ON GRAPHS WITH EDGE-TRANSITIVE AUTOMORPHISM GROUPS

BY

BERND STELLMACHER

In [4], Goldschmidt considered groups G with finite subgroups M_1 and M_2 and the following three properties:

- (i) $G = \langle M_1, M_2 \rangle$.
- (ii) No non-trivial normal subgroup of G is contained in $M_1 \cap M_2$.
- (iii) $|M_i/M_1 \cap M_2| = 3$ for i = 1, 2.

He was able to give the exact structure (the isomorphism classes) of all possible pairs of subgroups M_1 and M_2 . In his proof he used a graph theoretical approach:

Any group G with properties (i) and (ii) operates as an edge-transitive group of automorphisms on a graph Γ whose vertex set is

$$\{M_1 x / x \in G\} \cup \{M_2 x \mid x \in G\}$$

and where two vertices are adjacent iff they have non-empty intersection. G operates on Γ by right multiplication, the vertex-stabilizers in G are conjugate to M_1 or M_2 , and the edge-stabilizers are conjugate to $M_1 \cap M_2$ (see [4, (2.6)]).

Since G is a homomorphic image of the amalgamated product of M_1 and M_2 with respect to $M_1 \cap M_2$, one can study this amalgamated product and the corresponding graph Γ . Serre [9] has shown in this case that Γ is a tree. Hence the above problem leads to the investigation of edge-transitive groups of automorphisms of the trivalent tree with finite vertex-stabilizers.

We use this method to investigate a more general situation. We make the following hypotheses.

Hypothesis A. Let G be a group and M_1 and M_2 be finite subgroups of G such that:

- (1) $G = \langle M_1, M_2 \rangle$.
- (2) No non-trivial normal subgroup of G is contained in $M_1 \cap M_2$.
- (3) $|M_i/M_1 \cap M_2| = 2^{n_i} + 1, n_i \ge 1, i = 1, 2 \text{ and } \max\{n_1, n_2\} > 1.$
- (4) There exists a normal subgroup N_i in M_i such that

 $N_i/R \simeq L_2(2^{n_i})'$ for $R = \bigcap_{x \in M_i} (M_i \cap M_i^x)$ and $\{i, j\} = \{1, 2\}$.

Received October 23, 1981.

^{• 1984} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Hypothesis B. Let Γ be a connected graph and G be an edge-transitive group of automorphisms of Γ such that for $\alpha \in \Gamma$:

- (a) G_{α} is finite.
- (b) $|\Delta(\alpha)| = 2^{n_{\alpha}} + 1$, $n_{\alpha} \ge 1$ and $\max\{n_{\alpha}, n_{\beta}\} > 1$ for $\beta \in \Delta(\alpha)$.
- (c) There exists a normal subgroup N_{α} in G_{α} such that $N_{\alpha}^{\Delta(\alpha)} \simeq L_2(2^{n_{\alpha}})'$.

Here G_{α} denotes the stabilizer of α in G, $\Delta(\alpha)$ the set of vertices adjacent to α , and $N_{\alpha}^{\Delta(\alpha)}$ the permutation group on $\Delta(\alpha)$ induced by N_{α} . Any graph in this paper is undirected and without loops and multiple edges.

The condition $\max\{n_1, n_2\} > 1$ (resp. $\max\{n_{\alpha}, n_{\beta}\} > 1$) only excludes cases treated in [4], and condition (b) and (c) imply that N_{α} is transitive on $\Delta(\alpha)$.

Let q, q_1 and q_2 be powers of 2, and let Aut($L_2(q_1)$) $\int Aut(L_2(q_2))$ be the wreath product of Aut($L_2(q_1)$) with Aut($L_2(q_2)$) with respect to the natural permutation representation of $L_2(q_2)$. We define:

 $\mathcal{L} = \{L_2(q_1) \times L_2(q_2), \operatorname{Aut}(L_2(q_1)) \mid \operatorname{Aut}(L_2(q_2)), \max\{q_1, q_2\} > 1; L_3(q), Sp_4(q), G_2(q), q > 2; U_4(q), {}^{3}D_4(q), J_2\}.$

Let X be a group in \mathscr{L} . If X is not the wreath product, then X contains exactly two conjugacy clases of maximal 2-local subgroups which contain Sylow 2-subgroups of X. Let X_1 and X_2 be representatives for these two classes in X. If X is the wreath product, then there exist exactly two classes of 2-local subgroups which contain Sylow 2-subgroups of X and fulfil (3) and (4) of Hypothesis A. In this case let X_1 and X_2 be representatives for these classes.

DEFINITION. A pair of groups $\{M_1, M_2\}$ is parabolic of type X for $X \in \mathcal{L}$, if for i = 1, 2,

(*) X is not the wreath product, and M_i is isomorphic to a subgroup of $N_{Aut(X)}(X_i)$ which contains X_i , or

(**) X is the wreath product, and M_i is isomorphic to a subgoup of X_i which contains $X_i \cap L_2(q_1)' \int L_2(q_2)'$.

A pair of groups $\langle M_1, M_2 \rangle$ is parabolic of type J, if for i = 1, 2 there exists a normal subgroup X_i in M_i such that:

(i) $|M_i/X_i| \leq 2.$

(ii) $X_1/O_2(X_1) \simeq L_2(4), O_2(X_1) \simeq Q_8 * D_8 \text{ and } C_{M_1}(O_2(X_1)) \le O_2(X_1).$

(iii) $X_2 = BO_2(X_2), B \simeq C_3 \times \Sigma_3$, $O_2(X_2)$ is special of order 2⁶, and the 3-elements in $O^{2'}(X_2)$ operate fixed point freely on $O_2(X_2)$.

Note that all groups in \mathcal{L} fulfil Hypothesis A with respect to X_1 and X_2 . But these are not all the known examples.

The simple group J_3 has (up to notation and conjugation) two pairs of subgroups M_1 and M_2 for which Hypothesis A holds, in one case they are parabloic of type J_2 , in the other case parabolic of type $L_3(4)$.

But as the following theorems show, the examples in \mathcal{L} give the pattern for all possible examples.

THEOREM 1. Assume Hypothesis A. Then one of the following holds (possibly after interchanging 1 and 2):

(a) $M_i \simeq H \leq Aut(L_2(2^{n_1})), i = 1, 2.$

- (b) $\{M_1, M_2\}$ is parabolic of type X for some X in \mathcal{L} .
- (c) $\{M_1, M_2\}$ is parabolic of type J.

(d) $n_1 > 1$, $O_2(M_1)$ is elmentary abelian, $M_1/O_2(M_1) \approx H \leq Aut(L_2(2^{n_1}))$, and $O_2(M_1)$ is isomorphic to a submodule of the natural permutation GF(2)-module for $M_1/O_2(M_1)$; $n_2 = 1$, $M_2 = N_{M_1}(S)W$ for $S \in Syl_2(M_1 \cap M_2)$ and a normal subgroup W of M_2 which is isomorphic to Σ_3 .

As a special case we get from Theorem 1 and [3]:

COROLLARY 1. Assume Hypothesis A, and suppose that G is finite and that

 $M_i = N_G(O_2(M_i))$ for i = 1, 2.

Then $\{M_1, M_2\}$ is parabolic of type X for some $X \in \mathcal{L}$, or $G = M_jO(G)$ for some $j \in \{1, 2\}$.

A graph Γ is locally (G, s)-transitive with respect to a group G of automorphisms of Γ , if for every $\alpha \in \Gamma$, G_{α} is transitive on the arcs of length k starting at α for $k \leq s$ and s is maximal with this property.

THEOREM 2. Assume Hypothesis B. Then Γ is locally (G, s)-transitive, and one of the following holds for $\Lambda = \{G_{\alpha}, G_{\beta}\}$:

- (a) s = 2, and $G_{\delta} \simeq H \leq \operatorname{Aut}(L_2(2^{n_{\alpha}}))$ for $\delta = \alpha, \beta$.
- (b) s = 3, and Λ is parabolic of type $L_2(2^{n_{\alpha}}) \times L_2(2^{n_{\alpha}})$.
- (c) s = 3, and Λ is parabolic of type Aut $(L_2(2^{n_{\alpha}})) \int Aut(L_2(2^{n_{\beta}}))$.

(d) (possibly after interchanging α and β) s = 3, $n_{\beta} = 1$, $O_2(G_{\alpha})$ is elementary abelian, $G_{\alpha}/O_2(G_{\alpha}) \approx H \leq \operatorname{Aut}(L_2(2^{n_{\alpha}}))$, and $O_2(G_{\alpha})$ is isomorphic to a submodule of the natural permutation G(2)-module for $G_{\alpha}/O_2(G_{\alpha})$; $G_{\beta} = N_{G_{\alpha}}(S)W$ for $S \in Syl_2(G_{\alpha\beta})$ and a normal subgroup W of G_{β} isomorphic to Σ_3 .

(e) s = 4, and Λ is parabolic of type $L_3(2^{n_{\alpha}})$.

- (f) s = 5, and Λ is parabolic of type $U_4(2^{n\alpha})$, $Sp_4(2^{n\alpha})$, or J.
- (g) s = 7, and Λ is parabolic of type $G_2(2^{n_{\alpha}})$, or ${}^{3}D_4(2^{n_{\alpha}})$.

I would like to thank R. Weiss for his helpful conversations on Chapter 9. I also wish to thank G. Stroth for pointing out an error in Lemma 1.3.

1. Group theoretical results

Hypothesis I. Let G be a finite group such that

- (a) $C_G(O_2(G)) \leq O_2(G)$ and
- (b) $G/O_2(G) \simeq L_2(2^n), n \ge 1.$

DEFINITION. Let V be a faithful GF(2)-module for $L_2(2^n)$ and T be a Sylow 2-subgroup of $L_2(2^n)$.

V is a natural module for $L_2(2^n)$ iff $|C_V(T)|^2 = |V| = 2^{2n}$.

V is an orthogonal module for $L_2(2^n)$ iff $|C_V(T)|^4 = |V| = 2^{2n}$.

Note that this definition is compatible with the usual definition of a natural (resp. orthogonal) $L_2(2^n)$ GF(2)-module. If $X \simeq L_2(2^n)$ and V is a natural (resp. orthogonal) $L_2(2^n)$ -module for X, we simply write V is a natural (orthogonal) module for X.

We assume Hypothesis I for the lemmata (1.1)-(1.7).

(1.1) Let $O_2(G)$ be elementary abelian of order 2^{2n} . Then $O_2(G)$ is a natural or orthogonal module for $G/O_2(G)$, and $O_2(G)$ is a natural module, if and only if all elements in $O_2(G)^{\#}$ are conjugate in G.

Proof. See [1, 4.3].

 $(1.2) |O_2(G)| \geq 2^{2n}.$

Proof. See [2, Hilfssatz].

(1.3) Let T be a Sylow 2-subgroup of G, and suppose that $O_2(G)$ is elementary abelian, Z(G) = 1 and

- (i) $[G, O_2(G)] = O_2(G)$, or
- (ii) $O_2(G) = \langle C_{O_2(G)}(T)^G \rangle$.

Then the following statements are equivalent:

- (a) $O_2(G)$ is direct sum of natural modules for $G/O_2(G)$.
- (b) $[O_2(G), T, T] = 1.$
- (c) $|C_{o_2(G)}(T)|^2 = |O_2(G)|.$

(d) All non-trivial elements of odd order in G operate fixed-point-freely on $O_2(G)$.

Proof. Note that $G = \langle T, t \rangle$ for any element $t \in G \setminus N_{\sigma}(T)$ (see (3.1)); thus

 $C_{o_2(G)}(T) \cap C_{o_2(G)}(t) = 1$ and $|C_{o_2(G)}(T)|^2 \le |O_2(G)|$.

Set $V = [G, O_2(G)]$. It follows from [5, Theorem 8.2] that the three statements are equivalent for V in place of $O_2(G)$. If $V \neq O_2(G)$, then

$$O_2(G) = VC_{O_2(G)}(T),$$

and from $|C_{\nu}(T)|^2 = |V|$, we get $|C_{O_2(G)}(T)|^2 > |O_2(G)|$ and $Z(G) \neq 1$, a contradiction.

(1.4) Suppose that an element of order three in G operates fixed-pointfreely on $O_2(G)$. Then $O_2(G)$ is elementary abelian and direct sum of natural modules for $G/O_2(G)$, or n = 1.

Proof. See [5, Theorem 8.2].

(1.5) Let Z(G) be elementary abelian and $O_2(G)/Z(G)$ be a natural module for $G/O_2(G)$. Then $O_2(G)$ is elementary abelian, or n = 1.

Proof. We may assume that Z(G) has order 2. If Z(G) contains all involutions of $O_2(G)$, then $O_2(G) \approx Q_8$ and n = 1.

If Z(G) does not contain all involutions of $O_2(G)$, then by (1.1) all elements in xZ(G) for $x \in O_2(G) \setminus Z(G)$ are involutions. But this implies that all elements in $O_2(G)^{\#}$ are involutions, and $O_2(G)$ is elementary abelian.

(1.6) [2]. Let T be a Sylow 2-subgroup of G, and suppose that no nontrivial characteristic subgroup of T is normal in G. Then the following hold:

(a) T has class 2.

(b) $Z(O_2(G))/Z(G)$ is a natural module, and $[G, O_2(G)] \leq Z(O_2(G))$.

(c) There exists $\alpha \in Aut(T)$ such that $T = Z(O_2(G))^{\alpha}O_2(G)$.

(1.7) Assume the hypothesis of (1.6). Then

 $< Z(O_2(G))^{\alpha} / \alpha \in \operatorname{Aut}(T), o(\alpha) odd >$

is a normal subgroup of G.

Proof. Define $Q = O_2(G)$, Z = Z(Q) and $\Delta = \{Z^{\alpha} / \alpha \in Aut(T), Z^{\alpha} \leq Q\}$, and let β be an automorphism of T of odd order. From (1.6) we get

$$[<\Delta>,G] \leq Z \leq <\Delta>.$$

So it suffices to show $Z^{\beta} \in \Delta$.

Assume $Z^{\mathfrak{g}} \not\in \Delta$. Let γ be any automorphism of T such that $Z^{\gamma} \not\leq Q$. Then $Z^{\gamma^{-1}} \not\leq Q$, and $|Z/C_{\mathbb{Z}}(Z^{\gamma})| = |Z^{\gamma}/C_{\mathbb{Z}^{\gamma}}(Z)| = 2^n$, since Z/Z(G) is a natural module for $G/O_2(G)$ by (1.6). In particular we have $Z^{\gamma}Q = T$ and $|Q/C_Q(Z^{\gamma})| = |Z/C_{\mathbb{Z}}(Z^{\gamma})|$.

Let d be a p-element in $G \setminus N_{\sigma}(T)$, p an odd prime. Then d is fixed-point-free on Z/Z(G) (see (1.3)(d)) and $G = \langle Z^{\beta}, Z^{\beta d} \rangle Q$. Set

$$Q_0 = C_Q(Z^{\beta}) \cap C_Q(Z^{\beta d}).$$

Then $Q = Q_0 Z$ and $Q_0 \cap Z = Z(G)$, in particular Q_0 is normal in G. Therefore we have $[Z^{\beta}, T] = [Z^{\beta}, Z] = [Z, T]^{\beta} = [Z, Z^{\beta}]^{\beta}$, which implies

(*)
$$[Z^{\beta}, Z]^{\beta} = [Z^{\beta}, Z].$$

From (*) we get $[Z^{\beta^2}, Z^{\beta}] \neq 1$. Assume that $[Z^{\beta^2}, Z] \neq 1$. Then $T = Z^{\beta^2}Q$ and

$$Z^{\beta^2} \subseteq Z \cup Q_0 Z^{\beta},$$

but in T/Q_0 the only maximal elementary abelian subgroups are the images of Z and Z^{β} .

So we have $Z^{\beta^2} \in \Delta$. Since β has odd order, we may assume that $\Delta^{\beta^2} \neq \Delta$. Pick $B \in \Delta^{\beta^2} \setminus \Delta$, then T = BQ and

$$[Z^{\beta^2}, BQ_0Z] = [Z^{\beta^2}, Q_0] \leq Q_0 \cap Z = Z(G).$$

On the other hand (*) implies $[Z^{\beta^2}, T] = [Z^{\beta^2}, Z^{\beta}] = [Z^{\beta}, Z] \leq Z(G)$. This contradiction shows the assertion.

Hypothesis II. Let G be a group and M_1 and M_2 finite subgroups of G such that for i = 1, 2:

(a)
$$O^{2'}(M_i/O_2(M_i)) \approx L_2(2^{n_i}), n_i \geq 1.$$

(b) $M_1 \cap M_2 = N_{M_1}(S) = N_{M_2}(S)$ for $S \in Syl_2(M_1 \cap M_2)$.

(c) No non-trivial normal subgroup of $O^{2'}(M_i)$ is normal in $O^{2'}(M_j)$, $j \neq i$.

We assume Hypothesis II for the lemmata (1.8)-(1.11).

Notation. $Q_i = O_2(M_i), Z_i = Z(Q_i), L_i = O^{2'}(M_i), \overline{L_i} = L_i/Q_i, S \in Syl_2(M_1 \cap M_2), K_i$ is a complement for S in $N_{L_i}(S)$. In addition we choose K_1 and K_2 such that $K = K_1K_2$ is a subgroup of odd order.

(1.8) (a)
$$J(S) \leq Q_1 \cap Q_2$$
.

(b)
$$S = Q_1Q_2$$
, or $Q_1 = Q_2 = 1$.

Proof. Part (a) is obvious. The structure of $L_2(2^n)$ (see (3.1)) implies that $\overline{K_i}$ is transitive on $\overline{S}^{\#}$ (i = 1, 2). This yields (b).

(1.9) Suppose that $C_{L_1}(Q_1) \leq Q_1$. Then $O^2(L_1) \simeq L_2(2^{n_1})'$, and one of the following holds:

- (a) $O^2(L_2) \simeq L_2(2^{n_2})'$, S is elementary abelian, and $|S| = 2^{n_1}$ or $2^{n_1+n_2}$.
- (b) $n_1 = 1$, and Q_2 is elementary abelian and non-central in $O^2(L_2)Q_2$.

Proof. If $Q_1 = 1$ or $Q_2 = 1$, then S has order 2^{n_1} , and S is elementary abelian, since Sylow 2-subgroups of $L_2(2^n)$ are elementary abelian. Thus we may assume $Q_1 \neq 1 \neq Q_2$.

Suppose first that $O_2(O^2(L_1)) \neq 1$. Then from [6, V 25.7] we get

 $S \cap O^2(L_1) \simeq Q_8$ and $\Omega_1(Z_2) \leq Q_1$.

Hence $\Omega_1(Z_2)$ is normal in M_1 and M_2 and therefore $\Omega_1(Z_2) = 1$, but this contradicts $Q_2 \neq 1$.

Assume now $O^2(L_1) \simeq L_2(2^{n_1})'$. Then $\phi(Q_2) \leq Q_1$, and $\phi(Q_2)$ is normal in L_1 and L_2 . This implies $\phi(Q_2) = 1$.

Assume $n_1 > 1$. Then $K_1 \neq 1$ and $C_s(K_1) = Q_1$. From (1.8)(b) we get $[S, K_1] \leq Q_2$, and the structure of Aut $(L_2(2^n))$ implies $[L_2, K_1] \leq Q_2$. Hence $C_{Z_2}(K_1)$ is normal in L_1 and L_2 and must be trivial. But then

$$Z_2 \cap Z(S) \cap Q_1 = 1,$$

and $Q_1 = 1$ or $Z(S) \not\leq Q_2$. The first case contradicts the assumption. In the second case we get as above $O^2(L_2) \simeq L_2(2^{n_2})'$ and $[Q_2, O^2(L_2)] = 1$. Thus $Q_1 \cap Q_2$ is normal in L_1 and L_2 and must be trivial. This proves assertion (a).

Now assume $n_1 = 1$. Then (b) holds, or Q_2 is central in $O^2(L_2)Q_2$, and with the above argument (a) holds.

(1.10) Suppose that M_1 and M_2 are conjugate in G. Then one of the following holds for i = 1, 2:

(a) $O^2(L_i) \simeq L_2(2^{n_1})'$, and S is elementary abelian of order 2^{2n_1} or 2^{n_1} .

(b) Q_i is elementary abelian of order 2^{2n_1} or 2^{3n_1} , and $Q_i/Z(L_i)$ is a natural module for $\overline{L_i}$.

Proof. Pick $g \in G$ such that $M_1^{\varepsilon} = M_2$. Then $\langle S, S^{\varepsilon} \rangle \leq M_2$ and $S = S^{\varepsilon m}$ for some $m \in M_2$, since S is a Sylow 2-subgroup of M_2 . Hence we may choose $g \in N_G(S)$.

If $C_{L_i}(Q_i) \leq Q_i$ for $i \in \{1, 2\}$, then (1.9) yields assertion (a). Thus we assume $C_{L_i}(Q_i) \leq Q_i$ and can apply (1.6).

Set $\{i, j\} = \{1, 2\}$. If $Z_i \leq Q_j$, then $[Z_i Z_j, L_i] \leq Z_i$ and $[Z_i Z_j, L_j] \leq Z_j$, and $Z_i Z_j$ is normal in L_1 and L_2 , a contradiction. Hence $Z_i \leq Q_j$, and the operation of K on S (see (3.1)) yields

 $S = Z_i Q_j, Q_j = C_{Q_i}(Z_i) Z_j$ and $|Q_j / C_{Q_i}(Z_i)| = |Z_j / Z(S)| = 2^{n_j}$.

Let d be an element of odd order in $L_j \setminus N_{L_i}(S)$ and

$$Q_0 = C_{Q_i}(Z_i) \cap C_{Q_i}(Z_i^d).$$

Then

$$L_j = \langle Z_i, Z_i^d \rangle Q_j, \quad Q_j = Q_0 Z_j \text{ and } Q_0 \cap Z_j = Z(L_j).$$

In particular $L_j = C_{L_j}(Q_0)Q_0$, and $Z_j/Z(L_j)$ is a natural module for $\overline{L_j}$. Now set j = 1 and i = 2. Assume that $[Q_0^s, Z_1] \neq 1$. Then

$$[Z_2, Z_1] = [Q_0^s, Z_1] \le Z_1 \cap Q_0^s = Z(S) \cap Q_0^s = Z_2 \cap Q_0^s = Z(L_2).$$

This contradicts the operation of Z_1 on $Z_2/Z(L_2)$.

We have shown that $Q_0^s \leq C_{Q_1}(Z_2)$. Since $Q_0 \cap Q_0^s$ is normal in L_1 and L_2 , we get $Q_0 \cap Q_0^s = 1$, and the operation of K_1 yields $C_{Q_1}(Z_2) = Q_0 Q_0^s$ or $Q_0 = 1$. In particular $|Q_0| = 1$ or 2^{n_1} , and Q_0 is elementary abelian. This implies assertion (b).

(1.11) Suppose that $C_{L_i}(Q_i) \leq Q_i$ for i = 1, 2. Then one of the following holds:

(a) $J(S) \subseteq Q_1 \cup Q_2, Z(J(S)) = Z(S), Z(L_i) \neq 1, and Z_i/Z(L_i) is a natural module for <math>L_i$ (i = 1, 2).

- (b) $Z_1 = Z(L_1)$.
- (c) $Z_2 = Z(L_2)$.

(d) S has class 2, and $Z_i/Z(L_i)$ is a natural module for $\overline{L_i}$ (i = 1, 2). Moreover, if $Z(L_1) = 1$ or $Z(L_2) = 1$, then $Q_i = Z_i$, and Q_i is a natural module for $\overline{L_i}$ (i = 1, 2).

Proof. Assume $Z_1 \neq Z(L_1)$ and $Z_2 \neq Z(L_2)$. If the hypothesis of (1.6) holds in M_1 , we get (d) for i = 1 and Z(S) = Z(J(S)). This shows $J(S) \leq Q_2$ and (d) for i = 2, too.

Thus we may assume additionally that M_1 and M_2 do not fulfil the hypothesis of (1.6) and that (without loss) $J(S) \leq Q_1$. We apply the techniques in [2]. Define $B = C_*(Z(J(S)))$ and $\tilde{L}_1 = \langle B^{L_1} \rangle$. Then Baumann's argument [2, (6)] shows that Z(J(S)) = XZ(S), where X is a normal subgroup of \tilde{L}_1 . This yields $B = C_s(X)$ and $B \in Syl_2(\tilde{L}_1)$.

If $J(S) \leq Q_2$, then $C_{L_2}(Z(J(S))) = B$ is normal in L_2 , and no non-trivial characteristic subgroup of B is normal in L_1 . Now (1.7) applied to $\tilde{L_1}$ and $L_2 = N_{L_2}(B)$ yields a contradiction.

So we may assume $J(S) \leq Q_2$. As above $B \in Syl_2(\langle B^{L_2} \rangle)$, and [2, (6)] implies that [S, Z(J(S))] is normal in L_1 and L_2 . Hence we get Z(J(S)) = Z(S).

An application of Baumann's techniques in [2, (1), (10)] yields assertion (a).

For the next two lemmata suppose that $X = L_2(2^m)$. Let V be a natural $GF(2^m)$ -module for X, and denote by V^{σ} the conjugate of V by $\sigma \in Gal(GF(2^m))$. If $\sigma \neq 1$, then V and V^{σ} are non-isomorphic $GF(2^m)$ -modules.

For $S \leq X$ and an X-module W we define

$$[W, S] = [W, S, 1]$$
 and $[W, S, n] = [[W, S, n-1], S]$

for $n \geq 2$.

(1.12) Let W be a non-trivial irreducible $GF(2^m)$ -module for X. Then there exist $n \in \mathbb{N}$ and $\sigma_1, \ldots, \sigma_n \in Gal(GF(2^m))$ such that $W = \bigotimes_{i=1}^n V^{\sigma_i}$, where $V^{\sigma_1}, \ldots, V^{\sigma_n}$ are pairwise non-isomorphic $GF(2^m)$ -modules. Moreover, the following two statements for $S \in Syl_2(X)$ are equivalent:

- (a) $W = \bigotimes_{i=1}^{n} V^{\sigma_i}$.
- (b) $[W, S, n] \neq 0$ and [W, S, n + 1] = 0.

