β|+i−1)

b+α1
wβ1 +Oµ(τκ+1).

Proof. For σ = e, when Sσ = R, equation (3.13) is just a different form of
equation (3.9), which is applicable since |β|+κ ≤ l. Indeed, owing to Lemma
3.10 (iii), ∑

γ∈N ,|γ|=i

cα0γRwβγ =
∑*

A(|σ|+|β|+i)

Sσ1wβ1 ,

∑
γ∈N ,|γ|=i−1

b+α0γwβγ =
∑*

B(|α|+i,|σ|+|β|+i−1)

b+α1
wβ1 .

Furthermore, by Lemma 3.11 for |γ| = κ,

Qα0γwβγ = Oµ(1), since |β|+ κ+ µ+ 1 ≤ l.

For |σ| ≥ 1 we proceed by induction on the length `(Sσ) of

Sσ = RLβ1 · · · · · RLβj ,

which we define to be j. If `(Sσ) = 1, then σ ∈M, Sσ = RLσ, and it suffices
to notice that for β ∈M

Sσ(b+αwβ) = RLσ(b+αwβ) = −R(b+αwσβ) = −Se(b+αwβ′),(3.14)

where β′ = σβ ∈M and

|β′|+ κ+ µ+ 1 = |σ|+ |β|+ κ+ µ+ 1 ≤ l.

Assume that (3.13) holds whenever `(Sσ) = s, and take an Sσ such that
`(Sσ) = s+ 1. Then Sσ = RLνSσ′ , where

ν, σ′ ∈M, |ν|+ |σ′| = |σ|, `(Sσ′) = s.

Furthermore,

|σ′|+ |β|+ κ+ µ′ + 1 ≤ l,
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where µ′ = µ+ |ν|. By the induction hypothesis

Sσ′(b+αwβ) =
κ∑
i=0

τ i
∑*

A(|σ′|+|β|+i)

Sσ1wβ1

+
κ∑
i=1

τ i
∑*

B(|α|+i,|σ′|+|β|+i−1)

b+α1
wβ1 +Oµ′(τκ+1).

We apply RLν to both parts of this equality and take into account that
Lνwβ1 = −wνβ1 and |ν|+ |σ′| = |σ|. Then similarly to (3.14) we get that

Sσ(b+αwβ) =
κ∑
i=0

τ i
∑*

A(|σ|+|β|+i)

Sσ1wβ1(3.15)

+
κ∑
i=1

τ i
∑*

B(|α|+i,|σ|+|β|+i−1)

Se(b+α1
wβ1) +Oµ(τκ+1).

Now we transform the second term on the right. Take

(α1, β1) ∈ B(|α|+ i, |σ|+ |β|+ i− 1)

and notice that then |β1| ≤ |σ|+ |β|+ i− 1. Hence by assumption (3.12)

|β1|+ κ− i+ µ+ 1 < l.

Therefore, by the result for σ = e,

Se(b+α1
wβ1) =

κ−i∑
j=0

τ j
∑*

A(|β1|+j)

Sσ2wβ2

+
κ−i∑
j=1

τ j
∑*

B(|α1|+j,|β1|+j−1)

b+α2
wβ2 +Oµ(τκ−i+1).

We substitute this result into (3.15) and obtain (3.13) after collecting the
coefficients of τ i+j and noticing that, if

(α1, β1) ∈ B(|α|+ i, |σ|+ |β|+ i− 1)

and

(α2, β2) ∈ B(|α1|+ j, |β1|+ j − 1),

then

(α2, β2) ∈ B(|α|+ i+ j, |σ|+ |β|+ i+ j − 1).

This justifies the induction and finishes the proof of the lemma. �
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In the following proposition we use the fact that

B∗(i, j) =
i⋃

i1=1

B(i1, j).

This proposition finishes the proof of Theorem 2.18, as is seen by taking j = k
in (3.16).

Proposition 3.13. Let k ≥ 0 be an integer such that 2k + 2 ≤ l. Then
for any j = 0, 1, . . . , k we have

w = v +
j∑
i=1

τ i
∑*

A(2i)

Sσvβ +
k∑

i=j+1

τ i
∑*

A(i+j+1)

Sσ1wβ1(3.16)

+
k∑
i=1

τ i
∑*

B∗(i,i+j)

b+α1
wβ1 +O0(τk+1),

where vβ := Lβv + fβ. Furthermore, if j ≥ 1, then in (3.16) we have

∑*

A(2)

Sσvβ =
m∑

i,j=1

(cij − cj0)Rvij .(3.17)

Proof. We prove formula (3.16) by induction on j. By Proposition 3.8 and
Lemma 3.11 (where we use k + 2 ≤ l) we have

w = v +
k∑
i=1

τ i
∑
|β|=i

b+βwβ +
k∑
i=1

τ i
∑
|β|=i+1

cβRwβ +O0(τk+1),(3.18)

which means that (3.16) holds for j = 0, since by Lemma 3.10 (iii)∑
|β|=i

b+βwβ =
∑
|β|=i

b+β

∑
γ∈M,|γ|=i

c(β, γ)wγ =
∑*

B∗(i,i)

b+α1
wβ1 ,

∑
|β|=i+1

cβRwβ =
∑
|β|=i+1

cβ
∑

γ∈M,|γ|=i+1

c(β, γ)Rwγ =
∑*

A(i+1)

Sσ1wβ1 .

