ON A PROBLEM OF STÖRMER

BY

D. H. LEHMER

1. Introduction

Let \(q_1 < q_2 < \cdots < q_t \) be a given set of \(t \) primes, and let \(Q \) be the set of all numbers

\[
q_1^{\alpha_1} q_2^{\alpha_2} \cdots q_t^{\alpha_t} \quad (\alpha_i \geq 0, \ i = 1(1)t)
\]
generated by these primes. We consider the question of finding pairs \((S, S+1)\) of consecutive integers such that both \(S \) and \(S+1 \) belong to \(Q \). Since it is obvious that no such pair exists unless \(q_1 = 2 \), we are at the same time asking about those members of \(Q \) which are triangular numbers. Interest in such pairs dates back to the 18th century and seems to have been awakened by their usefulness in calculating logarithms of integers to great accuracy. Gauss notes for example that

\[
9800 = 2^3 \cdot 5^2 \cdot 7^2, \quad 9801 = 3^4 \cdot 11^2.
\]

Such pairs lead to sets of “nearly” dependent logarithms of primes. For instance the number

\[
K = \log 63927525376 - \log 63927525375
= 13 \log 2 - 3 \log 3 - 3 \log 5 - 7 \log 7
+ 4 \log 11 + \log 13 - \log 23 + \log 41,
\]

which cannot be zero because of the unique factorization theorem, is, however, less than \(1.56427 \cdot 10^{-11} \).

Another use for such pairs is in finding particular solutions of diophantine equations of the form

\[
Ax^n - By^m = 1.
\]

For example the equation

\[
x^2 - 14y^3 = 1
\]

has the solution \((55, 6)\) because of the pair \((3024, 3025)\). In a recent proof of some results on the distribution of consecutive pairs of higher residues, many hundreds of such pairs were used with \(t \) ranging up to 32 [1].

The problem proposed and solved by Størmer [2] is that of finding all pairs \((S, S+1)\) both belonging to the given set \(Q \). He showed that there are indeed only a finite number of such pairs, and that they can be found in a nontentative way by solving \(3^t - 2^t \) Pell equations. He gave all 23 pairs that go with the set

\[
Q : 2^{a_1} 3^{a_2} 5^{a_3} 7^{a_4}.
\]

Received July 25, 1962.
It follows from Størmer’s procedure that the number of pairs cannot exceed $3^t - 2^t$.

The mere finiteness of the number of such pairs follows from the celebrated theorem of Thue as Thue [7] himself noted in 1908. However this non-constructive argument fails to furnish the actual pairs. An upper bound of 3^{2t+1} for the number of pairs follows from “certain results on diophantine cubics” according to a recent remark of Nagell [3].

The large number of Pell equations required by Størmer’s method makes it impractical except for very limited values of t. The purpose of this paper is to present an alternative to Størmer’s algorithm requiring the solution of only $2^t - 1$ Pell equations. It follows from the new procedure that the number of pairs cannot exceed $(q_t + 1)(2^t - 1)/2$ when $q_t > 3$. It is also possible to give an upper limit for the largest possible pair in terms of the given q’s.

Størmer’s procedure depends on his interesting lemma to the effect that if $x^2 - Dy^2 = 1$, and if all the prime factors of y divide D, then (x, y) is the fundamental solution of this Pell equation. The present method makes use of the multiple solutions of the Pell equation and their characteristic prime factors. The theory [4] is that of Lucas’s function U_n, but in this particular case rather more can be proved in a simpler self-contained elementary treatment.

Although in the present method the number of Pell equations to be solved is drastically reduced, a complete set of pairs corresponding to a given set Q still may represent a great deal of calculation, with quite large numbers appearing frequently. We have made these calculations for the most useful case in which q_i is the ith prime and $t = 13$, that is, for the set

$q_1 = 2, \ q_2 = 3, \ q_3 = 5, \ \cdots, \ q_{13} = 41.$

The results are tabulated with the expectation that they will be of future use.

The computer used was the IBM 704 at the University of California Computer Center at Berkeley.

2. The Lucas function U_n

The exact procedure for solving Størmer’s problem is contained in Theorem 1. The proof of the theorem justifying the procedure is approached by way of five lemmas dealing with the multiple solutions of the Pell equation

$$x^2 - Dy^2 = 1.$$ \hspace{1cm} (1)

It is assumed that the reader is familiar with the classical method of finding the fundamental or least positive solution (x_1, y_1) of (1) by means of the continued fraction expansion of the square root of D (see [5]). The n^{th} multiple solution (x_n, y_n) is then given by

$$x_n + y_n \sqrt{D} = (x_1 + y_1 \sqrt{D})^n \quad (n = 0, 1, 2, 3, \cdots).$$
For brevity we write
\[\alpha = x_1 + y_1 \sqrt{D}, \quad \beta = x_1 - y_1 \sqrt{D}, \]
so that
\[\alpha + \beta = 2x_1, \quad \alpha \beta = 1, \quad \alpha - \beta = 2y_1 \sqrt{D}, \]
and
\[2x_n = \alpha^n + \beta^n, \quad 2y_n \sqrt{D} = \alpha^n - \beta^n. \]
We also introduce
\[U_n = y_n/y_1 = (\alpha^n - \beta^n)/(\alpha - \beta). \]
It will be convenient later to introduce the number \(M \) defined by
\[M = \max (3, (q_1 + 1)/2). \]
The following identities are easily verified
\[\begin{align*}
(2) \quad x_{2n} &= 2x_n^2 - 1, \\
(3) \quad U_{2n} &= 2x_n U_n, \\
(4) \quad x_{m \pm n} &= x_m x_n \pm Dy_m y_n, \\
(5) \quad U_{m \pm n} &= x_n U_m \pm x_m U_n, \\
(6) \quad U_n &= \sum_{i \geq 0} \binom{n}{2i+1} D^{i} y_1^{2i} x_1^{n-2i}, \\
(7) \quad x_n &= \sum_{i \geq 0} \binom{n}{2i} D^{i} y_1^{2i} x_1^{n-2i}, \\
(8) \quad U_{mn} &= \sum_{i \geq 0} \binom{n}{2i+1} D^{i} U_m^{2i+1} y_1^{2i} x_m^{n-2i}.
\end{align*} \]
Let \(p \geq 2 \) be a prime, and let \(w(p) = w \) be the "rank of apparition" of \(p \) in the sequence \(\{ U_n \} \), that is, the least positive \(j \) for which \(U_j \) is divisible by \(p \). Lemma 1 shows that \(w \) exists. By (5) we see that the set of all subscripts \(j \) for which \(p \) divides \(U_j \) is a module. Hence \(p \) divides \(U_n \) if and only if \(w \) divides \(n \).

Lemma 1 (Law of Apparition). \(w(2) = 2; w(p) = p \) if \(p \) divides \(Dy_1 \).
For any other prime \(p, w(p) \) divides \((p-1)/2 \), where
\[\varepsilon = \binom{D}{p} \equiv D^{(p-1)/2} \pmod{p}. \]

Proof. \(U_1 = 1, \quad U_2 = 2x_1 \). Hence \(w(2) = 2 \). If \(p \) divides \(Dy_1 \), then (6) gives
\[U_n \equiv nx_1^{n-1} \pmod{p}. \]
Since
\[x_1^2 = 1 + Dy_1^2 \equiv 1 \pmod{p}, \]
it follows from (9) that \(U_p \) is the first \(U \) to be divisible by \(p \). Finally suppose \(p > 2 \), and \(p \) does not divide \(Dy_1 \). Then (6) gives for \(n = p \)
\[U_p \equiv D^{(p-1)/2} y_1^{p-1} \equiv \varepsilon \pmod{p}, \]
(10)
because of the divisibility of the binomial coefficients by \(p \). Similarly \((7)\) gives
\[
(11) \quad x_p = x_1^p = x_1 \quad (\text{mod } p).
\]
Using \((5)\), \((10)\), and \((11)\) we have
\[
U_{p-\epsilon} = U_p x_1 - \varepsilon x_p = x_1 U_p - \varepsilon \equiv 0 \quad (\text{mod } p),
\]
\[
x_{p-\epsilon} = x_p x_1 - \varepsilon D y_p y_1 = x_1^2 - \varepsilon^2 D y_1^2 \equiv 1 \quad (\text{mod } p).
\]
Now by \((2)\)
\[
2^\frac{(p-\epsilon)/2}{2} - 1 = x_{p-\epsilon} \equiv 1 \quad (\text{mod } p).
\]
Hence \(p \) does not divide \(x_{(p-\epsilon)/2} \). But by \((3)\)
\[
2 x_{(p-\epsilon)/2} U_{(p-\epsilon)/2} = U_{p-\epsilon} \equiv 0 \quad (\text{mod } p).
\]
Thus \(p \) divides \(U_{(p-\epsilon)/2} \). By the remark preceding the lemma, \(w(p) \) divides \((p-\epsilon)/2 \).