Proof. The first part of the assertion follows from [5, Theorem 8.2]. Let $e_1 = (1,0)$ and $e_2 = (0,1)$ be a basis of V^{σ_i} $(1 \le i \le n)$ and

$$S = \left\{ \begin{pmatrix} 1 & 0 \\ q_j & 1 \end{pmatrix} / 1 \le j \le 2^m, \{q_1, \ldots, q_{2^m}\} = GF(2^m) \right\}.$$

Set

$$d_j = \begin{pmatrix} 1 & 0 \\ q_j & 1 \end{pmatrix}.$$

Then d_j operates on V^{σ_i} in the following way:

$$e_1d_j = e_1$$
 and $e_2d_j = e_2 + q_j^{\sigma_i}e_1$.

If n = 1, then W is a natural module, and (a) and (b) are equivalent. Hence we may assume n > 1.

Define $W_1 = \bigotimes_{i=1}^{n-1} V^{\sigma_i}$ and $w = w_1 \bigotimes e_2$ for $w_1 \in W_1$. Then

$$[wd_j, d_k] = [w, d_k]d_j$$

and

$$[w, d_j] = w_1 \otimes e_2 + (w_1 \otimes e_2)d_j = [w_1, d_j] \otimes e_2 + q_j^{\sigma_n}(w_1 \otimes e_1)d_j.$$

Hence

(*)
$$[w, d_1, \ldots, d_r] = [w_1, d_1, \ldots, d_r] \otimes e_2 + \sum_{i=1}^n q_i^{\sigma_n}([w_1, d_1, \ldots, d_{i-1}, d_{i+1}, \ldots, d_r] \otimes e_1)d_i.$$

Applying induction on n we get, from (*),

$$[w, d_1, \ldots, d_{n+1}] = 0$$
 and $[W, S, n + 1] = 0$.

It remains to show that $[W, S, n] \neq 0$. Let \tilde{W} be the natural permutation $GF(2^m)$ -module for X. Then X operates on a basis $\{a_0, \ldots, a_{2^m}\}$ of \tilde{W} , and

$$W_s = \tilde{W} / < \sum_{i=0}^{2^m} a_i >$$

is an irreducible $GF(2^m)$ -module, the Steinberg-module. Hence $W_s = \bigotimes_{i=1}^m V^{\sigma_i}$.

We first argue that $[W_s, S, m] \neq 0$. For this purpose we choose generators d_1, \ldots, d_m for S and assume $a_0S = a_0$. Then the operation of S on $\{a_1, \ldots, a_{2^m}\}$ yields

(**)
$$a_i \prod_{i \in \Lambda} d_i \neq a_i$$
 for any $a_i \neq a_0$ and $\Lambda \subseteq \{1, \ldots, m\}, \Lambda \neq \emptyset$.

Define $\Gamma_0 = \{a_i\}$ and $\Gamma_i = \Gamma_{i-1} \cup \{b_{i-1}d_i / b_{i-1} \in \Gamma_{i-1}\}$ for $i = 1, \ldots, m$. Then from (**) we get $\Gamma_{i-1} \cap \{b_{i-1}d_i / b_{i-1} \in \Gamma_{i-1}\} = \emptyset$. Hence

$$[a_1, d_1, \ldots, d_j] = \sum_{b_k \in \Gamma_j} b_k \text{ for } j \leq m;$$

in particular

$$[a_1, d_1, \ldots, d_m] = \sum_{i=1}^{2^m} a_i \notin < \sum_{i=0}^{2^m} a_i >$$

and $[W_s, S, m] \neq 0$.

Now let W be a counterexample to $[W, S, n] \neq 0$ such that n is maximal. We have just proved n < m. Hence there exists $\sigma \in Gal(GF(2^m)) \setminus \{\sigma_1, \ldots, \sigma_n\}$, and $W \otimes V^{\sigma}$ is not a counterexample. Pick

$$\hat{w} = w \otimes v \in W \otimes V^{\circ}, w \in W \text{ and } v \in V^{\circ},$$

such that $[\hat{w}, d_1, \dots, d_{n+1}] \neq 0$. Then

$$v = k_1 e_1 + k_2 e_2$$
 $(k_1, k_2 \in GF(2^m)),$

and [W, S, n + 1] = 0 and (*) imply

$$0 \neq [\hat{w}, d_1, \ldots, d_{n+1}] = k_2 \sum_{i=1}^{n+1} q_i^{\sigma_{n+1}}([w, d_1, \ldots, d_{i-1}, d_{i+1}, \ldots, d_{n+1}] \otimes e_1)d_i.$$

But this is only possible, if

$$[w, d_1, \ldots, d_{i-1}, d_{i+1}, \ldots, d_{n+1}] \neq 0$$
 for some $i \in \{1, \ldots, n+1\}$,

which shows that W is not a counterexample.

(1.13) Let S be a Sylow 2-subgroup of X and W be an irreducible GF(2)-module for X. Suppose that

- (a) [W, S, 4] = 0, and
- (b) $|W| = 2^{2m+2r}, 0 < r < m.$

Then m = 3r and $[W, S, 3] \neq 0$.

Proof. Set $\tilde{W} = W \otimes GF(2^m)$. Then (a) holds for \tilde{W} and dim $\tilde{W} = 2(m+r)$. On the other hand $\tilde{W} = \bigotimes_{i=1}^{n} \hat{W}^{\sigma_i}$, where $\sigma_1, \ldots, \sigma_n \in \mathcal{F}$

Gal($GF(2^m)$), m = na ($a \in N$), and \hat{W} is an irreducible $GF(2^m)$ -module (see [7, (30.11)]). Now (1.12) implies dim $\hat{W} = 2^k$, $k \leq 3$; hence $2^{k-1}m/a = m + r$. This yields k = 3 and a = 3.

2. Graph theoretical results

(2.0) Hypothesis. Let Γ be a graph and G be a group of automorphism of Γ .

Notation. The notation differs only slightly from that in [4].

We write $\alpha \in \Gamma$, if α is a vertex of Γ , and $\gamma \subseteq \Gamma$, if γ is a set or ordered tuple of vertices.

For $\alpha \in \Gamma$ and $\gamma \subseteq \Gamma G_{\alpha}$ is the stabilizer of α in G and G_{γ} is the pointwise stabilizer of γ in G. $\Delta(\alpha)$ is the set of vertices adjacent to α . An arc of length *n* is an ordered (n + 1)-tuple of vertices $(\alpha_0, \ldots, \alpha_n)$, where n > 0, $\alpha_i \in \Delta(\alpha_{i+1})$ for $0 \le i \le n-1$ and $\alpha_i \ne \alpha_j$ for $i \ne j$ and $(i, j) \ne (0, n)$.

A line is an ordered set $\{\alpha_i / i \in \mathbb{Z}\}$ of vertices such that $\alpha_i \in \Delta(\alpha_{i+1})$ for $i \in \mathbb{Z}$ and $\alpha_i < \alpha_j$ iff i < j; here again $\alpha_i \neq \alpha_j$ for $i \neq j$.

For an arc $\gamma = (\alpha_0, \ldots, \alpha_n)$ we define

 $\Delta_L(\gamma) = \Delta(\alpha_0) \setminus \{\alpha_1\} \text{ and } \Delta_R(\gamma) = \Delta(\alpha_n) \setminus \{\alpha_{n-1}\}.$

 γ is left (resp. right) singular, if G_{γ} is not transitive on $\Delta_{L}(\gamma)$ (resp. $\Delta_{R}(\gamma)$); otherwise it is left (resp. right) regular, and γ is regular, if γ is left and right regular. Let X be a set of vertices. By (X, n) (resp. (n, X)) we denote the set of arcs of length n whose left (resp. right) endpoint is in X. If $\alpha \in \Gamma$ is in the same G-orbit as α' , we say that α is conjugate to α' (under G).

(2.1) [4, 2.3]. Suppose that Γ is connected, G_{α} is transitive on $\Delta(\alpha)$ and G_{β} is transitive on $\Delta(\beta)$ for some pair of adjacent vertices α,β . Then G is edge-transitive on Γ .

(2.2) Suppose that Γ is a tree. Then Γ is a bipartite graph.

The proof is obvious.

(2.3) [4, 2.6]. Suppose that Γ is a tree, α_1 and α_2 are adjacent vertices, P_i is a subgroup of G fixing α_i (i = 1, 2) and

$$(P_1)_{\alpha_2} = (P_2)_{\alpha_2} = P_1 \cap P_2.$$

Then $\langle P_1, P_2 \rangle_{\alpha_1} = P_i \ (i = 1, 2).$

(2.4) Suppose that N is an edge-transitive subgroup of G. Then $G = G_{\alpha\beta}N$ for adjacent vertices α and β of Γ .

The proof is obvious.

(2.5) Let Γ be a tree and G be edge-transitive on Γ , and let α_1 and α_2 be adjacent vertices. Suppose that the following hold:

(a) No proper normal subgroup of G is edge-transitive on Γ .

(b) N_{α_i} is a normal subgroup of G_{α_i} transitive on $\Delta(\alpha_i)$ (i = 1, 2).

Then

$$G_{\alpha_1\alpha_2} = (G_{\alpha_1\alpha_2} \cap N_{\alpha_1})(G_{\alpha_1\alpha_2} \cap N_{\alpha_1}).$$

Proof. Set $N = \langle N_{\alpha_1}(G_{\alpha_1\alpha_2} \cap N_{\alpha_2}), N_{\alpha_2}(G_{\alpha_1\alpha_2} \cap N_{\alpha_1}) \rangle$. Then (2.1) and (2.4) imply that N is edge-transitive on Γ and $G = G_{\alpha_1\alpha_2}N$. Hence N is normal in G and G = N by (a). Now the assertion follows from (2.3).

(2.6) [4, 2.12]. Suppose that G is edge-transitive on Γ and that there exist non-regular arcs. Let s be the smallest integer for which a non-regular arc of length s exists, and let θ and \mathcal{N} be the two G-orbits of vertices of Γ (allowing $\theta = \mathcal{N}$ if G is vertex-transitive). Then G is transitive on (θ, m) and (\mathcal{N}, m) for $m \leq s$, and one of the following holds:

(a) There are no left or right regular arcs of length greater than s - 1.

(b) s is odd, $\mathcal{O} \neq \mathcal{N}$, and if notation is chosen so that the elements of (\mathcal{O}, s) are right singular, then every regular arc of length greater than s - 1 is in (o, 2n) for some n, and the elements in (m, \mathcal{N}) (resp. (\mathcal{N}, m)) are right (resp. left) singular for $m \geq s$.

The integer s in (2.6) is called the singularity of Γ .

(2.7) Let Γ be a tree, $s \in \mathbb{N}$ and p be a prime. Suppose that the following hold for $\alpha \in \Gamma$:

- (a) G_{α} is finite.
- (b) G_{α} is transitive on all arcs of length s starting at α .
- (c) Stabilizers of arcs of length s are p'-groups.

(d) $|\Delta(\alpha)| = 1 + p^{n_{\alpha}}, n_{\alpha} \ge 1.$

Then $s \in \{1, 2, 3, 4, 5, 7, 9, 13\}$.

Proof. Let T be a Sylow p-subgroup of $G_{\alpha\beta}$, $\beta \in \Delta(\alpha)$, and

$$\gamma = (\alpha, \beta, \alpha_2 \dots \alpha_t)$$

be an arc of length $t \le s - 1$. Then (d) and an easy inductive argument yield $T_{\gamma} \in Syl_{s}(G_{\gamma}),$

and T_{γ} is transitive on $\Delta(\alpha_i) \setminus \{\alpha_{i-1}\}$. This observation enables us to apply the proof in [10].

DEFINITION. An *n*-translation on a line ℓ is a permutation x on ℓ such that $\alpha_i^x = \alpha_{i+n}$ for all $i \in \mathbb{Z}$ and $\alpha_i \in \ell$.

A track is a pair (T, τ) where T is a line and τ is a 2-translation on T.

A K-track is a triple (T, τ, K) where (T, τ) is a track and K is a subgroup of G_{τ} which is normalized by τ .

(2.8) Suppose that Γ is a tree and α and β are adjacent vertices in Γ . Let K be a subgroup in $G_{\alpha\beta}$,

 $x \in N_{G_{\alpha}}(K) \setminus G_{\beta}$ and $y \in N_{G_{\beta}}(K) \setminus G_{\beta}$.

Then there is a K-track (T, xy, K) with $\alpha, \beta \in T$.

The proof is the same as in [4, 2.10].

DEFINITION. Let $\gamma = (\alpha_0, ..., \alpha_n)$ be an arc of Γ and K be a subgroup of G_{γ} . We define $S_{\gamma,K}$ to be the set of subgroups $X \neq 1$ of G_{γ} such that:

- (1) $K \leq N_G(X)$.
- (2) $N_{G}(X)_{\alpha_{n}}$ is a transitive on $\Delta(\alpha_{n})$, and $N_{G}(X)_{\alpha_{n}}$ is transitive on $\Delta(\alpha_{n})$.
- (3) $N_{\mathcal{G}}(X)_{\alpha_i}$ normalizes $\Delta(\alpha_i) \cap \gamma$ for 0 < i < n.
- (4) There exists $x \in N_G(X)$ with $\alpha_o^x = \alpha_n$.

(2.9) Suppose that Γ is a tree, $\gamma = (\alpha_0, \ldots, \alpha_n)$ is an arc of Γ and $X \in S_{\gamma,\kappa}$. Set $N = N_G(X)$, and let $\tilde{\Gamma}$ be the graph with vertex set α_0^N where two vertices α and α' are adjacent, if and only if they have distance n in Γ . Assume that one of the following holds:

- (i) n = 2.
- (ii) $\Delta(\alpha_i) \cap \gamma$ is the set of fixed points of X in $\Delta(\alpha_i)$ for 0 < i < n.

Then the following hold:

- (a) α_0 has the same valency in $\tilde{\Gamma}$ as in Γ .
- (b) N is vertex-transitive on $\tilde{\Gamma}$.

Proof. Let r be the valency of α_0 in Γ . As N_{α_0} operates transitively on $\Delta(\alpha_0)$, we get $n_1, \ldots, n_r \in N_{\alpha_0}$, $n_1 = 1$, and $\gamma_i = \gamma^{n_i}$ such that

$$\gamma_i \cap \gamma_j = \{\alpha_0\} \quad \text{for } i \neq j.$$

Let β be a vertex of $\overline{\Gamma}$ adjacent to α_0 . Then by definition there exists a unique arc $\gamma' = (\alpha_0, \ldots, \beta)$ of length *n* in Γ . It suffices to prove

$$\gamma' \in \{\gamma_1,\ldots,\gamma_r\}.$$

After conjugation with a properly chosen element of $\{n_1^{-1}, \ldots, n_r^{-1}\}$ we may assume that

$$n \geq |\gamma \cap \gamma'| \geq 1.$$

Set $\gamma \cap \gamma' = (\alpha_0, \dots, \alpha_k)$. If (i) holds, there exists $\gamma^g = (\beta \ \beta_1 \ \beta_2), g \in N$, and since N_{β} is transitive on $\Delta(\beta)$, we may assume

 $\gamma \cap \gamma^{g} \supseteq \{\alpha_{1}\}$ and $\alpha_{1} = \alpha_{1}^{g}$.

Hence $\gamma' = \gamma$, since N_{α_1} leaves invariant $\{\alpha_0, \alpha_2\}$.

Now assume that (ii) holds. Then $\Delta(\alpha_k) \cap \gamma = \Delta(\alpha_k) \cap \gamma'$ and $\gamma = \gamma'$.

(2.10) [4, (2.11)]. Suppose that (T, τ, K) is a K-track in a tree Γ and G_{α} is finite for all $\alpha \in T$. For any $U \leq G$ let T_{U} be the set of all fixed points of U in T. Then either $T_{U} = T$ or T_{U} is a finite subarc of T.

3. Point stabilizers with $L_2(2^n)$ -sections

(3.0) Hypothesis. Let Γ be a tree and G be a group of automorphisms of Γ such that for $\alpha \in \Gamma$ the following hold:

- (i) G is edge-transitive on Γ .
- (ii) No proper normal subgroup of G is edge-transitive on Γ .
- (iii) G_{α} is finite.

(iv) $|\Delta(\alpha)| = 2^{n_{\alpha}} + 1$, $n_{\alpha} \ge 1$, and there exists a normal subgroup N_{α} of G_{α} such that $O_2(G_{\alpha}) \le N_{\alpha}$, $N_{\alpha}/O_2(G_{\alpha}) \simeq L_2(2^{n_{\alpha}})$, and N_{α} is transitive on $\Delta(\alpha)$.

Throughout this paper we use the following facts about $L_2(2^n)$ and its operation on $2^n + 1$ symbols.

(3.1) Let S be a Sylow 2-subgroup of N_{α} and K be a complement for S in $N_{N_{\alpha}}(S)$. Then the following hold:

(a) All elements in $S \setminus O_2(G_{\alpha})$ have exactly one fixed point in $\Delta(\alpha)$.

(b) K is cylcic, $|K| = 2^{n_{\alpha}} - 1$, and all elements in $K^{\#}$ fix exactly 2 points in $\Delta(\alpha)$; and $C_{N_{\alpha}}(K) \leq KO_{2}(G_{\alpha})$ if $K \neq 1$.

(c) K operates transitively on $(S/O_2(G_{\alpha}))^{\#}$.

(d) $|N_{N_{\alpha}}(K) / KN_{O_2(G_{\alpha})}(K)| = 2 \text{ if } K \neq 1.$

(e) If z is an involution in $N_{\alpha} \setminus O_2(G_{\alpha})$, then z is conjugate in N_{α} to an element of $N_{N_{\alpha}}(K)$.

(f) If $K \neq 1$ and P is a 2-subgroup of N_{α} , then

$$\langle K, P \rangle O_2(G_\alpha) = N_\alpha \quad or \quad \langle K, P \rangle \leq N_{N_\alpha}(K)O_2(G_\alpha).$$

(g) $N_{\alpha} \cap G_{\beta} = N_{N_{\alpha}}(S^{g})$ for $\beta \in \Delta(\alpha)$ and suitable $g \in N_{\alpha}$.

(h) $N_{\alpha} = \langle S, g \rangle$ for $g \in N_{\alpha} \setminus N_{N_{\alpha}}(S)$.

(3.2.) For $\delta \in \Gamma$ define $L_{\delta} = O^{2'}(G_{\delta})$. Suppose that $\beta \in \Delta(\alpha)$. Then the following hold:

- (a) $L_{\alpha} = N_{\alpha}$, and $G_{\alpha} = G_{\alpha\beta}L_{\alpha}$.
- (b) $G_{\alpha\beta} = (G_{\alpha\beta} \cap O^2(L_{\alpha}))(G_{\alpha\beta} \cap O^2(L_{\beta})).$
- (c) $G_{\alpha\beta} = KO_2(G_{\alpha\beta})$, K a subgroup of odd order.
- (d) If $O_2(G_{\alpha}) \neq 1$, then

 $O_2(G_{\alpha})O_2(G_{\beta}) \in Syl_2(G_{\alpha\beta})$ and $Syl_2(G_{\alpha\beta}) \subseteq Syl_2(G_{\alpha})$.

(e) No non-trivial normal subgroup of L_{α} (resp. $O^2(L_{\alpha})$) is normal in $(L_{\beta}resp. O^2(L_{\beta}))$.

Proof. With the Frattini argument we get $G_{\alpha} = G_{\alpha\beta}N_{\alpha}$, and (2.5) implies

$$G_{\alpha\beta} = (G_{\alpha\beta} \cap N_{\alpha})(G_{\alpha\beta} \cap N_{\beta}).$$

Pick $T \in Syl_2(N_\beta \cap G_{\alpha\beta})$. Since $N_\beta \cap G_{\alpha\beta}$ and $N_\alpha \cap G_{\alpha\beta}$ are 2-closed and normal in $G_{\alpha\beta}$, the structure of Aut $(L_2(2^{n_\alpha}))$ implies $T \leq N_\alpha$, hence (a) and (c) hold.

The normal subgroup $O^2(L_{\alpha})$ is also transitive on $\Delta(\alpha)$, therefore a further application of (2.5) yields (b).

Let X be a normal subgroup of L_{α} (resp. $O^2(L_{\alpha})$) which is also normal in $L_{\beta}(resp. o^2(L_{\beta}))$. Then $X \leq G_{\alpha\beta}$, and (2.1) implies that X fixes every edge and thus every vertex in Γ , so X = 1, and (e) is proved.

In particular, $O_2(G_{\alpha}) = O_2(G_{\beta}) = 1$ or $O_2(G_{\alpha}) \neq O_2(G_{\beta})$. In the second case we may assume $O_2(G_{\alpha}) \not\leq O_2(G_{\beta})$ and get (d) from (a) and (3.1)(c).

We now fix some notation for the remainder of the paper:

(3.3) Notation.
$$Q_{\delta} = O_2(G_{\delta}),$$

$$Z_{\delta} = \langle Z(S) \cap Q_{\delta} / S \in Syl_2(G_{\delta}) \rangle_{\mathfrak{s}}$$

 $L_{\delta} = O^{2'}(G_{\delta})$ and $\overline{L_{\delta}} = L_{\delta} / Q_{\delta}$ for $\delta \in \Gamma$; $|\gamma|$ denotes the length of an arc γ of Γ .

We fix $\alpha \in \Gamma$, $\beta \in \Delta(\alpha)$, $S = O_2(G_{\alpha\beta})$ and a complement K for S in $G_{\alpha\beta}$, and set $K_{\delta} = K \cap L_{\delta}$ for $\delta \in \Gamma$.

 (T, τ, K) is a K-track with $\alpha, \beta \in T$, s is the singularity of Γ , and ℓ and \mathcal{N} are the G-orbits on Γ (allowing $\ell = \mathcal{N}$, if G is vertex-transitive).

We set $T = (\ldots \alpha_{-i} \ldots \alpha_o \ldots \alpha_i \ldots)$, $i \in \mathbb{N}$, $\alpha_o = \alpha$ and $\alpha_1 = \beta$, and we then identify the vertices in T with their indices such that

$$T = (\ldots - i \ldots 0 \ldots i \ldots),$$

 $\alpha = 0, \beta = 1$, and $G_{\alpha_i} = G_i, Z_{\alpha_i} = Z_i, K_{\alpha_i} = K_i, n_{\alpha_i} = n_i$ etc. for $\alpha_i \in T$. For $i \in T$ we define $b_i = \max\{|j-i| / j \in T \text{ and } Z_i \leq G_i\}$, if such a maximum exists, and $b_i = \infty$ otherwise. Note that in the case $b_i < \infty$, $i - b_i$ and $i + b_i$ are not only integers but also vertices in T and $Z_i \leq G_{i-b_i}$ or $Z_i \leq G_{i+b_i}$. Suppose $Z_i \leq G_{i-b_i}$ (resp. G_{i+b_i}); then (3.1)(a) and (3.2) imply $Z_i \leq Q_k$ for $i - b_i < k \leq i$ (resp. $i \leq k < i + b_i$).

- (3.4) Suppose that $n_o > 1$ and $n_1 > 1$. Then
- (a) $T = C_{\Gamma}(K)$ and
- (b) $C_{G_j}(K) \leq G_T$ for $j \in T$.

Proof. Assume that $T \neq C_{\Gamma}(K)$. Then there exists $\varrho \in C_{\Gamma}(K)$ and an arc

$$\gamma = (\varrho, \varrho_1 \dots \varrho_n)$$

such that $\varrho_n \in T$ and $\varrho_{n-1} \notin T$. Therefore $K \leq G_{\gamma}$, and K fixes three vertices in $\Delta(\varrho_n)$, a contradiction to (3.1)(b). Assume that $X = C_{G_j}(K) \leq G_T$. Then there exist $k \in T$ and $k' \in \Delta(k) \cap T$ such that $X \leq G_k$ and $X \leq G_{k'}$. Now (3.1)(b) and (3.2)(a) yield a contradiction.

(3.5) Suppose that $\gamma = (m \dots r)$ is a right (resp. left) singular subarc of T. Then $O_2(G_{\gamma})$ fixes every element in $\Delta(r)$ (resp. $\Delta(m)$).

Proof. If K = 1, then $n_m = n_r = 1$ and $|\Delta(m)| = |\Delta(r)| = 3$, and the assertion is obvious.

Assume that $K \neq 1$ and that γ is right singular. By way of contradiction we may additionally assume that $O_2(G_{\gamma}) \not\leq Q_r$. From (3.1)(a) we get that no element in $O_2(G_{\gamma}) \setminus Q_r$ fixes an element in $\Delta(r) \setminus \gamma$. On the other hand $K \leq G_{\gamma}$ and K has orbits of length 1 and $2^{n_r} - 1$ on $\Delta(r) \setminus \gamma$ (see (3.1)(b)). This yields that G_{γ} is transitive on $\Delta(r) \setminus \gamma$, contradicting the hypothesis.

We will use (3.5) in the following without reference.

4. The case
$$|G_T| = 1$$
 (2)

(4.0) Hypothesis and notation. (3.0) and (3.3) hold, and in addition:

- (a) $n_0 > 1$ and $n_1 > 1$.
- (b) $Z_0 \neq 1 \neq Z_1$.
- (c) s = 1 (2) and $s \ge 5$.
- (d) $|G_T| = 1$ (2).

(e) γ is a regular subarc of maximal length r in T such that $Q = O_2(G_{\gamma}) \neq 1$.

(4.1) Assume that $Q_1 \cap Q_{-1}$ is normal in G_0 . Then the following hold:

(a) $Q_0/Q_1 \cap Q_{-1}$ is elementary abelian of order 2^{2n_1} .

