ON GRAPHS WITH EDGE-TRANSITIVE AUTOMORPHISM GROUPS

BY
Bernd Stellmacher

In [4], Goldschmidt considered groups G with finite subgroups M_{1} and M_{2} and the following three properties:
(i) $G=\left\langle M_{1}, M_{2}\right\rangle$.
(ii) No non-trivial normal subgroup of G is contained in $M_{1} \cap M_{2}$.
(iii) $\left|M_{i} / M_{1} \cap M_{2}\right|=3$ for $i=1,2$.

He was able to give the exact structure (the isomorphism classes) of all possible pairs of subgroups M_{1} and M_{2}. In his proof he used a graph theoretical approach:

Any group G with properties (i) and (ii) operates as an edge-transitive group of automorphisms on a graph Γ whose vertex set is

$$
\left\{M_{1} x / x \in G\right\} \dot{\cup}\left\{M_{2} x\{x \in G\}\right.
$$

and where two vertices are adjacent iff they have non-empty intersection. G operates on Γ by right multiplication, the vertex-stabilizers in G are conjugate to M_{1} or M_{2}, and the edge-stabilizers are conjugate to $M_{1} \cap M_{2}$ (see [4, (2.6)]).

Since G is a homomorphic image of the amalgamated product of M_{1} and M_{2} with respect to $M_{1} \cap M_{2}$, one can study this amalgamated product and the corresponding graph Γ. Serre [9] has shown in this case that Γ is a tree. Hence the above problem leads to the investigation of edge-transitive groups of automorphisms of the trivalent tree with finite vertex-stabilizers.

We use this method to investigate a more general situation. We make the following hypotheses.

Hypothesis A. Let G be a group and M_{1} and M_{2} be finite subgroups of G such that:
(1) $G=\left\langle M_{1}, M_{2}\right\rangle$.
(2) No non-trivial normal subgroup of G is contained in $M_{1} \cap M_{2}$.
(3) $\left|M_{i} / M_{1} \cap M_{2}\right|=2^{n_{i}}+1, n_{i} \geq 1, i=1,2$ and $\max \left\{n_{1}, n_{2}\right\}>1$.
(4) There exists a normal subgroup N_{i} in M_{i} such that

$$
N_{i} / R \simeq L_{2}\left(2^{n_{i}}\right)^{\prime} \quad \text { for } R=\bigcap_{x \in M_{i}}\left(M_{i} \cap M_{j}^{x}\right) \text { and }\{i, j\}=\{1,2\}
$$

Hypothesis B. Let Γ be a connected graph and G be an edge-transitive group of automorphisms of Γ such that for $\alpha \in \Gamma$:
(a) G_{α} is finite.
(b) $|\Delta(\alpha)|=2^{n_{\alpha}}+1, n_{\alpha} \geq 1$ and $\max \left\{n_{\alpha}, n_{\beta}\right\}>1$ for $\beta \in \Delta(\alpha)$.
(c) There exists a normal subgroup N_{α} in G_{α} such that $N_{\alpha}^{\Delta(\alpha)} \simeq L_{2}\left(2^{n_{\alpha}}\right)^{\prime}$.

Here G_{α} denotes the stabilizer of α in $G, \Delta(\alpha)$ the set of vertices adjacent to α, and $N_{\alpha}^{\Delta(\alpha)}$ the permutation group on $\Delta(\alpha)$ induced by N_{α}. Any graph in this paper is undirected and without loops and multiple edges.

The condition $\max \left\{n_{1}, n_{2}\right\}>1$ (resp. $\max \left\{n_{\alpha}, n_{\beta}\right\}>1$) only excludes cases treated in [4], and condition (b) and (c) imply that N_{α} is transitive on $\Delta(\alpha)$.

Let q, q_{1} and q_{2} be powers of 2 , and let $\operatorname{Aut}\left(\mathrm{L}_{2}\left(q_{1}\right)\right) \int \operatorname{Aut}\left(L_{2}\left(q_{2}\right)\right)$ be the wreath product of $\operatorname{Aut}\left(L_{2}\left(q_{1}\right)\right)$ with $\operatorname{Aut}\left(L_{2}\left(q_{2}\right)\right)$ with respect to the natural permutation representation of $L_{2}\left(q_{2}\right)$. We define:
$\mathscr{L}=\left\{L_{2}\left(q_{1}\right) \times L_{2}\left(q_{2}\right), \operatorname{Aut}\left(L_{2}\left(q_{1}\right)\right) \int \operatorname{Aut}\left(L_{2}\left(q_{2}\right)\right), \max \left\{q_{1}, q_{2}\right\}>1 ; L_{3}(q)\right.$, $\left.S p_{4}(q), G_{2}(q), q>2 ; U_{4}(q),{ }^{3} D_{4}(q), J_{2}\right\}$.

Let X be a group in \mathscr{L}. If X is not the wreath product, then X contains exactly two conjugacy clases of maximal 2-local subgroups which contain Sylow 2-subgroups of X. Let X_{1} and X_{2} be representatives for these two classes in X. If X is the wreath product, then there exist exactly two classes of 2-local subgroups which contain Sylow 2-subgroups of X and fulfil (3) and (4) of Hypothesis A. In this case let X_{1} and X_{2} be representatives for these classes.