Lemma 2. Let \(p > 3 \) be a prime dividing \(D y_1 \). Then \(U_p \equiv p \quad (\text{mod } p^2) \).

Proof. By \((6)\), with \(n = p \),
\[
U_p = px_1^{p-1} + \binom{p}{2} D y_1^2 x_1^{p-3} \quad (\text{mod } D y_1^2).
\]
Since \(p > 3 \), and since \(p \) divides \(D y_1 \) but not \(x_1 \), we have
\[
U_p \equiv px_1^{p-1} \equiv p \quad (\text{mod } p^2).
\]
The condition \(p > 3 \) is necessary since \(U_3 = 15 \) if \(D = 3 \) and \(U_3 = 99 \) if \(D = 6 \).

Lemma 3 (Law of Repetition). Let \(\lambda \geq 0 \), and let \(k \) be an integer not divisible by the prime \(p \). Let \(p^a \), \(a > 0 \), be the highest power of \(p \) dividing \(U_m \). Then the highest power of \(p \) dividing \(U_{km} \) is \(p^{a+\lambda} \).

Proof. It is clearly sufficient to establish the lemma for \(\lambda = 0 \) and \(\lambda = 1 \) as the rest follows by repeated application of the case \(\lambda = 1 \).

For \(\lambda = 0 \) we set \(n = k \) in \((8)\) and obtain
\[
U_{km} \equiv k U_m x_m^{k-1} \quad (\text{mod } U_m^3).
\]
Since \(U_m \) and \(x_m \) are relatively prime, it follows that \(U_{km} \) and \(U_m \) contain the same highest power, \(p^a \), of \(p \). For \(\lambda = 1 \) we set \(n = kp \) in \((8)\) and obtain
\[
U_{km} \equiv kp U_m x_m^{kp-1} \quad (\text{mod } U_m^3).
\]
This shows that \(U_{km} \) is divisible by \(p^{a+1} \) but not by \(p^{a+2} \).

3. The function \(G_n \)

We now introduce a factor \(G_n \) of \(U_n \) defined as follows
ON A PROBLEM OF STÖRMER

\[G_1 = 1, \]
\[G_2 = \alpha + \beta = 2x_1 = U_2, \]
\[G_3 = \alpha^2 + \alpha\beta + \beta^2 = U_3, \]

and in general for \(n > 1 \)

\[G_n = \prod_h \{\alpha - \beta \exp (2\pi i h/n)\} \]

where \(h \) ranges over all \(\phi(n) \) numbers \(< n \) and prime to \(n \). It is clear that \(G_n \) is an integer, being a symmetric function of \(\alpha \) and \(\beta \) and of the primitive \(n^{th} \) roots of unity. In fact

\[U_n = \prod_{d|n} G_d \]

where the product ranges over the divisors of \(n \). We distinguish two kinds of prime factors of \(G_n \). A prime factor of \(G_n \) which divides \(n \) is called intrinsic. The other prime factors of \(G_n \) are called extrinsic.

Lemma 4. If \(G_n \) has an intrinsic prime factor \(p \), then \(p \) is the largest prime factor of \(n \). If \(n > 3 \), \(G_n \) is not divisible by \(p^2 \).

Proof. Let \(d \) be the greatest common divisor of \(G_n \) and \(n \). If \(d = 1 \), there is nothing to prove. If \(d > 1 \), let \(p \) be any prime factor of \(d \), and let \(w = w(p) \) be the rank of apparition of \(p \) in the sequence \(U \). Since \(p \) divides \(G_n \) and hence \(U_n \), it follows that \(w \) divides \(n \). Let

\[n = kwp^\lambda \quad (\lambda \geq 0, \ p \not| \ k). \]

We first show that \(k = 1 \). In fact if \(k > 1 \), the integer

\[U_n/U_{n/k} = \prod_{d|n, d|n/k} G_d \]

is divisible by \(G_n \) and hence by \(p \). But by the Law of Repetition (Lemma 3), \(U_n/U_{n/k} \) is not divisible by \(p \). Hence \(k = 1 \), and

\[n = wp^\lambda \quad (\lambda \geq 0). \]

By Lemma 1, \(p \geq w \). Thus \(p \) is the largest prime factor of \(n \). It remains to show that if \(n > 3 \), \(G_n \) is not divisible by \(p^2 \). Suppose the contrary, and suppose that \(\lambda > 0 \). Then the ratio

\[U_{wp^\lambda}/U_{wp^{\lambda-1}} \]

would be divisible by \(G_n \) and hence by \(p^2 \). But Lemma 3 denies this. Hence \(\lambda = 0 \) and \(n = w \). Since \(p \nmid n \), \(p \leq w \). But \(p \geq w \). Hence \(p = w = n > 3 \). By Lemma 2, \(G_n = G_p = U_p \) is not divisible by \(p^2 \). This establishes the lemma.

Lemma 5. If \(n > 3 \), \(y_n \) is divisible by a prime \(\geq 2n - 1 \).

Proof. Let

\[n = \prod_{i=1}^{\lambda} p_i^{a_i} \]
be the factorization of \(n \) into its prime factors of which the prime \(p_t \) is the largest. Then
\[
\phi(n) = \prod_{i=1}^{t} p_i^{\alpha_i - 1}(p_i - 1) \geq p_t - 1.
\]
Hence
\[
|G_n| = \prod_{\alpha - \beta \exp(2\pi i h/n)} > (\alpha - \beta)^{\phi(n)} = (2y_t \sqrt{D})^{\phi(n)} > 2^{p_t - 1} \geq p_t.
\]
Therefore, by Lemma 4, \(G_n \) has an extrinsic prime factor \(p^* \). Let \(w = w(p^*) \) be rank of apparition of \(p^* \). Since \(p^* \) divides \(G_n \) and hence \(U_n \), \(w \) divides \(n \).
Suppose, if possible, that \(w < n \), so that \(G_n \) divides the integer
\[
\frac{U_n}{U_w} = \prod_{\xi | n, \xi \neq w} G_{\xi}.
\]
Then \(p^* \) divides this ratio. But \(p^* \), being extrinsic, does not divide \(n \) or \(w \) and so, by Lemma 3, \(U_n/U_w \) is not divisible by \(p^* \). This contradiction proves that \(w = n \). But then \(p^* \neq w \) since \(p^* \) does not divide \(n \). Therefore by Lemma 1, \(w \), and hence \(n \), divides \(\frac{1}{2}(p^* \pm 1) \). Thus \(p^* \geq 2n - 1 \). But \(p^* \) divides \(G_n \), which divides \(U_n \), which in turn divides \(y_n = U_n y_1 \).
This proves the lemma.

4. The procedure

We are now in a position to prove the following theorem.

