A NORMAL HEREDITARILY SEPARABLE NON-LINDELOF SPACE

BY
Mary EiLEN RupiN

A. Hajnal and I. Juhasz have defined a Hausdorff hereditarily s-separable
non-o-Lindel6f space. R. Countryman has raised the question of the exist-
ence of a regular, hereditarily separable, non-Lindelof space. The purpose
of this paper is to show that the existence of a Souslin tree of cardinality N;
(which is consistent with the usual axioms for set theory) implies the exist-
ence of such a space which is also normal.

A partially ordered set (T, <) is a Souslin tree provided:

1. (T,<)isatree (¢t e Timplies{s ¢ T | s < t} is well ordered).
2. T is uncountable.

3. Every chain (totally ordered set) is countable.

4. Every antichain (pairwise unordered set) is countable.

Suppose (T, <) is a Souslin tree.

ForteT,definep(t) ={seT|s<tandf(t) ={seT |t < s};if X C T,
define p(X) = U,z p(x) and f(X) = U,ex f(2).

For each countable ordinal o, let T', be the o™ level of T': that is

Te. = {t ¢ T | p(t) is order isomorphic to o}.

Clearly T = Uacw, To. Without loss of generality we assume that ¢t e T,
and a < B implies f(¢) n T} is infinite.

l. Preliminary definitions

Let @ = {(n, o, t) ew X wy X T | ais a limit ordinal and ¢ € Ty for some
v > a}.

For each limit ordinal , select o’ < o' < - - having a as a limit.

For (n, o, t) €@, let Z(n, a, t) be the set of all nonempty chains Z such
that:

(a) p(t) n Ton ep(Z) but p(¢) n Ton+1 ¢ p(Z).

(b) Znf(Ta) = 0.

(¢) MHzeZnTgandB <y < a,thenZn T, # 0.

(d) IfreT.,Z & p(r).

For Z < T, define Z* = {Y < T | for some finite F C T, Y = Z — p(F)}.
Observe that Z eZ(A) implies Z* < Z(4).

In Section III we choose for each v < w; and A €@, a subset R,(4) of T.
IfA = (n,at) and t € Ty, define Z(4A) = Rg1(A). The following prop-
erties hold.
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(1) Z(A) ez(4).
(2) Forally < w,thereis a term of Z(4)* contained in R,(4).
(3) A'_"(n7a:8)yB=(m)ﬁ}r):a-<_3<7)r;£sa'nd

p(8) np(r)nT, =@ implies R,(A) nR,(B) = §.

Il. A topological space 2 which is normal, Hausdorff, hereditarily
separable and not Lindel6f

Assume R,(A4) and Z(A) as in the last paragraph of I.

The terms of T will be the points of Z. Let U be open in ¥ if and only if,
for each ¢ e U there is an m € w such that, forn > m and (n, o, t) €@, there is
aYeZ(n,a t)*such that ¥  U.

For each o < w;, p(T.) is countable and open; hence 2 is not Lindelof.
The complement of a point ¢ is also obviously open since for each A € @ one
can pick ¥ € Z(A)* avoiding t. Hence 2 is normal implies  is Hausdorff.

1. Proof that Z is hereditarily separable. Suppose X C T. Let

V=»{teT|ft)ynX = @}
and let
W={teV]|pt)nV = {g}.

Since W is an antichain there is an upper bound Bon {6 | W n T; = @}. Since
p(Tg) is countable, it will suffice to show that, for each r € Ts — V, there is a
countable dense subset of X n f(r).

Suppose r € Tsg — V. Define ap = 3. Then, for each n € w, define o, <
and W, € X n f(r) by induction as follows. If e, has been defined, let

W ={teXnf(r)[p(t) nXnf(Ta,) = {t}}.