Next, assume that k ≥ 1 and (3.16) holds for some j ∈ {0, . . . , k − 1}.
Transform the first term with i = j + 1 in the second sum on the right in
(3.16) by using Lemma 3.12. To prepare the transformation take

(σ1, β1) ∈ A(2i) = A(i+ j + 1)
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so that |σ1|+|β1| ≤ 2i and apply the operator Sσ1Lβ1 to both parts of equation
(3.8) with k − i in place of κ. Then we obtain

Sσ1wβ1 = Sσ1vβ1 +
k−i∑
i1=1

τ i1
∑
|α1|=i1

Sσ1(b+α1
Lβ1wα1)

+
k−i∑
i1=1

τ i1
∑

|α1|=i1+1

cα1Sσ1Lβ1Rwα1 + τk−i+1r(k−i+1),

where

r(k−i+1) =
∑

|α|=k−i+1

Sσ1Lβ1Qαwα.

Since

l − (k − i+ 1 + |β1|+ |σ1|) ≥ l − (k + i+ 1)

≥ l − (2k + 1) ≥ 1,

we have r(k−i+1) = O0(1). We remark that this is the only place where we
need l ≥ 2k + 2. Hence by Lemma 3.10 (iii)

Sσ1wβ1 = Sσ1vβ1 +
k−i∑
i1=1

τ i1
∑*

(α2,β2)∈B(i1,|β1|+i1)

Sσ1(b+α2
wβ2)(3.19)

+
k−i∑
i1=1

τ i1
∑*

A(|σ1|+|β1|+i1+1)

Sσ2wβ2 +O0(τk−i+1)

=: J1 + · · ·+ J4.

Now using Lemma 3.12 with k − i − i1 in place of κ and 0 in place of µ
we transform the terms of J2. For |β2| ≤ |β1| + i1 we have (recall that
(σ1, β1) ∈ A(2i))

|σ1|+ |β2|+ k − i− i1 + 1 ≤ |σ1|+ |β1|+ k − i+ 1
≤ i+ k + 1 ≤ 2k + 1 < l.

Therefore

Sσ1(b+α2
wβ2) =

k−i−i1∑
i2=0

τ i2
∑*

A(|σ1|+|β2|+i2)

Sσ3wβ3

+
k−i−i1∑
i2=1

τ i2
∑*

B(|α2|+i2,|σ1|+|β2|+i2−1)

b+α3
wβ3 +O0(τk−i−i1+1).
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We plug this result into J2. In order to collect the coefficients of τ i1+i2 notice
that for

(σ3, β3) ∈ A(|σ1|+ |β2|+ i2)

and

(α2, β2) ∈ B(i1, |β1|+ i1)

we have

|σ3|+ |β3| ≤ |σ1|+ |β2|+ i2 ≤ |σ1|+ |β1|+ i1 + i2.

Furthermore, if

(α3, β3) ∈ B(|α2|+ i2, |σ1|+ |β2|+ i2 − 1),

then

|α3| = |α2|+ i2 = i1 + i2, |β3| ≤ |σ1|+ |β2|+ i2 − 1 < |σ1|+ |β1|+ i1 + i2.

It follows that J2 can be written as

k−i∑
i1=1

τ i1

 ∑*

A(|σ1|+|β1|+i1)

Sσ2wβ2 +
∑*

B(i1,|σ1|+|β1|+i1)

b+α2
wβ2

+O0(τk−i+1),

which just amounts to saying that visually in the definition of J2 one can
erase Sσ1 , carry all differentiations in it onto wβ2 , and still preserve (3.19).
Of course, when speaking about “all differentiations” we mean the case that
Lr are differential operators. Now from this new form of (3.19) for Sσ1wβ1

we see that

τ j+1
∑*

A(2j+2)

Sσ1wβ1 = O0(τk+1) + τ j+1
∑*

A(2j+2)

Sσ1vβ1(3.20)

+
k−j−1∑
i1=1

τ i1+j+1

 ∑*

A(|σ1|+|β1|+i1+1)

Sσ2wβ2

+
∑*

B(i1,|σ1|+|β1|+i1)

b+α2
wβ2

 .

Next we notice again that for (σ1, β1) ∈ A(2j + 2) and

|σ2|+ |β2| ≤ |σ1|+ |β1|+ i1 + 1

we have

|σ2|+ |β2| ≤ j + 2 + i1 + j + 1,

whereas if

|β2| ≤ |σ1|+ |β1|+ i1,
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then

|β2| ≤ j + 1 + i1 + j + 1.