Definition. A pair of groups $\left\{M_{1}, M_{2}\right\}$ is parabolic of type X for $X \in \mathscr{L}$, if for $i=1,2$,
(*) X is not the wreath product, and M_{i} is isomorphic to a subgroup of $N_{\text {Aut (X) }}\left(X_{i}\right)$ which contains X_{i}, or
(**) X is the wreath product, and M_{i} is isomorphic to a subgoup of X_{i} which contains $X_{i} \cap L_{2}\left(q_{1}\right)^{\prime} \int L_{2}\left(q_{2}\right)^{\prime}$.

A pair of groups $<M_{1}, M_{2}>$ is parabolic of type J, if for $i=1,2$ there exists a normal subgroup X_{i} in M_{i} such that:
(i) $\left|M_{i} / X_{i}\right| \leq 2$.
(ii) $X_{1} / O_{2}\left(X_{1}\right) \simeq L_{2}(4), O_{2}\left(X_{1}\right) \simeq Q_{8} * D_{8}$ and $C_{M_{1}}\left(O_{2}\left(X_{1}\right)\right) \leq O_{2}\left(X_{1}\right)$.
(iii) $X_{2}=B O_{2}\left(X_{2}\right), B \simeq C_{3} \times \Sigma_{3}, O_{2}\left(X_{2}\right)$ is special of order 2^{6}, and the 3-elements in $O^{2 \prime}\left(X_{2}\right)$ operate fixed point freely on $O_{2}\left(X_{2}\right)$.

Note that all groups in \mathscr{L} fulfil Hypothesis A with respect to X_{1} and X_{2}. But these are not all the known examples.

The simple group J_{3} has (up to notation and conjugation) two pairs of subgroups M_{1} and M_{2} for which Hypothesis A holds, in one case they are parabloic of type J_{2}, in the other case parabolic of type $L_{3}(4)$.

But as the following theorems show, the examples in \mathscr{L} give the pattern for all possible examples.

Theorem 1. Assume Hypothesis A. Then one of the following holds (possibly after interchanging 1 and 2):
(a) $\quad M_{i} \simeq \mathrm{H} \leq \operatorname{Aut}\left(L_{2}\left(2^{n_{1}}\right)\right), i=1,2$.
(b) $\left\{M_{1}, M_{2}\right\}$ is parabolic of type X for some X in \mathscr{L}.
(c) $\left\{M_{1}, M_{2}\right\}$ is parabolic of type J.
(d) $n_{1}>1, O_{2}\left(M_{1}\right)$ is elmentary abelian, $M_{1} / O_{2}\left(M_{1}\right) \simeq H \leq$ $\operatorname{Aut}\left(L_{2}\left(2^{n 1}\right)\right)$, and $O_{2}\left(M_{1}\right)$ is isomorphic to a submodule of the natural permutation $G F(2)$-module for $M_{1} / O_{2}\left(M_{1}\right) ; n_{2}=1, \quad M_{2}=N_{M_{1}}(S) W$ for $S \in S y l_{2}\left(M_{1} \cap M_{2}\right)$ and a normal subgroup W of M_{2} which is isomorphic to Σ_{3}.

As a special case we get from Theorem 1 and [3]:
Corollary 1. Assume Hypothesis A, and suppose that G is finite and that

$$
M_{i}=N_{G}\left(O_{2}\left(M_{i}\right)\right) \quad \text { for } i=1,2 .
$$

Then $\left\{M_{1}, M_{2}\right\}$ is parabolic of type X for some $X \in \mathscr{L}$, or $G=M_{j} O(G)$ for some $j \in\{1,2\}$.

A graph Γ is locally (G, s)-transitive with respect to a group G of automorphisms of Γ, if for every $\alpha \in \Gamma, G_{\alpha}$ is transitive on the arcs of length k starting at α for $k \leq s$ and s is maximal with this property.

Theorem 2. Assume Hypothesis B. Then Γ is locally ($G, \mathrm{~s}$)-transitive, and one of the following holds for $\Lambda=\left\{G_{\alpha}, G_{\beta}\right\}$:
(a) $s=2$, and $G_{\delta} \simeq H \leq \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)$ for $\delta=\alpha, \beta$.
(b) $s=3$, and Λ is parabolic of type $L_{2}\left(2^{n_{\alpha}}\right) \times L_{2}\left(2^{n_{\alpha}}\right)$.
(c) $s=3$, and Λ is parabolic of type $\operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right) \int \operatorname{Aut}\left(L_{2}\left(2^{n_{\beta}}\right)\right)$.
(d) (possibly after interchanging α and β) $s=3, n_{\beta}=1, O_{2}\left(G_{\alpha}\right)$ is elementary abelian, $G_{\alpha} / O_{2}\left(G_{\alpha}\right) \simeq H \leq \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)$, and $O_{2}\left(G_{\alpha}\right)$ is isomorphic to a submodule of the natural permutation $G(2)$-module for $G_{\alpha} / O_{2}\left(G_{\alpha}\right)$; $\dot{G}_{\beta}=N_{G_{\alpha}}(S) W$ for $S \in S y l_{2}\left(G_{\alpha \beta}\right)$ and a normal subgroup W of G_{β} isomorphic to Σ_{3}.
(e) $s=4$, and Λ is parabolic of type $L_{3}\left(2^{n_{\alpha}}\right)$.
(f) $s=5$, and Λ is parabolic of type $U_{4}\left(2^{n_{\alpha}}\right), S p_{4}\left(2^{n_{\alpha}}\right)$, or J.
(g) $s=7$, and Λ is parabolic of type $G_{2}\left(2^{n_{\alpha}}\right)$, or ${ }^{3} D_{4}\left(2^{n_{\alpha}}\right)$.