Theorem 1. Let
\[
2 = q_1 < q_2 < \cdots < q_t
\]
be a given set of \(t \) primes. Let \(Q \) be the set of numbers of the form
\[
q_1^{\alpha_1}q_2^{\alpha_2} \cdots q_t^{\alpha_t} \quad (\alpha_i \geq 0, \ i = 1(1)t),
\]
and let \(Q' \) be the subset of all \(2^t - 1 \) square-free members of \(Q \) with the exception of \(2 \). Let \(S \) be an integer such that both \(S \) and \(S + 1 \) belongs to \(Q \). Then \(S = (x_n - 1)/2 \) where \((x_n, y_n) \) is a solution of the Pell equation
\[
x^2 - 2\Delta y^2 = 1
\]
in which
\[
\Delta \in Q', \quad 1 \leq n \leq M, \quad y_n \in Q.
\]
Conversely, if \((x_n, y_n) \) is a solution of (12) subject to conditions (13), then \(S = (x_n - 1)/2 \) and \(S + 1 \) both belong to \(Q \).

Proof. Suppose first that \((x_n, y_n) \) satisfies (12) and (13). Then, since \(x_n \) is odd and \(y_n \) is even,
\[
S(S + 1) = (x_n^2 - 1)/4 = 2\Delta(y_n/2)^2 \in Q.
\]
On the other hand, suppose that \(S(S + 1) \in Q \), so that
\[
S(S + 1) = 2q_1^{\alpha_1}q_2^{\alpha_2} \cdots q_t^{\alpha_t}
\]
where
\[\alpha_i = \varepsilon_i + 2\beta_i, \quad \varepsilon_i = 0, 1 \quad (i = 1(1)t). \]
Furthermore let
\[x = 2S + 1, \quad y = 2q_1^i q_2^i \cdots q_t^i \in Q, \quad \Delta = q_1^i q_2^i \cdots q_t^i \in Q'. \]
Multiplying (14) by 4 we see that
\[4S^2 + 4S = x^2 - 1 = 2\Delta y^2. \]
Hence each such \(S \) leads to some solution \((x, y)\) of (12) in which \(y \) and \(\Delta \) belong to \(Q \) and \(Q' \) respectively. As is well known, \((x, y)\) must be \((x_n, y_n)\) for some \(n \geq 1 \). It remains to show that \(n \leq M \).

Suppose, instead, that \(n > M \). Applying Lemma 5 we conclude that \(y_n \) is divisible by a prime \(p \) such that
\[p \geq 2n - 1 > 2M - 1 \geq q_t. \]
Hence \(y_n \) is not a member of \(Q \), contrary to fact. Thus \(n \leq M \).

Størmer considered also the question of finding two members of \(Q \) differing by 2, and Nagell [3] that of two members of \(Q \) differing by 4. The present method extends to both these cases. In fact we have the following counterparts of Theorem 1.

Theorem 2. Let
\[q_1 < q_2 < \cdots < q_t \]
be a given set of \(t \) primes, and let \(Q \) be the set of numbers generated by them. Let \(Q' \) be the subset of all square-free members of \(Q \). Let \(S \) be a number such that both \(S \) and \(S - 2 \) belong to \(Q \). Then \(S = x_n - 1 \) where \((x_n, y_n)\) is a solution of the Pell equation
\[x^2 - Dy^2 = 1 \]
in which
\[1 < D \in Q', \quad 1 \leq n \leq M, \quad y_n \in Q. \]
Conversely, if \((x_n, y_n)\) is a solution of (15) subject to (16), then both \(S = x_n - 1 \) and \(S + 2 \) belong to \(Q \).

Theorem 3. Let
\[q_1 < \cdots < q_t \]
be a set of odd primes, and let \(Q \) be the set of numbers generated by them. Let \(Q' \) denote the set of all square-free members of \(Q \) of the form \(8m + 5 \). If both \(S \) and \(S + 4 \) belong to \(Q \), then \(S = \xi_n - 2 \) where \((\xi_n, \eta_n)\) is the \(n \)th solution, in order of magnitude, of the equation
\[\xi^2 - D\eta^2 = 4 \]
where
64 D.H. LEHMER

(18) \(D \in \mathbb{Q}' \) and is such that (17) has a solution in odd integers \((\xi, \eta)\),
\[1 \leq n \leq M, \quad n \not\equiv 0 \pmod{3}, \quad \eta_n \in \mathbb{Q}. \]

Conversely, if \((\xi_n, \eta_n)\) is a solution of (17) in odd integers subject to (18),
then \(S = \xi_n - 2\) and \(S + 4\) both belong to \(\mathbb{Q}\).

The proofs of Theorems 2 and 3 are similar to that of Theorem 1. In each case use is made of Lemma 5.

5. Bounds

These theorems give immediately upper bounds for the number of numbers \(S\) such that \(S\) and \(S + d\) have their prime factors taken from a set of \(t\) primes for \(d = 1, 2, 4\). In fact this number cannot exceed \(M\) times the number of Pell equations involved. Thus we have

Theorem 4. For \(d = 1, 2\), let \(N_d(t)\) denote the number of pairs of numbers differing by \(d\) whose product has its prime factors restricted to a given set of \(t\) primes of which the largest is \(q_t\). Then
\[N_d(t) \leq M(2^t - 1). \]

Theorem 5. Let \(N_4(t)\) denote the number of pairs of odd numbers differing by 4 whose product has its prime factors taken from a set of odd primes
\[q_1 < q_2 < \cdots < q_t. \]
Then
\[N_4(t) \leq h2^t(M + \frac{1}{3})/3 \]
where \(h = \frac{1}{2}\) if the set (19) contains a prime of the form \(8n + 5\) and at least one prime of the form \(8n + 3\) or \(8n + 7\); \(h = 1\) if (19) contains at least one prime of the form \(8n + 5\) but no prime of the form \(8n + 3\) or \(8n + 7\); \(h = \frac{1}{2}\) if (19) contains primes of both forms \(8m + 3\) and \(8m + 7\) but no prime of the form \(8m + 5\); and finally \(h = 0\) otherwise.

It is possible to use Theorems 1, 2, 3 to obtain upper bounds for the largest pairs. For this we use a theorem of Hua [6]:

Theorem 6. Let \(D\) be a positive nonsquare integer congruent to 0 or 1 modulo 4. Let \((\xi_1, \eta_1)\) be the least positive solution of the equation
\[\xi^2 - D\eta^2 = 4. \]
Let
\[\theta = \frac{1}{2}(\xi_1 + \eta_1 \sqrt{D}). \]
Then
\[\log \theta < \frac{1}{2}(2 + \log D)\sqrt{D}. \]

Lemma 6. Let \(D\) be a positive nonsquare integer, and let \((x_n, y_n)\) be the
\textit{nth multiple solution of (1)}. If $D \equiv 0, 1 \pmod{4}$, let (ξ_n, η_n) be the nth solution of (20). Then

\begin{align*}
(21) \quad \log (x_n + y_n \sqrt{D}) &< n(2 + \log (4D))\sqrt{D}, \\
(22) \quad \log \left\{ \frac{1}{2}(\xi_n + \eta_n \sqrt{D}) \right\} &< \frac{n}{2}(2 + \log D)\sqrt{D}.
\end{align*}

\textit{Proof.} The inequality (22) is an immediate consequence of Theorem 6 and the fact that

\[
\frac{1}{2}(\xi_n + \eta_n \sqrt{D}) = \theta^n.
\]

To prove (21) we note that $(2x, y)$ is a solution of $\xi^2 - 4D\eta^2 = 4$ if and only if (x, y) is a solution of (1). Therefore

\[
\log (x_n + y_n \sqrt{D}) = n \log (x_1 + y_1 \sqrt{D}) = n \log \left\{ \frac{1}{2}(2x_1 + y_1 \sqrt{(4D)}) \right\}.
\]

Applying Theorem 6 with D replaced by $4D$ gives

\[
\log (x_n + y_n \sqrt{D}) < n(2 + \log (4D))\sqrt{D}.
\]

We can now easily prove the following inequalities.