Therefore, after changing i1 + j + 1→ i (≥ j + 2) we get

τ j+1
∑*

A(2j+2)

Sσ1wβ1 = O0(τk+1) + τ j+1
∑*

A(2j+2)

Sσ1vβ1

+
k∑

i=j+2

τ i

 ∑*

A(i+j+2)

Sσ2wβ2 +
∑*

B∗(i,i+j+1)

b+α2
wβ2

 .

This shows that the term with i = j+1 in the second sum on the right in (3.16)
can be eliminated on the account of changing other terms with simultaneous
shift j → j + 1, which gives formula (3.16) with j + 1 in place of j. Thus the
induction on j proves (3.16).

To prove (3.17) observe that, as follows from (3.20), the transformation of
the first term with i = j+ 1 in the second sum on the right in (3.16) does not
affect the first j terms in the first sum in (3.16). Thus, once the first term
in this sum appears, it remains unchanged as we move along. The first term
appears when j = 0 and according to (3.18) we have to transform

τ
∑
|β|=2

cβRwβ ,

which by (3.8) equals

τ
∑
|β|=2

cβRvβ = τR

 m∑
i,j=1

cijvij +
m∑
i=1

ci0vi0 +
m∑
j=0

c0jv0j

 =: τRP,

plus terms involving higher powers of τ . It only remains to observe that
L0 = 0,

v0j = L0jv + f0j = −L0Ljv − L0fj = 0, vi0 = Li0v + fi0 = LLiv + Lfi

=
m∑
k=1

(LkLiv + Lkfi) = −
m∑
k=1

vki, i = 1, . . . ,m,

so that

P =
m∑

i,j=1

cijvij +
m∑
j=1

cj0vj0 =
m∑

i,j=1

(cij − cj0)vij .

This leads to (3.17) and the proof of the proposition is complete. �
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4. An application to parabolic PDEs

Here we give an application of our general scheme to splitting-up for par-
abolic partial differential equations. We will see how to obtain part of the
results in [4] in time-homogeneous case and derive further properties of these
approximations. For p > 1 and integers r ≥ 1 we denote by W r

p the Sobolev
space defined as the closure of C∞0 functions ϕ : Rd → R in the norm

‖ϕ‖r,p : =

∑
|γ|≤r

∫
Rd

|Dγϕ(x)|p dx

1/p

,

where Dγ := Dγ1
1 . . . Dγd

d for multi-indices γ = (γ1, . . . , γd) of length |γ| :=
γ1 + γ2 + · · ·+ γd. In this section we fix a number p ≥ 2.

We consider the problem

Dtv(t, x) = Lv(t, x) + f(x), t ∈ (0, T ], x ∈ Rd,(4.1)

v(0, x) = ϕ(x), x ∈ Rd,(4.2)

where L is an operator of the form

L = aij(x)Dij + ai(x)Di + a(x),(4.3)

where aij , ai, a, f , and ϕ are real-valued functions on Rd.
Imagine that in order to solve (4.1)–(4.2) numerically we split equation

(4.1) into the equations

Dtu(t, x) = Lru(t, x) + fr(x), r = 1, 2, . . . ,m(4.4)

with

Lr = aijr (x)Dij + air(x)Di + ar(x), L =
m∑
r=1

Lr, f =
m∑
r=1

fr,

such that these equations are more pleasant from the point of view of com-
puting their solutions than the original one. This motivates the multi-stage
splitting method, which we describe below.

We need some assumptions, in which ν ≥ 2 is a fixed number.

Assumption 4.1 (Ellipticity of Lr). For each r = 1, 2, . . . ,m, λ, x ∈ Rd,

aijr (x)λiλj ≥ 0.

Assumption 4.2 (Smoothness of data).
(i) For all multi-indices ρ satisfying |ρ| ≤ ν the partial derivatives

Dρaijr , Dρair, Dρar for i, j = 1, 2, . . . , d, r = 1, 2, . . . ,m

exist and are bounded in magnitude by K.
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(ii) We have ϕ, fr ∈W ν
p and

‖ϕ‖ν,p ≤ K, ‖fr‖ν,p ≤ K, r = 1, 2, . . . ,m.

It is well known (see, for instance, Theorem 3.1 in [2] and recall that ν ≥ 2)
that under the above conditions there is a unique W ν

p -valued weakly contin-
uous function v(t), t ≥ 0, such that

v(t) = ϕ+
∫ t

0

(Lv(s) + f) ds,(4.5)

where one understands the integral as Bochner’s weak (=strong) integral or,
equivalently, one understands the equation in the sense of integral identity
obtained by multiplying by test functions and integrating with respect to x.
In the same sense we understand all differential equations in this section.

Hence under the above conditions equations (4.1) and (4.4) with initial
conditions v(0) = ϕ, u(0) = ϕ admit unique solutions v and u, respectively.