(b) $Q_0 = [Q_0, Q_1][Q_0, Q_{-1}](Q_1 \cap Q_{-1}).$

(c) If Z_0 is a natural module for $\overline{L_0}$ and $[Q_1 \cap Q_{-1}, L_0] \leq Z_0$, then $Q_1 \cap Q_{-1}$ is elementary abelian.

Proof. Set $A = Q_1 \cap Q_{-1}$. We apply (3.2). Since Sylow 2-subgroups of $\overline{L_1}$ (and $\overline{L_{-1}}$) are elementary abelian of order 2^{n_1} , we get $\phi(Q_0) \leq A$ and $|Q_0 / A| \leq 2^{2n_1}$. Hence Q_0 / A is elementary abelian, and the operation of K_1 and K_{-1} on Q_0 / A yields

$$Q_0 \cap Q_1 = A$$
 or $Q_0/A = (Q_0 \cap Q_1) / A \times (Q_0 \cap Q_{-1}) / A$.

In the first case $G_{(-1012)} = K(Q_0 \cap Q_1) = KA$, and (-1012) is not (left-) regular, a contradiction to $s \ge 5$.

Thus the second case holds. If $[Q_1, Q_0 \cap Q_{-1}] \leq A$, then $Q_0 \cap Q_{-1}$ is normal in $\langle Q_1, Q_{-1} \rangle Q_0 = L_0$ and $A = Q_0 \cap Q_{-1} = Q_0 \cap Q_1$, a contradiction. Hence we have

$$[Q_1,Q_0\cap Q_{-1}] \leq A$$

and with the same argument

$$[Q_{-1}, Q_0 \cap Q_1] \not\leq A.$$

Now again the operation of K_1 and K_{-1} implies assertion (b).

Assume now that Z_0 is natural and $[A, L_0] \leq Z_0$. By (1.3),

 $A = C_A(K_0) \times Z_0$ and $\phi(A) = \phi(C_A(K_0))$.

On the other hand $\phi(A)$ is normal in a Sylow 2-subgroup S of L_0 . Thus

$$\phi(A) \cap Z(S) \neq 1,$$

which contradicts $\phi(A) \cap Z(S) \leq \phi(A) \cap Z_0 = 1$.

Without loss of generality we may assume $\gamma = (0...r)$. Note that by (2.10), γ has finite length and subarcs of T of length greater than r have stabilizers of odd order. We will use this last fact without reference.

(4.2) (a) $|Q| = 2^{n_0}$.

(b) $r \equiv 0$ (2), $s - 1 \leq r$, and r = s - 1 or $\tilde{\gamma} \in (o, r)$ ($0 \in o$) for every maximal regular arc $\tilde{\gamma}$ in Γ .

(c) $|N_{\sigma_i}(K) / K| = 2$ and $C_{\sigma_i}(K) \leq K$ for $i \in T$.

(d) For $i \in T$, $x \in N_{G_i}(K) \setminus K$ and $m \in \mathbb{N}$, x interchanges the two vertices i + m and i - m of distance m from i in T.

Proof. We have $Q \leq G_0$ but $Q \cap Q_0 = 1$. The operation of K on Q ((3.1)(c)) yields (a). Assertion (b) follows from (2.6) and the maximality of r, and (c) and (d) are consequences of (3.1) and (3.4).

 $(4.3) \quad b_1 \in \{r/2 - 1, r/2\}.$

Proof. Set $b = b_1 + 1$, and pick $x \in N_{G_1}(K) \setminus K$. Then $Z_1^x = Z_1$, and by (4.1)(d),

$$C_T(Z_1) = (-(b-2)...b).$$

Therefore Z_1 is in G_b but not in Q_b , and the maximality of r yields

$$|C_T(Z_1)| = 2b - 2 \le r$$
 and $b_1 \le r/2$.

Now assume r/2 > b. For $\tau^* \in \langle \tau \rangle$ with $1^{\tau^*} = 2b - 1$ we get

$$C_T(Z_1^{*}) = (b \dots 3b - 2)$$

and $[Q, Z_1^{r^*}] = 1$, as 2b - 1 < r. Hence $\langle Z_1, Z_1^{r^*}, K \rangle \leq N_o(Q) = N$, and N_b operates transitively on $\Delta(b)$. We choose $z \in Z_1 \setminus Q_b$. From (3.1)(e) we get that z normalizes K^{u} for suitable $u \in N_b$. Together with (3.1)(a) and (3.4)(a) this implies that

$$\gamma^* = (r^{uz} \dots (b+1)^{uz} \ b \ (b+1)^u \dots r^u)$$

or

$$\gamma^{**} = (r^{u} \dots (b+1)^{u} b (b+1)^{uz} \dots r^{uz})$$

is a subarc of T^u . As γ^* and γ^{**} are stabilized by K^uQ , the maximality of r implies $|\gamma^*| = |\gamma^{**}| = 2(r-b) \le r$ and $r/2 \le b$, a contradiction.

(4.4) $b_0 \in \{r/2 - 2, r/2 - 1, r/2\}.$

,

Proof. Set $b = b_0 + 2$. Then $C_T(Z_2) = (-(b-4)...b)$, and we get the assertion with the same argument as in (4.3).

(4.5). One of the following holds:

(a) $[Z_1, Z_{b_1+1}] \leq Z_1 \cap Z_{b_1+1}.$

(b) r = s - 1, $[Z_0, Z_{b_0}] \neq 1$, and b_0 is in the same G-orbit as 0 (i.e., (a) holds with the roles of 0 and 1 interchanged).

Proof. Set $h = b_1 + 1$, $R = [Z_1, Z_h]$, $X = [Z_0, Z_{b_0}]$, and assume that (a) does not hold. Then $R \neq 1$, $b_h = b_0 < b_1$, and h is in the same G-orbit as 0, in particular $b_1 \equiv 1$ (2).

Suppose that b_0 is in the same G-orbit as 0. Then $Z_0 \neq Z(L_0)$ and $X \neq 1$. From (4.3) and (4.4) we get

(1) $r/2 - 2 \le b_0 = b_1 - 1 < r/2$.

As $X \leq Z_0 \cap Z_{b_0}$ and $|Z_0| = |Z_{b_0}|$, (1.3) implies

(2) $Z_0/Z(L_0)$ is a natural module for $\overline{L_0}$.

Assume $r \le s$. Then (4.2)(b) yields r = s - 1, and assertion (b) follows. Therefore we may assume

(3) s < r.

Assume $Z(L_h) \neq 1$. We have $[Z_1, Z(L_h)] = 1$ and $Z(L_h) \leq Z_{h+1} \cap Z_{h-1}$. Hence by (1), $Z(L_h)$ stabilizes the subarc $(0 \dots 2h)$ of length r in T, and (4.2)(a) implies $Z(L_h) = Q$ and $|Z(L_h)| = 2^{n_0}$. Together with (2) we get

$$|Z(S) \cap Z_0| = 2^{2n_0}$$
 for $S \in Syl_2(G_0 \cap G_1)$.

On the other hand (3.2)(e) implies $Z(L_0) \cap Z(L_1) = 1$, hence

$$|Z_1| \ge 2^{3n_0}$$
 and $|Q_h \cap Z_1| \ge 2^{2n_0}$.

Thus $Q_h \cap Q_{-(h-2)} \cap Z_1 \neq 1$, and $Q_h \cap Q_{-(h-2)} \cap Z_1$ stabilizes (-(h-1)...h+1) of length r, where h+1 is odd. This contradicts (3) and (2.6). Since h is in the same G-orbit as 0, we have shown together with (2):

(4) $Z(L_0) = 1$, and Z_0 is a natural module for $\overline{L_0}$.

The subgroup X stabilizes $(-b_0 \dots 2b_0)$ of length $3b_0$, and the maximality of r implies $3b_0 \leq r$. From (1) and (3) we get

(5)
$$b_0 = r/2 - 2$$
, $b_1 = r/2 - 1$ and $r = 8$ or 12,

or

(6) $b_0 = 2, b_1 = 3$ and r = 6.

As Z_0 is a natural module and $Z_0 \le Q_1$, (3.2)(e) yields $C_{L_i}(Q_i) \le Q_i$ for i = 0, 1. Therefore we can apply (1.11). If (1.11)(d) holds, then $|L_0| = 2^{3n_0}$ and s < 5, a contradiction. Thus we get together with (4):

(7) $Z_1 = Z(L_1)$ and $|Z_1| = 2^{n_0}$.

Now (7) and (4) imply $X = C_{z_0}(Z_{b_0}) = Z_1 = C_{z_{b_0}}(Z_0) = Z_{b_0-1}$, and the operation of $\langle \tau \rangle$ yields $b_0 = 2$. Together with (5) we have proved:

(8)
$$b_0 = 2, b_1 = 3, r = 6 \text{ or } b_0 = 2, b_1 = 3, r = 8$$

Set $V = \langle Z_0^{\sigma_1} \rangle$ and $A = Q_1 \cap Q_{-1}$. From (8) we get $Z_0 \leq A$ and $V \leq Q_1$, and from (4) and (7), $[V, Q_1] = Z_1 = Z(L_1) \leq Z_0$. The operation of K_0 yields

 $|VQ_0/Q_0| = 2^{n_0}$ and $\langle V, V^{\tau^{-1}} \rangle Q_0 = L_0$.

We now apply (4.1). Then $Q_0 \cap Q_1 \leq VA$, and $V' \leq Z_0$ and (1.3) imply that Q_0/A is direct sum of natural modules for $\overline{L_0}$. Let d be an element of order three in L_0 ; then (1.3),(4) and (4.1) yield:

(9) Q_0/A is direct sum of natural modules for $\overline{L_0}$, $|Q_0/A| = 2^{2n_1}$, and $A = C_{Q_0}(d) \times Z_0$.

Assume r = 6; then $|L_0|_2 = 2^{3n_0}2^{2n_1}$ and $Q_1 \cap Q_{-1} = Z_0$. This implies (by (9)) that $C_{Q_0}(d) = 1$, and, from (1.4), Q_0 is elementary abelian and a direct sum of natural modules. But then $Q_0 = Z_0$ and $b_0 = 1$ which contradicts (8).

Note that we got this last contradiction with the help of (1.4) where $n_0 > 1$ is assumed. We will see in Section 5 that for $n_0 = 1$ another possibility arises which does not lead to a contradiction.

We may now assume r = 8. Set $L = \langle V^{r^{-1}}, V \rangle$, then $LQ_0 = L_0$ and $[A, L] = Z_0$. Hence $[O^2(L_0), A] = Z_0$, and (4) and (9) imply

$$A = C_{Q_0}(K_0) \times Z_0.$$

Set $D = C_{Q_0}(K_0)$ and pick $t_0 \in N_{O^2(L_0)}(K) \setminus G_1$ and $t_1 \in N_{L_1}(K) \setminus G_0$. Then t_0 normalizes K_0 and therefore D; hence

$$[D, t_0] \leq [D, O^2(L_0)] \cap D = Z_0 \cap D = 1.$$

According to (2.8) and (3.4) we may assume $t_0t_1 = \tau$ and $t_1^2 \in G_T$. Thus τ normalizes $D \cap D^{t_1}$, and $|G_T| \equiv 1$ (2) implies $D \cap D^{t_1} = 1$. On the other hand r = 8 and $Q^{r^{-1}}$ and $Q^{r^{-2}}$ are contained in A. But the K-invariant subgroups of A of order 2^{n_0} are in D or Z_0 . In the second case they are L_0 -conjugates of Z_1 (by (4)). Hence $b_1 = 3$ implies

$$< Q^{r^{-1}}, Q^{r^{-2}} > \le D.$$

It follows that $Q^{r^{-1}t_1^{-1}} = Q^{r^{-2}}$ and $Q^{r^{-1}} \le D \cap D^{t_1}$, a contradiction.

From now on we may suppose that b_0 is in the same G-orbit as 1. (4.3) and (4.4) yield:

(10)
$$b_0 = r/2 - 2$$
 and $b_1 = r/2$.

In particular Z_1 stabilizes the arc (-(h-2)...h) of length r. Then (4.2)(a) implies $|Z_1| = 2^{n_0}$, and K operates transitively on $Z_1^{\#}$. We get:

(11)
$$Z_1 = Z(L_1), |Z_1| = 2^{n_0} \text{ and } X = 1.$$

Assume that $r \le s$. Then there exists a maximal regular subarc of T starting at 1. So we are allowed to interchange the rôles of 0 and 1, and from (4.3), we get $b_0 \ge r/2 - 1$, a contradiction to (10). We have shown:

(12)
$$s < r$$
.

Assume that $b_1 = 3$. Then (10) yields $b_0 = 1$ and r = 6. Together with (12) and (2.6) we get $|L_0|_2 = 2^{3n_0} 2^{2n_1}$. In addition, by (4.1) we have

$$L_1 = \langle Z_0, Z_2 \rangle Q_1, |Q_1/Q_0 \cap Q_2| = 2^{2n_0}, Q_1 = (Z_0 \cap Q_1)(Z_2 \cap Q_1)(Q_0 \cap Q_2),$$
$$|Q_0 \cap Q_2| = 2^{n_0}2^{n_1} \text{ and } Z_0 \cap Z_2 = Z_1.$$

This yields $|Q_0 / Z_0| = 2^{n_1}$. On the other hand

 $Q_0 = C_{Q_0}(K_1)Z_0$ and $[L_0, Q_0] \leq Z_0$.

As $K = K_1 K_0$ normalizes $C_{Q_0}(K_1)$, this implies $Q_0 = C_{Q_0}(K)Z_0$, contradicting (4.2)(c). So we have shown:

(13) $b_1 \ge 5$.

Pick $y \in Z_k$ and $x \in Z_1$, and let k be minimal in $(-(b_1 - 5)...3)$ such that k is fixed by y. Then (2.6) implies that x stabilizes

$$((-(b_1-5))^{y^{-1}}\dots k\dots 1), \text{ if } k \leq 1,$$

and

$$(1 \dots k (k-1)^{y^{-1}} \dots (-(b_1-5))^{y^{-1}}), \text{ if } k > 1,$$

and that [x, y] and therefore R stabilizes $(-(b_1 - 5)...h + b_0)$. Hence $R \le Q_1$, since $b_1 \ge 5$, and (1.3), (11) and (3.2)(e) imply that Z_h is a natural module for $\overline{L_h}$. Then $Z_h = Z_{h-1}Z_{h+1}$, and Z_{h-1} and Z_{h+1} stabilize the vertex 2. On the other hand $h = b_0 + 3$ by (10), and $Z_h \le Q_3$, a contradiction to (3.1)(a).

(4.6) Suppose that $1 \neq [Z_1, Z_{b_1+1}] \leq Z_1 \cap Z_{b_1+1}$. Then one of the following holds.

- (a) $b_0 = b_1 = 1$, r = s 1 = 4 and:
- (a1) Q_0 and Q_1 are elementary abelian of order 2^{3n_0} ;
- (a2) $|Z(L_0)| = |Z(L_1)| = 2^{n_0} and n_0 = n_1;$
- (a3) $Q_i/Z(L_i)$ is a natural module for $\overline{L_i}$ (i = 0, 1).
 - (b) $b_0 = 3$, $b_1 = 2$, r = s 1 = 6, $n_0 = 3n_1$ and:
- (b1) $Z_0 = Z(L_0), |Z_0| = 2^{n_1}, and Q_0$ is special of order 2^{9n_1} ;

(b2) Z_1 is a natural module for $\overline{L_1}$, Q_1/Z_1 is special, and $(Q_1/Z_1)/Z(L_1/Z_1)$ is a direct sum of three natural modules for $\overline{L_1}$.

- (c) $b_0 = 3$, $b_1 = 2$, r = s 1 = 6, $n_0 = n_1$ and:
- (c1) $Z_0 = Z(L_0), |Z_0| = 2^{n_0}, and Q_0$ is special of order 2^{5n_0} ;

(c2) Q_1 is special, and Z_1 and $(Q_1/Z_1)/Z(L_1/Z_1)$ are natural modules for $\overline{L_1}$.

Proof. Set $h = b_1 + 1$ and $R = [Z_1, Z_{b_1+1}]$. Then R is contained in $Z_1 \cap Z_{b_1+1}$ and stabilizes $\gamma' = (-(h-2)...(h+b_h))$. The length of γ' is $2b_1 + b_h$, and the maximality of r implies:

 $(1) \quad 2b_1+b_h \leq r.$

First suppose that h is in the same G-orbit as 1. Then (1) and (4.3) imply:

(2) $b_1 = 2$ and r = 6, and γ' is a maximal regular subarc of T.

Now (4.2)(b) yields r = s - 1, since γ and γ' are not in the same set (ℓ, r) (resp. (\mathcal{N}, r)), and $|Q_2| = 2^{2n}2^{3n}$. From $[R, Z_1] = 1$ we know that R is central in a Sylow 2-subgroup of $G_2 \cap G_3$ and therefore is contained in Z_2 . Pick

$$t \in N_{G_2}(K) \setminus K.$$

Then (4.2)(d) and (3.1) imply R' = R and $R \le Z(L_2)$. Hence $Z(L_3) \cap R = 1$ ((3.2)(e)), and from $[R, Z_1] = [R, Z_3] = 1$, (1.3) and (1.11) we derive that either $Z_2 = Z(L_2)$ or $Z_i/Z(L_i)$ is a natural module and $|Z_i| = 2^{3n_0}$ for i = 2, 3. In the second case $n_0 = n_1$, $Q_2 = Z_2Z_1Z_3$ and $Z_2 = RZ(L_1)Z(L_3)$. It follows that $[Z_2, Q_j] \leq Z(L_j)$ for j = 1, 3, and $Z(L_1)Z(L_3)$ is a normal subgroup of L_2 . Now (1.5) implies that $Z_1Z_3/Z(L_1)Z(L_3)$ is elementary abelian which contradicts $[Z_1, Z_3] = R \not\leq Z(L_1)Z(L_3)$.

Thus we have shown $Z_2 = Z(L_2)$ and $Z(L_3) = 1$ by (3.2)(e). Hence Z_3 is a natural module for $\overline{L_3}$. In particular, $Z_3 = Z_2Z_4$ and $b_2 = 3$. Conjugation with τ^{-1} yields:

(3) $b_0 = 3$, $b_1 = 2$, r = s - 1 = 6, $Z_0 = Z(L_0)$, $|Z_0| = 2^{n_1}$, and Z_1 is a natural module for $\overline{L_1}$.

Since s = 7, the order of a Sylow 2-subgroup of L_0 is:

(4) $|L_0|_2 = 2^{3n_0} 2^{3n_1}$.

Set $V = \langle Z_1^{G_0} \rangle$. Then (3) implies

$$V' = Z_0, \quad V/Z_0 \le Z(Q_0/Z_0), \quad Q_1Z_4 \in Syl_2(L_1)$$

and

$$< Z_{-2}, Z_{4} > Q_{1} = L_{1}.$$

We get

$$[Z_4, Q_1 \cap Q_2] \le [V^r, Q_1 \cap Q_2] \le Z_2$$

and

$$[< Z_4, Z_{-2} > , Q_2 \cap Q_0] \le Z_1.$$

Therefore $Q_0 \cap Q_2$ is normal in L_1 , and by (4.1) and (1.3), $Q_1/Q_0 \cap Q_2$ has order 2^{2n_0} and is direct sum of natural modules for $\overline{L_1}$, in particular $n_1 \leq n_0$.

As we have seen above, $[O^2(L_1), Q_0 \cap Q_2] \leq Z_1$; on the other hand, nontrivial elements of odd order in $L_2(2^n)$ act fixed-point-freely on natural modules ((1.3)). This yields

$$C_{Q_1}(K_1) \leq Q_0 \cap Q_2, \quad Q_0 \cap Q_2 = C_{Q_1}(K_1) \times Z_1 \text{ and } |C_{Q_1}(K_1)| = 2^{n_0}.$$

Set $D = C_{Q_1}(K_1)$. Then $Q_0 = VD$, and with the same arguments as in (4.1)(c) we conclude that D is elementary abelian. Hence:

(5) Q_0 is special, $n_1 \le n_0$, and $(Q_1/Z_1)/Z(L_1/Z_1)$ is direct sum of natural modules for $\overline{L_1}$.

Since $Q_0 \cap Q_2$ has order $2^{n_0}2^{2n_1}$ and stabilizes (-1...3), a K-invariant subgroup of order 2^{n_0} stabilizes the maximal regular subarc (-2...4) in T. This subgroup must be D. In particular we have [D, K] = D and therefore $[D, K_0] = D$, since K_1 centralizes D.

Let N be a normal subgroup of L_0 in Q_0 and $Z_0 < N$, and let t be an element in $N_{L_0}(K) \setminus G_1$. If $D \cap N \neq 1$, then the operation of K_0 on D yields $D \leq N$ and $[D, Q_1] = Z_1 \leq N$. Hence $DV = Q_0 = N$.

If $|N/Z_0| > 2^{2n_0}$, then $|Q_0/N| < 2^{2n_1} \le 2^{2n_0}$, and (1.2) implies $[Q_0, L_0] \le N$. Thus $D = [D, K_0] \le N$ and $N = Q_0$.

Now let N/Z_0 be a minimal normal subgroup of G_0/Z_0 . Since $D \leq [Q_0, L_0]$, we get with the above argument $[Q_0, L_0] = Q_0$ and $L_0 = L'_0$. If N/Z_0 is central in L_0/Z_0 , then the 3-subgroup-lemma shows $[N, L_0] = 1$, a contradiction.

Now assume that N/Z_0 is not central. Then either $N = Q_0$ or N/Z_0 and Q_0/N are non-central factors of L_0 . In the second case (4), (5) and (1.2) imply $n_0 = n_1$.

Assume the first case and $n_1 \neq n_0$. Then (5) implies

$$[Q_0, Q_1, Q_1, Q_1, Q_1] = 1.$$

Hence, from (1.13), we get $[Q_0, Q_1, Q_1, Q_1] \neq 1$ and $n_0 = 3n_1$. Together with (5) and (4) this yields assertion (b).

Assume $n_1 = n_0$. Then (5), (4) and (1.5) imply assertion (c).

Suppose now that h is in the same G-orbit as 0. Then (1), (4.3) and (4.4) yield:

(6)
$$b_1 = r/2 - 1$$
, $b_0 \le 2$ and $r = 4$ or 8.

Assume that r = 8, then $b_0 = 2$ (by (4.4)), $\gamma' = (-2...6)$ and $R^r = Q$. Therefore Z_2 is contained in G_4 but not in Q_4 , and $[Z_2, Z_4] = R$. On the other hand, (4.2)(d) yields $\gamma' = \gamma'$ and $R^r = R$ for $t \in N_{G_2}(K) \setminus K$. This implies

 $R \leq Z(L_2)$ and $[Z_2, L_2] \leq Z(L_2)$.

But then Z_2 centralizes $O^2(L_2)Q_2 = L_2$, and we get $[Z_2, Z_4] = 1$, a contradiction.

Assume that r = 4. If $b_0 = 2$, then Z_2 stabilizes γ . The action of K on Z_2 and (4.1)(a) imply $Q = Z_2$ and $|Z_2| = 2^{n_0}$. In particular Z_2 is central in L_2 and R = 1, a contradiction. Together with (6) we have shown:

(7) $b_0 = b_1 = 1$ and r = 4.

From $[R, Z_1] = [R, Z_2] = 1$ and (1.3) we get that $n_0 = n_1$ and that $Z_i/Z(L_i)$ is a natural module for $\overline{L_i}$ (i = 1, 2). Set $\{1, 2\} = \{i, j\}$ and $n = n_0$, then we have $|L_i|_2 = 2^{4n}$, since s = r + 1 = 5. Now (1.2) implies

 $[Q_i, L_i] = Z_i$ and $Q_i = C_{Q_i}(K_i)Z_i$;

in particular, $|C_{Q_i}(K_i)| = 2^n$ and $C_{Q_i}(K_i) \cap Z(L_i) \neq 1$. On the other hand (3.2)(e) yields $Z(L_i) \cap Z(L_j) = 1$, and $Z(L_i)$ is a subgroup of Z_j . Hence the elements of K_j operate fixed-point-freely on $Z(L_i)$. Therefore

$$|Z(L_i)| = 2^n$$
 and $C_{Q_i}(K_i) = Z(L_i)$,

and assertion (a) follows (after conjugation with τ^{-1}).

(4.7) Suppose that $[Z_1, Z_{b_1+1}] = 1$. Then one of the following holds:

(a) $b_1 + 1$ is in the same G-orbit as 0.

(b) r = s - 1, $[Z_0, Z_{b_0}] = 1$, and b_0 is in the same G-orbit as 1.

Proof. Set $b = b_1 + 1$ and assume that 1 is in the same G-orbit as b (we write $1 \sim b$). Then we have $Z_1 = Z(L_1)$ and $Z_b = Z(L_b)$, and (4.2)(b) and (4.3) imply that $b_1 \geq 2$, since b is odd. Therefore we get $Z_1 \leq Z_0$, and Z_1 stabilizes $(-b_0 \dots b)$ in T; in particular:

(1) $b_0 \leq b-2$.

First assume that $b_1 = r/2$. Then Z_b stabilizes the arc $\gamma' = (1...(r+1))$ in T of length r which has to be a maximal regular subarc of T. Now (2.6) and (4.2) imply r = s - 1. This allows us to interchange the rôles of 0 and 1 (and γ and γ').

Set 0 = 1' and 1 = 0'. If $[Z_{1'}, Z_{b_1'+1'}] = 1$, we get assertion (b), or $b_{1'} + 1' \sim 1'$. In the second case we get as above $Z_{1'} = Z(L_{1'})$, a contradiction to (3.2)(e).

If $[Z_{1'}, Z_{b_1,+1'}] \neq 1$, we can apply (4.5) and (4.6) and get one of the following possibilities:

- (2) $[Z_{0'}, Z_{b_{0'}+0'}] \neq 1;$
- (3) b_0 , is odd.

Case (2) contradicts $[Z_1, Z_{b_1+1}] = 1$, and since $b_{0} + 1$ is odd, case (3) can not occur.

