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ON THE ZEROS OF POLYNOMIALS
WITH RESTRICTED COEFFICIENTS

PETER BORWEIN AND TAM,6,S ERDILYI

1. Introduction

The study of the location of zeros of polynomials from

begins with Bloch and P61ya [2]. They prove that the average number of real zeros
of a polynomial from .T’,, is at most c/ff. They also prove that a polynomial from
cannot have more than

cn log log n
log n

real zeros. This result, which appears to be the first on this subject, shows that
polynomials from .T’n do not behave like unrestricted polynomials. Schur 11 and
by different methods Szeg6 12] and Erd6s and Turin [7] improve the above bound
to c/n log n (see also [5]).

In [6] we give the right upper bound of c/ff for the number of real zeros of
polynomials from a large class, namely for all polynomials of the form

p(x) ajx
j=0

lajl 1, la01 =.la, 1, aj C.

In this paper we extend this result by proving that a polynomial of the form

p(x) ajxj,
j=0

lajl _< 1, la01-- 1, aj C,

cannot have more than c/-ff zeros inside any polygon with vertices on the unit circle,
where c depends only on the polygon.
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We also prove another essentially sharp result stating that a polynomial of the form

p(x) ajxj, la0l [anl 1, Jail < 1,aj C,
j=0

has at most c(na + v-if) zeros.in the strip {z C: lira(z)] < ct}, where c is an
absolute constant.

Theorems 2.1-2.3, our main results, have self contained proofs distinct from those
in [6]. They sharpen and generalize some results ofAmoroso 1 ], Bombieri and Vaaler
[4], and Hua [8], who gave upper bounds for the number of zeros of polynomials with
integer coefficients at 1.

The class ’n and various related classes have been studied from a number ofpoints
of view. Littlewood’s monograph [9] contains a number of interesting, challenging,
and still open problems about polynomials with coefficients from {-1, 1 }. The dis-
tribution of zeros of polynomials with coefficients from {0, is studied in [10] by
Odlyzko and Poonen.

2. New results

Throughout the paper,

D(zo, r) := {z C: Iz-zol <r}

denotes the open disk of the complex plane centered at z0 6 C with radius r > 0.

THEOREM 2.1. Every polynomial p oftheform

p(x) aVx la01 1, laal _< 1, av C,
j=0

has at most cq/’ff zeros inside any polygon with vertices on the unit circle, where the
constant c depends only on the polygon.

THEOREM 2.2. There is an absolute constant c such that

p(x) ajx
j la01 lal 1, laj[ _< 1, aj s C,

j=0

has at most c(not + /-ff zeros in the strip

{z C: IIm(z)l _<

and in the sector

{z C: larg(z)l <_
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THEOREM 2.3. Let u (0, 1). Every polynomial p oftheform
n

p(x) ajx
j

j=O
laol 1, lay < 1, aj C,

has at most c/u zeros inside any polygon with vertices on the circle

{z C: Izl u},

where the constant c depends only on the number ofthe vertices ofthe polygon.

The sharpness of Theorem 2.1 can be seen by the theorem below proved in [6].

THEOREM 2.A. For every n N, there exists a polynomial Pn of theform given
in Theorem 2.1 with real coefficients so that Pn has a zero at with multiplicity at
least lVcffJ 1.

When 0 < u < n-1/2, the sharpness of Theorem 2.2 is shown by the polynomials

qn(Z) "= Pn(Z) + Z2nq-1Pn(Z-1),

where pn are the polynomials in Theorem 2.A. Namely the polynomials qn are of the
required form with//-ffJ > c(nu + /-ff) zeros at 1. When n-1/2 < u < 1, the
sharpness of Theorem 2.2 is shown by the polynomials qn (z) "= z 1.

The next theorem proved in [3] shows the sharpness of Theorem 2.3.

THEOREM 2.B. For every u (0, 1), there exists a polynomial Pn of the form
given in Theorem 2.3 with real coefficients so that Pn has a zero at -u with
multiplicity at least 1/uJ 1. (It can also be arranged that n _< 1/u2 d- 2.)