Clearly W, is an antichain. Let an+1 be greater than some upper bound on
{6| WanTs = @}. Let abe the limit of {am}new -

I claim f(r) n f(Tas1) is a subset of the closure of U, W, . Suppose
teT,n f(r) and v > a and U is open and t e U. We show U n X = §.
Since U is open, there is an n such that 8 < o" and a ¥ € Z(n, a, t)* such that
Y U. Selecty e¢Y;forsomes,y e p(Ta;). Letz =Y nTa,,. Thereis
an z € X n f(2) since, by the definition of 8, f(r) n V = @. There is a first
term 2’ of p(x) n X n f(T.,) and 2’ ¢ W; by definition. Since y < 2’ < 2,
' eUnX.

2. Proof that Z is normal. Suppose H is closed. By the proof given in 1,
there is an a < w; such that ¢ € T'oy implies f(t) € H or f(t) n H = .

Suppose H and K are disjoint and closed. There is clearly a nonlimit
ordinal ¥ < «w; such that ¢ e T', implies f(¢) € H or f(¢) < K or f({) n (H u
K) = @. Without loss of generality we assume that f(T,) € H n K, for K
and f(T,) — K are closed and disjoint.

For t e T there is an m, such that, for every (n, u, ) ¢ @ and n > m,, there
isaY eZ(n,pt)*suchthat Y € X — Hift¢Hand Y € X — Kift¢K.
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Thus, if A = (n, u, £) €@, n > m;, and 4 < v, I(2) allows us to pick
Y(A) e Z(A)™ such that:

(a*) Y(A) C R,(A), and
(b*) Y(A) intersects H only if ¢ ¢ H and Y (A) intersects K only if ¢ ¢ K.

Define Uy = H and Vy, = K. If subsets Ui and Vi3 of T have been de-
fined, define

Ui =U{Y(n,put)|teUsps,n>m,u <y and (n,put) @}
and similarly
Vi=U{Y(n,ut)|teVia,n>m,u<vy and (n,u,l) cq}.

Clearly U = Ujew Ur and V = Ujeo Vi are open and U D H and V D K.
Also UnV = @. Suppose on the contrary that < is the smallest integer such
that U;nV # @. Select z ¢ U;n V;. Since H and K are disjoint, by (b*),
2> 0andj > 0. Henceforsomeu < vandn <yandseU,;andreV,,,

zeY(n,u 8) nY(m,n,r).

By (a*), Ry(n, u, 8) n Ry(m, n, ) # @. The minimality of ¢ implies r 5 s.
So property 1(3) guarantees some ¢ e p(s) n p(r) n T,. But our definition
of v then implies r and s are either both in H or both in K which is a contradic-
tion.

Since p(T,) is countable, a slightly more complicated construction of U
and V would yield a cover of T. Hence 2 also has the property that any two
disjoint closed sets are contained in the union of disjoint open and closed sets.

lil. The construction of R.,(4)
1. Some definitions and lemmas. If S C T and s € S, define

S(s) = {tef(s)| forall s < r <t resS}.

IfA = (n,at) €@, define $(4) to be the set of all nonempty S C U z(4)
such that se S n Ts and 8 < v < « implies there exists § withy < § < &
where S(s) n T's has at least two terms.

If R, S belong to 8(A4) define R < S if

(i) for each s e S thereis an r € B such that R(r) < S(s), and
(ii) for each r ¢ R thereis a V ¢ R(r)™ such that V < 8.

Levma 1. Suppose {An}new and {Bulaew are disjoint countable subsets of @
and, for each n € w, S, €$(A,) and Y, €Z(B,), and n = m implies p(V,) =
p(Ym). Then, for each n €w, there exist Ry € S(A,) and X, ¢ Y such that
R, < 8. and the terms of { Rp}new U { Xn}new are disjoint.

Proof. Define {Calocnco = {Bn}new U {Ai, J, k}i,jke0 ; 8SSUME N 3 m im-
plies Cp # C. Index S; = {8ij}jew -
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For n € w, we define by induction a function g, : (0, 1, - -+, n) — the set
of all subsets of 7.

Define ¢,(0) = @ for all n € w.

Fix n > 0 in order to define g, .