Now we may assume that $b_1 = r/2 - 1$ and $b_0 = r/2 - 2$. Choose $\tau' \in \langle \tau \rangle$ such that $2^{\tau'} = r - 2$. Then QZ_b centralizes $E_b = \langle Z_2, Z_2^{\tau'} \rangle$, and $\overline{E_b} = \overline{L_b}$. As K normalizes E_b , we have $K \cap E_b = K_b$. Thus K_b centralizes QZ_b .

On the other hand QQ_0 is a Sylow 2-subgroup of G_0 and Z_bQ_1 is a Sylow 2-subgroup of G_1 . The structure of Aut $(L_2(2^n))$ implies

 $[L_0, K_b] \le Q_0$ and $[L_1, K_b] \le Q_1$.

Hence $L_0 = C_{L_0}(K_b)Q_0$ and $L_1 = C_{L_1}(K_b)Q_1$, and, by (2.1), $C_o(K_b)$ is edge-transitive on Γ and $K_b = 1$, contradicting $n_1 > 1$.

- (4.8) Suppose that $[Z_1, Z_{b_1+1}] = 1$. Then one of the following holds.
 - (a) $b_1 = 1, b_0 = 2, r = s 1 = 4$ and:

(a1) $Z_0 = Z(L_0)$, $|Z_0| = 2^{n_0}$, Q_0 is special, and Q_0/Z_0 is a direct sum of two natural modules for $\overline{L_0}$;

(a2) $2n_0 = n_1;$

(a3) Q_1 is elementary abelian of order 2^{4n_0} , and Q_1 is an orthogonal module for $\overline{L_1}$.

(b) Assertion (a) holds with the rôles of 0 and 1 interchanged.

Proof. Set $b = b_1 + 1$. Then $Z_b = Z(L_b)$, and (4.7) implies that b is in the same G-orbit as 0 or that r = s - 1 and that we are allowed to interchange the rôles of 0 and 1. Therefore we may assume without loss that b is in the same G-orbit as 0. This yields:

(1) $Z_0 = Z(L_0)$.

Now (3.2)(e) implies $Z_0 \leq Z_1$, otherwise Z_1 would be central in L_1 and $Z_0 \cap Z_1$ would be central in $\langle L_0, L_1 \rangle$. From (4.3) and (4.4) we get:

(2) $b = b_0 = r/2$ and $b_1 = r/2 - 1$, $Q = Z_b$, and Z_0 is elementary abelian of order 2^{n_0} .

Set $H = Z_1 \cap Q_b$. We first assume that $H \not\leq Q_{b+1}$. Since $Z(L_{b+1}) = 1$ (see (1) and (3.2)(e)), we have $R = [H, Z_{b+1}] \neq 1$. Let a = [h, z] be a non-trivial element in R such that $h \in H$ and $z \in Z_{b+1}$. We may assume that z does not fix 0.

If $b_1 \ge 4$, then Z_1 fixes -1, and $(-1)^{z^{-1}}$ has distance two or four from 1. Therefore $s \ge 5$ and (2.6) imply that Z_1 fixes $(-1)^{z^{-1}}$, and we conclude that *a* stabilizes $\gamma' = (-1...(b+b_1+1))$. But by (2), the length of γ' is greater than *r*, a contradiction. Together with (2) we have shown:

(3)
$$b_1 = 1$$
, $b_0 = 2$ and $r = 4$; or $b_1 = 3$, $b_0 = 4$ and $r = 8$.

Assume that r = 8. Then $b_1 = 3$, and with the same argument as above R stabilizes (0...8) of length r. This implies $R = Q = Z_4$, and $|R| = 2^{n_0}$. From (1), (1.3) and $Z(L_5) = 1$, we get $Z_5 = Z_4Z_6$. Now, conjugation with τ^{-2} yields $Z_1 = Z_0Z_2$. Hence (3) implies $Z_2 = H \leq Q_5$, a contradiction to the assumption $H \leq Q_{b+1}$.

Now assume r = 4. We want to show assertion (a). Since s = 5, we get

 $|L_0|_2 = 2^{2n_0} 2^{2n_1}.$

Additionally we have $Z_2Q_0 \in Syl_2(L_0)$ and $Z_2 \cap Q_0 = 1$. Therefore we get

$$Q_1 = Z_0 \times Z_2 \times (Q_0 \cap Q_2).$$

Assume that $\phi(Q_1) \neq 1$. Then $\phi(Q_0 \cap Q_2) \neq 1$, and $\phi(Q_0 \cap Q_2) \leq Q_{-1} \cap Q_3$, since $\overline{L_1}$ has elementary abelian Sylow 2-subgroups. Thus $\phi(Q_0 \cap Q_2)$ stabilizes (-2...4) of length 6, contradicting r = 4.

We have shown that Q_1 is elementary abelian of order $2^{2n}2^{n}$. Now (1.2) implies:

(4) $n_1 \leq 2n_0$.

Since Q_1 is abelian, Q_0/Z_0 is, by (1.3) and (4.1), a direct sum of k natural modules for $\overline{L_0}$, and (4) yields k = 1 or 2.

If k = 1, then (1.5) and $n_0 > 1$ imply that Q_0 is abelian. It follows that

$$Q_1 \cap Q_0 = Z(L_0)$$

by (1). This contradicts (4.1). Hence k = 2, and from (4) we get $n_1 = 2n_0$. In particular Q_1 is a module of order 2^{4n_0} . Thus $[Q_1, Q_0, Q_0] \neq 1$, (1.1) and (1.3) imply that Q_1 is an orthogonal module for $\overline{L_1}$.

From now on we assume that $H \leq Q_{b+1}$. Then H stabilizes (-(b-2)...(b+2)) of length r. Hence (2), (1.3) and the operation of K on H imply:

(5) $H = Z_2$, and $Z_1 = Z_0Z_2$ is direct sum of natural modules for $\overline{L_1}$, in particular $n_1 \le n_0$.

We have $K = K_0 K_1$ (see (3.2)). On the other hand

 $Z_bQ_0 \in Syl_2(L_0)$ and $[K_b, Z_b] = 1$.

The structure of Aut($L_2(2^n)$) yields $[K_b, L_0] \leq Q_0$. This implies

$$K_b \cap K_0 = 1$$
 and $|K_b K_0| = |K_0|^2 \le |K_1 K_0| = |K|$.

Hence (5) and (3.1) yield:

(6) $n_1 = n_0$, and Z_1 is a natural module for $\overline{L_1}$.

Assume $b_1 = 1$. Then (6) yields $[Z_1, Q_0] = Z_0$. Since Z_1 is not in Q_0 and K operates on Z_1 , we get $[O^2(L_0), Q_0] = 1$ and $Z_1 = (Z_1 \cap O^2(L_0))Z_0$, which implies $[Z_1, Q_0] = 1$, a contradiction. Since b_1 is odd, we have shown:

(7) $b_1 \ge 3$.

Set $V_k = \langle Z_{k+1}^{L_k} \rangle$ for $k \in T$. Then (7), (2.6) and $s \ge 5$ yield

$$V_0 \leq Q_0 \cap Q_1,$$

and (6) implies $[V_0, Q_0] = Z_0$. In particular V_0 and V_{b-2} are abelian. The transitivity of L_0 on $\Delta(0)$ and (3.1) imply

$$Z_1^{L_0} = Z_1 \cup Z_{-1}^{Z_b},$$

since $Z_bQ_0 \in Syl_2(L_0)$. Set $R = [Z_{-1}, Z_b]$; then $V_0 = RZ_1Z_{-1}$. We get

 $R \leq V_0 \cap V_{b-2},$

since Z_b is contained in V_{b-2} , and $[R, Z_b] = 1$, since V_{b-2} is abelian. Thus, by (1.3), $V_0/C_{V_0}(O^2(L_0))$ is a natural module for $\overline{L_0}$.

Assume that $R_0 = C_R(O^2(L_0)) \not\leq Z_0$. Since R_0 is contained in V_{b-2} , it fixes b. Pick

 $t \in N_{o^2(L_0)}(K_0) \setminus K_0.$

By (4.2), R_0Z_0 stabilizes $(b^t \dots b) = (-b \dots b)$ of length r and $|R_0Z_0| = 2^{n_0}$. But now (2) yields $R_0 \leq Z_0$, a contradiction. We have shown:

(8) $V_0 = Z_1 Z_{-1}$ and $|V_0| = 2^{3n_0}$.

 V_0 stabilizes (-(b-2)...(b-2)) and $R \neq 1$ stabilizes

$$\hat{\gamma} = (-(b-2)\dots 2(b-2)).$$

The maximality of r and (2) yield $3(b-2) \le r$ and:

(9) $r \leq 12$.

Assume r = 12. Then $\hat{\gamma}$ has length r, and $R = Z_2$. Since $Z_5 = Z_4Z_6$, we get $[Z_{-1}, Z_5] = Z_2$. Conjugation with τ yields:

(10) $[Z_j, Z_{j+6}] = Z_{j+3}$ for all $j \in T$ which are in the same G-orbit as 1.

Next we want to show that (10) holds for an arbitrary arc $\lambda = (\delta_{-3} \dots \delta_3)$ of length 6 in Γ , where δ_{-3} is in the same G-orbit as 1. It suffices to show that λ is conjugate to a subarc of T. Applying (2.6) we may assume that

$$<\delta_{-2}\ldots\delta_3> = (0\ldots5)$$

But then Q fixes (0...5) and operates transitively on $\Delta(0) \setminus \{1\}$. Hence λ is conjugate to a subarc of T. We have shown:

(11) $[Z_{\delta_{-3}}, Z_{\delta_3}] = Z_{\delta_0}$ for all arcs $(\delta_{-3} \dots \delta_0 \dots \delta_3)$ of length 6 in Γ , where δ_{-3} is in the same G-orbit as 1.

Pick $z \in Z_0$ and $z' \in Z_{10}$. Then z fixes 6, but not 7, and z' fixes 4 but not 3. Hence $(10^z \dots 6 \dots 10)$ and $(0^z \dots 4 \dots 0)$ are arcs of length 8, and by (11),

$$[Z_9, Z_9^z] = Z_6$$
 and $[Z_1, Z_1^{z'}] = Z_4$.

Since Z_1 and Z_9 are elementary abelian and contain Z_0 and Z_{10} respectively, the elements $(zz')^2$ and $(z'z)^2$ are involutions. But then

$$(zz')^2 = (z'z)^2 \in Z_4 \cap Z_6,$$

and $Z_4 \cap Z_6$ is a non-trivial subgroup stabilizing (-2...12), a contradiction to the maximality of r. We have shown (together with (2), (7) and (9)):

(12) $b_0 = 4, b_1 = 3$ and r = 8.

From (5), (6) and (8) we get $V_0 = Z_{-1}Z_1$ and $V_2 = Z_1Z_3 = Z_1Z_4$. Thus we have

 $V_2 \cap Q_0 = Z_1 \leq V_0$ and $[V_2, Q_0 \cap Q_1] \leq V_2 \cap Q_0 \leq V_0$.

In particular, $[Q_1 \cap Q_{-1}, \langle V_2, V_2^{-2} \rangle] \leq V_0$, and $Q_1 \cap Q_{-1}$ is normal in G_0 . Hence (4.1) and (1.3) imply that $Q_0/Q_1 \cap Q_{-1}$ is a natural module for $\overline{L_0}$ (since $n_0 = n_1$) and

$$Q_1 \cap Q_{-1} = C_{Q_0}(K_0)V_0.$$

Pick $t \in N_{o^2(L_0)}(K) \setminus K$. Then t normalizes K_0 and every subgroup of $C_{Q_0}(K_0)$ which contains Z_0 , since $[C_{Q_0}(K_0), t] \leq C_{Q_0}(K_0) \cap V_0 \leq Z_0$.

Assume $|C_{Q_0}(K_0)| \ge 2^{2n_0}$. (4.2)(d) implies that $C_{Q_0}(K_0) \cap L_4$ stabilizes (-4...4) of length r. Hence $C_{Q_0}(K_0) \cap L_4 > Z_0$ would contradict (4.2)(a).

So we may assume that there exists $i \in \{2, 3\}$ such that $L_i \cap C_{\mathcal{Q}_0}(K_0) \leq Q_i$. Then

$$(C_{Q_0}(K_0) \cap L_i)Q_i \in Syl_2(L_i), \quad L_i = C_{L_i}(K_0)Q_i \text{ and } Z_0 \leq Q_i \cap C_{Q_0}(K_0).$$

If i = 3, then $C_{\sigma}(K_0)_3$ and $C_{\sigma}(K_0)_4$ operate transitively on $\Delta(3)$ and $\Delta(4)$ respectively, since $Z_0Q_4 \in Syl_2(L_4)$. Hence (2.1) and $K_0 \neq 1$ imply i = 2.

Let x be an element in $N_{L_2}(Z_0)$. If $x \notin G_0$, then the arc joining 0 and 0^{*} has length $n \leq 4$. Since $s \geq 5$, we may assume that $0^* \in T$. But then Z_0 stabilizes a subarc of length r + n in T, a contradiction to the maximality of r.

So we have shown that $N_{L_2}(Z_0) \leq G_0$. On the other hand $C_{Q_0}(K_0) \cap Q_2 = Z_0$, because otherwise either $C_{Q_0}(K_0) \cap L_4 > Z_0$ or $C_{Q_0}(K_0) \cap L_3 \leq Q_3$, con-

tradicting what we have already proved. Hence we get $C_{L_2}(K_0) \leq N_{L_2}(Z_0) \leq G_0$, a contradiction to $C_{L_2}(K_0)Q_2 = L_2$.

Now assume $|C_{Q_0}(K_0)| = 2^{n_0}$. Then $Q_1 \cap Q_{-1} = V_0$, and we get $|Q_0| = 2^{5n_0}$, and, by (1.3) and (1.4), $Q'_0 = Z_0 = \phi(Q_0)$. In particular, $Q_0/Z_0 = W_1/Z_0 \times V_0/Z_0$, where W_1/Z_0 is a natural module for $\overline{L_0}$ and $W_1 \leq Q_1$. Since $Q'_0 \leq Z_0$, we get that $Q_0 \cap Q_2$ is normal in G_1 and together with (4.1) and (1.3) that $Q_1/Q_0 \cap Q_2$ is a natural module for $\overline{L_1}$. Now (1.5) implies $Q'_1 = Z_1$. On the other hand, by (12), $Z_{-1} \cap Q_2 = Z_0$, hence $[V_0, K_1] = V_0$. Pick

 $g \in L_1 \setminus G_0$.

Then $\langle W_1, W_1^s \rangle Q_1 = L_1$ normalizes $(W_1 \cap Q_1)(W_1^s \cap Q_1)/Z_1 = X$, and $W_1 \cap Q_1/Z_0$ has order 2^{n_0} . Hence X is a natural module for $\overline{L_1}$, and K_1 normalizes

$$(W_1 \cap Q_1)Z_1$$

and centralizes

$$Q_1/(W_1\cap Q_1)(W_1^s\cap Q_1).$$

Thus we get

$$V_0 = [V_0, K_1] \leq (W_1 \cap Q_1) Z_1.$$

Now the order of V_0 implies $(W_1 \cap Q_1)Z_1 = V_0$ and $W_1 \cap V_0 \leq Z_0$, a contradiction.

5. A special case

(5.0) Hypothesis and notation. Hypothesis (4.0) holds with (4.0)(b) replaced by

(b') $n_0 > 1$ and $n_1 = 1$.

We use notation (3.3). In addition we define $\tilde{Z}_i = [Z_i, K]$ for $i \in T$. If $\tilde{Z}_i \neq 1$, we set

$$r_i = \max\{j - i/j \in T, j > i \text{ and } Z_i \leq G_j\}$$

and

$$\ell_i = \max\{i - j / j \in T, i > j \text{ and } \tilde{Z}_i \leq G_i\}$$

Clearly $b_i \leq r_i$ and $b_i \leq \ell_i$, and, by (2.10), any subarc of T of length greater than r has stabilizer of odd order. We will use this fact in this section without reference. Note that we no longer assume that (0...r) is a maximal regular subarc of T. But the operation of τ yields that at least one of (0...r) and (1...(r+1)) is maximal regular. Note also that $C_r(Z_i)$ for $i \in T$ may no longer be symmetric in *i*.

(5.1) For $i \in T$ the following hold:

- (a) $K \leq L_0$ and $[K, L_1] \leq Q_1$.
- (b) $K \in S_{\tilde{\gamma},\kappa}$ for $\tilde{\gamma} = (-1 \ 0 \ 1)$.
- (c) $O^{2'}(N_{G}(K)_{1})$ is isomorphic to a subgroup of $C_{2} \times \Sigma_{4}$.

(d) If $Q_{i-1} \cap Q_{i+1}$ is normal in G_i , then $Q_i/Q_{i-1} \cap Q_{i+1}$ is elementary abelian of order 2^{2n_i} and $Q_i = (Q_{i-1} \cap Q_i)(Q_{i+1} \cap Q_i)$.

(e) If $[Z_i, K] = 1$, then $C_T(Z_i) = (i - b_i \dots i + b_i)$.

Proof. The hypothesis and (3.2)(b) yield

$$K = K_0 \quad \text{and} \quad [K, L_1] \leq Q_1.$$

Hence $N_G(K)_1$ operates transitively on $\Delta(1)$, and (3.1) implies $K \in S_{\tilde{\gamma},K}$ (for definition see Section 2). Thus we can apply (2.9). Any normal subgroup X of $O^2(N_G(K)_1)$ which is also normal in $O^2(N_G(K)_{-1})$ stabilizes $1^{N_G(K)}$ by (2.1). Since $\tau \in N_G(K)$, it follows that

$$X \leq G_T \cap O^{2'}(N_G(K)_1) = K \cap O^{2'}(N_G(K)_1) = 1.$$

Hence we can apply (1.10) and get (c).

Assertion (d) follows as in (4.1).

Assume now that $[Z_i, K] = 1$ and without loss of generality that Z_i stabilizes $i + b_i$ but not $i - b_i$. Then there exists $i - b_i < h < i$ such that $Z_i \leq L_h$ but $Z_i \leq Q_h$. Hence we get

$$[L_h, K] \leq Q_h \quad \text{and} \quad [L_{i+b_i}, K] \leq Q_{i+b_i}.$$

If follows from (a) that h and $i + b_i$ are in the same G-orbit as 1, and

$$i-h \equiv b_i \quad (2);$$

in particular, $i - h \leq b_i - 2$.

Pick $\delta \in \{h, h-1\} \cap i^{G}$. Then $\delta + b_{i} > i$ and $[Z_{\delta}, Z_{i}] = 1$. If $\delta = h$, then $Z_{h} = Z(L_{h})$ and hence also $Z_{i} = Z(L_{i})$; in particular $[Z_{h-2}, Z_{i}] = 1$, since $b_{i} + h - 2 \ge i$. Thus we have found that $[Z_{u}, Z_{i}] = 1$ for u = h - 1 or h - 2. Then $d(u, u^{x}) = 2$ or 4 for $x \in Z_{i} \setminus G_{u}$. Since $s \ge 5$, this implies $Z_{u} = Z_{u+2}$ or $Z_{u} = Z_{u+4}$, and the operation of $\langle \tau \rangle$ yields $Z_{u} \leq G_{\tau}$, a contradiction.

- (5.2) One of the following holds.
 - (a) $b_0 = 1$, $b_1 = 2$, r = 4, $n_0 = 2$ and:
- (a1) Q_0 is elementary abelian of order 2⁴;
- (a2) Q_0 is an orthogonal module for $\overline{L_0}$;
- (a3) Q_1 is extra special of order 2^5 ;
- (a4) Q_1/Z_1 is a direct sum of two natural modules for $\overline{L_1}$.
- (b) $b_0 = 3$, $b_1 = 2$, r = s 1 = 6, $n_0 = 3$ and:

(b1) Q_0 is extra special of order 2°;

(b2) Z_1 is a natural module, $(Q_1/Z_1)/Z(L_1/Z_1)$ is a direct sum of three natural modules for $\overline{L_1}$, and Q_1/Z_1 is special.

(c) $b_0 = 3$, $b_1 = 2$, s = 5, r = 6, $n_0 = 2$ and:

(c1) Q_0 is extra special of order 2⁵, and Q_0/Z_0 is a orthogonal module for $\overline{L_0}$;

(c2) Q_1 is special, Z_1 is a natural module for $\overline{L_1}$, and Q_1/Z_1 is a direct sum of two natural modules for $\overline{L_1}$;

(c3) (1...(r+1)) is a maximal regular subarc of T.

Proof. From (5.1)(a) and the operation of τ on T we get $K \le L_i$ for $i \in T$ and $i \equiv 0$ (2), and $[K, L_j] \le Q_j$ for $j \in T$ and $j \equiv 1$ (2).

Suppose first that $\tilde{Z}_0 \neq 1$. Then r_0 and $-\ell_0$ are in the same G-orbit as 0 (we write $r_0 \sim 0$ etc.), since otherwise $[\tilde{Z}_0, K]$ would be in Q_k , $k = r_0$ resp. $-\ell_0$, contradicting $[\tilde{Z}_0, K] = \tilde{Z}_0 \leq Q_k$.

Set
$$b = r_0 - \ell_0$$
. If $\ell_0 < r_0$, we get $\vec{Z}_{r_0} \leq Q_b$ but $\vec{Z}_b \leq Q_{r_0}$. Hence

$$[\vec{Z}_{r_0},\vec{Z}_b] = 1,$$

and $\langle \tilde{Z}_{r_0}, N_{L_b}(K) \rangle Q_b = L_b$ centralizes \tilde{Z}_b , a contradiction since $K \leq L_b$.

If $r_0 < \ell_0$ we apply the same argument with the rôles of r_0 and ℓ_0 interchanged. This shows:

(1) $r_0 = \ell_0$ and $r_0 \sim 0$.

We may choose the maximal regular subarc γ of T such that

$$\gamma = (0...r) \text{ or } (1...(r+1)).$$

Assume that (0...r) is a maximal regular subarc and $r_0 \le r/2 - 2$ or that (1...(r+1)) is a maximal regular subarc and $r_0 \le r/2 - 1$. In both cases (2.6) yields $r \equiv 0$ (2), and Q centralizes $<Z_2, Z_{2r_0+2} >$. On the other hand

$$< Z_2, Z_{2r_0+2} > Q_{r_0+2} = L_{r_0+2},$$

and K normalizes $C_{G}(Q) \cap L_{r_{0+2}}$. Thus $K \leq C_{G}(Q)$; in particular

$$\gamma = (1 \dots (r+1)),$$

and (0...r) is not regular.

Since $K \in S_{\tilde{\gamma},\kappa}$ for $\tilde{\gamma} = (-1 \ 0 \ 1)$ (see (5.1)(b)), we can define $\tilde{\Gamma}$ with respect to $N_G(K)$ as in (2.9). From (5.1)(c) we get that maximal regular arcs in $\tilde{\Gamma}$ have length $\tilde{r} \leq 4$, hence r = 6 or 8. If r = 8, then $r_0 = 2$ and $\tilde{r} = 4$, and Q is contained in $Z(N_G(K)_s)$. Hence $C_{L_5}(Q)$ and $C_{L_4}(Q)$ are transitive on $\Delta(5)$ and $\Delta(4)$ respectively, contradicting (2.1).

Thus we may assume r = 6 and $r_0 = 2$. If $b_0 = 1$, then Q centralizes $\langle Z_2, Z_4 \rangle$, and

$$< Z_2, Z_4 > Q_3 = L_3.$$

Hence $C_{L_3}(Q)$ and $C_{L_4}(Q)$ are transitive on $\Delta(3)$ and $\Delta(4)$ respectively, contradicting (2.1). Thus $b_0 = 2$, and $1 \neq [Z_0, Z_2]$ stabilizes (-2...4) of length 6. Conjugation with τ yields $O_2(G_{(0...6)}) \neq 1$, a contradiction. Hence we have shown (together with (2.6)):

- (2)(a) $r_0 = r/2$, or
- (b) $r_0 = r/2 1$, $(1 \dots (r+1))$ is not regular and s < r.

Set $\tilde{R} = [\tilde{Z}_0, \tilde{Z}_{r_0}]$. Since $\langle \tilde{Z}_0, N_G(K) \cap L_{r_0} \rangle Q_{r_0} = L_{r_0}$, we have $\tilde{R} \neq 1$. Assume now that $\tilde{Z}_1 \neq 1$, too. By (5.1)(a), \tilde{Z}_1 is normal in L_1 . Thus

$$\tilde{Z}_1 = (\tilde{Z}_0 \cap \tilde{Z}_1) \times (\tilde{Z}_2 \cap \tilde{Z}_1),$$

and \tilde{Z}_1 stabilizes $(-(r_0 - 2) \dots r_0)$, which implies $r_1 \ge r_0 - 1 \le \ell_1$. If $r_1 = r_0 - 1$, we get $[\tilde{Z}_1, \tilde{Z}_{r_0}] = \tilde{R} \ne 1$ contradicting $\tilde{Z}_{r_0} \le Q_1$. With the same argument $\ell_1 > r_0 - 1$. Since r_0 is even and ℓ_1 and r_1 are odd, it follows that

$$r_1 \geq r_0 + 1 \leq \ell_1$$

and, by (2), $r_1 = \ell_1 = r_0 + 1$, $r_1 + \ell_1 = r$, and maximal regular subarcs in T are $<\tau>$ -conjugates of (0...r). Hence $|\tilde{Z}_1| = |\tilde{Z}_0 \cap \tilde{Z}_1|^2 = 2^{n_0}$, which contradicts the operation of K on \tilde{Z}_0 . We have shown:

(3) $\tilde{Z}_1 = 1$.

Assume $Z_1 \neq Z(L_1)$. By (1.11), $Z_i/Z(L_i)$ is a natural module for $\overline{L_i}$ (i = 0, 1). But (3) yields [Z(S), K] = 1, contradicting the operation of K on $\tilde{Z_0}$. Together with (5.1)(c) we have shown:

(4) $Z_1 = Z(L_1)$ and $|Z_1| = 2$.