\textbf{THEOREM 7.} Let S_1 be the largest S such that $S(S + 1)$ has all its prime factors taken from the set

\[
q_1 < q_2 < \cdots < q_t.
\]

Then

\[
\log S_1 < M\{2 + \log (8P)\}\sqrt{(2P)} - \log 4
\]

where

\[
P = q_1 q_2 \cdots q_t.
\]

\textit{Proof.} By Theorem 1, S_1 will correspond to some value of 2Δ with $\Delta \in Q'$ (so that $\Delta \leq P$), and to some value of $n \leq M$. Hence

\[
2 S_1 = x_n - 1 < \frac{1}{2}(x_n + y_n \sqrt{(2\Delta)}) \leq \frac{1}{2}(x_M + y_M \sqrt{(2\Delta)}).
\]

By (21)

\[
2 \log 4 + \log S_1 < M(2 + \log 8\Delta)\sqrt{(2\Delta)}.
\]

The theorem now follows from the inequality $\Delta \leq P$.

\textbf{THEOREM 8.} Let S_2 be the largest S such that $S(S + 2)$ has all its prime factors taken from the set

\[
3 \leq q_1 < q_2 < \cdots < q_t.
\]

Then

\[
\log S_2 < M\{2 + \log (4P)\}\sqrt{P} - \log 2
\]

where

\[
P = q_1 q_2 \cdots q_t.
\]

This is proved in the same way from Theorem 2 and (21).

\textbf{THEOREM 9.} Let S_4 be the largest S such that $S(S + 4)$ has all its prime
factors taken from the set

\[3 \leq q_1 < q_2 < \cdots < q_t. \]

Then, if \(S_t \) exists,

\[\log S_t < M'[\log 2 + \frac{1}{2}(2 + \log P')\sqrt{P'}] - \log 2 \]

where \(P' \) is the largest product of \(q \)'s that is congruent to 5 modulo 8 and \(M' \) is the largest integer \(\leq (q_t + 1)/2 \) not divisible by 3.

This follows from Theorem 3 and (22).

Of course, these inequalities and even those of Theorems 4 and 5 are very weak. The actual values of \(N_1(t) \) and \(S_t = S_1(t) \) for the case in which \(q_k \) is the \(k \)th prime are given for \(t \leq 13 \) in Table A. In contrast, for \(t = 13 \), Theorems 4 and 7 give

\[N_1(13) \leq 172011, \quad S_1(13) < 10^{10^{9.955}}. \]

Table A

<table>
<thead>
<tr>
<th>(t)</th>
<th>(q_t)</th>
<th>(N_1(t))</th>
<th>(S_1(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>23</td>
<td>4374</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>40</td>
<td>9800</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>68</td>
<td>123200</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>108</td>
<td>336140</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>167</td>
<td>11859210</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>241</td>
<td>11859210</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>345</td>
<td>177182720</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>482</td>
<td>1611308699</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>653</td>
<td>3463199999</td>
</tr>
<tr>
<td>13</td>
<td>41</td>
<td>869</td>
<td>63927525375</td>
</tr>
</tbody>
</table>

6. Remarks on procedure

The following remarks may be of use to the reader who may wish to apply Theorems 1, 2, or 3 to a given set of \(q \)'s. Tables of the solutions of the Pell equation are so limited that it becomes necessary to use a digital computer except for very small \(t \) and \(q_t \). As is well known, solutions of the Pell equation may be exceedingly large even for small \(D \), so one must be prepared for multiprecise arithmetic operations, that is, one must use subroutines which perform addition, multiplication, and square-root of numbers which occupy many hundreds of machine words.

The successive solutions \((x_n, y_n)\) are quickly found recursively by means of the familiar relations

\[x_{m+1} = 2x_1 x_m - x_{m-1}, \quad y_{m+1} = 2x_1 y_m - y_{m-1}, \]

once the continued fraction procedure has produced the fundamental solution \((x_1, y_1)\).

To decide whether or not \(y_n \) belongs to \(Q \), it is only necessary to test \(y_n \) for divisibility by each of the \(q_i \), removing at each step whatever powers of
If at any step the quotient becomes unity, then $y_n \in Q$, if not, $y_n \notin Q$.

Since every y_n is divisible by y_1, it is useless to examine multiple solutions if y_1 does not belong to Q. More generally, if y_m does not belong to Q, then neither does y_{km}. These facts, incorporated in the routine, eliminate a great deal of multiprecise testing of large y's for membership in Q.

In dealing with the very large values of D that the method requires, one is running the risk of having an intolerably long period in the continued fraction for \sqrt{D}. Indeed it is not uncommon for the period to be more than \sqrt{D}. In such a case the value of y_1 is apt to exceed

$$\exp\left(\frac{\pi^2}{D} \log 4096\right).$$

Had this occurred for any one of the large values of D encountered in our examination of the case

$$q_1 = 2, \quad q_2 = 3, \quad \cdots, \quad q_{34} = 41,$$

we would have had to abandon the project. As it was, the longest period experienced was 7922, the period corresponding to

$$D = 43464323361030 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41.$$

Apparently, for D a product of small primes, one may expect unusually short periods, a fortunate phenomenon for our method.

If for some D the continued fraction turns out to have a long period, the value of y_1 would be very large, and so it is almost certain that y_1 does not belong to Q. We can find the highest power of each q_i dividing y_1, without calculating y_1 itself, by simply carrying out the calculation of the convergents of the continued fraction modulo m_1, m_2, \cdots where each m is a suitably chosen product of powers of q's and each m is a single machine word. In this way a great deal of multiprecise arithmetic is avoided. If we know the highest power of q_i contained in y_1 and the length K of the period, it is easy to prove that y_1 must be divisible by some prime greater than q_i. In fact, y_1 exceeds the Kth Fibonacci number, which is almost sure to be greater than the product of powers of q_i actually dividing y_1.

7. Description of tables

We append three tables described as follows.

Table I gives all 869 numbers N greater than 1 such that $N(N - 1)$ has no prime factor greater than 41. Table I is divided into two parts. In Table IA the 869 numbers in question are classified according to the largest prime factor of $N(N - 1)$. Table IB gives the 251 numbers N greater than 10^5 such that $N(N - 1)$ has no prime factor greater than 41 and, for each such N, gives the exponents of the primes in the factorization of $N/(N - 1)$.

ON A PROBLEM OF STORMER
Thus the entry

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
<th>37</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>116964</td>
<td>2</td>
<td>4</td>
<td>-3</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

in Table IB means that

\[116963 = 7^2 \cdot 11 \cdot 31, \quad 116964 = 2^3 \cdot 3^4 \cdot 19^2. \]

Table II gives all 101 odd numbers \(N \) greater than 1 such that \(N(N - 2) \) has no prime factor greater than 31. In Table IIA these numbers are classified according to the largest prime factor of \(N(N - 2) \), while Table IIB gives the factorization of \(N/(N - 2) \) for those \(N \) greater than \(10^8 \).

Table III gives all 99 odd numbers \(N \) greater than 3 such that \(N(N - 4) \) has no prime factor greater than 31. In Table IIIA these numbers are classified according to the largest prime factor of \(N(N - 4) \), while Table IIIB gives the factorization of \(N/(N - 4) \) for those \(N \) greater than \(10^8 \).

The corresponding factorizations for values of \(N \) less than \(10^8 \) can be readily supplied from [8].

References

2. C. Størmer, Quelques théorèmes sur l'équation de Pell \(x^2 - Dy^2 = \pm 1 \) et leurs applications, Skrifter Videnskabs-selskabet (Christiania) I, Mat.-Naturv. Kl., 1897, no. 2 (48 pp.).
8. Factor tables giving the complete decomposition of all numbers less than 100,000, British Association for the Advancement of Science, Mathematical Tables, vol. 5, London, 1935.