I would like to thank R. Weiss for his helpful conversations on Chapter 9. I also wish to thank G. Stroth for pointing out an error in Lemma 1.3.

1. Group theoretical results

Hypothesis I. Let G be a finite group such that
(a) $C_{G}\left(O_{2}(G)\right) \leq O_{2}(G)$ and
(b) $G / O_{2}(G) \simeq L_{2}\left(2^{n}\right), n \geq 1$.

Definition. Let V be a faithful $G F(2)$-module for $L_{2}\left(2^{n}\right)$ and T be a Sylow 2-subgroup of $L_{2}\left(2^{n}\right)$.
V is a natural module for $L_{2}\left(2^{n}\right)$ iff $\left|C_{V}(T)\right|^{2}=|V|=2^{2 n}$.
V is an orthogonal module for $L_{2}\left(2^{n}\right)$ iff $\left|C_{V}(T)\right|^{4}=|V|=2^{2 n}$.
Note that this definition is compatible with the usual definition of a natural (resp. orthogonal) $L_{2}\left(2^{n}\right) G F(2)$-module. If $X \simeq L_{2}\left(2^{n}\right)$ and V is a natural (resp. orthogonal) $L_{2}\left(2^{n}\right)$-module for X, we simply write V is a natural (orthogonal) module for X.

We assume Hypothesis I for the lemmata (1.1)-(1.7).
(1.1) Let $O_{2}(G)$ be elementary abelian of order $2^{2 n}$. Then $O_{2}(G)$ is a natural or orthogonal module for $G / O_{2}(G)$, and $\mathrm{O}_{2}(G)$ is a natural module, if and only if all elements in $\mathrm{O}_{2}(G)^{\#}$ are conjugate in G.

Proof. See [1, 4.3].
(1.2) $\left|O_{2}(G)\right| \geq 2^{2 n}$.

Proof. See [2, Hilfssatz].
(1.3) Let T be a Sylow 2-subgroup of G, and suppose that $O_{2}(G)$ is elementary abelian, $Z(G)=1$ and
(i) $\left[G, O_{2}(G)\right]=O_{2}(G)$, or
(ii) $O_{2}(G)=\left\langle C_{O_{2}(G)}(T)^{G}\right\rangle$.

Then the following statements are equivalent:
(a) $\mathrm{O}_{2}(G)$ is direct sum of natural modules for $G / \mathrm{O}_{2}(G)$.
(b) $\left[O_{2}(G), T, T\right]=1$.
(c) $\left|C_{o_{2}(G)}(T)\right|^{2}=\left|O_{2}(G)\right|$.
(d) All non-trivial elements of odd order in G operate fixed-point-freely on $O_{2}(G)$.

Proof. Note that $G=\langle T, t\rangle$ for any element $t \in G \backslash N_{G}(T)$ (see (3.1)); thus

$$
C_{o_{2}(G)}(T) \cap C_{o_{2}(G)}(t)=1 \quad \text { and } \quad\left|C_{0_{2}(G)}(T)\right|^{2} \leq\left|O_{2}(G)\right|
$$

Set $V=\left[G, O_{2}(G)\right]$. It follows from [5, Theorem 8.2] that the three statements are equivalent for V in place of $O_{2}(G)$. If $V \neq O_{2}(G)$, then

$$
O_{2}(G)=V C_{o_{2}(G)}(T)
$$

and from $\left|C_{V}(T)\right|^{2}=|V|$, we get $\left|C_{O_{2}(G)}(T)\right|^{2}>\left|O_{2}(G)\right|$ and $Z(G) \neq 1$, a contradiction.
(1.4) Suppose that an element of order three in G operates fixed-pointfreely on $\mathrm{O}_{2}(G)$. Then $\mathrm{O}_{2}(G)$ is elementary abelian and direct sum of natural modules for $G / O_{2}(G)$, or $n=1$.

Proof. See [5, Theorem 8.2].
(1.5) Let $Z(G)$ be elementary abelian and $O_{2}(G) / Z(G)$ be a natural module for $G / O_{2}(G)$. Then $O_{2}(G)$ is elementary abelian, or $n=1$.

Proof. We may assume that $Z(G)$ has order 2. If $Z(G)$ contains all involutions of $\mathrm{O}_{2}(G)$, then $\mathrm{O}_{2}(G) \simeq Q_{8}$ and $n=1$.

If $Z(G)$ does not contain all involutions of $O_{2}(G)$, then by (1.1) all elements in $x Z(G)$ for $x \in O_{2}(G) \backslash Z(G)$ are involutions. But this implies that all elements in $O_{2}(G)$ are involutions, and $O_{2}(G)$ is elementary abelian.
(1.6) [2]. Let T be a Sylow 2-subgroup of G, and suppose that no nontrivial characteristic subgroup of T is normal in G. Then the following hold:
(a) $\quad T$ has class 2.
(b) $Z\left(O_{2}(G)\right) / Z(G)$ is a natural module, and $\left[G, O_{2}(G)\right] \leq Z\left(O_{2}(G)\right)$.
(c) There exists $\alpha \in \operatorname{Aut}(T)$ such that $T=Z\left(O_{2}(G)\right)^{\alpha} O_{2}(G)$.
(1.7) Assume the hypothesis of (1.6). Then

$$
<Z\left(O_{2}(G)\right)^{\alpha} / \alpha \in \operatorname{Aut}(T), o(\alpha) o d d>
$$