We want to approximate the solution v of (4.1)–(4.2) by using the splitting-
up method, i.e., by solving equations (4.4) successively with appropriate initial
conditions on appropriate time intervals. Namely, we take a number τ ∈ (0, 1],
recall that the set Tτ is introduced in (1.5), and define an approximation vτ
at the points ti := iτ ∈ Tτ recursively as follows:

vτ (0) = ϕ,

vτ (ti+1) = P
(m)
τ . . .P(2)

τ P
(1)
τ vτ (ti), ti, ti+1 ∈ Tτ ,

(4.6)

where P(r)
t ψ = u(t) denotes the solution of equation (4.4) for t ≥ 0 with initial

condition u(0) = ψ. Observe that if fr ≡ 0, then (4.6) is essentially (1.4).
It is known that if Assumptions 4.1, 4.2 are satisfied with ν ≥ µ + 4 for

some integer µ ≥ 0, then

max
t∈Tτ
‖v(t)− vτ (t)‖µ,p ≤ Nτ(4.7)

for all τ ∈ (0, 1], where N depends only on ν, d,m, T,K, p, µ. Moreover, this
rate of convergence is sharp (see [3], where this result is a special case of the
rate of convergence estimates for stochastic PDEs). We remark that if p = 2,
then (4.7) holds under a weaker restriction on ν, namely ν ≥ 3 + µ (see, for
instance, [2]).

Applying the general results of Section 2 we show, in particular, that by
suitable combinations of splitting-up approximations we can achieve as fast a
convergence as we wish. (See Theorem 4.4 below.)

In order to apply Theorems 2.14 and 2.15 of the abstract setting, we first
take h1, h2, . . . , hm from (2.25), introduce the absolutely continuous functions

ar(t) = τhr(mt/τ), t ≥ 0, r = 1, 2, . . . ,m,
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and, for a fixed τ ∈ (0, 1], consider the Cauchy problem

dw(t, x) =
m∑
r=1

(Lrw(t, x) + fr) ȧr(t) dt, w(0, x) = ϕ(x).(4.8)

As we have pointed out, we understand this problem as in (4.5) and that due
to [6] there is a unique W ν

p -valued solution of (4.8).
From the structure of ȧr it is easy to see that

w(t) = vτ (t) for all t ∈ Tτ .(4.9)

This is our major technical observation, which allows us to treat splitting-up
approximations by using tools from the standard theory of partial differen-
tial equations, which we translated into the general setting in the previous
sections.

Next fix integers µ, k ≥ 0 and set l = 2k + 2,

Wj = Cw([0, T ],Wµ+2j
p ), j = 0, 1, . . . , l,

where Cw([0, T ],Wµ+2j
p ) denotes the Banach space of Wµ+2j

p -valued weakly
continuous functions f on [0, T ] with norm

‖f‖j : = sup
t∈[0,T ]

‖f(t)‖µ+2j,p.

Then Wi is a separable Banach space which is continuously and densely em-
bedded into Wi−1 for every i = 1, 2, . . . , l. Let Θ0 = Θ1 = · · · = Θm be the
identity operator on W0, and define the operators Ak by

(Akψ)(t) =
∫ t

0

ψ(s)ȧk(s) ds, t ∈ [0, T ], k = 0, 1, 2, . . . ,m

for all ψ ∈ W0, where a0(t) := t and the integral is understood as a Bochner
integral. View L, Lr as operators acting on the spaces Wj in the natural way

(Lv)(t) = Lv(t), (Lrv)(t) = Lrv(t), t ∈ [0, T ],

and embed ϕ, f , fr into Wj as constant functions of t ∈ [0, T ], i.e.,

ϕ(t) = ϕ, f(t) = f, fr(t) = fr for all t ∈ [0, T ].

It is seen that equations (4.1)–(4.2) and (4.8) take the form of equations (1.1)
and (1.2), respectively.

To verify that Assumption 2.1 and 2.3 are satisfied we suppose that

ν ≥ µ+ 2l.(4.10)

Then Assumption 2.1 is obviously satisfied with a constant depending only
on T,K, ν, d,m, p.

To check Assumption 2.3 first suppose that µ ≥ 2. Then by Theorem 3.1
of [2], for any g ∈ W0 equation (2.7) has a unique solution u ∈ W0. We call
this solution Rkg and in this way construct the operators Rk. The fact that
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they satisfy Assumption 2.3 with a constant depending only on T,K, ν, d,m, p
easily follows again from Theorem 3.1 of [2].

If µ = 0 or 1 we need to say more. Since ν ≥ 2 (for that matter ν ≥ 4
by (4.10)), by Theorem 3.1 of [2] for any g ∈ Wl equation (2.7) has a unique
solution u ∈Wl and

sup
t∈[0,T ]

‖u(t)‖pµ,p ≤ N sup
t∈[0,T ]

‖g(t)‖pµ,p,(4.11)

where N depends only on T,K, ν, p, d. Hence, on Wl we have the operators
Rk. Owing to (4.11) and the denseness of Wl in W0, we can extend Rk to
a bounded operator acting in Wi for all i = 0, 1, . . . , l. That it also enjoys
property (ii) follows from the fact that by definition (2.7) holds for g ∈ Wl

and A0LR is a bounded operator from W1 to W0. To check property (iii) we
use one more assertion of Theorem 3.1 of [2], which in our setting says that,
under the conditions in (iii), similarly to (4.11) we have

sup
t∈[0,T ]

‖u(t)‖pµ,p ≤ N
m∑
r=1

sup
t∈[0,T ]

‖gr(t)‖pµ,p.