As a remark to Theorem 2.3 we point out that a more or less straightforward
application of Jensen’s formula gives that there is an absolute constant c > 0 such
that every polynomial p of the form

n

p(x) ajx
j la01-- 1, lay _< 1, aj C,

has at most (c/u) log(l/u) zeros in the disk D(0, u), u (0, 1). (An interested
reader may view this remark as an exercise. We will not use it, and hence will not
present its proof.) A very recent (unpublished) example, suggested by E Nazarov,
shows that this upper bound for the number of zeros in the disk D(0, u) is, up to
the absolute constant c > 0, best possible. So, in particular, the constant in Theorem
2.3 cannot be made independent of the number of vertices of the polygon.
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3. Lemmas

To prove our theorems we need some lemmas. Our first lemma states Jensen’s
formula. Its proof may be found in most of the complex analysis textbooks.

LEMMA 3.1. Suppose h is a nonnegative integer and

f(z) E Ck(Z Zo)k Ch O,
k=h

is analytic on the closure of the disk D(zo, r) and suppose that the zeros of f in
D(zo, r) \ {zo} are al, a2 am, where each zero is listed as many times as its
multiplicity. Then

m

folog IChl+ h log r + E log
r 2

log If(zo + rei)l dO.

A straightforward calculation gives the next lemma.

LEMMA 3.2. Suppose f is an analyticfunction on the open unit disk D(0, 1) that
satisfies the growth condition

1
(1) If(z)l < z D(0, 1).

-Izl

Let D(zo, r) C D(0, 1). Then there is a constant c(r) depending only on r such that

lfo2 2---" log If(zo + rei)l dO < c(r)

The next lemma is used in the proof of both Theorems 2.1 and 2.2.

LEMMA 3.3.
form

There is an absolute constant C such that every polynomial of the

p(x) ajxJ
j=0

laol-- 1, laj <_ 1,aj C,

has at most Cl (nr + fff zeros in any open disk D(zo, r) with Iz01 1, z0 C.

To prove Lemma 3.3 we need the lemma below. Lemma 3.4 also plays a central
role in [6] where its reasonably simple proof may be found.



ON THE ZEROS OF POLYNOMIALS 671

LEMMA 3.4. There are absolute constants c2 > 0 and c3 > 0 such that

If(O)lc2/a < exp(-)Ilfll[1-a,1], a (0, 1],

for every f analytic on the open unit disk D(O, 1) satisfying the growth condition (1)
in Lemma 3.2.

For the sake of completeness we present the proof of Lemma 3.4 in Section 4.

ProofofLemma 3.3. Without loss of generality we may assume that z0 := and
n-/2 < r _< (the case 0 < r < n-/2 follows from the case r n-/2, and the case
r > 1 is obvious.) Let p be a polynomial of the form given in the lemma. Observe
that such a polynomial satisfies the growth condition (1) in Lemma 3.4. Choose a
point z r, such that

,p(zl). > exp (-)
There is such a point by Lemma 3.4. Using the bounds for the coefficients of p, we
have

log Ip(z)l _< log((n + 1)(1 + 4r)’) < log(n + 1) + 4nr, Izl < 1 + 4r.

Let rn denote the number of zeros of p in the open disk D(zl, 2r). Applying Jensen’s
formula on the disk D(zl, 4r), then using the above inequality, we obtain

c3
_mr + rn log2 < log IP(Z)I + rn log2 < 2zr(log(n + 1) + 4nr).

This, together with n-1/2 < r < 1, implies rn < c(nr + -ff). Now observe that
D(1, r) is a subset of D(z, 2r), and the result follows.

LEMMA 3.5. Suppose that p is a polynomial of the form

n

p(x) ajx
j laol lajI _< aj C.

j=o

Let D(zo, r) C D(O, 1). Let r 6 [43-, 1). Let 0 < ; < r. Then there is a constant
c(r) depending only on r such that p has at most c(r)6- zeros in the open disk
D(zo, r -8).

Proof. Let p be a polynomial of the form given in the lemma. Observe that
r 6 [1/4, 1)implies that Iz0] < 1/4. Hence

2
Ip(z0)l >_ .
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Let rn denote the number of zeros of p in the open disk D(z0, r d). Applying
Jensen’s formula on D(zo, r) and Lemma 3.2, we obtain

2 r
log + rn log

r
< log Ip(z0)l 4- rn log

< log IP(Z0 + rei)l dO < c(r).
2rr

As0<r < land0<d<r, wehave

r d
log--log >- >d,

r d 1-(d/r) r

and with the previous inequality this implies that m < (c(r) +

4. Proof of Lemma 3.4

In this section, for the sake of completeness, we present the proof of Lemma 3.4
given in [6]. We need some lemmas.

HADAMARD THREE CIRCLES THEOREM. Suppose f is regular in

{z 6 C: r < Izl < r2}.