University of California
Berkeley, California
TABLE IA
Integers \(N \) greater than 1 such that the largest prime factor of \(N(N - 1) \) is the \(t^{th} \) prime number, \(t \leq 13 \)

<table>
<thead>
<tr>
<th>(t = 1)</th>
<th>(t = 2)</th>
<th>(t = 3)</th>
<th>(t = 4)</th>
<th>(t = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
<td>64</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>15</td>
<td>126</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>225</td>
<td>33</td>
<td>176</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>2401</td>
<td>45</td>
<td>243</td>
</tr>
<tr>
<td>81</td>
<td>36</td>
<td>4375</td>
<td>55</td>
<td>385</td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td>2401</td>
<td>56</td>
<td>441</td>
</tr>
<tr>
<td>(t = 6)</td>
<td>(t = 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>91</td>
<td>364</td>
<td>4225</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>105</td>
<td>625</td>
<td>6656</td>
<td>18</td>
</tr>
<tr>
<td>26</td>
<td>144</td>
<td>676</td>
<td>10648</td>
<td>34</td>
</tr>
<tr>
<td>27</td>
<td>169</td>
<td>729</td>
<td>123201</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>196</td>
<td>1001</td>
<td>12</td>
<td>51</td>
</tr>
<tr>
<td>65</td>
<td>325</td>
<td>1716</td>
<td>52</td>
<td>273</td>
</tr>
<tr>
<td>66</td>
<td>351</td>
<td>2080</td>
<td>85</td>
<td>289</td>
</tr>
<tr>
<td>78</td>
<td>352</td>
<td>4096</td>
<td>120</td>
<td>375</td>
</tr>
<tr>
<td>(t = 8)</td>
<td>(t = 9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>343</td>
<td>2432</td>
<td>14365</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>361</td>
<td>2926</td>
<td>23409</td>
<td>24</td>
</tr>
<tr>
<td>39</td>
<td>400</td>
<td>3136</td>
<td>27456</td>
<td>46</td>
</tr>
<tr>
<td>57</td>
<td>456</td>
<td>3250</td>
<td>28900</td>
<td>69</td>
</tr>
<tr>
<td>76</td>
<td>476</td>
<td>4200</td>
<td>43681</td>
<td>70</td>
</tr>
<tr>
<td>77</td>
<td>495</td>
<td>5776</td>
<td>89376</td>
<td>92</td>
</tr>
<tr>
<td>96</td>
<td>513</td>
<td>5929</td>
<td>104976</td>
<td>115</td>
</tr>
<tr>
<td>133</td>
<td>969</td>
<td>5985</td>
<td>163576</td>
<td>161</td>
</tr>
<tr>
<td>153</td>
<td>1216</td>
<td>6175</td>
<td>228096</td>
<td>162</td>
</tr>
<tr>
<td>171</td>
<td>1331</td>
<td>6660</td>
<td>601426</td>
<td>208</td>
</tr>
<tr>
<td>190</td>
<td>1445</td>
<td>10241</td>
<td>63556</td>
<td>231</td>
</tr>
<tr>
<td>209</td>
<td>1521</td>
<td>10830</td>
<td>709632</td>
<td>253</td>
</tr>
<tr>
<td>210</td>
<td>1540</td>
<td>12036</td>
<td>5909761</td>
<td>276</td>
</tr>
<tr>
<td>286</td>
<td>1729</td>
<td>13377</td>
<td>11859211</td>
<td>300</td>
</tr>
<tr>
<td>324</td>
<td>2376</td>
<td>14080</td>
<td>323</td>
<td>1496</td>
</tr>
<tr>
<td>(t = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>145</td>
<td>320</td>
<td>609</td>
<td>1015</td>
</tr>
<tr>
<td>30</td>
<td>175</td>
<td>378</td>
<td>638</td>
<td>1045</td>
</tr>
<tr>
<td>58</td>
<td>204</td>
<td>406</td>
<td>726</td>
<td>1276</td>
</tr>
<tr>
<td>88</td>
<td>232</td>
<td>494</td>
<td>783</td>
<td>1450</td>
</tr>
<tr>
<td>116</td>
<td>261</td>
<td>551</td>
<td>784</td>
<td>1596</td>
</tr>
<tr>
<td>117</td>
<td>290</td>
<td>552</td>
<td>841</td>
<td>1625</td>
</tr>
</tbody>
</table>
TABLE IA (Continued)

<table>
<thead>
<tr>
<th>$t = 10$ (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13311 24795 47125 15850 240787 949026 269769 9605601</td>
</tr>
<tr>
<td>13312 25840 53361 166635 244036 1163800 404001 177182721</td>
</tr>
<tr>
<td>13456 27000 72501 168751 303601 1235169 4090625 1055000</td>
</tr>
<tr>
<td>19228 30025 83521 176001 410670 1243840 8268800 19228</td>
</tr>
<tr>
<td>20736 30856 87465 176176 418761 1628625 1055000 1852201</td>
</tr>
<tr>
<td>23751 35322 136851 184093 613089 1852201 18087507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t = 11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 528 1519 5797 11781 29792 116964 453376 3897166</td>
</tr>
<tr>
<td>32 589 1820 6076 11935 31465 122265 469173 14753025</td>
</tr>
<tr>
<td>63 621 1768 6138 12122 31900 174079 509796 16093000</td>
</tr>
<tr>
<td>93 651 1860 6293 13300 32799 175770 737605 76271625</td>
</tr>
<tr>
<td>125 714 2016 6325 13455 41262 178126 863940 80061345</td>
</tr>
<tr>
<td>155 806 2233 6480 15625 42688 190464 912951 133920000</td>
</tr>
<tr>
<td>156 837 2945 6728 17577 49011 207576 1147125 181037025</td>
</tr>
<tr>
<td>187 868 2976 7657 19251 58311 212382 1154440 370256250</td>
</tr>
<tr>
<td>217 900 3565 7905 19344 78337 227448 1255501 1611308700</td>
</tr>
<tr>
<td>248 931 3751 7936 19965 96876 240065 1594176</td>
</tr>
<tr>
<td>280 961 3876 8092 21142 98736 245025 2307361</td>
</tr>
<tr>
<td>341 1024 3969 8464 22816 102487 260338 2310400</td>
</tr>
<tr>
<td>342 1054 4186 8526 23375 108876 268801 2345057</td>
</tr>
<tr>
<td>343 1141 4860 8960 23716 111321 278784 3026029</td>
</tr>
<tr>
<td>465 1365 4992 9425 24025 111476 288145 3301376</td>
</tr>
<tr>
<td>496 1426 5643 10881 27405 116281 314433 3346110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t = 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 741 2553 7696 20350 49248 120176 466830 2598400</td>
</tr>
<tr>
<td>38 851 2738 8091 23200 50025 143375 469568 2772225</td>
</tr>
<tr>
<td>75 925 2850 9177 26011 55056 155995 492409 2893401</td>
</tr>
<tr>
<td>111 962 3146 9251 28750 56203 156066 675584 3930400</td>
</tr>
<tr>
<td>112 1000 3220 9361 28861 60066 161875 779725 4765600</td>
</tr>
<tr>
<td>148 1036 3256 10693 29601 67600 164836 787176 5538975</td>
</tr>
<tr>
<td>185 1184 3367 11914 32324 68783 165649 812890 6615675</td>
</tr>
<tr>
<td>186 1296 3553 12321 34225 71485 198912 837200 6770556</td>
</tr>
<tr>
<td>222 1332 3626 13090 34596 77441 208495 923521 7105000</td>
</tr>
<tr>
<td>260 1389 3627 13050 35816 78625 227070 986272 7475000</td>
</tr>
<tr>
<td>297 1444 3774 14552 37962 80920 234078 1040000 7941169</td>
</tr>
<tr>
<td>407 1480 4256 15875 38862 82621 285418 1055241 13147876</td>
</tr>
<tr>
<td>408 1605 4265 16170 41315 85064 319125 1314250 14080573</td>
</tr>
<tr>
<td>481 1666 5291 16576 42625 88320 348726 1510785 21380001</td>
</tr>
<tr>
<td>630 1702 5292 17205 43401 93093 360640 1763125 27994681</td>
</tr>
<tr>
<td>666 1925 5440 17576 44055 95300 378880 1771561 50481025</td>
</tr>
<tr>
<td>667 2109 5625 18241 45966 108780 390166 2058136 71843751</td>
</tr>
<tr>
<td>703 2146 6093 19500 47916 108928 443556 2417876 308015776</td>
</tr>
<tr>
<td>704 2295 7105 19684 48841 117624 443639 2560845 346320000</td>
</tr>
</tbody>
</table>
TABLE IA (Continued)