By taking ḡr ∈Wl and using this estimate we get that

sup
t∈[0,T ]

‖u(t)− ū(t)‖pµ,p ≤ N
m∑
r=1

sup
t∈[0,T ]

‖gr(t)− ḡr(t)‖pµ,p,

where ū :=
∑
rRr ḡr. Since Wl is dense in W0 and Rr are continuous in W0

we see that the property (iii) of Assumption 2.3 holds as well.
Next we introduce the operators b±α , Bα and constants cα in the same way

as in Remark 2.10 allowing k to run through 0, 1, . . . ,m and taking Θ̄α to be
the identity operators. It is almost obvious that for these objects Assumptions
2.5-2.7 are satisfied. Thus, Theorems 2.14, 2.15, and 2.18 are applicable.

Observe that by Lemma 2.13 the constants cα are independent of τ and
bα(iτ) = 0 for all integers i ≥ 0. Therefore, by taking in Theorems 2.14 and
2.15 functionals 〈w∗, u〉 to be restrictions of u(·) ∈ Wl at the times in Tτ
and also taking into account (4.9) we immediately arrive at the following two
results.

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold with ν satisfying

ν ≥ 4 + µ+ 4k.(4.12)

Then for all τ ∈ (0, 1] and t ∈ Tτ , x ∈ Rd, the following representation holds:

vτ (t, x) = v(t, x) + τv(1)(t, x)(4.13)

+ τ2v(2)(t, x) + · · ·+ τkv(k)(t, x) +R(k)
τ (t, x),

where the functions v(1),. . . ,v(k), and R
(k)
τ , defined on [0, T ], are Wµ

p -valued
and weakly continuous. Furthermore, v(j), j = 1, 2, . . . , k, are independent of
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τ , and

max
t∈Tτ
‖R(k)

τ (t)‖µ,p ≤ Nτk+1

for all τ ∈ (0, 1], where N depends only on k, µ, d,m,K, p, T .

Theorem 4.4. Let Assumptions 4.1 and 4.2 hold with ν satisfying (4.12).
Then for some constants λ0, λ1, . . . , λk, depending only on k we have

max
t∈Tτ

∥∥∥∥∥∥
k∑
j=0

λjvτj (t)− v(t)

∥∥∥∥∥∥
µ,p

≤ Nτk+1,

where vτj denotes the splitting-up approximation on the grid Tτj with step size
τj := 2−jτ . Here N is a constant, depending only on k, d,m,K, µ, p, T .

Remark 4.5. Assume that v(1) = v(2) = · · · = v(s) = 0 in expansion
(4.13) for some integer 1 ≤ s ≤ k. In this case we need only take k + 1 − s
terms, vτ , vτ1 , . . . , vτk−s , in the linear combination to achieve accuracy of order
k + 1. Namely, we define now

v̄τ =
k−s∑
j=0

λjvτj (t), t ∈ Tτ ,

with

(λ0, λ1, . . . , λk−s) := (1, 0, . . . , 0)V −1,(4.14)

where V is now a (k + 1− q)× (k + 1− q) Vandermonde matrix with entries
Vi1 := 1, Vi,j := 2−(i−1)(j+s−1) for i = 1, 2, . . . , k+1−s and j = 2, . . . , k+1−s.
Then Theorem 4.4 remains valid with v̄τ in place of

∑k
j=0 λjvτj . One can get

this from Theorem 4.3 by a simple calculation in the same way as Theorem
2.15 is obtained from Theorem 2.14. For example, if v(1) = 0, then

v̄(t) := −1
3
vτ (t) +

4
3
vτ1(t), t ∈ Tτ

is an approximation of accuracy τ3 for the solution v.

Strang’s splitting

vτ (t) : = S
t/τ (τ)ϕ, t ∈ Tτ(4.15)

where

S(τ) = P
(1)
τ/2P

(2)
τ/2 . . .P

(m)
τ/2P

(m)
τ/2 . . .P

(2)
τ/2P

(1)
τ/2,(4.16)

is known to be of accuracy τ2. We will see how to obtain this from our results
and below describe a whole class of splitting-up approximations, containing
Strang’s splitting, for which v(1) = 0 in expansion (2.34).
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Clearly, we get Strang’s splitting if we consider the splitting-up method
defined by (4.6) with the operators

1
2
L1,

1
2
L2, . . . ,

1
2
Lm,

1
2
Lm, . . . ,

1
2
L2,

1
2
L1

and free terms

1
2
f1,

1
2
f2, . . . ,

1
2
fm,

1
2
fm, . . . ,

1
2
f2,

1
2
f1

in place of L1, . . . , Lm and f1, . . . , fm in (4.4).
To generalize this scheme, we fix the operators L1, . . . , Lm and free terms

f1, . . . , fm, satisfying Assumptions 4.1 and 4.2. Let ξ ≥ m be an integer,
s1, . . . , sξ ∈ (0, 1] and k1, . . . , kξ ∈ {1, 2, . . . ,m} such that