Assume $b_0 = r_0$ and, without loss of generality, $Z_0 \leq G_{r_0}$. Then

$$[Z_0, \tilde{Z}_{r_0}] \leq Z_0 \cap Z_{r_0},$$

and, by (1.3), $Z_0/Z(L_0)$ is a natural module for $\overline{L_0}$. Additionally, (4) and (3.2)(e) imply $Z(L_0) = 1$. Thus, by (1.3), $Z_0 = \tilde{Z_0}$, but $Z_1 \leq Z_0$ and $[Z_1, K] = 1$, a contradiction. We have shown:

(5) $b_0 < r_0$.

Assume $\tilde{R} \cap \tilde{Z}_0 \neq 1$. This yields $\tilde{R} \cap \tilde{Z}_0 \cap \tilde{Z}_{r_0} \neq 1$, since $\tilde{R} \leq Z_0 \cap Z_{r_0}$ and *K* normalizes \tilde{R} . Hence $\tilde{R} \cap \tilde{Z}_0 \cap \tilde{Z}_{r_0}$ stabilizes $(-r_0 \dots 2r_0)$, and (2) and (5) imply $b_0 = 1$, $r_0 = 2$ and r = 6. Thus, by (5.1)(d),

$$Q_1 = (Z_0 \cap Q_1)(Z_2 \cap Q_1)(Q_2 \cap Q_0)$$
 and $Z_0 \cap Z_2 = Z_1$.

In particular, $\tilde{R} \leq Z_1$, and (4) contradicts $\tilde{R} \cap \tilde{Z}_0 \neq 1$.

We have shown:

(6) $\tilde{R} \cap \tilde{Z}_0 = 1$.

Assume $b_0 \ge 2$ and, as above without loss of generality, $Z_0 \le G_{b_0}$. Then (5) yields

$$[Z_0,K] \leq Q_{b_0}$$

and hence $b_0 \geq 3$.

If $Z_1 \leq \tilde{R}$, then $Z_1 \leq Z_0 \cap Z_{r_0}$ and $b_1 \geq (r_0 - 1) + b_0$. Thus by (3), (5.1)(e) and (2), $r \geq 2b_1 \geq 2(r_0 - 1) + 2b_0 \geq r - 4 + 2b_0$ and $b_0 \leq 2$, a contradiction.

If $Z_1 \not\leq \tilde{R}$, then by (5.1)(c), $C_{z_0}(K) = Z_1\tilde{R}$, since $C_{z_0}(K)$ is central in a Sylow 2-subgroup of $N_G(K)_1$, and $[Z_0, \tilde{Z}_{r_0}, \tilde{Z}_{r_0}] = 1$. Now (1.3) implies $Z_0 = Z(L_0)\tilde{Z}_0$. But (4) and (3.2)(e) yield $Z(L_0) = 1$ and $Z_1 \leq \tilde{Z}_0$, a contradiction to $Z_1 \leq C_G(K)$. Hence:

(7) $b_0 = 1$.

From (7) and (5.1)(d) we get

$$L_{1} = \langle Z_{0}, Z_{2} \rangle Q_{1}, \quad |Q_{1}/Q_{0} \cap Q_{2}| = 2^{2\pi 0},$$
$$Q_{1} = (Z_{0} \cap Q_{1})(Z_{2} \cap Q_{1})(Q_{0} \cap Q_{2}) \quad \text{and} \quad Z_{0} \cap Z_{2} = Z_{1}$$

In particular, $[Q_0 \cap Q_2, O^2(L_0)] = 1$; thus $Z_0 \cap Q_0 \cap Q_2$ is normal in L_1 and

$$Z_0 \cap Q_0 \cap Q_2 = Z_1.$$

This implies, together with (4), that $r_0 = 2$ and $|Z_0| = 2^{n_0}4$, and (1) and (1.2) yield the assertions (a1) and (a2) for Z_0 . To prove assertion (a) it remains to show $Q_0 \cap Q_2 = Z_1$ and r = 4.

If r = 4, then $|L_0| = 4^3$ by (2.6) and $Q_0 \cap Q_2 = Z_1$. Hence it suffices to show r = 4.

Assume $r \neq 4$. Then (2) yields r = 6, $|L_0|_2 = 2^8$ and $|Q_0 \cap Q_2| = 8$. On the other hand we get $Q_0 = (Q_0 \cap Q_2)Z_0$ and $[Q_0, \tilde{Z}_2] \leq Z_0$ which implies

$$[Q_0 \cap Q_2, K] \leq Z_1,$$

since $K \leq L_0$. Hence by (4) we have $Q_0 \cap Q_2 \leq C_{Q_1}(K)$ and, by (5.1)(c), $|Q_0 \cap Q_2| \leq 4$, a contradiction.

From now on we assume that $\tilde{Z}_0 = 1$. Then $Z_0 = Z(L_0)$, and (3.2)(e) yields $Z(L_1) = 1$. Hence $Z_0 \leq Q_1$ or $Z_1 = Z_0 \times Z_2$. In the first case we get

$$Z(L_1) = Q_1 = 1$$
 and $|Q_0| = |L_0|_2 = 2$,

a contradiction. In the second case we get $\tilde{Z}_1 = 1$, and (5.1)(c) implies:

(8) $\tilde{Z}_1 = 1, Z_1 = Z_0 \times Z_2, |Z_0| = 2 \text{ and } b_0 \ge 2.$

Note that (5.1)(e) implies now that $C_T(Z_i)$ is symmetric in *i* for $i \in T$; in particular, $2b_i \leq r$. Since $Z_1 = Z_0 \times Z_2$, we have $b_1 = b_0 - 1$, and since K centralizes Z_1, b_0 is in the same G-orbit as 1.

Set $R = [Z_1, Z_{b_0}]$. Then $R \neq 1$ and $R \leq Z_1 \cap Z_{b_0}$. On the other hand,

$$Z_{b_0} = Z_{b_0^{-1}} Z_{b_0^{+1}},$$

which implies $R = Z_2 = Z_{b_0-1}$ and $b_0 = 3$, since $|G_r|$ is odd. We have shown:

(9) $b_0 = 3$ and $b_1 = 2$.

As $s \ge 5$, we know from (9) that Z_{δ} fixes exactly the vertices of distance less than 4 (resp. 3) from $\delta \in \Gamma$. Now choose T^* to be a line in Γ stabilized by K such that

$$T^* = (\ldots \delta_{-i} \ldots \delta_i \ldots)$$
 and $C_{T^*}(Q) = (\delta_0 \ldots \delta_{r^*})$

and r^* is maximal with this property. If $\delta_0 \sim 0$, then $[Q, Z_{\delta_0}] = 1$ and $z \in Z_{\delta_0}^{\#}$ fixes δ_3 but not δ_4 . Hence we get another line stabilized by K:

 $T^{**} = (\ldots \delta_i \ldots \delta_3 \ \delta_4^z \ldots \delta_i^z \ldots)$ and $c_{T^{**}}(Q) = (\delta_{r^*} \ldots \delta_3 \ldots \delta_r^z)$.

The maximality of r^* implies $2(r^* - 3) \le r^*$ and $r^* \le 6$.

If $\delta_0 \sim 1$, then $C_{z_{\delta_0}}(Q) = Z_{\delta_1}$, and $z \in Z_{\delta_1}^{\#} 1$ fixes δ_4 but not δ_5 . Arguing as above we get

$$T^{**} = (\ldots \delta_i \ldots \delta_4 \delta_5^z \ldots \delta_i^z \ldots)$$
 and $c_{T^{**}}(Q) = (\delta_{r^*} \ldots \delta_4 \ldots \delta_{r^*}^z)$

and $r^* \leq 8$. Hence in both cases we get $r \leq r^* \leq 8$.

We define $V_0 = \langle Z_1^{L_0} \rangle$ and $V_2 = V_0^r$. Then $V_0' = Z_0$ and $V_2' = Z_2$ by (8) and (9), and $Q_0 \cap Q_2$ is normal in L_1 . Hence (5.1)(d) implies

$$Q_1 = (Q_1 \cap V_0)(Q_1 \cap V_2)(Q_0 \cap Q_2)$$
 and $L_1 = \langle V_0, V_2 \rangle (Q_0 \cap Q_2)$.

Thus

$$Q_0 \cap Q_2 = D \times Z_1,$$

where $D = C_{Q_1}(d)$ and d is an element of order 3 in $\langle V_0, V_2 \rangle$. Moreover

$$\phi(Q_0\cap Q_2) = \phi(D) = 1,$$

since D has trivial intersection with Z_1 . We have shown:

(10) $r \leq 8$, $Q_0 = DV_0$ is extra special and $Q_1/D \times Z_1$ is a direct sum of natural modules for $\overline{L_1}$.

If r = 8 then $r = r^*$, and we have shown above that (0...8) can not be regular, hence $KQ = G_{(1...9)}$ and [K, Q] = 1. On the other hand

$$Q \leq Q_4 \cap Q_6 = D^{r^2} \times Z_5,$$

and we get $[K, Q, Q_s] = 1$ and $[Q_s, Q, K] \le [Z_s, K] = 1$. Thus the 3-subgroup-lemma yields $Q \le Z_s$, which contradicts (8) and (9).

We have shown $r \leq 6$. Since (-3...3) is stabilized by Z_0 , we get after conjugation with τ^2 :

(11) r = 6, and (1...7) is maximal regular subarc of T.

Assume first that (0...6) is also a maximal regular subarc of T. Then (2.6) implies r = s - 1, and we are in a similar situation as in (4.6) after steps (4) and (5). With the same argument as there we get assertion (b).

Assume now that (0...6) is not regular. Then (2.6) implies s = 5 and $|L_0|_2 = 2^{2n_0} 8$. Thus we are in a similar situation as in the proof of (4.5) after

step (9) (with the roles of 0 and 1 interchanged). In (4.5) we used (1.4) and Hypothesis (4.0)(a) to get a contradiction. Since in our situation now $n_1 = 1$, we get no contradiction but with the same argument as in (4.4) that Q_1 is special and that Q_1/Z_1 is direct sum of natural modules. Since $|Q_0/Z_0| = 2^{n_0}4$, we get $n_0 = 2$ from (1.2), and assertion (c) follows with (1.1) and (1.5).

6. The case $|G_T| \equiv 0$ (2)

(6.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in this section. Additionally we choose $0 \in \mathcal{O}$ and assume:

- (a) $|G_T| \equiv 0$ (2).
- (b) $s \equiv 1$ (2) and $s \geq 5$.
- (c) $Z_0 \neq 1 \neq Z_1$.
- (d) $\max\{n_0, n_1\} > 1$.
- (e) (0...r) is a maximal regular subarc of T.

Note that maximal regular subarcs of T have length s - 1 or are in $(\mathcal{O}, 2m)$ (see (2.6)).

- (6.1) For $Q = O_2(G_T)$ and $\gamma = (012)$ the following hold:
- (a) $Q \neq 1$ and $G_T = QK$.
- (b) $Q \in S_{\gamma,K}$.

Proof. For the definition of $S_{\gamma,\kappa}$ see (2.9). By (3.2)(c), $G_{(01)}$ is 2-closed, hence (a) holds.

Set $M = N_o(Q)$. There is a finite subarc $\tilde{\gamma}$ in T of maximal length such that $G_{\gamma} \neq G_T$ (see (2.10)). $\tilde{\gamma}$ is a maximal regular subarc of T, and Q is a normal subgroup of G_{γ} ; thus $G_{\tilde{\gamma}} = M_{\tilde{\gamma}}$. We may assume that $\tilde{\gamma} = (0...2m)$ and $2m \geq s-1$ (see (2.6)). Hence $o^{r^m} = 2m$ and $\langle M_{\tilde{\gamma}}, M_{\tilde{\gamma}}^m \rangle$ is transitive on $\Delta(2m)$. Conjugation with τ implies that M_0 and M_2 are transitive on $\Delta(0)$ and $\Delta(2)$ respectively.

Next we shall prove that there is an element $x \in M_1$ such that $0^x = 2$. Assertion (3.1)(b) implies that it suffices to show $N_{M_1}(K) \nsubseteq M_0 \cup M_2$. Pick

$$x' \in N_{M_0}(K)$$
 and $x'' \in N_{M_2}(K)$

such that $(-1)^{x'} = 1$ and $3^{x''} = 1$. Then

 $0^{\tau^{-1}x'} = (-2)^{x'} \neq 0, \quad 2^{\tau x''} = 4^{x''} \neq 2 \text{ and } 1^{\tau^{-1}x'} = 1^{\tau x''} = 1.$ Since $\langle \tau^{-1}x', \tau x'' \rangle \leq N_{M_1}(K)$, we have $N_{M_1}(K) \not\subseteq M_0 \cup M_2$.

To prove assertion (b) it remains to show that M_1 normalizes $\{0, 2\}$. Assume not; then (3.1) implies that M_1 is transitive on $\Delta(1)$. Hence, by (2.1), M is edge-transitive on Γ and Q = 1, a contradiction to (a).

Notation. $Q = O_2(G_T)$, $\gamma = (0 \ 1 \ 2)$, $M = N_G(Q)$. For $X, Y \in S_{\gamma,K}$ we define X << Y, if $N_G(X)_0 \le N_G(Y)_0$. Let $S_{\gamma,K}^*$ be the set of < -maximal elements in $S_{\gamma,K}$.

(6.2) Suppose that $X \in S_{\gamma,K}$ and $\tilde{M} = N_G(X)$. Then the following hold:

(a) \tilde{M}_1 normalizes $\{0,2\}$ and $\tilde{M}_1 \not\leq \tilde{M}_0$.

(b) $Q_1 \cap \tilde{M}_0 \in Syl_2(\tilde{M}_0) \cap Syl_2(\tilde{M}_2)$.

Suppose that $X \in S^*_{y,\kappa}$; then no non-trivial characteristic subgroup of $Q_1 \cap \tilde{M}_0$ is normal in \tilde{M}_0 .

Proof. Assertion (a) follows from the definition of $S_{\gamma,K}$, and (b) is a consequence of (a), (3.1) and (3.2).

Assume that $X \in S_{\gamma,K}^*$ and that $C \neq 1$ is a characteristic subgroup of $Q_1 \cap \tilde{M}_0$, which is normal in \tilde{M}_0 . From (a) and (b), it follows that C is also normal in \tilde{M}_1 and \tilde{M}_2 . Hence $C \in S_{\gamma,K}$ and $\tilde{M}_0 \leq N_G(C)_0$. The maximality of X implies $\tilde{M}_0 = N_G(C)_0$. Thus $Q_1 \cap \tilde{M}_0 \in Syl_2(G_0)$, and (b) implies that G_1 is 2-closed, a contradiction to the hypothesis.

(6.3) Suppose that $X \in S^*_{\gamma,\kappa}$ and $\tilde{M} = N_o(X)$. Define $\tilde{\Gamma}$ with respect to \tilde{M} as in (2.9), and let Δ be the connected component of $\tilde{\Gamma}$ containing 0. Then the following hold:

(a) $\tilde{M}_{\Delta} \leq Q_0 K$.

(b) $\tilde{M}/\tilde{M}_{\Delta}$ is vertex-transitive on Δ , and 0 has the same valency in Δ as in Γ .

(c) $|\tilde{M}_0|_2 = 2^{kn_0} |\tilde{M}_{\Delta}|, k = 1, 2, 3 \text{ or } 4.$

(d) $O_2(\tilde{M}_0)$ is elementary abelian.

(e) If $k \leq 2$, then Sylow 2-subgroups of \tilde{M}_0 are elementary abelian.

(f) If k > 2, then $O_2(\tilde{M}_0) / Z(O^2'(\tilde{M}_0))$ is a natural module for $O^2'(\tilde{M}_0/O_2(\tilde{M}_0))$.

(g) Maximal regular arcs in Δ have length k.

Proof. Since \tilde{M}_{Δ} fixes $\Delta(0)$ pointwise, we get (a) from (3.2). Set $T = Q_1 \cap \tilde{M}_0$, $W = \tilde{M}/\tilde{M}_{\Delta}$ and $B = T\tilde{M}_{\Delta}/\tilde{M}_{\Delta}$. Then (6.2)(b) implies

$$B \in Syl_2(W_0) \cap Syl_2(W_2)$$

and from (2.9) we get assertion (b). Now (2.1) yields that no non-trivial normal subgroup of $O^{2'}(W_i)$ is normal in $O^{2'}(W_j)$ for $\{i, j\} = \{0, 2\}$. Thus we can apply (1.10) and get:

- (1) B is elementary abelian of order 2^{kn_0} , $k \le 2$, or
- (2) $O_2(W_i)$ is elementary abelian of order 2^{2n_0} or 2^{3n_0} , and

 $O_2(W_i)/Z(O^{2'}(W_i))$ is a natural module for $O^{2'}(W_i/O_2(W_i))$.

It is now easy to verify (c) and (g), and (e) and (f) follow, if we have proved (d). Hence it remains to prove (d).

Set $Y = O^2(O^2(\tilde{M}_0))$; then $\tilde{M}_0 = YKT$. If $[Y, O_2(\tilde{M}_0)] = 1$, then $\phi(T)$ is characteristic in T and normal in \tilde{M}_0 , and by (6.2)(c), $\phi(T) = 1$. Thus we may assume $V = [Y, O_2(\tilde{M}_0)] \neq 1$ and $Z_1 \leq O_2(\tilde{M}_0)$, and again by (6.2)(c) we can apply (1.6). Since (2.1) implies $[Z_1, Y] \neq 1$, we get $V = [Z_1, Y]$ and $V \leq Z(O_2(\tilde{M}_0))$.

If $T = Q_1$, then, by (1.7), there exists a non-trivial subgroup A in Q_1 which is normal in $O^2(G_1)$ and \tilde{M}_0 . Since \tilde{M}_0 is transitive on $\Delta(0)$ and $O^2(G_1)$ on $\Delta(1)$, (2.1) contradicts $A \neq 1$. Hence $T < Q_1$, and we can choose $t' \in N_{Q_1}(T) \setminus T$ such that $t'^2 \in T$. From (6.2)(a) we have $t \in N_{M_1}(K) \setminus \tilde{M}_0$ such that $t^2 \in T$. Thus, in addition, we may choose t' such that $[t, t'] \in T$. Note that < t', K >normalizes $O_2(\tilde{M}_0)$, since $< t', K > \le G_0$ and $O_2(\tilde{M}_0) = Q_0 \cap T$.

First assume that $[O^{2'}(\tilde{M}_{\Delta}), Y] \neq 1$. Then (1.6) yields

$$V = [O^{2'}(\tilde{M}_{\Delta}), Y] \leq O^{2'}(\tilde{M}_{\Delta}).$$

Set $R = \langle (VV^t)^{\langle t', K \rangle} \rangle$. As shown above, $R \leq O_2(\tilde{M}_0)$ and $[R, Y] \leq V \leq R$. Hence R is normal in \tilde{M}_0 . On the other hand $\langle t, t', K \rangle$ normalizes R, so $R \in S_{\gamma,K}$ and $t' \in N_G(R)_0 \setminus \tilde{M}_0$. This contradicts the maximality of X. Thus we have shown:

(3) $[O^{2'}(\tilde{M}_{\Delta}), Y] = 1.$

Now assume that $H \neq \phi(O_2(\tilde{M}_0)) \neq 1$. Then (2) and (3) imply $H \leq \tilde{M}_{\Delta}$ and [H, Y] = 1. Since t' normalizes $O_2(\tilde{M}_0)$, it also normalizes H. Thus HH^t is normalized by $\langle t, t', \tilde{M}_0, K \rangle$, and $HH^t \in S_{\gamma,K}$. Again, $t' \in N_G(HH^t)_0 \setminus \tilde{M}_0$, contradicting the maximality of X.

- (6.4) There exists $\tilde{s} \in \{4, 5\}$ such that the following hold:
- (a) $|M_0|_2 = 2^{(\tilde{s}-1)n_0}|Q|$.
- (b) $O_2(M_0)$ is elementary abelian.
- (c) $O_2(M_0)/Z(O^{2'}(M_0))$ is a natural module for $O^{2'}(M_0/O_2(M_0))$.
- (d) Maximal regular subarcs of T have length $2\tilde{s} 2$.

(e)
$$s \leq 2\tilde{s} - 3$$
.

Proof. (6.1)(b) yields $Q \in S_{\gamma,K}$. Choose $X \in S_{\gamma,K}^*$ such that Q << X. Set $\tilde{M} = N_G(X)$. Then, by definition, $M_0 \leq \tilde{M}_0$, and an application of (6.3)(d) yields $M_0 = \tilde{M}_0$ and, without loss, Q = X, since $Q \leq O_2(\tilde{M}_0)$. Thus we may apply (6.3) to M_0 . Let k and Δ be as in (6.3). Define $\tilde{s} = k + 1$. Then $\tilde{s} = 2, 3, 4$ or 5, and maximal regular arcs in Δ have length k.

Let $\tilde{\gamma}$ be a maximal regular subarc of T of length r. Then we may assume $\hat{\gamma} \in (\hat{\ell}, r)$ and $r \equiv 0$ (2) (see (2.6)) and, by (6.0)(e), $\hat{\gamma} = (0...r)$. The restric-

tion of $\hat{\gamma}$ to Δ is again a maximal regular arc, since Q is normal in $G_{\hat{\gamma}}$. Hence $r = 2k = 2\tilde{s} - 2$. It remains to show (e), since then $s \ge 5$ implies $\tilde{s} = 4$ or 5.

Assume that $s = 2\tilde{s} - 1$. Then $\gamma_1 = (1 \dots (2\tilde{s} - 1))$ is also a maximal regular subarc of T, and Q is normal in G_{γ_1} . Pick $\tau^* \in \langle \tau \rangle$ such that

$$\gamma_1^* = (-(2\tilde{s}-3)...1).$$

Then $\langle G_{\gamma_1}, G_{\gamma_1}^* \rangle$ is a subgroup of M_1 , and (3.1) implies that $\langle G_{\gamma_1}, G_{\gamma_1}^* \rangle$ is transitive on $\Delta(1)$. This contradicts (6.2)(a).

(6.5) $Q \cap Z_i = 1$ for $i \in T$.

Proof. It suffices to show $Z_0 \cap Q = Z_1 \cap Q = 1$. Assume that $R = Z_i \cap Q \neq 1$ for some $i \in \{0, 1\}$. Then (6.4) yields $[R, O^{2'}(M_0)] = 1$. If i = 1, then $R \in S_{\gamma,K}$ and $Q_1 \leq N_G(R)_1$, and (6.1)(b) implies

 $Q_1 \in Syl_2(N_G(R)_0).$

If i = 0, then $R \leq Z(L_0)$, and (6.2)(b) implies $R \leq Z_1$. Thus we may assume $i = 1, R \in S_{\gamma,K}$ and $Q_1 \in Syl_2(N_G(R)_0)$. But now (6.2) implies that $R \in S_{\gamma,K}^*$ and that no non-trivial characteristic subgroup of Q_1 is normal in $N_G(R)_0$. Hence (6.4)(c) and (1.7) yield a contradiction to (2.1), as in (6.3).

Note that (6.4), (6.5) and (2.10) imply that b_i (for $i \in T$) is an integer.

(6.6) Suppose that there exists $i \in T$ such that $Q_{i-1} \cap Q_{i+1}$ is normal in G_i . Then $Q_i = [Q_i, Q_{i-1}][Q_i, Q_{i+1}](Q_{i-1} \cap Q_{i+1})$, and $Q_i/Q_{i-1} \cap Q_{i+1}$ is elementary abelian of order $2^{2n_{i-1}}$.

The proof is the same as in (4.1).

(6.7) $b_0 > 2$.

Proof. In the following we apply (6.4) without reference. Suppose that $b_0 = 2$. We get $[O^{2'}(M_0), O_2(M_0)] \leq Z_0$, and $Z_0/Z_0 \cap Z(O^{2'}(M_0))$ is a natural module. In particular Z_1Z_0 is normal in M_0 and thus also normal in G_0 .

First assume that $C_{L_1}(Z_1) = Q_1$. Then $Q_0 \cap Q_1 = C_{Q_0}(Z_1Z_0)$, and $Q_0 \cap Q_1$ is normal in G_0 . Hence $Q_0 \cap Q_1 = Q_1 \cap Q_{-1}$, and $(-1\ 0\ 1\ 2)$ is left singular. This contradicts (2.6) and $s \ge 5$.

Assume now $C_{L_1}(Z_1) \neq Q_1$. Then $Z_1 = Z(L_1) \leq Z_0$, and (3.2)(e) implies $Z(L_0) = 1$. Hence by (1.3):

(1) $b_1 = 3$, $[S, Z_0] = Z_1$, and Z_0 is a natural module for $\overline{L_0}$.

Set $V = \langle Z_0^{G_1} \rangle$, $A = V \cap Q_0$ and $B = V^{\tau^{-1}} \cap Q_0$, then $[V, Q_1] = Z_1$ and $S = VQ_0$ (since $b_0 = 2$). In particular we get $[Q_1 \cap Q_{-1}, \langle V, V^{\tau^{-1}} \rangle] = Z_0$, and $Q_1 \cap Q_{-1}$ is normal in G_0 . Together with (6.6) and (1.3) we have shown:

(2) (a) $[Q_1, V] = Z_1$,

- (b) $Q_0 = AB(Q_1 \cap Q_{-1}),$
- (c) $Q_0/Q_1 \cap Q_{-1}$ is direct sum of natural modules for $\overline{L_0}$,
- (d) $|Q_0/Q_1 \cap Q_{-1}| = 2^{2n_1}$ and $n_1 \ge n_0$.