Assume g,;(m) has been defined for all m < n. Let W = U yep gna(m).
Also assume:

(a) 0<m < nandCn, = B, implies g,_4(m) ¢ V¥ .
(b) 0<m<mnandC, = (4.,J, k) implies thereis an s € S; and a finite set
E,, of branch points of S;(s) such that:

(b. 1)  gaa(m) = f(s) n p(Em),

(b.2) ee€E,implies f(e) n (W — {¢}) = 6,

(b.3) q < nand Eqn E,, # @ implies g,1(q) = gna(m) and the first
two terms of C,, are the first two terms of C, .

Note that W and E ., are functions of n.
We now define g,(n). Observe that W is the union of finitely many chains.

Case 1. Suppose C, = B;. Choose ga(n) € Y7 such that g.(n) n W = @.

Case 2. Suppose C, = (4:,7, k) and fornom < nis Cw = (A4, J, h)
for any h. Choose a branch point ¢ of S;(s;;) such that f(¢{) n W = §. Then
define g,(n) = {#.

Case 3. Suppose C, = (4,,7,k) and m < n and m is the smallest integer
such that C,, = (4;, j, h) for some h ew. For each z ¢ E,, choose distinct
branch points #; and z, of S;(z) belonging to Tj for some 8 > o where o
is the second term of A;. Then define

gn(n) = gna(m) U U e, (f(@) np(2:, 22)).

Suppose m < n. Define g,(m) = g,—1(m) unless there is a point ¢ ¢ E,
such that g.(n) nf(e) # 0. If e egn(n) n En, define g,(m) = gu(n).

Suppose there is a point ¢ such that for some ¢ < n, ¢ e B, — gn(n) and
ga(n) nf(e) # @. Let M = {m < n | the first two terms of C' are the first
two terms of Cg}; let A; be the first term of C,. Since e € S; and S; e $(4;),
there are unordered branch points ¢; and e; of S;(e). Since ¢ ¢ gn(n), Case 1
or 2 holds and g¢,(n) is contained in a single chain. Hence (b. 2) implies
that, for some h = 1 or 2, f(ex) nga(n) = @. Define

gn(m) = goa(m) u (f(e) np(er)) forall meM.

The induction hypotheses are again satisfied.
If B; = C, define X; = g,(n). And define

R; = Un,m.i.kew{gn(m) |Cm = (A, 7j1 k)}

Then X; e V¥, R; €8(A4:), R: < 8., and the terms of {Ry}icw U {X}iew are
disjoint.
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LeMMmA 2. Suppose A €@ and v is a counlable limst ordinal and { Xglp<y C
8(A) and a < B < v tmplies Xg < Xo. Then thereis an X e$(A) such that.
forall < v, X < Xj.

Proof. Index {(n, Bn)lrew = {(z,8) |8 < v and z € Xp}. Let D be the
set of all finite sequences of 0’s and 1’s.

For each n € w we define R, as follows. Define By = @. Suppose R, C 1
has been defined for all m < n. If, forall s € X5 (2,), X5,(8) NU pen B = @,
then define B, = 0.

Suppose there is an s € Xp, (2,) such that Xz, (s) nU < B = @; we define
R, in this case after the following inductive construction. Choose
s’ €Xg (s) — {s}. Thereis k ew such that +* > 8,. Choose unordered 7,
and 7; belonging to X« such that X(r;) < Xg,(s') for ¢ = 0,1. Suppose
d=dy,dy, -+, d;jeD and r; € X,o+; has been chosen. Choose unordered
Tdy,--,a;,0 0d 7qy,...,a;,1 belonging to Xye+i+1 such that, for ¢ = 0, 1, Xye+i(r2) D
Xyw+i+1(7ay,...,0;,;). Having thus chosen 7, for all d e D, define R, = f(s') n
Uaep p(7a).

Then define X = U, R, .

Clearly X €¢8(A). Observe that r ¢ R, implies X(r) = R.(r). Suppose
B < v and let us indicate why X < Xj.