ξ∑
i=1

siδrki = 1 for all r = 1, 2, . . . ,m.(4.17)

Consider the splitting-up approximation (4.15) with

S(τ) = P
(kξ)
sξτ . . .P

(k2)
s2τ P

(k1)
s1τ .(4.18)

We say that S(τ) is a symmetric product if the sequences k1, . . . , kξ and
s1, . . . , sξ remain the same when we reverse them. In accordance with the
product (4.18) we define now the functions ar, r = 1, 2, . . . ,m, by

ar(t) = τκr(jt/τ), t ≥ 0,(4.19)

where κr is an absolutely continuous function, such that κr(0) = 0, κ̇r(t) is
periodic with period ξ, and

κ̇r(t) =
ξ∑
i=1

siδrki1[i−1,i) for t ∈ [0, ξ).

Then it is again easy to see that

vτ (t) = w(t) for t ∈ Tτ ,

where now vτ is defined by (4.15) and (4.18) and w is the solution of the
Cauchy problem (4.8) with the functions ar defined above. Set, as before,
a0(t) = t, and define the numbers cα and the operators b±α and Bα as before.
There is nothing to add to what was said before Theorems 4.3 and 4.4 about
validity of these theorems for vτ defined by (4.15) and (4.18) and generally
about applicability of Theorems 2.14, 2.15, and 2.18.

Here is a specification of v(1).
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Theorem 4.6. Under the conditions of Theorem 4.3 define vτ by (4.15)
and (4.18). Then in (4.13)

v(1) =
1
2

m∑
i,j=1

∫ ξ

0

(κi(t) dκi(t)− κj(t) dκi(t))Rvij ,

where Rvij is the solution of (4.1) with f = vij = LiLjv + Lifj and 0 initial
condition. Thus v(1) vanishes if∫ ξ

0

(κi(t) dκj(t)− κj(t) dκi(t)) = 0 for all i, j = 1, 2, . . . ,m,(4.20)

which is equivalent to∫ ξ

0

κi(t) dκj(t) =
1
2

for all 1 ≤ i < j ≤ m.(4.21)

In particular, v(1) = 0 if (4.18) is a symmetric product, which is the case of,
say, Strang’s approximation (4.15)–(4.16).

Proof. By Theorem 2.18 expansion (4.13) holds with

v(1) =
m∑

i,j=1

(cij − cj0)Rvij ,

so v(1) = 0 if cij − cj0 = 0. Notice that for all i, j = 0, 1, 2, . . . ,m

cij =
∫ 1

0

(ai(t)− a0(t)) daj(t) =
∫ ξ

0

(κi(t)− κ0(t)) dκj(t),

where κ0(t) := t/ξ. Therefore

2(cij − cj0) = 2
∫ ξ

0

(κi(t)− κ0(t)) dκj(t)− 2
∫ ξ

0

(κj(t)− κ0(t)) dκ0(t)

= 2
∫ ξ

0

κi(t) dκj(t)− 2κ0(ξ)κj(ξ) + κ2
0(ξ)

= 2
∫ ξ

0

κi(t) dκj(t)− 1,

and we have

2(cij − cj0) =
∫ ξ

0

κi(t) dκj(t)−
∫ ξ

0

κj(t) dκi(t)

by taking into account

1 = κi(ξ)κj(ξ) =
∫ ξ

0

κi(t) dκj(t) +
∫ ξ

0

κj(t) dκi(t).
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In particular, cij − cj0 = −(cji − ci0), so cij − cj0 = 0 implies cji − ci0 = 0.
Hence conditions (4.20), (4.21) and their equivalence follow immediately. If
S(τ) is a symmetric product, then obviously

κ̇i(ξ − t) = κ̇i(t) for all t ∈ (0, ξ] \ {1, . . . , ξ},
and κ(t) + κi(ξ − t) = 1 for all t ∈ [0, ξ] and i = 1, 2, . . . , ξ. Hence∫ ξ

0

κi(t)κ̇j(t) dt =
∫ ξ

0

κi(ξ − s)κ̇j(ξ − s) ds

=
∫ ξ

0

(1− κi(s))κ̇j(s) ds = 1−
∫ ξ

0

κi(s)κ̇j(s) ds,

which immediately implies equation (4.21). The theorem is proved. �

Remark 4.7. Clearly, every symmetric product is a product of type (4.16)
with respect to a new set of operators L′i and free terms f ′i , obtained from Lr
and fr by L′1 := 2s1Lk1 , f ′1 := 2s1fk1 ,. . . .