is a normal subgroup of G.
Proof. Define $Q=O_{2}(G), Z=Z(Q)$ and $\Delta=\left\{Z^{\alpha} / \alpha \in \operatorname{Aut}(T)\right.$, $\left.Z^{\alpha} \leq Q\right\}$, and let β be an automorphism of T of odd order. From (1.6) we get

$$
[<\Delta>, G] \leq Z \leq<\Delta>
$$

So it suffices to show $Z^{\beta} \in \Delta$.
Assume $Z^{\beta} \notin \Delta$. Let γ be any automorphism of T such that $Z^{\gamma} \notin Q$. Then $Z^{\gamma^{-1}} \nsubseteq Q$, and $\left|Z / C_{z}\left(Z^{\gamma}\right)\right|=\left|Z^{\gamma} / C_{z^{\gamma}}(Z)\right|=2^{n}$, since $Z / Z(G)$ is a natural module for $G / O_{2}(G)$ by (1.6). In particular we have $Z^{\gamma} Q=T$ and $\left|Q / C_{Q}\left(Z^{\gamma}\right)\right|=\left|Z / C_{z}\left(Z^{\gamma}\right)\right|$.

Let d be a p-element in $G \backslash N_{G}(T), p$ an odd prime. Then d is fixed-pointfree on $Z / Z(G)$ (see (1.3)(d)) and $G=\left\langle Z^{\beta}, Z^{\beta d}\right\rangle Q$. Set

$$
Q_{0}=C_{Q}\left(Z^{\beta}\right) \cap C_{Q}\left(Z^{\beta \gamma}\right)
$$

Then $Q=Q_{0} Z$ and $Q_{0} \cap Z=Z(G)$, in particular Q_{0} is normal in G. Therefore we have $\left[Z^{\beta}, T\right]=\left[Z^{\beta}, Z\right]=[Z, T]^{\beta}=\left[Z, Z^{\beta}\right]^{\beta}$, which implies

$$
\begin{equation*}
\left[Z^{\beta}, Z\right]^{\beta}=\left[Z^{\beta}, Z\right] \tag{*}
\end{equation*}
$$

From (*) we get $\left[Z^{\beta^{2}}, Z^{\beta}\right] \neq 1$. Assume that $\left[Z^{\beta^{2}}, Z\right] \neq 1$. Then $T=Z^{\beta^{2}} Q$ and

$$
Z^{\beta^{2}} \ddagger Z \cup Q_{0} Z^{\beta}
$$

but in T / Q_{0} the only maximal elementary abelian subgroups are the images of Z and Z^{β}.

So we have $Z^{\beta^{2}} \in \Delta$. Since β has odd order, we may assume that $\Delta^{\beta^{2}} \neq \Delta$. Pick $B \in \Delta^{\beta^{2}} \backslash \Delta$, then $T=B Q$ and

$$
\left[Z^{\beta^{2}}, B Q_{0} Z\right]=\left[Z^{\beta^{2}}, Q_{0}\right] \leq Q_{0} \cap Z=Z(G)
$$

On the other hand ${ }^{(*)}$ implies $\left[Z^{\beta^{2}}, T\right]=\left[Z^{\beta^{2}}, Z^{\beta}\right]=\left[Z^{\beta}, Z\right] \notin Z(G)$. This contradiction shows the assertion.

Hypothesis II. Let G be a group and M_{1} and M_{2} finite subgroups of G such that for $i=1,2$:
(a) $O^{2 \prime}\left(M_{i} / O_{2}\left(M_{i}\right)\right) \simeq L_{2}\left(2^{n}\right), n_{i} \geq 1$.
(b) $\quad M_{1} \cap M_{2}=N_{M_{1}}(S)=N_{M_{2}}(S)$ for $S \in S y l_{2}\left(M_{1} \cap M_{2}\right)$.
(c) No non-trivial normal subgroup of $O^{2 \prime}\left(M_{i}\right)$ is normal in $O^{2 \prime}\left(M_{j}\right)$, $j \neq i$.

We assume Hypothesis II for the lemmata (1.8)-(1.11).
Notation. $\quad Q_{i}=O_{2}\left(M_{i}\right), Z_{i}=Z\left(Q_{i}\right), \quad L_{i}=O^{2 \prime}\left(M_{i}\right), \quad L_{i}=L_{i} / Q_{i}$, $S \in S y l_{2}\left(M_{1} \cap M_{2}\right), K_{i}$ is a complement for S in $N_{L_{i}}(S)$. In addition we choose K_{1} and K_{2} such that $K=K_{1} K_{2}$ is a subgroup of odd order.
(1.8) (a) $J(S) \nsubseteq Q_{1} \cap Q_{2}$.
(b) $S=Q_{1} Q_{2}$, or $Q_{1}=Q_{2}=1$.

Proof. Part (a) is obvious. The structure of $L_{2}\left(2^{n}\right)$ (see (3.1)) implies that \bar{K}_{i} is transitive on $\bar{S}{ }^{\#}(i=1,2)$. This yields (b).
(1.9) Suppose that $C_{L_{1}}\left(Q_{1}\right) \nsubseteq Q_{1}$. Then $O^{2}\left(L_{1}\right) \simeq L_{2}\left(2^{n_{1}}\right)^{\prime}$, and one of the following holds:
(a) $O^{2}\left(L_{2}\right) \simeq L_{2}\left(2^{n_{2}}\right)^{\prime}, S$ is elementary abelian, and $|S|=2^{n_{1}}$ or $2^{n_{1}+n_{2}}$.
(b) $n_{1}=1$, and Q_{2} is elementary abelian and non-central in $O^{2}\left(L_{2}\right) Q_{2}$.