Suppose that $n_0 = 1$ and pick $q \in Q^{\#}$. Then (1) and (2)(a) imply $|Z_0| = 4$, $|Z_1| = 2$ and $[q, V] \leq Z_1$. Hence:

(3) $|V/C_v(q)| \leq 2.$

Set $X = C_G(q)$, and note that $BQ_1 = S \in Syl_2(L_1)$. Since $O^{2'}(M_0) \leq X, X_0$ is transitive on $\Delta(0)$. Thus, by (2.1), X_1 is not transitive on $\Delta(1)$. There exists $y \in X_0$ with $1^y = -1$ and $A^y = B$, hence, by (3), $|B/C_B(q)| \leq 2$. Now, (2) implies

$$|C_B(q)Q_1/Q_1| \geq 2^{n_1-1}.$$

Thus $\overline{X_0 \cap X_1}$ and $\overline{X_2 \cap Z_1}$ generate a subgroup of $\overline{L_1}$ with Sylow 2-subgroups of order at least 2^{n_1-1} . Since $\langle X_0 \cap X_1, X_2 \cap X_1 \rangle$ is not transitive on $\Delta(1)$, from [6, II § 8] we have $n_1 = 2$ and $|C_B(Q)Q_1/Q_1| = 2$ is the only possibility.

Let N be a normal subgroup of G_1 such that $Z_1 \le N \le V$ and N/Z_1 is a minimal normal subgroup of G_1/Z_1 . We want to show N = V, so assume $N \ne V$. From (2)(a) and (b) we have $[N \cap Q_{-1}, Q_0] \le N \cap Z_0 = Z_1$ and hence

$$[(N \cap Q_{-1})Z_0, Q_0] \leq Z_1.$$

But $(N \cap Q_{-1})Z_0$ is normal in $\langle V, V^{r-1} \rangle$ and $\overline{\langle V, V^{r-1} \rangle} = \overline{L_0}$. Thus (1) implies $[N \cap Q_{-1}, Q_0] = 1$ and $N \cap Q_{-1} = Z_1$. Now the order of N/Z_1 is at most 2³ ((2)(d)), and (1.2) yields $|N/Z_1| = 2$ and [N, K] = 1. On the other hand, $N \cap Q_0 \not\leq Q_{-1}$ and $K = K_1 = K_{-1}$, since $N \cap Q_{-1} = Z_1$ and $n_0 = 1$. This contradicts (3.1)(b) and (c). We have shown:

(4) V/Z_1 is an irreducible module for $\overline{L_1}$.

Since the orthogonal and the natural module are the only irreducible GF(2)-modules for $L_2(4)$ (see (1.12)), we get $|V| = 2^s$. We conclude that $V \cap Q_{-1} = Z_0$ and, by (6.5), $Q \cap V = 1$.

On the other hand $[Q, V^{\tau^{-1}}] \leq Z_{-1} \leq Z_0$ and $[Q, V^{\tau}] \leq Z_3 \leq Z_2$ ((2)(a)), and it follows that $[Q, \langle B, A^{\tau} \rangle] \leq V$. Since K normalizes $\langle B, A^{\tau} \rangle$ and $\langle B, A^{\tau} \rangle = \overline{L}_1$, we have $K \leq \langle B, A^{\tau} \rangle$ and $[Q, K] \leq Q \cap V = 1$. But now $K \leq X_1$, and (3.1)(f) implies that X_1 is transitive on $\Delta(1)$, a contradiction. We have shown:

(5) $n_0 > 1$.

Choose $t \in N_{M_1}(K) \setminus M_0$ with $t^2 \in Q_1$. Note that by (3.2)(b), (1.3) and (1), $K = K_1 \times K_0$, since $Z_1 = Z(L_1)$. If $[K_0, t] = 1$, then the structure of $\operatorname{Aut}(L_2(2^{n_1}))$ implies $[K_0, L_1] \leq Q_1$, in particular $[K_0, B] \leq Q_1 \cap Q_{-1}$. This contradicts (2)(c) and (1.3). Hence $[K_0, t] \neq 1$ and $R = K_0 K_0^t \cap K_1 \neq 1$. Note that R centralizes Q.

Since (2)(a) yields $[Q, A] \leq Z_1$, with the 3-subgroup-lemma we get [A, R, Q] = 1. Thus $[A, R] \leq O_2(M_0) \leq Q_{-1}$, and it follows that $[L_{-1}, R] \leq Q_{-1}$, since $AQ_{-1} \in Syl_2(L_{-1})$. On the other hand $Z_1Q_{-2} \in Syl_2(L_{-2})$, since $b_1 = 3$, and $[L_{-2}, R] \leq Q_{-2}$. Therefore $C_{L_i}(R)$ is transitive on $\Delta(i)$ for i = -1, -2, and (2.1) implies R = 1, a contradiction.

(6.8) There exists no pair (G, Γ) which satisfies (6.0).

Proof. Let (G, Γ) be a counterexample, and let \tilde{s} be the integer defined in (6.4). If $Z_0 \leq Z(O^{2'}(M_0))$, then (6.4) implies $b_0 = 2$ which contradicts (6.7). Hence:

(1) $Z_0 \leq Z(O^{2'}(M_0)).$

Now (6.4) and (6.5) yield:

(2) (a) $\tilde{s} = 5$, s = 5 or 7, and maximal regular subarcs of T have length 8.

(b) $Z_0 = Z(L_0), b_0 = 4$ and $|Z_0| = 2^{n_0}$.

In addition (6.2)(b) implies $Z_1 \leq Z(S \cap M_0)$ and $Z_1 = Z_0 \times Z_2$. Thus with (1.2) and (1.3):

(3) $b_1 = 3$, $|Z_1| = 2^{2n_0}$, and Z_1 is direct sum of natural modules for $\overline{L_1}$, in particular $n_0 \ge n_1$.

Set $V = \langle Z_1^{L_0} \rangle$ and $V_2 = V^{\tau}$. Then (6.4) implies

$$V \leq O_2(M_0)$$
 and $Z_1Z_{-1} \leq V \leq Z_1Z_{-1}Q$.

According to (6.1)(b) and (6.2) there exists $t \in N_{M_1}(K) \setminus M_0$. Since K_0 centralizes $Z(O^{2'}(M_0))$ and K'_0 centralizes $Z(O^{2'}(M_2)) = Z(O^{2'}(M'_0))$ and

$$Z(O^{2'}(M_0)) \cap Z(O^{2'}(M_2)) = Q,$$

by (1.3) and (6.4)(c) we have $K_0 \cap K_0^t = 1$. Since (3.2)(b) and (c) and (3) imply $K = K_0 K_1$ and $|K| \le |K_0|^2$, we derive:

(4) $K = K_0 \times K_0^t$ and $n_0 = n_1$.

In particular we have $Q \leq C_{Q_0}(K)$ and $Q = C_{Q_0}(K)$ by (3.4). Hence

$$\tilde{V} = [O_2(M_0), K_4] \leq Z_1 Z_{-1},$$

and (2)(b) implies $Z_4O_2(M_0) \in Syl_2(M_0)$. Now the structure of Aut($L_2(2^{n_0})$) yields

$$[K_4, M_0] \leq O_2(M_0).$$

Thus \tilde{V} is normal in M_0 and $[O_2(M_0), M_0] \leq \tilde{V}$. It follows that $Z_1\tilde{V} = V = Z_1Z_{-1}$. Conjugation with τ yields:

(5) $V = Z_1 Z_{-1}$ and $V_2 = Z_1 Z_3$.

We have $L_0 = \langle Z_{-4}, Z_4 \rangle Q_0$, since $b_0 = 4$, and get the following commutator relations:

$$[Q_1 \cap Q_{-1}, Z_4] = [Z_{-1}(Q_2 \cap Q_{-1}), Z_4] = [Z_{-1}, Z_3]Z_{23}$$

since $b_1 = 3$ and $[V_2, Q_2] = Z_2$, and

$$[Q_1 \cap Q_0, Z_4] \leq V_2 \cap Q_0 = Z_1$$

by (5).

Thus we have $[Q_1 \cap Q_{-1}, Z_4] \leq Q_1 \cap Q_{-1}$, and $Q_1 \cap Q_{-1}$ is normal in L_0 . From (6.6), (5), the second commutator relation and (1.3), $Q_0/Q_1 \cap Q_{-1}$ is a natural module for $\overline{L_0}$.

Next we show $Q_1 \cap Q_{-1} = QV$. As shown above, $[\langle Z_4, Z_{-4} \rangle, Q_1 \cap Q_{-1}] \leq V$, hence

$$Q_1 \cap Q_{-1} = C_{Q_0}(K_0)V,$$

since K_0 operates fixed-point-freely on $Q_0/Q_1 \cap Q_{-1}$ (note that $K_0 \neq 1$ by hypothesis and (4)).

Set $D = C_{Q_0}(K_0)$. Assume $D \leq Q_2$. Then the structure of Aut $(L_2(2^n))$ yields

$$[K_0, L_2] \leq Q_2$$
 and $L_2 = C_{L_2}(K_0)Q_2$

which implies $[K_0, V_2] \leq Z_2$, since $Z_1 = Z_0Z_2$ and $[Z_0, K_0] = 1$. But then

$$[K_0, L_4] \le Z_2 \le Q_0$$
 and $[K_0, L_0] \le Q_0$

a contradiction.

Now assume $D \not\leq Q_3$; then $[K_0, L_3] \leq Q_3$ and $L_3 = C_{L_3}(K_0)Q_3$. On the other hand $b_0 = 4$ and $Z_0Q_4 \in Syl_2(L_4)$, hence $[K_0, L_4] \leq Q_4$ and $L_4 = C_{L_4}(K_0)Q_4$. Thus $C_G(K_0)_i$ is transitive on $\Delta(i)$ for i = 3, 4. Now (2.1) yields $K_0 = 1$, a contradiction.

We have shown that $D \leq Q_3$ and therefore $D \leq L_4$. Since $b_0 = 4$, we get

$$D = Z_0(D \cap Q_4)$$
 and $Z_0 \cap Q_4 = 1$

If $D \cap Q_4 \neq Q$, then $N_{D \cap Q_4}(Q) > Q$ and $N_{D \cap Q_4}(Q) \not\leq QZ_0$, but

$$N_{D \cap Q_4}(Q) \leq O_2(M_0)$$

and QZ_0 is the centralizer of K_0 in $O_2(M_0)$ (see (6.4) and (3)). This contradiction shows $D \cap Q_4 = Q$ and $D = QZ_0$, in particular $Q_1 \cap Q_{-1} = QV$.

Now we apply (1.5) and (6.4) to Q_0 / V and $\overline{L_0}$ and get that Q_0 / V is elementary abelian, in particular $[Q_0, Q] \leq V$. On the other hand

$$[Q, Q_1] = [Q, Z_4(Q_1 \cap Q_0)] = [Q, Z_{-2}(Q_1 \cap Q_2)] = [Q, Q_1 \cap Q_0] = [Q, Q_1 \cap Q_2] \le V \cap V_2 = Z_1 \quad (\text{see } (5)).$$

Now let K^* be the subgroup of maximal order in K such that $[K^*, L_1] \leq Q_1$. From (4) we get $|K^*| = |K_0| \neq 1$. This yields

$$[L_1, K^*, Q] \le [Q_1, Q] \le Z_1$$
 and $[K^*, Q, L_1] = 1$,

hence, with the 3-subgroup-lemma, $[Q, L_1, K^*] \leq Z_1$; in particular

 $[Q, Q_2, K^*] \leq Z_1$. Since $[Q, Q_2]$ is a module for M_2 , by (6.5) either $[Q, Q_2] \leq Z_2$ or $[Q, Q_2]Z_2 = V_2$. In the first case, $[Q, Q_2, K_2] = 1$ and $[K_2, Q, Q_2] = 1$ and hence, as above, $[Q_2, K_2, Q] = 1$. Conjugation with τ^{-1} yields $[Q_0, K_0, Q] = 1$. But, as we have seen, $Q_0 = [Q_0, K_0](Q_1 \cap Q_{-1})$ and $Q_1 \cap Q_{-1} = QV$; thus $[Q_0, Q] = 1$ which contradicts (6.5).

Assume $[Q, Q_2]Z_2 = V_2$. Then $[V_2, K^*] \le Z_1$ and $[Z_4, K^*] \le Z_1 \le Q_0$, and we get

$$[K^*, L_0] \leq Q_0$$
 and $L_0 = C_{L_0}(K^*)Q_0$.

But now $C_{c}(K^{*})_{i}$ is transitive on $\Delta(i)$ for i = 0, 1, and (2.1) yields $K^{*} = 1$, a contradiction.

7. Some small cases

(7.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in this section. In addition we assume that $(0 \dots s)$ is right singular. Note that by (3.5), $O_2(G_{(0\dots s)}) \leq Q_s$.

(7.1) $s \ge 3$, or $G_0 \simeq G_1 \simeq L_2(2^{n_0})$ and $n_0 > 1$.

Proof. Assume $s \le 2$. Let S be a Sylow 2-subgroup of $L_0 \cap L_1$. If s = 1, then $S = Q_1$, and L_1 is 2-closed, a contradiction.

If s = 2, then $Q_1 \le Q_2$, and (3.2)(e) yields $Q_1 < Q_2$ or $Q_1 = Q_2 = 1$. In the first case the operation of K implies $Q_2 \in Syl_2(L_2)$ and L_2 is 2-closed, a contradiction. In the second case (after conjugation with τ^{-1}) we find that $L_0 \simeq L_1 \simeq L_2(2^{n_0})$, and S has order 2^{n_0} . The operation of $K = K_0K_1$ and (3.2) yield $K = K_0 = K_1$, $n_0 = n_1 > 1$, $L_0 = G_0$ and $L_1 = G_1$.

- (7.2) Suppose that s = 3. Then one of the following holds.
 - (a) $n_0 = 1, n_1 > 1$ and:
- (a1) $O^2(L_0) \simeq C_3;$
- (a2) Q_1 is elementary abelian and $C_{L_1}(Q_1) = Q_1$;
- (a3) There exist arcs of length s with stabilizers of even order.
- (b) $n_0 > 1$, $n_1 > 1$ and:
- (b1) $O^2(L_0) \simeq L_2(2^{n_0})$ and $O^2(L_1) \simeq L_2(2^{n_1})$;
- (b2) Sylow 2-subgroups of G_0 are elementary abelian of order $2^{n_0+n_1}$.

Proof. Set $R = Q_1 \cap Q_2$, then R is in Q_3 . Since $Q_1 \cap Q_2$ and $Q_2 \cap Q_3$ are L_2 -conjugates, we get $R = Q_2 \cap Q_3$, and R is normal in $\langle Q_1, Q_3 \rangle Q_2 = L_2$; in particular

$$L_2/R \simeq L_2(2^{n_0}) \times Q_2/R$$
 and $Q_1 \in Syl_2(\langle Q_1, Q_3 \rangle)$.

If $C_{\langle Q_1, Q_3 \rangle}(R) \leq R$, we apply (1.7) and get a contradiction to (3.2)(e). Thus we may assume $C_{\langle Q_1, Q_3 \rangle}(R) \leq R$. From (1.9) we get:

(1) $O^2(L_1) \simeq L_2(2^{n_1})'$ and $O^2(L_0) \simeq L_2(2^{n_0})'$, and Sylow 2-subgroups of G_0 are elementary abelian of order 2^{n_0} or $2^{n_0+n_1}$; or

(2) $n_0 = 1$, $O^2(L_0) \simeq C_3$ and $C_{L_1}(Q_1) \le Q_1$, and Q_1 is elementary abelian.

In case (1) we get $|G_0|_2 = 2^{n_0+n_1}$ since s = 3, and (3.2)(b) yields assertion (b).

In case (2), again, (3.2)(b) implies $n_1 > 1$ and assertion (a).

(7.3) Suppose that $Z_0 = 1$ or $Z_1 = 1$. Then s = 2 and $G_0 \simeq G_1 \simeq L_2(2^{n_0}), n_0 > 1$.

Proof. If $Z_i = 1$ for some $i \in \{0, 1\}$, then $Q_i = 1$ and $|L_i|_2 = 2^{n_i}$. This implies s = 2, and the assertion follows from (7.1).

(7.4) Suppopse that s is even and s > 2. Then s = 4, and Q_i is elementary abelian and a natural module for $\overline{L_i}$ (i = 0, 1).

Proof. Let $\gamma = (0...s)$ be a subarc of length s in T, and set $Q = O_2(G_{\gamma})$. From (2.6)(a) we get that all arcs of length greater than s - 1 are singular. Hence (3.5) and (2.10) imply $Q = O_2(G_T)$.

Assume $Q \neq 1$. Then there exists $\delta \in \Gamma$ of minimal distance from 0 such that $Q \not\leq G_{\delta}$. Let $\tilde{\gamma} = (\delta_0 \dots \delta_n)$, $\delta_0 = 0$ and $\delta_n = \delta$, be the arc joining 0 and δ . The minimality of *n* yields $Q \leq G_{\delta_i}$ for i < n. Now define $\hat{\gamma}$ to be the arc

$$(\delta_{n-s-1}\ldots\delta_{n-1})$$

if $n-1 \ge s$, and

$$(s-(n-1)\ldots\delta_0\ldots\delta_{n-1}),$$

if n-1 < s, such that $\hat{\gamma}$ has length s. Then $\hat{\gamma}$ is a subarc of T^s for some G-conjugate of the K-track (T, τ, K) (see (2.6)). In particular $\langle K^s, Q \rangle \leq G_{\hat{\gamma}}$, and (3.5) and (2.10) imply $Q \leq G_{\delta}$, a contradiction.

We have shown that G_{γ} is a 2'-group. Now (2.7) implies s = 4. Pick $S \in Syl_2(L_0 \cap L_1)$. The transitivity of $L_0 \cap L_1 = N_{L_0}(S)$ on the arcs

 $(0\ 1\ \delta_2\ \delta_3\ \delta_4)$ and $(1\ 0\ \delta_{-1}\ \delta_{-2}\ \delta_{-4})$

(see (2.6)) yields

$$|S| = 2^{2n_1+n_1} = 2^{2n_0+n_1}.$$

This implies $n_1 = n_0$ and $|S| = 2^{3n_0}$; in particular $|Q_0| = |Q_1| = 2^{2n_0}$.

Assume first that $C_{L_i}(Q) \le Q_i$ for i = 0, 1. Then we apply (1.11) and get either the assertion or $Z_j = Z(L_j)$ for some $j \in \{0, 1\}$. In the second case $|Q_j/Z_j| < 2^{2n_0}$, and (1.2) yields a contradiction.

We may assume now without loss that $C_{L_0}(Q_0) \leq Q_0$. Applying (1.9) we get $n_0 = 1$ and $L_1 \simeq \Sigma_4$. But now (3.2) implies

$$S = (S \cap O^{2}(L_{0}))(S \cap O^{2}(L_{1})) = Q_{1},$$

a contradiction.

8. The stabilizer of $\Delta(\alpha)$

(8.0) Hypothesis and notation. In this section we assume Hypothesis B and use notation (3.3) as far as it suits this hypothesis. In addition,

$$X_{\Delta(\delta)} = \bigcap_{\rho \in \Delta(\delta)} X_{\delta\rho}$$

for $\delta \in \Gamma$ and $X \leq G$.

(8.1) Suppose that Γ is a tree. Then $G_{\Delta(\delta)}$ is solvable and $O(G_{\Delta(\delta)}) = 1$ for $\delta \in \Gamma$, and one of the following holds.

- (a) There exists an edge-transitive normal subgroup E of G such that:
- (a1) $O^{2'}(E_{\delta})/O_{2}(E_{\delta}) \cong L_{2}(2^{n_{\delta}}), \text{ or } n_{\delta} = 1 \text{ and } O_{2}(E_{\delta}) \in Syl_{2}(E_{\delta});$
- (a2) no proper normal subgroup of E is edge-transitive on Γ ;
- (a3) $C_{G_{\alpha}}(Q_{\alpha}) \leq Q_{\infty}$ if and only if $C_{G_{\beta}}(Q_{\beta}) \leq Q_{\beta}$.
- (b) s = 3, and $\{G_{\alpha}, G_{\beta}\}$ is parabolic of type

Aut $(L_2(2^{n_\beta}))$ \int Aut $(L_2(2^{n_\alpha}))$ or Aut $(L_2(2^{n_\alpha}))$ \int Aut $(L_2(2^{n_\beta}))$.

(c) (possibly after changing notion) $n_{\beta} = 1$ and s = 3, Q_{α} is elementary abelian,

$$G_{\alpha}/Q_{\alpha} \simeq H \leq \operatorname{Aut}(L_2(2^{n_{\alpha}})),$$

 Q_{α} is isomorphic to a submodule of the natural permutation GF(2)-module for $G_{\alpha}/Q_{\alpha}, G_{\beta} = G_{\alpha\beta}W, W \simeq \Sigma_{3}$, and W is normal in G_{β} .

Proof. The first property is obvious:

(1) $G_{\delta}/G_{\Delta(\delta)}$ is isomorphic to a subgroup of Aut $(L_2(2^{n_{\delta}}))$ which contains $L_2(2^{n_{\delta}})', \delta \in \Gamma$.

Since $O(G_{\Delta(\alpha)})$ is normal in $G_{\alpha\beta}$, we get $[O(G_{\Delta(\alpha)}), G_{\alpha\beta}] \le O(G_{\Delta(\alpha)}) \le O(G_{\alpha\beta})$. Hence (1) and the structure of $\operatorname{Aut}(L_2(2^{n\beta}))$ yield $O(G_{\Delta(\alpha)}) \le O(G_{\Delta(\beta)})$. The same argument applied to $O(G_{\Delta(\beta)})$ shows $O(G_{\Delta(\alpha)}) = O(G_{\Delta(\beta)})$. Hence $O(G_{\Delta(\alpha)})$ is normal in $\langle G_{\alpha}, G_{\beta} \rangle = G$. We get:

(2) $O(G_{\Delta(\alpha)}) = O(G_{\Delta(\beta)}) = 1.$

Let H_{δ} be the largest perfect normal subgroup in $G_{\Delta(\delta)}$. Again the structure of Aut $(L_2(2^{n_{\delta}}))$ yields $H_{\alpha} = H_{\beta}$ and:

(3) $H_{\alpha} = H_{\beta} = 1$, in particular $G_{\Delta(\delta)}$ is solvable for $\delta \in \Gamma$.

If $Q_{\alpha} \leq G_{\Delta(\beta)}$ and $Q_{\beta} \leq G_{\Delta(\alpha)}$, then the above argument shows $Q_{\alpha} = Q_{\beta} = 1$, and (2) and (3) imply $G_{\Delta(\alpha)} = G_{\Delta(\beta)} = 1$, and (a) holds.

Thus we may assume, without loss, $Q_{\alpha} \not\leq G_{\Delta(\beta)}$. Since Q_{α} is normal in $Q_{\alpha\beta}$, we get:

 $(4) \quad [Q_{\alpha}, G_{\Delta(\beta)}] \leq Q_{\alpha} \cap G_{\Delta(\beta)} \leq Q_{\beta}.$

Set $W_{\beta} = \langle Q_{\alpha}^{G_{\beta}} \rangle Q_{\beta}$. Then (4) implies that every chief factor of W_{β} which is in $W_{\beta} \cap G_{\Delta(\beta)}$ but not in Q_{β} is central. Hence, [6, V 25.7] and the structure of Aut $(L_2(2^{n_{\beta}}))$ yield $W_{\beta} \cap G_{\Delta(\beta)} = Q_{\beta}$ and $W_{\beta}/Q_{\beta} \simeq L_2(2^{n_{\beta}})$.

Assume that $Q_{\beta} \not\leq G_{\Delta(\alpha)}$. Then we define $W_{\alpha} = \langle Q_{\beta}^{G_{\alpha}} \rangle Q_{\alpha}$ and, as above, get

$$W_{\alpha} \cap G_{\Delta(\alpha)} = Q_{\alpha}$$
 and $W_{\alpha}/Q_{\alpha} \simeq L_2(2^{n_{\alpha}}).$

Set

$$E = \langle O^2(W_{\alpha})(O^2(W_{\beta}) \cap G_{\alpha}), O^2(W_{\beta})(O^2(W_{\alpha}) \cap G_{\beta}) \rangle$$

and $T_{\delta} = C_{\sigma_{\delta}}(Q_{\delta})$ for $\delta = \alpha, \beta$. Then (2.3) and (2.4) imply that (a1) and (a2) hold in *E*, and (3) and (4) yield $T_{\delta} \cap G_{\Delta(\delta)} = Z(Q_{\delta})$. Hence $T_{\delta} \leq Q_{\delta}$ if and only if $C_{w_{\delta}}(Q_{\delta}) \leq Q_{\delta}$.

Thus either case (a) holds for E, or we have one of the following:

- (1) $Q_{\beta} \leq G_{\Delta(\alpha)}, C_{W_{\beta}}(Q_{\beta}) \leq Q_{\beta} \text{ and } C_{W_{\alpha}}(Q_{\alpha}) \leq Q_{\alpha},$
- (II) $Q_{\beta} \leq G_{\Delta(\alpha)}, C_{W_{\alpha}}(Q_{\alpha}) \leq Q_{\alpha} \text{ and } C_{W_{\beta}}(Q_{\beta}) \leq Q_{\beta},$
- (III) $Q_{\beta} \leq G_{\Delta(\alpha)}$.

Since (I) and (II) only differ in notation, we may assume without loss of generality that we are in case (I) or (III).

Assume (III). This implies $Q_{\beta} \leq Q_{\alpha}$ and $Q_{\alpha} \in Syl_2(W_{\beta})$. By (2.1), $\langle W_{\beta}, O^2(G_{\alpha})Q_{\alpha} \rangle$ is edge-transitive on Γ . Thus no non-trivial subgroup of W_{β} is normalized by $O^2(G_{\alpha})Q_{\alpha}$. Hence (1.7) implies $C_{W_{\beta}}(Q_{\beta}) \leq Q_{\beta}$. So we have shown in both cases (I) and (III):

(5) $C_{w_{\beta}}(Q_{\beta}) \not\leq Q_{\beta}$.

Then $W_{\beta} = Q_{\beta}C_{w_{\beta}}(Q_{\beta})$, and $\phi(Q_{\alpha})$ is normal in the edge-transitive subgroup $\langle W_{\beta}, G_{\alpha} \rangle$. This implies:

(6) $W_{\beta} = Q_{\beta}W_{\beta}^{*}, W_{\beta}^{*} \simeq L_{2}(2^{n_{\beta}})$, and Q_{α} is elementary abelian.