Remark 4.8. There are infinitely many non-symmetric products which
still satisfy (4.21) and consequently define splitting-up approximations with
accuracy of order τ2. For example, when m = 2, every product of the form

P(τ) = P
(2)
(1−b)τP

(1)
(1−a)τP

(2)
bτ P

(1)
aτ(4.22)

with a 6= 1, and b = 1
2(1−a) , satisfies (4.21). If a = 1/2, then (4.22) is Strang’s

product with m = 2. For a 6= 1/2 these products are not symmetric.
Indeed, for κ1, κ2 characterizing (4.22) we have

κ̇1(t) = a1[0,1)(t) + (1− a)1[2,3)(t), κ̇2(t) = b1[1,2)(t) + (1− b)1[3,4)(t),

for t ∈ (0, 4), and∫ 4

0

κ1(t)κ̇2(t) dt = ab+ 1− b = 1− b(1− a) =
1
2
,

i.e., condition (4.21) holds. If a 6= 1/2, then clearly (4.22) is not symmetric.
If a = 1/2, then b = 1, and (4.22) is Strang’s symmetric product with m = 2.

5. An application to systems of parabolic PDEs and hyperbolic
PDEs

As in Section 4 we consider the problem (4.1)–(4.2) with an operator L
given by (4.3) but this time instead of unknown real-valued functions v we
consider Rq-valued functions, where q is a fixed number. Accordingly, we
assume that ai, a, air, ar are q × q-matrix valued functions with entries ai,αβ ,
a0αβ ,ai,αβr , a0αβ

r , respectively, and f, fr and ϕ are Rq-valued. Yet, aij and
aijr are assumed to be real-valued as in Section 4. We set p = 2 and impose
the same assumptions as in Section 4 with the obvious interpretation of the
norms ‖ · ‖ν,2 for vector-valued functions. We also need the following:
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Assumption 5.1. For each x, λ ∈ Rd, r = 1, . . . ,m, and α, β = 1, . . . , q
we have ∣∣∣∣∣

d∑
i=1

āi,αβr (x)λi
∣∣∣∣∣ ≤ K

 d∑
i,j=1

aijr (x)λiλj

1/2

,(5.1)

where āi,αβr = ai,αβr − ai,βαr .

Observe that Assumption 5.1 is obviously satisfied if

(a) the matrices (aijr ) are uniformly nondegenerate, so that the systems
(4.4) are uniformly parabolic, or

(b) aijr ≡ 0 and the matrices air are symmetric, so that the systems (4.4)
are first-order symmetric hyperbolic.

It turns out that under Assumptions 4.1, 4.2, and 5.1 all the results of
Section 4 are true in the present case. To prove this it suffices to check that
the counterpart of Theorem 3.1 of [2] holds for systems. This is a standard
albeit somewhat tedious task. The main tool is energy estimates in L2 of the
solution and of its derivatives. One proves these estimates following the proof
of Theorem 3.1 of [2] with only one additional observation that can be found,
for instance, in Section 7.3 of [1]. Namely, while estimating the L2-norm of v
one has to estimate from above∫

Rd

vαai,αβDiv
β dx.

Here

2vαai,αβDiv
β = ai,αβDi

(
vαvβ

)
+ āi,αβvαDiv

β .

The integral of the first term on the right is

−
∫
Rd

vαvβDia
i,αβ dx ≤ N‖v‖20,2,

whereas by Assumption 5.1 and Hölder’s inequality the integral of the second
term is less than

N‖v‖0,2
∑
α,β

∫
Rd

∣∣∣∣∣∑
i

āi,αβDiv
β

∣∣∣∣∣
2

dx

1/2

≤ NK‖v‖0,2

∫
Rd

∑
i,j,β

aijDiv
βDjv

β dx

1/2

.

We estimate this further by using Young’s inequality: ab ≤ ε−1a2 + εb2. We
note that the appearance of ‖v‖20,2 with large coefficient causes no harm due



EXPANSION AND ACCELERATION 511

to Gronwall’s inequality, and the term∫
Rd

∑
i,j,α

aijDiv
αDjv

α dx

with negative sign appears when we integrate by parts

2
∫
Rd

∑
i,j,α

vαaijDijv
α dx,

that is, the first term in the formula for ∂‖v‖2/∂t.
We hope that after these somewhat sketchy explanations the reader will

be able to fill in the necessary details and see that, indeed, all the results of
Section 4 are true in the present case.

As an excuse we can say that the main aim of this article is far from proving
existence theorem and a priori estimates. Also it is worth noting that certainly
one can consider more general degenerate parabolic systems when, say, aij are
matrices.

We want to comment further on the case of hyperbolic symmetric systems
when aij ≡ 0. Such systems are extensively treated in the literature from the
splitting-up point of view. In that case the direction of time plays no role and
it make sense to consider P(r)

t for negative t. Then in (4.17) one can admit
s1, . . . , sξ ∈ R rather than ∈ (0, 1] and assert that Theorems 4.3, 4.4, and 4.6
still hold for vτ defined by (4.15) and (4.18).