$t = 13$

N	41	42	82	124	165	205	246	247	287	288	309	370	451	493	533	575	616	697	780	820	1025	1026	1148	1189	1190	1312	1353				
1395	6273	22100	64125	228781	1050625	9174816	41	1518	6561	22386	70357	284376	1129221	10491040	14235529	19826576	24601600	25836889	25872148	27005265	30130870	30949194	32517265	36315136	40758082	41808151	43075885	85459376			
6672	2584	10360	39360	137760	510000	1800000	42	2625	11440	40960	161950	627600	2304000	8433784	20736640	39288424	43075885	85459376	119094300	132663168	293035441	415704576	876291201	1075774401	45106569161	63927525376					
2296	10045	31488	101270	453871	1536640	27005265	58	2542	10374	32800	103156	461825	1600313	27333428	91804816	14496192	25872148	43075885	85459376	119094300	132663168	293035441	415704576	876291201	1075774401	45106569161	63927525376				
9472	30381	91840	432345	1437501	25872148	27005265	68	2255	9472	29766	91840	432345	1437501	25872148	27005265	30130870	30949194	32517265	36315136	40758082	41808151	43075885	85459376	119094300	132663168	293035441	415704576	876291201	1075774401	45106569161	63927525376
12049	4060	15457	47151	142885	610204	2315305	78	4551	16524	52480	152885	643126	2829124	132663168	293035441	415704576	876291201	1075774401	45106569161	63927525376											
16040	16400	48750	151250	638001	2825761	119094300	88	4264	16040	48750	151250	638001	2825761	119094300	132663168	293035441	415704576	876291201	1075774401	45106569161	63927525376										
1025	4551	16524	52480	152885	643126	2829124	132663168	1026	4675	16606	53505	153791	679042	3063808	293035441	415704576	876291201	1075774401	45106569161	63927525376											
5577	19721	63427	203320	1011840	4588311	45106569161	1148	4921	17425	56376	156333	728365	3331251	415704576	876291201	1075774401	45106569161	63927525376													
6069	19845	63714	212381	1048576	5267025	63927525376	1189	4961	17836	60516	174825	709120	4538480	876291201	1075774401	45106569161	63927525376														

TABLE IB

Integers N greater than 100,000 such that $N(N - 1)$ has no prime factor greater than 41, with factorizations of $N/(N - 1)$

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
<th>37</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>101270</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102487</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103156</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103936</td>
<td>9</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104329</td>
<td>-3</td>
<td>-4</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>104976</td>
<td>4</td>
<td>8</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>106191</td>
<td>-1</td>
<td>5</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>108376</td>
<td>3</td>
<td>-1</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>108780</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>108928</td>
<td>7</td>
<td>-2</td>
<td>-2</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111321</td>
<td>-3</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111476</td>
<td>2</td>
<td>-2</td>
<td>-3</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IB (Continued)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(2)</th>
<th>(3)</th>
<th>(5)</th>
<th>(7)</th>
<th>(11)</th>
<th>(13)</th>
<th>(17)</th>
<th>(19)</th>
<th>(23)</th>
<th>(29)</th>
<th>(31)</th>
<th>(37)</th>
<th>(41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>116281</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116964</td>
<td>2</td>
<td>4</td>
<td>-3</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117624</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120176</td>
<td>4</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121771</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122265</td>
<td>-3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122452</td>
<td>2</td>
<td>-1</td>
<td>-4</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123201</td>
<td>-6</td>
<td>6</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126225</td>
<td>-4</td>
<td>3</td>
<td>2</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130340</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131850</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136161</td>
<td>-5</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136851</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142885</td>
<td>-2</td>
<td>-6</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143375</td>
<td>-1</td>
<td>3</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151250</td>
<td>1</td>
<td>4</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151750</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153791</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155585</td>
<td>-6</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156006</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159333</td>
<td>-2</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158950</td>
<td>1</td>
<td>-3</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161875</td>
<td>-1</td>
<td>-2</td>
<td>4</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164836</td>
<td>2</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165376</td>
<td>9</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165649</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166635</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168751</td>
<td>-1</td>
<td>-3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170497</td>
<td>-4</td>
<td>-3</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174825</td>
<td>-3</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175770</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>176001</td>
<td>-7</td>
<td>1</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>176176</td>
<td>4</td>
<td>-5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>178126</td>
<td>1</td>
<td>-1</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>184093</td>
<td>-2</td>
<td>-1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>186592</td>
<td>5</td>
<td>-1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>190494</td>
<td>11</td>
<td>1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>194481</td>
<td>-4</td>
<td>4</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>198912</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>202125</td>
<td>-2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>203320</td>
<td>3</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. H. LEHMER
<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
<th>37</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>207576</td>
<td>3</td>
<td>3</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>208495</td>
<td>-1</td>
<td>-6</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>212381</td>
<td>-2</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212382</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227070</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>-1</td>
<td>-2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227448</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>228096</td>
<td>8</td>
<td>4</td>
<td>-1</td>
<td>-4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>228781</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240065</td>
<td>-6</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>240787</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243049</td>
<td>-3</td>
<td>-1</td>
<td></td>
<td></td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>244036</td>
<td>2</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245025</td>
<td>-5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254449</td>
<td>-4</td>
<td>-3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td>2</td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260338</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>264358</td>
<td>-6</td>
<td>-5</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268801</td>
<td>-9</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>275808</td>
<td>5</td>
<td>1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>-2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>278784</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>-1</td>
<td></td>
<td>-2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282625</td>
<td>-12</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284376</td>
<td>3</td>
<td>1</td>
<td>-5</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>285418</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>288145</td>
<td>-4</td>
<td>-3</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>303601</td>
<td>-4</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td>2</td>
<td></td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>314433</td>
<td>-6</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>-3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>319125</td>
<td>-2</td>
<td>1</td>
<td>3</td>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>328510</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330625</td>
<td>-7</td>
<td>-2</td>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>336141</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
<td>-1</td>
<td>-5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>348726</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td>-1</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360640</td>
<td>6</td>
<td>-3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>-2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>378880</td>
<td>11</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td>-2</td>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386681</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>389500</td>
<td>2</td>
<td>-1</td>
<td>3</td>
<td></td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>390166</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395200</td>
<td>6</td>
<td>-4</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>410670</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td>2</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>412091</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>418761</td>
<td>-3</td>
<td>2</td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>-2</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>432345</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td>-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443566</td>
<td>2</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>446369</td>
<td>-5</td>
<td></td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
TABLE IB (Continued)