For r [r, r2], let

Then

M(r) := max If(z)l
Izl-’-r

M(r)lg(r/r’) < M(rl)lg(r2/r) M(r2)lg(r/r’)

COROLLARY 4.1. Let a 6 (0, ]. Suppose f is regular inside and on the ellipse
Ea withfoci at 1 a and 1 a + 1/4a and with major axis

[ 13a 21a]a --, a + ---Let Ea be the ellipse withfoci at 1 a and 1 a + 1/4a and with major axis

[ 6a 14a]
Then

max If(z)l < max If(z)l max If(z)l
zEE zE[1-a,l-a+1/4a] z-Ea
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Proof. This follows from the Hadamard Three Circles Theorem with the substi-
tution

-a( z+z-l)2 ( a)w= -I- 1-a+
The Hadamard Three Circles Theorem is applied with r := 1, r := 2, and r2 := 4.

COROLLARY 4.2. Let Ea be as in Corollary 4.1. Then

maxlf(z)l < max If(z)l
z6.E’a \zE[l-a,1]

for every f analytic in the open unit disk D(0, 1) that satisfies the growth condition
(1) (see Lemma 3.2) andfor every a (0, ].

Proof. This follows from Corollary 4.1 and the Maximum Principle. I"1

ProofofLemma 3.4. Let h(z) 1/2(1 a)(z + z2). Observe that h(0) 0, and
there are absolute constants c4 > 0 and c5 > 0 such that

Ih(eit)l < c4t2 -It < < 7r

and for
_

[-csa, csa], h(eit) lies inside the ellipse/a. Now let m := [2cs/aJ + 1.
Let "= exp(2ri/(2m)) be the first 2mth root of unity, and let

2m--

g(z) :-- H f(h(Jz))"
j=0

Using the Maximum Principle and the properties of h, we obtain

If(0)l2m Ig(0)l __< max Ig(z)l < (max If(z)l)
Izl=l \ zEEa /

k=l

2 ( mm-I )4 ( )2ec6(m-1)(\_maxlf(z)l/ < maxlf(z)l eCT (m-
Z-a ( i)[ Z.a

and the lemma follows by Corollary 4.2. i-I

5. Proof of the Theorems

ProofofTheorem 2.1. It is sufficient to prove the upper bound of the theorem
for the number of zeros in a triangle with vertices 0, w, and w-l, where wl
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and Re(w) > . Let S1 "= D(zo, r 8), where z0 := r := and 6 := n-1/2

Let $2 "= D(zo, r), where z0 "= w and r "= cn-/. Let $3 "= D(zo, r), where
z0 := w- and r "= cn-/2. Note that if c c(w) is sufficiently large, then the
triangle with vertices 0, w, and w- is covered by the union of S, $2, and $3. Hence
the theorem follows from Lemmas 3.3 and 3.5. E]

ProofofTheorem 2.2. Without loss of generality we may assume that n-1/2 <_
it is sufficient to prove that every polynomial p of the formot<.

n

p(x)

_
ajx

j

j=O

has at most c(not + //-ff) zeros in

{z C: IIm(z)l _< c, Izl _< 1}.

The remaining part of the theorem follows from this by studying the polynomials
qn(z) "= znP,(Z-I).

Let $1 "= D(zo, r-6), where z0 "= , r "= and 3 := a. Let $2 := D(zo, r-d),
where z0 := -,r := and3 := or. Let $3 := D(zo, r), where z0 := and r := 4ct.
Let $4 := D(zo, r), where z0 "= -1 and r := 4a. Note that $1, $2, $3, and $4 cover

{z C: IIm(z)l _< c, Izl _< 1}.

Hence the theorem follows from Lemmas 3.4 and 3.5 (note that n-/2

implies oe- < n).

ProofofTheorem 2.3. Without loss ofgenerality we may assume that ct 6 (0, 1/2 ],
otherwise the statement of the theorem is trivial. It is sufficient to prove the upper
bound of the theorem for the number of zeros in a triangle with vertices 0, w, and,

leiO D(Zo, rwhere Iwl and Re(w) >_ . Let w =: Iw Let S1 := 8), where
eiO _-iO 3zo’= ,r := , :=a. LetS2 := D(zo, r-di),wherez0 := e ,r "= ,

:= a. Note that the triangle with vertices 0, w, and is covered by the union of S1
and $2. Hence the theorem follows from Lemma 3.5. E]
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