Proof. If $Q_{1}=1$ or $Q_{2}=1$, then S has order $2^{n_{1}}$, and S is elementary abelian, since Sylow 2 -subgroups of $L_{2}\left(2^{n}\right)$ are elementary abelian. Thus we may assume $Q_{1} \neq 1 \neq Q_{2}$.
Suppose first that $O_{2}\left(O^{2}\left(L_{1}\right)\right) \neq 1$. Then from [6, V 25.7] we get

$$
S \cap O^{2}\left(L_{1}\right) \simeq Q_{8} \quad \text { and } \quad \Omega_{1}\left(Z_{2}\right) \leq Q_{1} .
$$

Hence $\Omega_{1}\left(Z_{2}\right)$ is normal in M_{1} and M_{2} and therefore $\Omega_{1}\left(Z_{2}\right)=1$, but this contradicts $Q_{2} \neq 1$.
Assume now $O^{2}\left(L_{1}\right) \simeq L_{2}\left(2^{n_{1}}\right)^{\prime}$. Then $\phi\left(Q_{2}\right) \leq Q_{1}$, and $\phi\left(Q_{2}\right)$ is normal in L_{1} and L_{2}. This implies $\phi\left(Q_{2}\right)=1$.

Assume $n_{1}>1$. Then $K_{1} \neq 1$ and $C_{s}\left(K_{1}\right)=Q_{1}$. From (1.8)(b) we get $\left[S, K_{1}\right] \leq Q_{2}$, and the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n}\right)\right)$ implies $\left[L_{2}, K_{1}\right] \leq Q_{2}$. Hence $C_{Z_{2}}\left(K_{1}\right)$ is normal in L_{1} and L_{2} and must be trivial. But then

$$
Z_{2} \cap Z(S) \cap Q_{1}=1,
$$

and $Q_{1}=1$ or $Z(S) \nsubseteq Q_{2}$. The first case contradicts the assumption. In the second case we get as above $O^{2}\left(L_{2}\right) \simeq L_{2}\left(2^{n_{2}}\right)^{\prime}$ and $\left[Q_{2}, O^{2}\left(L_{2}\right)\right]=1$. Thus $Q_{1} \cap Q_{2}$ is normal in L_{1} and L_{2} and must be trivial. This proves assertion (a).

Now assume $n_{1}=1$. Then (b) holds, or Q_{2} is central in $O^{2}\left(L_{2}\right) Q_{2}$, and with the above argument (a) holds.
(1.10) Suppose that M_{1} and M_{2} are conjugate in G. Then one of the following holds for $i=1,2$:
(a) $O^{2}\left(L_{i}\right) \simeq L_{2}\left(2^{n_{1}}\right)^{\prime}$, and S is elementary abelian of order $2^{2 n_{1}}$ or $2^{n_{1}}$.
(b) Q_{i} is elementary abelian of order $2^{2 n_{1}}$ or $2^{3 n_{1}}$, and $Q_{i} / Z\left(L_{i}\right)$ is a natural module for $\overline{L_{i}}$.

Proof. Pick $g \in G$ such that $M_{1}^{g}=M_{2}$. Then $\left\langle S, S^{e}\right\rangle \leq M_{2}$ and $S=S^{\varepsilon m}$ for some $m \in M_{2}$, since S is a Sylow 2-subgroup of M_{2}. Hence we may choose $g \in N_{C}(S)$.

If $C_{L_{i}}\left(Q_{i}\right) \notin Q_{i}$ for $i \in\{1,2\}$, then (1.9) yields assertion (a). Thus we assume $C_{L_{i}}\left(Q_{i}\right) \leq Q_{i}$ and can apply (1.6).
Set $\{i, j\}=\{1,2\}$. If $Z_{i} \leq Q_{j}$, then $\left[Z_{i} Z_{j}, L_{i}\right] \leq Z_{i}$ and $\left[Z_{i} Z_{j}, L_{j}\right] \leq Z_{j}$, and $Z_{i} Z_{j}$ is normal in L_{1} and L_{2}, a contradiction. Hence $Z_{i} \nsubseteq Q_{j}$, and the operation of K on S (see (3.1)) yields

$$
S=Z_{i} Q_{j}, Q_{j}=C_{\ell_{j}}\left(Z_{i}\right) Z_{j} \quad \text { and } \quad\left|Q_{j} / C_{Q_{j}}\left(Z_{i}\right)\right|=\left|Z_{j} / Z(S)\right|=2^{n_{j}} .
$$

Let d be an element of odd order in $L_{j} \backslash N_{L_{j}}(S)$ and

$$
Q_{0}=C_{\ell,}\left(Z_{i}\right) \cap C_{\ell,}\left(Z_{i}^{d}\right) .
$$

Then

$$
\left.L_{j}=<Z_{i}, Z_{i}^{d}\right\rangle Q_{j}, \quad Q_{j}=Q_{0} Z_{j} \quad \text { and } \quad Q_{0} \cap Z_{j}=Z\left(L_{j}\right)
$$