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
<th>37</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>453376</td>
<td>8</td>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>453871</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>459173</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>461825</td>
<td>-10</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>466089</td>
<td>-3</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>466830</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>469568</td>
<td>6</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476749</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>482448</td>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>494209</td>
<td>-7</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509706</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>524800</td>
<td>9</td>
<td>-4</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>536239</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>580744</td>
<td>4</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601426</td>
<td>1</td>
<td>-7</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>610204</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>613089</td>
<td>-5</td>
<td>6</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>635556</td>
<td>2</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>638001</td>
<td>-4</td>
<td>2</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>643126</td>
<td>1</td>
<td>-1</td>
<td>-4</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>675584</td>
<td>8</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>679042</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>709632</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>728965</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>769120</td>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>773605</td>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>777925</td>
<td>-2</td>
<td>-4</td>
<td>2</td>
<td>-4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>787176</td>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>798721</td>
<td>-12</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>812890</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>837200</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>863940</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>912901</td>
<td>-1</td>
<td>5</td>
<td>-2</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>923521</td>
<td>-7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>949026</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>986727</td>
<td>5</td>
<td>-1</td>
<td>2</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>6</td>
<td>-3</td>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101840</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1048576</td>
<td>20</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1050625</td>
<td>-11</td>
<td>-3</td>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1055241</td>
<td>-3</td>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1082565</td>
<td>-2</td>
<td>9</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IB (Continued)

<table>
<thead>
<tr>
<th>(N)</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
<th>37</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>1104376</td>
<td>3</td>
<td>−1</td>
<td>−4</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1147125</td>
<td>−2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−2</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1152921</td>
<td>−3</td>
<td>1</td>
<td>−1</td>
<td>2</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1154440</td>
<td>3</td>
<td>−3</td>
<td>1</td>
<td>2</td>
<td>−1</td>
<td>−2</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1163800</td>
<td>3</td>
<td>−2</td>
<td>2</td>
<td>−3</td>
<td>1</td>
<td>−1</td>
<td></td>
<td>2</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1205646</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>−3</td>
<td>2</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1235169</td>
<td>−5</td>
<td>5</td>
<td>−3</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1243840</td>
<td>6</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−2</td>
<td>−1</td>
<td>1</td>
<td>−3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1255501</td>
<td>−2</td>
<td>−4</td>
<td>−3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1294371</td>
<td>−1</td>
<td>2</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>−2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1319826</td>
<td>1</td>
<td>−3</td>
<td>−3</td>
<td>1</td>
<td>2</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1341250</td>
<td>1</td>
<td>−1</td>
<td>4</td>
<td>−1</td>
<td>−1</td>
<td>−3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1362636</td>
<td>2</td>
<td>3</td>
<td>−1</td>
<td>1</td>
<td></td>
<td>−2</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1413721</td>
<td>−3</td>
<td>−3</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1437501</td>
<td>−2</td>
<td>1</td>
<td>−6</td>
<td></td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1510785</td>
<td>−7</td>
<td>3</td>
<td>1</td>
<td></td>
<td>−1</td>
<td>2</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1536640</td>
<td>7</td>
<td>−1</td>
<td>1</td>
<td>4</td>
<td></td>
<td>−1</td>
<td></td>
<td>−2</td>
<td></td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1594176</td>
<td>6</td>
<td>1</td>
<td>−2</td>
<td></td>
<td></td>
<td>−2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600313</td>
<td>−3</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>−1</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1625625</td>
<td>−3</td>
<td>2</td>
<td>4</td>
<td>−2</td>
<td>−1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1729750</td>
<td>1</td>
<td>−1</td>
<td>3</td>
<td>−3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1740000</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
<td>1</td>
<td>−1</td>
<td>−2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1768125</td>
<td>−2</td>
<td>−1</td>
<td>4</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td>−2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1771561</td>
<td>−3</td>
<td>−2</td>
<td>−1</td>
<td>−1</td>
<td>6</td>
<td></td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1852201</td>
<td>−3</td>
<td>−3</td>
<td>−2</td>
<td>−3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946721</td>
<td>−5</td>
<td>1</td>
<td>−1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>−3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023425</td>
<td>−13</td>
<td>2</td>
<td>2</td>
<td></td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2085136</td>
<td>4</td>
<td>−1</td>
<td>−1</td>
<td></td>
<td>−1</td>
<td>−2</td>
<td>4</td>
<td></td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2185300</td>
<td>2</td>
<td>−5</td>
<td>2</td>
<td></td>
<td>1</td>
<td>−1</td>
<td>−2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2267916</td>
<td>2</td>
<td>1</td>
<td>−1</td>
<td>3</td>
<td></td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td></td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2304324</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>−2</td>
<td>2</td>
<td></td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2307361</td>
<td>−5</td>
<td>−1</td>
<td>−1</td>
<td>4</td>
<td>−1</td>
<td></td>
<td>−1</td>
<td>−1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2310400</td>
<td>8</td>
<td>−2</td>
<td>2</td>
<td>−2</td>
<td></td>
<td>−2</td>
<td>2</td>
<td></td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2345057</td>
<td>−5</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>−2</td>
<td>2</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2351350</td>
<td>1</td>
<td>−4</td>
<td>2</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td></td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2417876</td>
<td>2</td>
<td>−3</td>
<td></td>
<td></td>
<td>1</td>
<td>−1</td>
<td>−2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500845</td>
<td>−2</td>
<td>1</td>
<td>1</td>
<td>−3</td>
<td>−1</td>
<td></td>
<td></td>
<td>3</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2598400</td>
<td>9</td>
<td>−5</td>
<td>2</td>
<td>1</td>
<td></td>
<td>−2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2697606</td>
<td>5</td>
<td>2</td>
<td>−1</td>
<td>−3</td>
<td>−2</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2772225</td>
<td>−8</td>
<td>4</td>
<td>2</td>
<td>−2</td>
<td></td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2825761</td>
<td>−5</td>
<td>−1</td>
<td>−1</td>
<td>−1</td>
<td></td>
<td></td>
<td>−2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2829124</td>
<td>2</td>
<td>−2</td>
<td></td>
<td>1</td>
<td>−1</td>
<td>4</td>
<td></td>
<td>−2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>29</td>
<td>31</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>2893401</td>
<td>-3</td>
<td>10</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3063808</td>
<td>14</td>
<td>-2</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3206269</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3301376</td>
<td>13</td>
<td>-3</td>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3331251</td>
<td>-1</td>
<td>2</td>
<td>-5</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3346110</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td></td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3453840</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3556996</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3897166</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3930400</td>
<td>5</td>
<td>-2</td>
<td>2</td>
<td></td>
<td>-1</td>
<td>3</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4004001</td>
<td>-5</td>
<td>2</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4090625</td>
<td>-8</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>-1</td>
<td></td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096576</td>
<td>6</td>
<td>-4</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4588311</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4765600</td>
<td>5</td>
<td>-2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5142501</td>
<td>-2</td>
<td>3</td>
<td>-4</td>
<td>2</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5267025</td>
<td>-4</td>
<td>6</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5538975</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5909761</td>
<td>-8</td>
<td>5</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6151675</td>
<td>-1</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td></td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6770556</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>-2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7105000</td>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>2</td>
<td>-2</td>
<td></td>
<td></td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7475000</td>
<td>3</td>
<td>5</td>
<td>-3</td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7491169</td>
<td>-5</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8268800</td>
<td>10</td>
<td>2</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9174816</td>
<td>5</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9222500</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9458086</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
<td>-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10491040</td>
<td>5</td>
<td>-9</td>
<td>1</td>
<td>1</td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10556001</td>
<td>-5</td>
<td>4</td>
<td>-3</td>
<td>-1</td>
<td></td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11859211</td>
<td>-1</td>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td>-4</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13147876</td>
<td>2</td>
<td>-2</td>
<td>-3</td>
<td>4</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13745537</td>
<td>-7</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14080573</td>
<td>-2</td>
<td>-2</td>
<td></td>
<td>-1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14235529</td>
<td>-3</td>
<td>-1</td>
<td>6</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14753025</td>
<td>-8</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td></td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16093000</td>
<td>3</td>
<td>-4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18085705</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19826576</td>
<td>4</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21386001</td>
<td>-4</td>
<td>1</td>
<td>-3</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24601600</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25835889</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE IB (Continued)
TABLE IB (Continued)