To test (i), assume r € X. Then X(r) C R, for somen. By the construc-
tion of R, , thereisk e w with 8 < ~* and a finite subset F of R, n X,& such that
R, — p(F) € X . SinceB < +*, for each v = F, thereis V, ¢ X,+(v)* such
that V, < Xz. Since V, n R, eR,(»)*, Uyr V, D VeRr. Thus
VA R.(r) e R.(r)* = X(r)* and V C Xp so (ii) is satisfied.

To test (i) assume s € Xg ; then (s, ) = (%a, Bs) for some n. We need
to find 7 € X such that X(r) C Xg(s). Thisis obviousif R, # @. So assume
R, = 0. Chooset e Xg(s) n R, forsomem < n. By the preceding paragraph
there is V e X(¢)* such that V < X ; thus V © Xs(¢t) < Xg(s). Choose
r e V;then X(r) C V C Xp(s) and (i) is satisfied.

2. We now use Lemmas 1 and 2 to define for each v < w; and 4 €@, a
set R,(A4) so that conditions (1), (2), and (3) of I are satisfied. We need
further definitions.

Ify < wi,define @ = {(n, a,t) e@|teT,}.

IfA=(materRand a < 8 < v, let 43 = (n, a, s) where
{s} = Tsnp(¢).

Let @ = {(n,a,r) €e@|reTon};if A = (n,a,t) €@, define A’ = A,y .
For each A € @’ choose arbitrarily an R(A) eS(4).

IfA = (n,a,t) e@andy < o, define R, (4A) = R(4’).

Supposey < wyand forall A € @ and 8 < v, Rs(A) has been defined satisfy-
ing:

(a) Ae@ and & < B implies Rs(A) eZ(A); A €@’ and B8 < & implies
Rs(A) €8(A).
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(b) A = (n,et)ed and a < n < B <  implies Rs(4) = Rs(dp) <
R,(4,).

Before we complete the definition of R, , we define X (A ) for all A €U<, G°.

Suppose v is a limit ordinal. By Lemma 2 and (b),if 4 = (n, , t) €@,
we can choose X(A) e$(A) such that X(4) < Rs(4A) forall « < 8 < 7.
If 8 < v and 4 ¢ G’, define X(A4) = Rs;1(4).

Suppose v is not a limit ordinal. If A €¢@”, define X(4) = R,1(4). If
A e@"", choose X(A)e¢Z(A) such that X(4) < R,4(A). And if
B < v —1land A @’ define X(4) = Rs(A).

Observe that U, @ is countable and A €Ug<, @® implies X (4) ¢Z(4) and
@" is countable and A ¢ @ implies X(A) ¢8(A4). So we can apply Lemma 1
and find disjoint Ry(A) for the A eUggy @® such that R,(4) e X(A4)™ for
A eUse,@Pand R,(A) eS(A) and R, (4) < X(A) for 4 e@".

If A = (n, a, t) €@’ for some 8 > v, define R,(4) = R,(4,) if & < v;
we have already defined R,(4) = R(4") ify < a.

Our induction hypotheses (a) and (b) are clearly again satisfied. We need
only check (1), (2), and (3) of I.

If A € @®, then Rpy1(A) eZ(A) so (1) is satisfied.

Suppose A = (n, a, ¢) €@, If y < @, we defined R,(A) = R(4’). We
chose Rey1(A) = Ra(4’) < R(A’) and if « < 6§ < v < B we
chose R, (A) < R;(A) ¢8(A). And Rs11(A) C Rs(4) and, for g4+ 1 < «,
R,(A) € Rg41(A)*. Thus for all v < « thereis a term of Rg,1(4)™ contained
in R,(A) and (2) is satisfied.

Suppose 4 = (n,a,8), B = (m,B,7),a < B <v,r# s and p(s) np(r) n-
T,=0. IfseT;,define d = Aif 6 <yand A = A" if § > v; define B
similarly. By our assumption A » B. Thus we chose R,(4) and R,(B)
disjoint. And, since R,(4) = R,(A) and R,(B) = R,(B), condition (3)
is satisfied and we have the desired construction.
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