In particular $L_{j}=C_{L_{j}}\left(Q_{0}\right) Q_{0}$, and $Z_{j} / Z\left(L_{j}\right)$ is a natural module for $\overline{L_{j}}$.
Now set $j=1$ and $i=2$. Assume that $\left[Q_{0}^{s}, Z_{1}\right] \neq 1$. Then

$$
\left[Z_{2}, Z_{1}\right]=\left[Q_{0}^{g}, Z_{1}\right] \leq Z_{1} \cap Q_{0}^{g}=Z(S) \cap Q_{0}^{g}=Z_{2} \cap Q_{0}^{g}=Z\left(L_{2}\right)
$$

This contradicts the operation of Z_{1} on $Z_{2} / Z\left(L_{2}\right)$.
We have shown that $Q_{0}^{s} \leq C_{Q_{1}}\left(Z_{2}\right)$. Since $Q_{0} \cap Q_{0}^{s}$ is normal in L_{1} and L_{2}, we get $Q_{0} \cap Q_{0}^{g}=1$, and the operation of K_{1} yields $C_{Q_{1}}\left(Z_{2}\right)=Q_{0} Q_{0}^{g}$ or $Q_{0}=1$. In particular $\left|Q_{0}\right|=1$ or $2^{n_{1}}$, and Q_{0} is elementary abelian. This implies assertion (b).
(1.11) Suppose that $C_{L_{i}}\left(Q_{i}\right) \leq Q_{i}$ for $i=1,2$. Then one of the following holds:
(a) $J(S) \nsubseteq Q_{1} \cup Q_{2}, Z(J(S))=Z(S), Z\left(L_{i}\right) \neq 1$, and $Z_{i} / Z\left(L_{i}\right)$ is a natural module for $L_{i}(i=1,2)$.
(b) $Z_{1}=Z\left(L_{1}\right)$.
(c) $Z_{2}=Z\left(L_{2}\right)$.
(d) S has class 2, and $Z_{i} / Z\left(L_{i}\right)$ is a natural module for $\bar{L}_{i}(i=1,2)$. Moreover, if $Z\left(L_{1}\right)=1$ or $Z\left(L_{2}\right)=1$, then $Q_{i}=Z_{i}$, and Q_{i} is a natural module for $\bar{L}_{i}(i=1,2)$.

Proof. Assume $Z_{1} \neq Z\left(L_{1}\right)$ and $Z_{2} \neq Z\left(L_{2}\right)$. If the hypothesis of (1.6) holds in M_{1}, we get (d) for $i=1$ and $Z(S)=Z(J(S))$. This shows $J(S) \notin Q_{2}$ and (d) for $i=2$, too.

Thus we may assume additionally that M_{1} and M_{2} do not fulfil the hypothesis of (1.6) and that (without loss) $J(S) \notin Q_{1}$. We apply the techniques in [2]. Define $B=C_{s}(Z(J(S)))$ and $\tilde{L}_{1}=\left\langle B^{L_{1}}\right\rangle$. Then Baumann's argument [2, (6)] shows that $Z(J(S))=X Z(S)$, where X is a normal subgroup of $\tilde{L_{1}}$. This yields $B=C_{s}(X)$ and $B \in S y l_{2}\left(\tilde{L_{1}}\right)$.

If $J(S) \leq Q_{2}$, then $C_{L_{2}}(Z(J(S)))=B$ is normal in L_{2}, and no non-trivial characteristic subgroup of B is normal in L_{1}. Now (1.7) applied to $\tilde{L_{1}}$ and $L_{2}=N_{L_{2}}(B)$ yields a contradiction.

So we may assume $J(S) 太 Q_{2}$. As above $B \in S y l_{2}\left(<B^{L_{2}}\right\rangle$), and [2, (6)] implies that $[S, Z(J(S))]$ is normal in L_{1} and L_{2}. Hence we get $Z(J(S))=Z(S)$.

An application of Baumann's techniques in [2, (1), (10)] yields assertion (a).
For the next two lemmata suppose that $X=L_{2}\left(2^{m}\right)$. Let V be a natural $G F\left(2^{m}\right)$-module for X, and denote by V^{σ} the conjugate of V by $\sigma \in \operatorname{Gal}\left(G F\left(2^{m}\right)\right)$. If $\sigma \neq 1$, then V and V^{σ} are non-isomorphic $G F\left(2^{m}\right)$-modules.

For $S \leq X$ and an X-module W we define

$$
[W, S]=[W, S, 1] \quad \text { and }[W, S, n]=[[W, S, n-1], S]
$$

for $n \geq 2$.
(1.12) Let W be a non-trivial irreducible $G F\left(2^{m}\right)$-module for X. Then there exist $n \in \mathbf{N}$ and $\sigma_{1}, \ldots, \sigma_{n} \in \operatorname{Gal}\left(G F\left(2^{m}\right)\right)$ such that $W=\otimes_{i=1}^{n} V^{\sigma_{i}}$, where $V^{\sigma_{1}}, \ldots, V^{\sigma_{n}}$ are pairwise non-isomorphic GF(2^{m})-modules. Moreover, the following two statements for $S \in S y l_{2}(X)$ are equivalent:
(a) $W=\otimes_{i=1}^{n} V^{\sigma_{i}}$.
(b) $[W, S, n] \neq 0$ and $[W, S, n+1]=0$.