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
<th>37</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>25872148</td>
<td>2</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27005265</td>
<td>-4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27994681</td>
<td>-3</td>
<td>-3</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30138076</td>
<td>2</td>
<td>-5</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30944914</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32517265</td>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36315136</td>
<td>13</td>
<td>-11</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40750802</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41808151</td>
<td>-1</td>
<td>-6</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43075585</td>
<td>-11</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50481025</td>
<td>-7</td>
<td>-1</td>
<td>2</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71843751</td>
<td>-1</td>
<td>2</td>
<td>-6</td>
<td>3</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76271625</td>
<td>-3</td>
<td>9</td>
<td>3</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80061345</td>
<td>-5</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85459375</td>
<td>-1</td>
<td>-4</td>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90690601</td>
<td>-4</td>
<td>8</td>
<td>-2</td>
<td>2</td>
<td>4</td>
<td>-2</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119094300</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132663168</td>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133920000</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177182721</td>
<td>-11</td>
<td>6</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181037025</td>
<td>-5</td>
<td>4</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209363544</td>
<td>-4</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308915776</td>
<td>6</td>
<td>-4</td>
<td>-2</td>
<td>-1</td>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370256250</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>-7</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415704576</td>
<td>9</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>876219201</td>
<td>-6</td>
<td>4</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1075774401</td>
<td>-6</td>
<td>2</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1611008700</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>-4</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3463200000</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>-5</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4510569161</td>
<td>-3</td>
<td>-5</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63927525376</td>
<td>13</td>
<td>-3</td>
<td>-3</td>
<td>-7</td>
<td>4</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ON A PROBLEM OF STØRMER
TABLE IIA
Odd integers N greater than 1 such that the largest prime factor of $N(N - 2)$ is the t^{th} prime, $t \leq 11$

<table>
<thead>
<tr>
<th>$t = 2$</th>
<th>$t = 3$</th>
<th>$t = 4$</th>
<th>$t = 5$</th>
<th>$t = 6$</th>
<th>$t = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>9</td>
<td>35</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245</td>
<td>77</td>
<td>65</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>847</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1575</td>
<td>1377</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t = 8$</th>
<th>$t = 9$</th>
<th>$t = 10$</th>
<th>$t = 11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>23</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>87</td>
<td>33</td>
</tr>
<tr>
<td>57</td>
<td>117</td>
<td>145</td>
<td>93</td>
</tr>
<tr>
<td>135</td>
<td>209</td>
<td>147</td>
<td>95</td>
</tr>
<tr>
<td>171</td>
<td>255</td>
<td>377</td>
<td>155</td>
</tr>
<tr>
<td>247</td>
<td>299</td>
<td>437</td>
<td>343</td>
</tr>
<tr>
<td>325</td>
<td>345</td>
<td>495</td>
<td>405</td>
</tr>
<tr>
<td>363</td>
<td>1127</td>
<td>667</td>
<td>527</td>
</tr>
<tr>
<td>627</td>
<td>1311</td>
<td>2873</td>
<td>529</td>
</tr>
<tr>
<td>665</td>
<td>2187</td>
<td>8381</td>
<td>715</td>
</tr>
<tr>
<td>1617</td>
<td>2277</td>
<td>9947</td>
<td>899</td>
</tr>
<tr>
<td>3213</td>
<td>2875</td>
<td>12675</td>
<td>1085</td>
</tr>
<tr>
<td>3971</td>
<td>3705</td>
<td>14877</td>
<td>1521</td>
</tr>
<tr>
<td></td>
<td>6877</td>
<td>16445</td>
<td>1955</td>
</tr>
<tr>
<td></td>
<td>8075</td>
<td>24565</td>
<td>2697</td>
</tr>
<tr>
<td></td>
<td>9317</td>
<td>41327</td>
<td>3627</td>
</tr>
<tr>
<td></td>
<td>18515</td>
<td>45619</td>
<td>4125</td>
</tr>
<tr>
<td></td>
<td>41745</td>
<td>87725</td>
<td>5425</td>
</tr>
<tr>
<td></td>
<td>57477</td>
<td>184877</td>
<td>7163</td>
</tr>
<tr>
<td></td>
<td>1128127</td>
<td></td>
<td>19437</td>
</tr>
<tr>
<td></td>
<td>1447875</td>
<td></td>
<td>22477</td>
</tr>
</tbody>
</table>

TABLE IIB
Odd integers N greater than 100,000 such that $N(N - 2)$ has no prime factor greater than 31, with the factorization of $N/(N - 2)$

<table>
<thead>
<tr>
<th>N</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>130977</td>
<td>5</td>
<td>-2</td>
<td>2</td>
<td>1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>184877</td>
<td>-1</td>
<td>-3</td>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>203205</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1128127</td>
<td>-5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1447875</td>
<td>4</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2509947</td>
<td>2</td>
<td>-1</td>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3322055</td>
<td>-7</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>287080367</td>
<td>-1</td>
<td>-1</td>
<td>5</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
ON A PROBLEM OF STØRMER

TABLE IIIA
Odd integers N greater than 3 such that the largest prime factor of $N(N - 4)$ is the t^{th} prime number, $t \leq 11$

<table>
<thead>
<tr>
<th>$t = 3$</th>
<th>$t = 4$</th>
<th>$t = 5$</th>
<th>$t = 6$</th>
<th>$t = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>15</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>81</td>
<td>121</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>147</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>169</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>429</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>459</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21879</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t = 8$</th>
<th>$t = 9$</th>
<th>$t = 10$</th>
<th>$t = 11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>23</td>
<td>29</td>
<td>10469</td>
</tr>
<tr>
<td>95</td>
<td>27</td>
<td>33</td>
<td>21025</td>
</tr>
<tr>
<td>99</td>
<td>69</td>
<td>91</td>
<td>294151</td>
</tr>
<tr>
<td>175</td>
<td>119</td>
<td>207</td>
<td>442225</td>
</tr>
<tr>
<td>247</td>
<td>165</td>
<td>319</td>
<td>8254129</td>
</tr>
<tr>
<td>289</td>
<td>441</td>
<td>323</td>
<td>403</td>
</tr>
<tr>
<td>361</td>
<td>529</td>
<td>609</td>
<td>589</td>
</tr>
<tr>
<td>935</td>
<td>625</td>
<td>667</td>
<td>837</td>
</tr>
<tr>
<td>2299</td>
<td>1449</td>
<td>729</td>
<td>841</td>
</tr>
<tr>
<td>3553</td>
<td>1729</td>
<td>845</td>
<td>1089</td>
</tr>
<tr>
<td>6175</td>
<td>1863</td>
<td>1131</td>
<td>1705</td>
</tr>
<tr>
<td>60025</td>
<td>2695</td>
<td>1300</td>
<td>1771</td>
</tr>
<tr>
<td>121125</td>
<td>7429</td>
<td>1425</td>
<td>2639</td>
</tr>
<tr>
<td></td>
<td>12397</td>
<td>1885</td>
<td>4437</td>
</tr>
<tr>
<td></td>
<td>13689</td>
<td>2527</td>
<td>15345</td>
</tr>
<tr>
<td></td>
<td>54625</td>
<td>2875</td>
<td>27625</td>
</tr>
<tr>
<td></td>
<td>110565</td>
<td>3861</td>
<td>58125</td>
</tr>
</tbody>
</table>

TABLE IIIB
Odd integers N greater than 100,000 such that $N(N - 4)$ has no prime factor greater than 31, with the factorization of $N/(N - 4)$

<table>
<thead>
<tr>
<th>N</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>110565</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112999</td>
<td>-6</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117649</td>
<td>-1</td>
<td>-1</td>
<td>6</td>
<td>-1</td>
<td></td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121125</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212629</td>
<td>-5</td>
<td>-3</td>
<td>-1</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294151</td>
<td>-2</td>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>344379</td>
<td>-1</td>
<td>-4</td>
<td>1</td>
<td></td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442225</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8254129</td>
<td>-2</td>
<td>-3</td>
<td>-1</td>
<td>4</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10439037</td>
<td>5</td>
<td>1</td>
<td>-4</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>