Note that, by using the Baker-Campbell-Hausdorff formula, in [17] a split-
ting-up method is constructed for any even order of accuracy. In particular
it is proved that the product

S̄(τ) = S(aτ)S(bτ)S(aτ),

with

a =
1

2− 21/3
, b = − 21/3

2− 21/3

and with Strang’s product S(τ) with m = 2, defines a splitting-up method of
fourth order of accuracy. This certainly can be obtained from Theorem 2.18
by computing the coefficients. Then from our results we get that the linear
combination

− 1
7
S
t/τ (τ)ϕ+

8
7
S

2t/τ (τ/2)ϕ, t ∈ Tτ ,

is an approximation of fifth order of accuracy.

6. An application to ODEs

We consider the ordinary differential equation

ẋt = b1(xt) + · · ·+ bm(xt) =: b(xt), t ≥ 0,(6.1)
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in Rd with sufficiently smooth and bounded vector fields b1, . . . , bm on Rd.
We want to investigate the splitting-up method for solving this equation on
the basis of solving the equations

ẋt = bk(xt)(6.2)

for each particular k = 1, 2, . . . ,m.
Let us denote by Pt and P(k)

t the mappings x → xt, where xt denotes
the solution of (6.1) and (6.2), respectively, with starting point x. Taking a
parameter τ > 0, we want to approximate Pt by means of the products

S(τ) : = P
(kξ)
sξτ · · · · · P(k1)

s1τ , k1, . . . , kξ ∈ {1, . . . ,m},(6.3)

at the points t of the grid (1.5), where ξ ≥ m is a fixed integer and s1, s2, . . . , sξ
are some real numbers such that (4.17) holds.

It is well-known that for every x ∈ Rd

max
t∈Tτ
|Ptx− St/τ (τ)x| ≤ Nτ,(6.4)

for all τ > 0, where N is a constant which does not depend on τ . It is also
known that if (6.3) is a symmetric product, then this estimate holds with τ2

in place of τ on the right-hand side. We say that the product (6.3) is a method
of order k if (6.4) holds for every x with τk in place of τ on the right-hand
side.

Though for any given k ≥ 1 the existence of methods of order k is known
in the literature (see, e.g., [8], [12], [13], [15], [17]), it is useful to investigate
if one can further accelerate any given method by mixing the approximations
corresponding to different step sizes. In practice one computes the approxi-
mations using the same method with many different step sizes τ anyway, and
it takes very little additional computation to mix them.

To formulate our results, let Wi = C([0, T ], Ci0(Rd)) denote the space of
bounded continuous functions u(t, x) on [0, T ] × Rd with values in Rd, such
that their derivatives in x up to order i are also bounded and continuous, and

lim
|x|→∞

sup
t∈[0,T ]

|u(t, x)| = 0.

Recall that the functions κ1, . . . , κm, associated with (6.3) are defined after
(4.19).

Theorem 6.1. Let k ≥ 0 and l be integers such that l ≥ 2k + 2. Assume
that the derivatives of the vector fields b1,. . . ,bm up to order l are bounded
and continuous functions. Then, for τ ∈ (0, 1], t ∈ Tτ , x ∈ Rd, we have

S
t/τ (τ)x = xt(x) +

k∑
j=1

τ jhj(t, x) +R(k)
τ (t, x),(6.5)
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where h1, h2, . . . , hk ∈W0 are some functions independent of τ and R(k)
τ ∈W0

is such that for any compact set K ⊂ Rd there exists a constant N independent
of τ such that

sup
t∈Tτ ,x∈K

|R(k)
τ (t, x)| ≤ Nτk+1.

Furthermore, if k ≥ 1, then for the function h1 we have

h1 =
m∑

i,j=1

(cij − cj0)hij , cij =
∫ ξ

0

(κi(t)− κ0(t)) dκj(t)(6.6)

for some hij ∈W0 for i, j = 1, 2, . . .m.

Our approach to proving this theorem is based on the observation that
the solutions of equation (6.1) are characteristics of the partial differential
equation

Dtu(t, x) = Lu(t, x),

where

Lu(t, x) = bi(x)uxi(t, x) =
m∑
k=1

Lku(t, x), Lku(t, x) = bik(x)uxi(t, x).

That Theorem 6.1 can be deduced from Theorem 2.18 is shown in [5]. The
same approach is applicable to equations on smooth manifolds, one replaces
Ptx in (6.5) with ϕ(Ptx), and time dependent systems when one just adds one
additional coordinate t.

From Theorem 6.1 we easily obtain the following result about accelerating
any given splitting-up method after defining

(λ0, λ1, . . . , λk−q+1) = (1, 0, . . . , 0)V −1,

where V is a (k − q + 2) × (k − q + 2)-matrix with entries Vi1 = 1 and
Vi,j = 2−(i−1)(q+j−2) for i = 1, 2, . . . , k − q + 2, j = 2, . . . , k − q + 2.

Theorem 6.2. Let the conditions of Theorem 6.1 hold. Let the product
(6.3) be a method of order q ≥ 1. Then for every compact set K ⊂ Rd there
exists a constant N , such that

max
t∈Tτ

sup
x∈K

∣∣∣∣∣∣Ptx−
k−q+1∑
j=0

λjS
2jt/τ
2−jτ x

∣∣∣∣∣∣ ≤ Nτk+1

for all τ ∈ (0, 1].
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