Proof. The first part of the assertion follows from [5, Theorem 8.2].
Let $e_{1}=(1,0)$ and $e_{2}=(0,1)$ be a basis of $V^{\sigma_{i}}(1 \leq i \leq n)$ and

$$
S=\left\{\left(\begin{array}{cc}
1 & 0 \\
q_{j} & 1
\end{array}\right) / 1 \leq j \leq 2^{m},\left\{q_{1}, \ldots, q_{2^{m}}\right\}=G F\left(2^{m}\right)\right\}
$$

Set

$$
d_{j}=\left(\begin{array}{ll}
1 & 0 \\
q_{j} & 1
\end{array}\right)
$$

Then d_{j} operates on $V^{\sigma_{i}}$ in the following way:

$$
e_{1} d_{j}=e_{1} \quad \text { and } \quad e_{2} d_{j}=e_{2}+q_{j}^{\sigma_{i}} e_{1} .
$$

If $n=1$, then W is a natural module, and (a) and (b) are equivalent. Hence we may assume $n>1$.

Define $W_{1}=\oplus_{i=1}^{n-1} V^{\sigma_{i}}$ and $w=w_{1} \otimes e_{2}$ for $w_{1} \in W_{1}$. Then

$$
\left[w d_{j}, d_{k}\right]=\left[w, d_{k}\right] d_{j}
$$

and

$$
\left[w, d_{j}\right]=w_{1} \otimes e_{2}+\left(w_{1} \otimes e_{2}\right) d_{j}=\left[w_{1}, d_{j}\right] \otimes e_{2}+q_{j}^{\sigma_{n}}\left(w_{1} \otimes e_{1}\right) d_{j}
$$

Hence

$$
\begin{align*}
& {\left[w, d_{1}, \ldots, d_{r}\right]=\left[w_{1}, d_{1}, \ldots, d_{r}\right] \otimes e_{2}+} \tag{*}\\
& \sum_{i=1}^{n} q_{i}^{\sigma_{n}}\left(\left[w_{1}, d_{1}, \ldots, d_{i-1}, d_{i+1}, \ldots, d_{r}\right] \otimes e_{1}\right) d_{i}
\end{align*}
$$

Applying induction on n we get, from (*),

$$
\left[w, d_{1}, \ldots, d_{n+1}\right]=0 \quad \text { and } \quad[W, S, n+1]=0
$$

It remains to show that $[W, S, n] \neq 0$. Let \tilde{W} be the natural permutation $G F\left(2^{m}\right)$-module for X. Then X operates on a basis $\left\{a_{0}, \ldots, a_{2^{m}}\right\}$ of \tilde{W}, and

$$
W_{s}=\tilde{W} /<\sum_{i=0}^{2^{m}} a_{i}>
$$

is an irreducible $G F\left(2^{m}\right)$-module, the Steinberg-module. Hence $W_{s}=\otimes_{i=1}^{m} V^{\sigma_{i}}$.
We first argue that $\left[W_{s}, S, m\right] \neq 0$. For this purpose we choose generators d_{1}, \ldots, d_{m} for S and assume $a_{0} S=a_{0}$. Then the operation of S on $\left\{a_{1}, \ldots, a_{2^{m}}\right\}$ yields
(**) $\quad a_{i_{i \in \Lambda}} d_{i} \neq a_{i}$ for any $a_{i} \neq a_{0}$ and $\Lambda \subseteq\{1, \ldots, m\}, \Lambda \neq \emptyset$.
Define $\Gamma_{0}=\left\{a_{1}\right\}$ and $\Gamma_{i}=\Gamma_{i-1} \cup\left\{b_{i-1} d_{i} / b_{i-1} \in \Gamma_{i-1}\right\}$ for $i=1, \ldots, m$. Then from (**) we get $\Gamma_{i-1} \cap\left\{b_{i-1} d_{i} / b_{i-1} \in \Gamma_{i-1}\right\}=\emptyset$. Hence

$$
\left[a_{1}, d_{1}, \ldots, d_{j}\right]=\sum_{b_{k} \in \Gamma_{j}} b_{k} \quad \text { for } j \leq m ;
$$

in particular

$$
\left[a_{1}, d_{1}, \ldots, d_{m}\right]=\sum_{i=1}^{2^{m}} a_{i} \notin<\sum_{i=0}^{2^{m}} a_{i}>
$$

and $\left[W_{s}, S, m\right] \neq 0$.
Now let W be a counterexample to $[W, S, n] \neq 0$ such that n is maximal. We have just proved $n<m$. Hence there exists $\sigma \in \operatorname{Gal}\left(\mathrm{GF}\left(2^{m}\right)\right) \backslash$ $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, and $W \otimes V^{\sigma}$ is not a counterexample. Pick

$$
\hat{w}=w \otimes v \in W \otimes V^{a}, \quad w \in W \text { and } v \in V^{o}
$$

such that $\left[\hat{w}, d_{1}, \ldots, d_{n+1}\right] \neq 0$. Then

$$
v=k_{1} e_{1}+k_{2} e_{2} \quad\left(k_{1}, k_{2} \in G F\left(2^{m}\right)\right)
$$

and $[W, S, n+1]=0$ and (*) imply

$$
0 \neq\left[\hat{w}, d_{1}, \ldots, d_{n+1}\right]=k_{2} \sum_{i=1}^{n+1} q_{i}^{\sigma_{n+1}}\left(\left[w, d_{1}, \ldots, d_{i-1}, d_{i+1}, \ldots, d_{n+1}\right] \otimes e_{1}\right) d_{i}
$$

But this is only possible, if

$$
\left[w, d_{1}, \ldots, d_{i-1}, d_{i+1}, \ldots, d_{n+1}\right] \neq 0 \quad \text { for some } i \in\{1, \ldots, n+1\}
$$

which shows that W is not a counterexample.
(1.13) Let S be a Sylow 2-subgroup of X and W be an irreducible GF(2)-module for X. Suppose that
(a) $[W, S, 4]=0$, and
(b) $|W|=2^{2 m+2 r}, 0<r<m$.