Set $R_{\beta} = \bigcap_{\beta \neq \beta' \in \Delta(\alpha)} G_{\Delta(\beta')}$. The subgroup $\bigcap_{\beta' \in \Delta(\alpha)} G_{\Delta(\beta')}$ is normal in $\langle G_{\alpha}, W_{\beta} \rangle$. Hence, as above,

$$\bigcap_{\mathfrak{G}'\in\Delta(\alpha)}G_{\Delta(\mathfrak{G}')}=1=R_{\mathfrak{G}}\cap G_{\Delta(\mathfrak{G})}.$$

For subsets $\{\beta_1 \dots \beta_k\}$ in $\Delta(\alpha)$ we define

4

$$Y_k = \bigcap_{i=1}^k G_{\Delta(\beta_i)}$$
 and $\tilde{Y}_k = \prod_{i=1}^k R_{\beta_i}$.

Assume first that $R_{\beta} = 1$. Since $[Q_{\alpha}K_{\beta}] \leq R_{\beta}$ it follows that $K_{\beta} = 1$ and $2^{n_{\beta}} = 2$. We know that $Z(Q_{\beta_i}Q_{\alpha}) = \langle a_i \rangle$ is cyclic of order 2, since, by (3.2)(e), $Z(Q_{\beta_i}Q_{\alpha}) \cap Q_{\beta_j} = 1$ for $i \neq j$.

If $\prod_{i=1}^{k} a_i = 1$, then $a_k = \prod_{i=1}^{k-1} a_i \in Q_{\beta_k}$ and thus $k - 1 \equiv 0$ (2). On the other hand, if $k < 2^{n_{\alpha}} + 1$, then $a_1, \ldots, a_k \in Q_{\alpha} \setminus Q_{\beta_{k+1}}$ yields $k \equiv 0$ (2), a contradiction. This shows that Q_{α} is isomorphic to the non-trivial submodule of a natural permutation GF(2)-module for G_{α}/Q_{α} .

Now assume that $R_{\beta} \neq 1$, and let k be maximal such that

$$\widetilde{Y}_k = \sum_{i=1}^k R_{\beta_i}$$
 and $\widetilde{Y}_k \cap Y_k = 1$,

and assume that there exists $\beta_{k+1} \in \Delta(\alpha) \setminus \{\beta_1, \dots, \beta_k\}$. Then $R_{\beta_{k+1}} \leq Y_k$ and hence $\tilde{Y}_{k+1} = X_{i=1}^{k+1} R_{\beta_i}$. By the maximality of k there exists

 $1 \neq ry \in \tilde{Y}_{k+1} \cap Y_{k+1}$

for $r \in R_{\beta_{k+1}}^{\#}$ and $y \in \tilde{Y}_k$. Then

$$y \in G_{\Delta(\beta_{k+1})}$$
 and $r \in Y_{k+1}y^{-1} \subseteq G_{\Delta(\beta_{k+1})}$

which contradicts $R_{\beta_{k+1}} \cap G_{\Delta(\beta_{k+1})} = 1$.

We have shown that there exists a normal subgroup $W = X_{\beta' \in \Delta(\alpha)} R_{\beta'}$ in G_{α} , and R_{β} is a subgroup of $\operatorname{Aut}(W_{\beta}^*)$ containing the normalizer of a Sylow 2-subgroup of W_{β}^* . In particular, $(R_{\beta} \cap Q_{\alpha})W_{\beta'}^* \simeq L_2(2^{n_{\beta}})$, and $(R_{\beta} \cap Q_{\alpha})W_{\beta'}^*$ is normal in G_{β} , since $G_{\alpha\beta}$ normalizes R_{β} . According to (6) we may choose $W_{\beta} = (R_{\beta} \cap Q_{\alpha})W_{\beta'}^*$.

There exists an involution $t \in W_{\beta}$ with $\alpha^{t} = \alpha'$ for $\alpha \neq \alpha' \in \Delta(\beta)$. Set $X = G_{\alpha} \cap G_{\beta} \cap G_{\alpha'}$. Then $[X, t] \leq W_{\beta} \cap G_{\alpha} \cap G_{\alpha'} = 1$. Hence a subgroup X_{0} in X is transitive on $\Delta(\alpha) \setminus \{\beta\}$, if and only if it is also transitive on $\Delta(\alpha') \setminus \{\beta\}$. This shows that $s \geq 3$ and that there exists no regular arc $(\alpha\beta\alpha'\beta')$ of length 3, and since $Q_{\alpha} \leq G_{\Delta(\beta)}$ we get s = 3.

Assume that $n_{\beta} > 1$. Then $C_{\sigma_{\alpha}}(W) = 1$ and $G_{\alpha} \leq \operatorname{Aut}(W)$ (here and in the following we interpret the natural monomorphism into the automorphism group as inclusion). Set

$$W_0 = \underset{\beta' \in \Delta(\alpha)}{\times} \operatorname{Aut}(R_{\beta'}).$$

As $G_{\Delta(\alpha)}$ fixes every $\beta' \in \Delta(\alpha)$ and $\operatorname{Aut}(W) = \operatorname{Aut}(R_{\beta}) \mid \Sigma_{\mid \Delta(\alpha) \mid}$, we get

$$G_{\Delta(\alpha)} = W_0 \cap G_\alpha \leq G_\alpha \leq \operatorname{Aut}(R_\beta) \left[\Sigma_{|\Delta(\alpha)|} \right]$$

On the other hand $G_{\alpha}W_0/W_0 \simeq H \leq \operatorname{Aut}(L_2(2^{n_{\alpha}}))$, and G_{α} operates in its natural permutation representation on $\{R_{\beta'}/\beta' \in \Delta(\alpha)\}$. But then $G_{\alpha}W_0$ is conjugate in $\operatorname{Aut}(W)$ to $\operatorname{Aut}(R_{\beta}) \ H$. Hence we may assume

$$R_{\beta} \mid L_{2}(2^{n_{\alpha}})' \leq G_{\alpha} \leq \operatorname{Aut}(R_{\beta}) \mid \operatorname{Aut}(L_{2}(2^{n_{\alpha}})).$$

It is easy to see with Schur's lemma that $\operatorname{Aut}(R_{\beta})$ is a subgroup of $\operatorname{Aut}(L_2(2^{n_{\beta}}))$, hence

$$G_{\alpha} \leq \operatorname{Aut}(R_{\beta}) \mid \operatorname{Aut}(L_2(2^{n_{\alpha}})) \leq \operatorname{Aut}(L_2(2^{n_{\beta}})) \mid \operatorname{Aut}(L_2(2^{n_{\alpha}})).$$

With the same argument we get

$$G_{\beta} \leq \operatorname{Aut}((\underset{\beta \neq \beta \in \Delta(\alpha)}{\times} R_{\beta'}) \times L_{2}(2^{n_{\beta}}))$$
$$\leq \operatorname{Aut}(\underset{\beta' \in \Delta(\alpha)}{\times} L_{2}(2^{n_{\beta'}}))$$
$$\leq \operatorname{Aut}(L_{2}(2^{n_{\beta}})) \mid \Sigma_{\mid \Delta(\alpha) \mid}.$$

Set

$$\tilde{W}_0 = \underset{\beta' \in \Delta(\alpha)}{\times} \operatorname{Aut}(L_2(2^{n_{\beta'}})).$$

Then $G_{\Delta(\alpha)}W_{\beta} \leq \tilde{W}_0$, and $G_{\beta}/G_{\beta} \cap \tilde{W}_0$ is isomorphic to a subgroup of the normalizer of a Sylow 2-subgroup in $\operatorname{Aut}(L_2(2^{n_\alpha}))$. In particular the permutation representation of $G_{\beta}/G_{\beta} \cap \tilde{W}_0$ on $\{R_{\beta'}/\beta \neq \beta' \in \Delta(\alpha)\}$ is unique, and G_{β} is in $\operatorname{Aut}(X_{\beta' \in \Delta(\alpha)}L_2(2^{n_{\beta'}}))$ conjugate to a subgroup of

Aut(
$$L_2(2^{n_{\alpha}})$$
) \ Aut($L_2(2^{n_{\alpha}})$).

This shows assertion (b), if $n_{\beta} > 1$.

Assume $n_{\beta} = 1$. Then W is elementary abelian of order $2^{2^{n_{\alpha+1}}}$, and G_{β} is no longer a subgroup of Aut(W). But now $O^2(G_{\Delta(\alpha)})$ is normal in $\langle G_{\alpha}, G_{\beta} \rangle = G$. Hence $G_{\Delta(\alpha)} = Q_{\alpha} = W$, and assertion (c) follows.

9. Finite graphs

(9.0) Hypothesis and notation. In this section we assume Hypothesis (3.0) and use notation (3.3). In addition:

- (1) $\max\{n_0, n_1\} > 1$,
- $(2) \quad s \geq 3,$
- (3) arcs of length s have stabilizers of odd order in G.

It follows from (3) and (3.1)(e) that there are involutions

$$t_0 \in N_{L_0}(K) \setminus L_1$$
 and $t_1 \in N_{L_1}(K) \setminus L_0$.

Hence we may assume $\tau = t_0 t_1$ (see (2.8)); then $\tau^{t_i} = \tau^{-1}$ and $k^{t_0} = -k$ and $k^{t_1} = 2 - k$ for $k \in T$. Furthermore

Aut^o(
$$\Gamma$$
) = $\langle x \in Aut(\Gamma) / 0^x \in 0^G \rangle$,

 $X = N_{Aut^0(\Gamma)}(G), \mathcal{K} = \{T^g / g \in X\}$ and

 $\mathscr{K}_{2(s-1)} = \{\gamma / \gamma \text{ arc of length } 2(s-1) \text{ and } \gamma \subseteq T^s \in \mathscr{K}\};$

 $\gamma(\delta_1, \delta_2)$ denotes the unique arc starting at δ_1 which joins the two vertices δ_1 and δ_2 .

(9.1) Suppose that γ is an arc of length s. Then γ is contained in a unique element of \mathcal{K} .

Proof. Since γ is conjugate to $(0 \dots s)$ or $(1 \dots s + 1)$ (see (2.6)), γ is contained in some element of \mathscr{X} .

Now assume that γ is a counterexample. Then $\gamma \subseteq T \cap T^{g}$ for some $g \in X$ and $T \neq T^{g}$, and without loss of generality we may assume

$$T\cap T^{g}=(0\ldots w), \quad w\geq s.$$

In particular $G_{(0,..w)} = K = K^{g}$, since G_{γ} has odd order. Thus

(0...w) and $(0^{g}...w^{g})$

are both subarcs of T^{s} .

First suppose that $w \equiv 1$ (2). Then $\Delta(0)$ or $\Delta(w)$ contains more than three elements which contradicts $K = K^s$ and (3.1)(b). Hence $w \equiv 0$ (2), and there exists $\tau^* \in \langle \tau^s \rangle$ such that

$$O^{g\tau^*} = 0$$
 and $w^{g\tau^*} = w$
 $O^{g\tau^*} = w$ and $w^{g\tau^*} = 0$.

In the first case $g\tau^* \in G_{(0,..w)} = K^s$, and $g\tau^*$ and τ^* normalize T^s . It follows that $\langle g \rangle$ normalizes T^s , contradicting $T \neq T^s$.

In the second case there exists a reflection t' on T^{*} such that

$$g\tau^*t' \in G_{(0\ldots w)}$$

Thus as above, t', τ^* and g normalize $T^{\mathfrak{g}}$, a contradiction.

(9.2) Let $X = O^{2'}(\langle G_{(0,..,s-1)}, G_{(s-1,..,2(s-1))} \rangle)$. Then:

(a)
$$X/X \cap Q_{s-1} \simeq L_2(2^{n_s-1}).$$

- (b) K normalizes X.
- (c) $X \cap Q_{s-1}$ is a natural module for $X/X \cap Q_{s-1}$, or $X \cap Q_{s-1} = 1$.

Proof. We define

$$T_1 = O_2(G_{(0...s-1)}), \quad T_2 = O_2(G_{(s-1...2(s-1))}),$$

 $K^* = C_K(T_1)$ and $R = \langle T_1, T_2 \rangle \cap Q_{s-1}$. Since K operates on T_1 and T_2 and arcs of length s have stabilizers of odd order, we get together with [6, I 14.4]:

(1) T_i is elementary abelian of order $2^{n_{s-1}}$ and $T_i \cap Q_{s-1} = 1$, i = 1, 2.

- (2) $T_i Q_{s-1} \in Syl_2(L_{s-1}), i = 1, 2, \text{ and } < T_1, T_2 > /R \simeq L_2(2^{n_{s-1}}).$
- (3) K^* centralizes $< T_1, T_2 >$.

(4) There exists a complement $X \approx L_2(2^{n_{s-1}})$ in $\langle T_1, T_2 \rangle$ which contains K_{s-1} .

Hence it suffices to show that R is a natural module or R = 1.

If s = 3, we apply (7.2) and get $\langle T_1, T_2 \rangle \leq O^2(L_{s-1})$ and R = 1, since $[T_i, K] = T_i$ for i = 1, 2.

If $s \equiv 0$ (2), we apply (7.3) and get that R = 1 or $R = Q_{s-1}$ is a natural module.

Hence we may assume $s \ge 5$ and $s \equiv 1$ (2), in particular $\mu = (s-1)/2$ is an integer and a vertex in T.

Suppose first that $K^* \neq 1$. If $C_{Q_{s-1}}(K^*) \leq Q_{s-2}$, then the operation of K on $C_{Q_{s-1}}(K^*)$ yields $Q_{s-2}C_{Q_{s-1}}(K^*) \in Syl_2(L_{s-2})$ and $[L_{s-2}, K^*] \leq Q_{s-2}$. Together with (2) and (3) this contradicts (2.1).

We have shown:

(5) $C_{Q_{s-1}}(K^*) \leq Q_{s-2}$.

Since $\langle T_1, T_2 \rangle$ operates transitively on $\Delta(s-1)$, we get

$$R \leq C_{\mathcal{Q}_{p-1}}(K^*) \leq \bigcap_{\rho \in \Delta(s^{-1})} Q_{\rho} = H$$

Now, an application of (4.6), (4.8) and (5.2) yields one of the following cases:

- (i) H = 1.
- (ii) $H = Z_{s-1} = Z(L_{s-1})$ and $H \le G_{\mu}$.

(iii) s = 7, $H = T_3 Z_{s-1}$, where $T_3 = O_2(G_{(\mu,\ldots,s+\mu-1)})$, and Z_{s-1} is a natural module for $\overline{L_{s-1}}$.

In case (i) we get R = 1. In case (ii), $R \le Z(\langle T_1, T_2 \rangle)$, and (4) and the operation of K imply R = 1.

Assume now case (iii). With the help of (4.8) and (5.2) it is easy to check that $[T_1, K_\mu] = 1$ and hence $K_\mu \le K^*$. On the other hand, $\mu = 3$ and s - 1 = 6, and (3.2) implies $K_\mu = K^*$. Since T_3 stabilizes the maximal regular arc $(\mu \dots s + \mu - 1)$, we get $T_3 \cap Q_\mu = 1$ and $C_{T_3}(K_\mu) = 1$ or $K_\mu = 1 = K^*$. So $C_{T_3}(K_\mu) = 1$ and R = 1 or $R = Z_{s-1}$, and the assertion holds.

Suppose now that $K^* = 1$. Then we are in case (5.2)(a) or (b) and $K = K_{s-1}$. If s = 5, then $C_{L_3}(K) = Z_3 \times \langle Z_1, Z_5 \rangle$ and $|Z_3| = 2$ and $\langle Z_1, Z_5 \rangle \approx \Sigma_3$. If s = 7, then $C_{L_5}(K) = \langle Z_7, Z_3 \rangle \approx \Sigma_4$. Let d be an element of order 3 in $C_{L_{s-2}}(K)$, and let Ω be the set of all elementary abelian subgroups F in Q_{s-2} such that $F \cap Q_{s-3} \cap Q_{s-1} = 1$, $|F| = 2^{n_s-1}$ and [K, F] = F. If (5.2)(a) holds, it is easy to check that $\Omega = \{T_1, T_1^d, T_1^{d-1}\}$. We want to show the same, if (5.2)(b) holds.

Define $\overline{Q_{s-2}} = Q_{s-2}/Q_{s-3} \cap Q_{s-1}$ and $\overline{\Omega} = \{\overline{F}/F \in \Omega\}$. Clearly $|\overline{\Omega}| \ge 3$, since $\overline{T_1}$, $\overline{T_1^a}$ and $\overline{T_1^{a-1}}$ are contained in $\overline{\Omega}$. Assume $|\overline{\Omega}| > 3$, then the operation of *d* implies $|\overline{\Omega}| \ge 6$, and there are at least 42 images of involutions and at most 21 images of 4-elements in $\overline{Q_{s-2}}$. We now take a factor group \tilde{Q} of Q_{s-2} which is a non-abelian extension of $\overline{Q_{s-2}}$ of order 2⁷. All such possible extensions contain more than 21 4-elements. Hence we have shown:

(6) $|\overline{\Omega}| = 3.$

Now let $T_3 = O_2(G_{(2...8)})$. Then $Q_4 \cap Q_6 = T_3Z_5$, and there exists a reflection t on T in L_4 which inverts the elements of K and interchanges T_1 and T_3 . Since |K| > 3, there are only two K-modules of order 2^3 in $T_1T_3Z_5/Z_5$, namely T_1Z_5/Z_5 and T_3Z_5/Z_5 . On the other hand

$$Z_5 = Z_6 Z_6^d \leq C_{Q_5}(K)$$
 and $\Omega \cap T_1 Z_5 = \{T_1\};$

thus we have shown for s = 5 and 7, $\Omega = \{T_1, T_1^d, T_1^{d-1}\}$. One of these three elements in Ω , say T_1^d , is contained in Q_{s-1} and since $d \in \langle Z_s, Z_{s-4} \rangle$, there exists $z \in Z_s$ such that $T_1^{d^{-1}} = T_1^s$. Hence we have shown:

(7) T_1 and T_1^s are the only complements for Q_{s-1} in T_1Q_{s-1} which are normalized by K.

Now reflecting T with $t_0^{r^3}$ yields:

(8) T_2 and $T_2^{\tilde{z}}$ are the only complements for Q_{s-1} in T_2Q_{s-1} ($\tilde{z} \in Z_{s-1}$) which are normalized by K.

If we now take Y as described in (4), we can fine $x \in \langle Z_{s-4}, Z_s \rangle$ such that $Y^x = \langle T_1, T_2 \rangle$.

(9.3) Suppose that $\alpha_1, \alpha_2, \alpha_3 \in \Gamma$, $\gamma(\alpha_1, \alpha_3) \in \mathscr{K}_{2(s-1)}$ and

$$d(\alpha_2,\alpha_3) = 2(s-1).$$

Then $\gamma(\alpha_2, \alpha_3) \in \mathscr{X}_{2(s-1)}$.

Proof. We use the following notation: $\gamma_i = \gamma(\alpha_j, \alpha_k)$ for $\{i, j, k\} = \{1, 2, 3\},$

$$\gamma_1 \cap \gamma_2 \cap \gamma_3 = \{\lambda\}, \ T_i = O_2(G_{\gamma(\alpha_i, \lambda)}),$$

 $L = \langle T_1, T_2 \rangle$, t_{λ} is a reflection on γ_3 contained in $O_2(G_{(\lambda \ \delta_1 \dots \delta_{s-1})})$ for some arc $(\lambda \delta_1 \dots \delta_{s-1})$ of length s - 1.

By (9.2), $L/O_2(L) \simeq L_2(2^{n_\lambda})$, and $O_2(L)$ is a natural module or $O_2(L) = 1$. It is easy to check that $T_1^{\nu} \cap T_2 \neq 1$ ($\nu \in L$) implies $T_1^{\nu} = T_2$.

There exists $t \in T_1$ which interchanges the two vertices in $\Delta(\lambda) \cap \gamma_1$. Hence γ_2 and γ_3^t have an arc of length s in common. It follows from (9.1) that $\gamma_2 = \gamma_3^t$. The structure of $L_2(2^{n_\lambda})$ yields the existence of $t' \in T_2$ such that $\langle t, t' \rangle Q_{\lambda}/Q_{\lambda} \simeq \Sigma_3$, and the structure of L implies $\langle t, t' \rangle \simeq \Sigma_3$. Note that the relation $t^{t't} = t'$ holds.

Set v = t'', then $t' \in T_1^v \cap T_2$ and $T_1^v = T_2$. On the other hand $T_1^{i_\lambda} = T_2$, thus vt_λ normalizes T_1 and T_2 . From the structure of L and L_λ we conclude that $[L, vt_\lambda] = 1$. By (7.4), this is only possible if s = 1 (2). Hence vt_λ stabilizes the arc $(\lambda_1 \dots \lambda_{---} \lambda_2)$ of length s - 1 where λ_i is the midpoint in $\gamma(\alpha_i, \lambda)$. So vt_λ has order 1 or 2, and v and t_λ commute. Therefore $\gamma(\lambda, \alpha_3)$ and $(\lambda \dots \delta_{s-1})$ have an arc $(\lambda \dots \lambda_3)$ of length (s - 1)/2 in common. Since both v and t_λ fix two vertices in $\Delta(\lambda_3)$, we get $v, t_\lambda \in Q_{\lambda_3}$, and v and t_λ fix the elements in $\Delta(\lambda_3) \cap \gamma_2$. Thus vt_λ stabilizes $\tilde{\gamma} = (\lambda_1 \dots \lambda \dots \lambda_3 \mu)$ where $\mu \in \Delta(\lambda_3) \cap \gamma_2$ and $\mu \notin (\lambda \dots \lambda_3)$. Since $\tilde{\gamma}$ has length s, it follows that $vt_\lambda = 1$ and $v = t_\lambda$. Hence $\alpha_1^v = \alpha_1^{v_\lambda} = \alpha_2$ and $\alpha_3^{t_{\lambda}} = \alpha_3^{\nu} = \alpha_3$, since $\nu = t'^{t} \in T_2^{t} = T_3$, and we have shown $\gamma_2^{t_{\lambda}} = \gamma_1 \in K_{2(s-1)}$.

(9.4) There exists an equivalence relation \approx on Γ such that:

(a) $\Gamma = \Gamma / \approx$ is an (s - 1)-gon (where two equivalence classes are adjacent, iff they contain some pair of adjacent vertices).

(b) X operates on $\overline{\Gamma}$.

(c) X_0 and X_1 operate faithfully on $\overline{\Gamma}$.

Moreover, for $\tilde{X} = X^{\tilde{r}}$, one of the following holds:

(1) s = 3, $\tilde{G} \simeq L_2(2^{n_0}) \times L_2(2^{n_1})$, $\tilde{X} \leq \operatorname{Aut}(L_2(2^{n_0}) \times L_2(2^{n_1}))$, and $\{X_0, X_1\}$ is parabolic of type $L_2(2^{n_0}) \times L_2(2^{n_1})$.

(2) s = 4, $\tilde{G} \simeq L_3(2^{n_0})$, $\tilde{X} \leq \operatorname{Aut}(L_3(2^{n_0}))$ and $\{X_0, X_1\}$ is parabolic of type $L_3(2^{n_0})$.

(3) s = 5, $\tilde{G} \approx Sp_4(2^{n_0})$ or $U_4(2^{n_0})$, $\tilde{X} \leq Aut(Sp_4)2^{n_0})$ (resp. $Aut(U_4(2^{n_0}))$), and $\{X_0, X_1\}$ is parabolic of type $Sp_4(2^{n_0})$ (resp. $U_4(2^{n_0})$).

(4) s = 7, $\tilde{G} \simeq G_2(2^{n_0})$ or ${}^{3}D_4(2^{n_0})$, $\tilde{X} \leq \operatorname{Aut}(G_2(2^{n_0}))$ (resp. Aut $({}^{3}D_4(2^{n_0}))$), and $\{X_0, X_1\}$ is parabolic of type $G_2(2^{n_0})$ (resp. ${}^{3}D_4(2^{n_0}))$.

Proof. For $\delta \in \Gamma$ we define:

$$\Gamma_{\delta} = \{\lambda \in \Gamma / \gamma(\delta, \lambda) \in \mathscr{K}_{2(s-1)}\} \cup \{\delta\}.$$

Note that $\gamma(\delta, \lambda) \in \mathscr{X}_{2(s-1)}$ implies $\gamma(\lambda, \delta) \in \mathscr{X}_{2(s-1)}$, since the elements in \mathscr{X} allow reflections. X operates on the graph $\hat{\Gamma}$ with vertex set $\{\Gamma_{\delta}/\delta \in \Gamma\}$, where two vertices Γ_{δ} and $\Gamma_{\delta'}$ are adjacent iff $\delta \neq \delta'$ and $\{\delta, \delta'\} \subseteq \Gamma_{\delta} \cap \Gamma_{\delta'}$. Now we define an equivalence relation \approx on Γ :

 $\delta \approx \delta'$ for $\delta, \delta' \in \Gamma$ iff Γ_{δ} is in Γ in the same connected component as $\Gamma_{\delta'}$. Set $\tilde{\Gamma} = \Gamma / \approx$ and denote by $\tilde{\delta}$ the equivalence class of $\delta \in \Gamma$. Two vertices $\tilde{\alpha}, \tilde{\beta}$ are adjacent iff there exist $\alpha' \in \tilde{\alpha}$ and $\beta' \in \tilde{\beta}$ such that $\beta' \in \Delta(\alpha')$.

It is easy to see that X operates on $\tilde{\Gamma}$. We want to show first that $\tilde{\Gamma}$ is non-trivial:

(1) If δ has distance less than 2(s-1) from 0 (resp. 1), then $\tilde{\delta} \neq \bar{0}$ (resp. $\tilde{\delta} \neq \bar{1}$) or $\delta = 0$ (resp. $\delta = 1$).

Let $\delta \neq 0$ be of distance less than 2(s-1) from 0. Assume that $\delta \in \overline{0}$. Then there exist elements $\delta_0, \delta_1, \ldots, \delta_n$ such that $\delta_0 = 0$ and $\delta_n = \delta$ and Γ_{δ_i} is adjacent to $\Gamma_{\delta_{i+1}}$ in $\widehat{\Gamma}$ for $i = 0, \ldots, n-1$, which means

$$\gamma(\delta_i,\delta_{i+1})\in\mathscr{K}_{2(s-1)}.$$

Let n be minimal with these properties.

There exists δ_k , 0 < k < n, such that $d(\delta_0, \delta_k)$ is maximal. Set

$$\gamma_1 = \gamma(\delta_k, \delta_{k+1}) \cap \gamma(\delta_k, \delta_{k-1}) = (\delta_k \dots \lambda),$$

$$\gamma_2 = (\lambda \dots \delta_{k+1}) \text{ and } \gamma_3 = (\lambda \dots \delta_{k-1}).$$

Since γ_1 is contained in at least two different elements of \mathscr{X} , it has length less than s. On the other hand $d(\delta_0, \lambda) + |\gamma_i| \le d(\delta_0, \delta_k)$ for i = 2, 3. Hence the length of γ_i is s - 1 for i = 1, 2, 3, and we can apply (9.3) to get

$$\delta_{k-1}, \delta_{k+1} \in \Gamma_{\delta_{k-1}} \cap \Gamma_{\delta_{k+1}}$$

But now $\delta_0, \ldots, \delta_{k-1}, \delta_{k+1}, \ldots, \delta_n$ have the same properties as $\delta_0, \ldots, \delta_n$, contradicting the minimality of n.

The same argument holds for 1 in place of 0.

(2) Suppose that δ and λ are adjacent in $\tilde{\Gamma}$. Then for every $\delta \in \delta$ there exists $\lambda \in \lambda$ such that $\delta \in \Delta(\lambda)$.

By definition, there exist $\delta_0 \in \tilde{\delta}$ and $\lambda_0 \in \tilde{\lambda}$ such that $\delta_0 \in \Delta(\lambda_0)$. Assume that $\delta \in \tilde{\delta}$ and $\gamma(\delta_0, \delta) \in \mathscr{X}_{2(s-1)}$. It suffices to show (2) for all such vertices δ .

Let λ^* be the vertex of distance s - 1 from δ_0 and δ in $\gamma(\delta_0, \delta)$. Then $\gamma(\lambda_0, \lambda^*)$ has length s, and (9.1) implies that there is a unique element T^* in \mathscr{X} containing $\gamma(\lambda_0, \lambda^*)$. Pick $\lambda_1 \in T^*$ of distance 2(s - 1) from λ_0 and 2(s - 1) - 1 from δ_0 and $\delta_1 \in T^* \cap \Delta(\lambda_1)$ of distance 2(s - 1) from δ_0 . Note that $\tilde{\delta}_0 = \tilde{\delta}_1$ and $\tilde{\lambda}_0 = \tilde{\lambda}_1$.

If $\delta \in T^*$, then $\delta = \delta_1$ and $d(\delta, \lambda_1) = 1$. So assume $\delta \notin T^*$. Then we can apply (9.3), and get $\gamma(\delta_1, \delta) \in T^{**} \in \mathscr{K}$.

Hence there exists $\lambda_2 \in \Delta(\delta) \cap T^{**}$ of distance 2(s-1) from λ_1 , and since $\lambda_1 \in T^{**}$ it follows that $\lambda_2 \in \tilde{\lambda}_1 = \tilde{\lambda}$.

- (3) For $\delta, \lambda \in \Gamma$ the following hold:
- (a) $d(\tilde{\delta}, \tilde{\lambda}) = \min\{d(\delta', \lambda') \mid \delta' \in \tilde{\delta}, \lambda' \in \tilde{\lambda}\}.$
- (b) $|\Delta(\tilde{\delta})| = |\Delta(\delta)|$.

(c) $\tilde{\Gamma}$ is a generalized (s-1)-gon; in particular $\tilde{\Gamma}$ is finite.

Parts (a) and (b) are easy consequences of (2). By (1), $\tilde{\Gamma}$ has diameter s - 1, and the classes of vertices in T form a circuit of length 2(s - 1). Again by (1), 2(s - 1) is the girth of $\tilde{\Gamma}$.

Set $\tilde{X} = \tilde{X}^{T}$. In the following we use ~ convention for subgroups and subsets of \tilde{X} and $\tilde{\Gamma}$.

(4) Any arc of length s in $\tilde{\Gamma}$ is contained in a unique element of $\tilde{\mathscr{X}}$.

Since the elements of $\tilde{\mathscr{K}}$ are circuits of length 2(s-1), this follows immediately from (2.6) and (3)(c).

(5) X_0 and X_1 operate faithfully on $\tilde{\Gamma}$.

Suppose that $x \in X_0^{\#}$ fixes every $\tilde{\delta}$ in $\tilde{\Gamma}$. Then we can choose δ such that x

fixes δ' for $\gamma(0, \delta) = (0...\delta' \delta)$ but not δ . Hence $d(\delta, \delta^*) = 2$ and $\delta^* \in \tilde{\delta}$ which contradicts (1). The same argument shows that X_1 operates faithfully on $\tilde{\Gamma}$.

(6) Suppose that s = 4. Then assertion (9.4)(2) holds.

If s = 4, then $\tilde{\Gamma}$ is a generalized 3-gon. It follows that $\tilde{\Gamma}$ is the incidence graph of a projective plane \mathcal{P} of order q_0 . Hence \tilde{X} operates as a group of collineations on \mathcal{P} , and the elements in $Z_i^* (i \in T)$ induce elations on \mathcal{P} . Since \tilde{G} is transitive on the points and lines of \mathcal{P} , the assertion follows from [13, 13.11].

From now on we assume $s \neq 4$ and refer to Sections 4 and 5, where the structure of L_0 and L_1 is described, and (6.8) and (7.2) as (*). Set $\mu = (s-1)/2$, $W = \langle t_0, t_1 \rangle$ and $q_i = 2^{n_i}$.

(7)
$$K_i = K_{i+2\mu}$$
 for $i \in T$.

We apply (*). Then s = 3, 5 or 7, and in all but one case there exists a subgroup D_i such that $[D_i, K_i] = 1$,

$$C_T(D_i) = (i - \mu, ..., i + \mu)$$
 and $D_i Q_{i_{\pm}\mu} \in Syl_2(L_{i_{\pm}\mu})$.

In the remaining case ((4.8)(a), resp. (5.2)(a)) we have $K_i = K_i^- \times K_i^+$ with $|K_i| = q^2 - 1$, $|K_i^-| = q - 1$ and $|K_i^+| = q + 1$, and get $[D_i, K_i^-] = 1$, where D_i has all the other above properties. In addition,

$$|K| | (q^2 - 1)(q - 1),$$

and K_i^+ is the unique subgroup in K of order q + 1. Hence $K_i^+ = K_{i+2\mu}^+$, and it is easy to apply the following argument to K_i^- instead of K_i to get $K_i = K_{i+2\mu}$.

Thus we assume $[D_i, K_i] = 1$. This implies $[K_i, \overline{L_{i+\mu}}] = 1$ and with the same argument $[K_{i+2\mu}, \overline{L_{i+\mu}}] = 1$. If $K_i = C_K(\overline{L_{i+\mu}})$ and $K_{i+2\mu} = C_K(\overline{L_{i+\mu}})$, then $K_i = K_{i+2\mu}$. Hence we may assume $K_i \neq C_K(\overline{L_{i+\mu}})$. Since $K = K_i K_{i+1}$ (by (3.2)), it follows that $i + \mu \in i^G$ and $q_i < q_{i+1}$. Hence we are in case (4.8)(a) (resp. (5.2)(a)), $|K| = (q_i - 1)^2(q_i + 1)$ and $|C_K(\overline{L_{i+\mu}})| = q_i^2 - 1$. But then there is a unique subgroup of order $q_i - 1$ in $C_K(\overline{L_{i+\mu}})$ and again $K_i = K_{i+2\mu}$.

(8) $\tau^{2\mu} \in X_{\Gamma}$ and $\tilde{W} \simeq D_{4\mu}$.

Since W is an infinite dihedral group and $\tau^{t} \notin X_{\tilde{r}}$ for $0 < k \leq 2\mu - 1$ by (1), it suffices to show $\tau^{2\mu} \in X_{\tilde{r}}$.

We define $t_{2i} = t_0^{\tau^i}$ and $t_{2i+1} = t_1^{\tau^i}$ for $i \in \mathbb{Z}$. Note that t_i inverts the elements in K_i and $\tau^{2\mu} = t_0 t_{2\mu} = t_1 t_{2\mu+1}$. From (7) we know that $t_0 t_{2\mu}$ centralizes K_0 and that $t_1 t_{2\mu+1}$ centralizes K_1 . Hence $\tau^{2\mu}$ centralizes K.

Set $A = \langle \tau^{2\mu} \rangle$, and suppose that $\tilde{A} \neq 1$. If we are in cases (4.8)(a) (resp. (5.2)(a))—we shall call this the U_4 -case—we choose notation such that $q_0 = q_1^2$. The elements in $\tilde{A} \cap \tilde{K}$ are inverted by \tilde{t}_0 and \tilde{t}_1 , thus

$$\tilde{A} \cap \tilde{K} \leq \tilde{K}_0 \cap \tilde{K}_1$$

and, by (*), $\tilde{K}_0 \cap \tilde{K}_1 = 1$. Hence we get a direct product $\tilde{A} \times \tilde{K}_i$ (i = 0, 1), and since \tilde{K}_i operates transitively on $\Delta(\tilde{i}) \setminus \tilde{T}$ (see (3)(b)), there exists

$$x = ak \in \tilde{A} \times \tilde{K}_i, \langle a \rangle = \tilde{A} \text{ and } k \in \tilde{K}_i,$$

which fixes every element in $\Delta(\tilde{i})$ and in \tilde{T} . Thus x also fixes

$$\Delta(\tilde{i})^{\tilde{\tau}^{\tilde{\mu}}} = \Delta(i+2\mu)$$

by (4). Hence x and $x^{\tau \tilde{\mu}} = ak^{\tau \tilde{\mu}}$ are in $C_{\tilde{X}}(\Delta(i+2\mu))$. Now (7) implies $k^{-1}k^{\tau \tilde{\mu}} \in C_{\tilde{K}}(\Delta(i+2\mu)) \cap \tilde{K}_{i+2\mu} = 1$,

and $k = k^{\tau \tilde{\mu}}$. It follows that $k^{\tilde{t}_{i+\mu}} = k^{\tilde{t}_i} = k^{-1}$, since $\tau^{\mu} = t_i t_{i+\mu}$. If we are not in the U_4 -case or if i = 1, then by (*), $\tilde{K}_i \cap \tilde{K}_{i+\mu} = 1$. On the other hand,

 $\mathbf{k}^{-2} = [k, \tilde{t}_{i+\mu}] \in \tilde{K}_i \cap \tilde{K}_{i+\mu};$

thus we have k = 1.

If i = 0 and we are in the U_4 -case, it follows that $\tilde{K}_0 \cap \tilde{K}_2 = \tilde{K}_0^*$, where \tilde{K}_0^* is the unique subgroup of order $q_1 + 1$ in \tilde{K} , and $k \in \tilde{K}_0^*$.

The operation of $\tilde{\tau}$ on \tilde{T} implies that we have to treat the following two cases:

- (i) $\tilde{A} \leq C_{\tilde{x}}(\Delta(\tilde{i}))$ for all $\tilde{i} \in \tilde{T}$,
- (ii) the U_4 -case holds, and $\tilde{A} \leq C_{\bar{X}}(\Delta(\tilde{i}))$ for all odd $\tilde{i} \in \tilde{T}$.

Assume (ii). Then $k \in \tilde{K}_0^*$, and k fixes every element in $\Delta(\tilde{i})$ for i = 1 (2). Hence x fixes every element in $\Delta(\tilde{i})$, i = 1 (2), $\Delta(\tilde{0})$ and $\Delta(\tilde{4})$. Pick

$$\tilde{\delta}_3 \in \Delta(\tilde{3}) \setminus \tilde{T}$$
 and $\tilde{\delta}_s \in \Delta(\tilde{5}) \setminus \tilde{T}$.

For i = 3, 5 and $\tilde{\varrho} \in \Delta(\tilde{0}), \gamma(\tilde{\varrho}, \tilde{\delta}_i)$ denotes the arc

$$(\tilde{\varrho} \ \tilde{0} \ \tilde{1} \dots \tilde{3} \ \tilde{\delta}_3)$$
 (resp. $(\tilde{\varrho} \ \tilde{0} \ \tilde{1} \dots \tilde{5} \ \tilde{\delta}_5)$).

By (4), $\gamma(\tilde{\varrho}, \tilde{\delta}_i)$ is contained in a unique element $\tilde{T}(\tilde{\varrho}, \tilde{\delta}_i)$ of \mathscr{X} , and x fixes all of these $\tilde{T}(\tilde{\varrho}, \tilde{\delta}_i)$. Hence again by (4), x fixes every element in $\Delta(\tilde{\delta}_s)$, $\Delta(\tilde{\delta})$, $\Delta(\tilde{\delta})$, $\Delta(\tilde{\delta})$, and $(\tilde{\delta}_s \ \tilde{\delta} \ \tilde{\delta}_s)$ is a G-conjugate of $(\tilde{0} \dots \tilde{4})$.

Thus, in both cases (i) and (ii) it suffices to prove (**) to get a contradiction:

(**) Let x be an element in \tilde{X} which fixes the elements in

$$\Delta(\tilde{0}),\ldots,\Delta(s-1).$$

Then x = 1.

By (4), x stabilizes every vertex in
$$\tilde{T}$$
. Pick $\tilde{k} \in \tilde{T}$, $s \le k \le 2s - 3$, and $\tilde{\delta} \in \Delta(\tilde{k}) \setminus \{\tilde{k-1}\}$.

Then $\gamma = (\tilde{\delta} \ \tilde{k} \dots k - (s - 1))$ is an arc of length s contained in a unique element \tilde{T}^s of $\tilde{\mathscr{X}}$. Since x stabilizes

$$(\tilde{k} \dots k - (s-1))$$

and the vertices in

$$\Delta(k-(s-1))\cap \tilde{T}^s,$$

it follows from (4) that x stabilizes \tilde{T}^{ϵ} and hence $\tilde{\delta}$. Thus we have shown that x fixes the elements in $\Delta(\tilde{i})$ for $\tilde{i} \in \tilde{T}$.

Now let $\tilde{\delta}$ be any vertex in $\tilde{\Gamma}$, and choose $\tilde{k} \in \tilde{T}$ such that $d(\tilde{\delta}, \tilde{k})$ is minimal. By induction we may assume that x fixes every vertex in $\tilde{\Gamma}$ which has distance less than $d(\tilde{\delta}, \tilde{k})$ from some vertex in \tilde{T} . Let $(\tilde{\delta}_0, \ldots, \tilde{\delta}_n)$, $\tilde{\delta}_0 = \tilde{k}$, $\tilde{\delta}_n = \tilde{\delta}$, be the arc joining \tilde{k} and $\tilde{\delta}$. Then $n \leq s - 1$ ((3)(c)) and

$$(k+(s-n+1)\ldots \tilde{k}\ldots \tilde{\delta}_{n-1})$$

is an arc of length s contained in some $\tilde{T}^s \in \tilde{\mathscr{K}}$. As above x stabilizes \tilde{T}^s and therefore $\tilde{\delta}$.

(9) Set $N = \tilde{W}\tilde{K}$ and $B = G_{01}$. Then (B, N) is a BN-pair of \tilde{G} .

For the definition of a BN-pair see [11]. It suffices to show:

(***) $\tilde{t}_i Bw \subseteq BwB \cup B\tilde{t}_i wB$ for i = 0, 1 and $w \in \tilde{W}$.

Every $w \in W$ can be written as $\tilde{t}_i \tilde{\tau}^m$ or $\tilde{\tau}^m$ for some $0 \le m \le s-1$. We shall show (***) for i = 0 and $w = \tilde{t}_i \tilde{\tau}^m$. The other cases follow with the same argument. For $x \in G_{01}$ we get

$$(0 \ 1)^{t_0 x t_1 \tau^m} = (2 \ 1^{t_0 x t_1})^{\tau^m} = (2 + 2m \ 1^{t_0 x t_1 \tau^m}).$$

Pick $2k(s-1) + 1 \in T$ such that d(2+2m, 2k(s-1)+1) is minimal. Then

 $d(2+2m, 2k(s-1)+1) \leq s-1$

and there exists $y \in G_{2k(s-1)} \cap G_{2k(s-1)+1}$ such that

$$(0 \ 1)^{t_0 x t_1 \tau^{m_y}} \subseteq T$$
 and $(0 \ 1)^{t_0 x t_1 \tau^{m_y} \tau^{-m-1}} = (01)$

or

$$(0 \ 1)^{t_0 x t_1 \tau^{m_{y\tau} - m - 1} t_0} = (01).$$

Hence $t_0xt_1\tau^m y\tau^{-m-1} \in G_{01}$ or $t_0xt_1\tau^m y\tau^{-m-1}t_0 \in G_{01}$, and from $G_{2k(s-1)} \cap G_{2k(s-1)+1} = B$

we get

$$\tilde{t_0}\tilde{x}\tilde{t_1}\tilde{\tau}^m \in B\tilde{t_0}\tilde{\tau}^{m+1}B \cup B\tilde{\tau}^{m+1}B = BwB \cup Bt_0wB$$

Note that $B = S\tilde{K}$ for $S \in Syl_2(B)$ by (3.2)(c). Hence we can apply (9) and [11] to get the assertion.

10. Proofs of Theorems 1 and 2 and Corollary 1

Proof of Theorem 2. Let G be a counterexample. Suppose first that Γ is a tree and that G is not vertex-transitive. We apply (8.1) and conclude that (8.1)(a) holds for some normal subgroup E in G.

Assume that Hypothesis (3.0) holds in E. Then it follows from Sections 4,5,6,7 and 9 that E is no counterexample. Since $G \leq Aut(E)$ and G is a counterexample, the singularity s_E of E cannot be the singularity of G. Hence

there exists an arc $\gamma = (\lambda \dots \delta)$ of length s_E which is regular under the operation of G. By (2.6) we may assume additionally $\gamma \subseteq T$ for some K-track (T, τ, K) defined in (3.3) with respect to E. Again by the above mentioned sections we get $|E_{\gamma}|_2 = 1$ or 2 and $s_E \equiv 1$ (2) or $n_{\alpha} = n_{\beta} > 1$. Thus without loss of generality we may assume $n_{\lambda} > 1$, and the choice of K assures that K does not fix every vertex in $\Delta(\lambda)$. But $[K, G_{\gamma}] \leq E_{\gamma}$, and the structure of G_{λ} and the transitivity of G_{γ} on $\Delta(\lambda) \setminus \gamma$ imply $2^{n_{\lambda}} | |[K, G_{\gamma}]|$, a contradiction.

Now assume that Hypothesis (3.0) does not hold in E. By (8.1)(a) we may assume that $n_{\alpha} = 1$ and E_{α} is 2-closed. Pick $S_0 \in Syl_2(E_{\alpha\beta})$. Then S_0 is normal in E_{α} and $[S_0, E_{\alpha\beta}] \leq S_0$. The structure of Aut $(L_2(2^{n_{\beta}}))$ and (2.1) imply $E_{\beta}/O_2(E_{\beta}) \simeq L_2(2^{n_{\beta}})$ and $E = \langle O^2(E_{\alpha}), E_{\beta} \rangle$. Hence no non-trivial characteristic subgroup of S_0 is normal in E_{β} . From (1.7) we get

$$C_{E_{\beta}}(O_2(E_{\beta})) \not\leq O_2(E_{\beta})$$

and thus, by (8.1), $C_{E_{\alpha}}(O_2(E_{\alpha})) \leq O_2(E_{\alpha})$. Again, (2.1) implies

$$E = \langle C_{E_{\beta}}(O_2(E_{\beta})), C_{E_{\alpha}}(O_2(E_{\alpha})) \rangle.$$

Therefore $O_2(E_{\beta}) \cap O_2(E_{\alpha}) = 1$, $E_{\alpha} \simeq O_2(E_{\alpha}) \times A_3$, $|O_2(E_{\alpha})| = 2^{n_{\beta}}$ and $E_{\beta} \simeq L_2(2^{n_{\beta}})$. It is now easy to check that s = 3 and $\{G_{\alpha}, G_{\beta}\}$ is parabolic of type $L_2(2^{n_{\beta}}) \times L_2(2)'$, and G is not a counterexample.

Now assume that Γ is not a tree, and let G^* be the amalgamated product of G_{α} and G_{β} with respect to $G_{\alpha} \cap G_{\beta}$. We identify G_{α} and G_{β} with the corresponding subgroups in G^* . There exists a normal subgroup N in G^* such that $G^*/N \simeq G$. Let φ be the natural homomorphism from G^* to G.

 G^* operates by right multiplication on the graph Γ^* with vertex set

$$\{G_{\alpha}x/x \in G^*\} \cup \{G_{\beta}x/x \in G^*\}$$

where two vertices are adjacent iff they have non-empty intersection.

According to [4, (2.4) and (2.5)], G^* and Γ^* fulfill Hypothesis B, Γ^* is a tree, and the vertex stabilizers are conjugate to G_{α} or G_{β} . What we have already proved shows that G^* is not a counterexample to Theorem 2.

Let \approx be the equivalence relation on Γ^* induced by N (i.e., $\delta' \approx \delta$ for $\delta', \delta \in \Gamma^*$ iff $\delta' \in \delta^N$) and define ${\delta'}^N$ to be adjacent to δ^N iff there exist $\delta_1 \in \delta^N$ and $\delta_2 \in {\delta'}^N$ such that $\delta_1 \in \Delta(\delta_2)$. As the vertices of Γ^* are the cosets of G_{α} and G_{β} , the vertices in Γ^* / \approx are the cosets of $G_{\alpha}N$ and $G_{\beta}N$. If G is not vertextransitive on Γ ,

$$(G_{\delta}Nx)\psi = \delta^{x\varphi}, x \in G \text{ and } \delta \in \{\alpha, \beta\},\$$

defines an isomorphism from Γ^*/\approx to Γ . This isomorphism is compatible with φ . Hence G operates in the same way on Γ as on Γ^*/\approx , and G is no counterexample.

Now assume that G is vertex-transitive. Then $n_{\alpha} = n_{\beta} > 1$, and G_{α} is conjugate to G_{β} in G. From the structure of G^{*} we see that $\{G_{\alpha}, G_{\beta}\}$ is parabolic of type $L_2(2^{n_{\alpha}}) \times L_2(2^{n_{\alpha}})$, $L_3(2^{n_{\alpha}})$ or $Sp_4(2^{n_{\alpha}})$. It is now easy to check that s = 3, 4 or 5 respectively. This shows that G is not a counterexample.

Proof of Theorem 1. Let G^* be the amalgamated product of M_1 and M_2 with respect to $M_1 \cap M_2$. We define the graph Γ^* as in the proof of Theorem 2. As we have shown there, Hypothesis B holds in G^* with respect to Γ^* , and vertex-stabilizers in G^* are conjugate to M_1 or M_2 . Hence Theorem 2 implies Theorem 1.

Proof of Corollary 1. Let G be a counterexample. Then either (c) or (d) in Theorem 1 holds.

Assume case (d). Then $|O_2(M_1)| = 2^{2^{n_{1+1}}}$ and $n_1 > 1$. Now an easy application of [3, Corollary 4] and the Main Theorem in [3] shows $G = M_1O(G)$.

Now assume case (c). We choose notation such that $n_1 > 1$. Since maximal elementary abelian subgroups of $O_2(M_1)$ have order 2³, it is easy to see that M_1 has sectional 2-rank 4 and that $O_2(M_1)$ is weakly closed in a Sylow 2-subgroup S of M_1 . Hence S is a Sylow 2-subgroup of G, and G has sectional 2-rank 4. Now [12] implies that $\{M_1, M_2\}$ is parabolic of type J_2 .

References

- 1. M. ASCHBACHER, Thin finite simple groups, J. Algebra, vol. 54 (1978), pp. 50-152.
- B. BAUMANN, Über endliche Gruppen mit einer zu L₂(2") isomorphen Faktorgruppe, Proc. Amer. Math. Soc., vol. 74 (1979), pp. 215-222.
- 3. D. M. GOLDSCHMIDT, 2-Fusion in finite groups, Ann. of Math. vol. 99 (1974), pp. 70-117.
- 4. ____, Automorphisms of trivalent graphs, Ann. of Math., vol. 111 (1980), pp. 377-406.
- 5. G. HIGMAN, Odd characterizations of finite simple groups, Univ. of Michigan, 1968.
- 6. B. HUPPERT, Endliche Gruppen I, Springer-Verlag, New York, 1967.
- 7. ____, Darstellungstheorie endlicher Gruppen II, Univ. Mainz.
- Z. JANKO, Some new simple groups of finite order I, Ist. Naz. Alta Math., Symposia Math. I (1968), pp. 25-64.
- 9. J.-P. SERRE, Arbres, Amalgams, SL₂, Astérisque, vol. 46, Soc. Math. de France, 1977.
- R. WEISS, Über lokal s-reguläre Graphen, J. Combinational Theory Ser. B, vol. 20 (1976), pp. 124–127.
- 11. P. FONG and G. SEITZ, Groups with a (B, N)-pair of rank 2, I, II, Invent. Math., vol. 21 (1973), pp. 1-57; vol. 24 (1974), pp. 191-239.
- 12. D. GORENSTEIN and K. HARADA, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc. No. 147, 1974.
- 13. D.R. HUGHES and F.C. PIPER, Projective planes, Springer-Verlag, New York, 1973.

Universitat Bielefeld Bielefeld, Germany