Then $m=3 r$ and $[W, S, 3] \neq 0$.
Proof. Set $\tilde{W}=W \otimes G F\left(2^{m}\right)$. Then (a) holds for \tilde{W} and $\operatorname{dim} \tilde{W}=$ $2(m+r)$. On the other hand $\tilde{W}=\otimes_{i=1}^{n} \hat{W}^{\sigma_{i}}$, where $\sigma_{1}, \ldots, \sigma_{n} \in$
$\operatorname{Gal}\left(G F\left(2^{m}\right)\right), m=n a(a \in \mathbf{N})$, and \hat{W} is an irreducible $G F\left(2^{m}\right)$-module (see [7, (30.11)]). Now (1.12) implies $\operatorname{dim} \hat{W}=2^{k}, k \leq 3$; hence $2^{k-1} m / a=m+r$. This yields $k=3$ and $a=3$.

2. Graph theoretical results

(2.0) Hypothesis. Let Γ be a graph and G be a group of automorphism of Γ.

Notation. The notation differs only slightly from that in [4].
We write $\alpha \in \Gamma$, if α is a vertex of Γ, and $\gamma \subseteq \Gamma$, if γ is a set or ordered tuple of vertices.

For $\alpha \in \Gamma$ and $\gamma \subseteq \Gamma G_{\alpha}$ is the stabilizer of α in G and G_{γ} is the pointwise stabilizer of γ in $G . \quad \Delta(\alpha)$ is the set of vertices adjacent to α. An arc of length n is an ordered $(n+1)$-tuple of vertices $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$, where $n>0, \alpha_{i} \in \Delta\left(\alpha_{i+1}\right)$ for $0 \leq i \leq n-1$ and $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$ and $(i, j) \neq(0, n)$.

A line is an ordered set $\left\{\alpha_{i} / i \in \mathbf{Z}\right\}$ of vertices such that $\alpha_{i} \in \Delta\left(\alpha_{i+1}\right)$ for $i \in \mathbf{Z}$ and $\alpha_{i}<\alpha_{j}$ iff $i<j$; here again $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$.

For an arc $\gamma=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ we define

$$
\Delta_{L}(\gamma)=\Delta\left(\alpha_{0}\right) \backslash\left\{\alpha_{1}\right\} \quad \text { and } \quad \Delta_{R}(\gamma)=\Delta\left(\alpha_{n}\right) \backslash\left\{\alpha_{n-1}\right\}
$$

γ is left (resp. right) singular, if G_{γ} is not transitive on $\Delta_{L}(\gamma)$ (resp. $\Delta_{R}(\gamma)$); otherwise it is left (resp. right) regular, and γ is regular, if γ is left and right regular. Let X be a set of vertices. By (X, n) (resp. (n, X)) we denote the set of arcs of length n whose left (resp. right) endpoint is in X. If $\alpha \in \Gamma$ is in the same G-orbit as α^{\prime}, we say that α is conjugate to α^{\prime} (under G).
(2.1) [4, 2.3]. Suppose that Γ is connected, G_{α} is transitive on $\Delta(\alpha)$ and G_{β} is transitive on $\Delta(\beta)$ for some pair of adjacent vertices α, β. Then G is edgetransitive on Γ.
(2.2) Suppose that Γ is a tree. Then Γ is a bipartite graph.

The proof is obvious.
(2.3) [4, 2.6]. Suppose that Γ is a tree, α_{1} and α_{2} are adjacent vertices, P_{i} is a subgroup of G fixing $\alpha_{i}(i=1,2)$ and

$$
\left(P_{1}\right)_{\alpha_{2}}=\left(P_{2}\right)_{\alpha_{2}}=P_{1} \cap P_{2}
$$

Then $\left\langle P_{1}, P_{2}\right\rangle_{\alpha_{1}}=P_{i}(i=1,2)$.
(2.4) Suppose that N is an edge-transitive subgroup of G. Then $G=G_{\alpha \beta} N$ for adjacent vertices α and β of Γ.

The proof is obvious.
(2.5) Let Γ be a tree and G be edge-transitive on Γ, and let α_{1} and α_{2} be adjacent vertices. Suppose that the following hold:
(a) No proper normal subgroup of G is edge-transitive on Γ.
(b) $N_{\alpha_{i}}$ is a normal subgroup of $G_{\alpha_{i}}$ transitive on $\Delta\left(\alpha_{i}\right)(i=1,2)$.

Then

$$
G_{\alpha_{1} \alpha_{2}}=\left(G_{\alpha_{1} \alpha_{2}} \cap N_{\alpha_{1}}\right)\left(G_{\alpha_{1} \alpha_{2}} \cap N_{\alpha_{1}}\right)
$$

Proof. Set $N=\left\langle N_{\alpha_{1}}\left(G_{\alpha_{1} \alpha_{2}} \cap N_{\alpha_{2}}\right), N_{\alpha_{2}}\left(G_{\alpha_{1} \alpha_{2}} \cap N_{\alpha_{1}}\right)\right\rangle$. Then (2.1) and (2.4) imply that N is edge-transitive on Γ and $G=G_{\alpha_{1} \alpha_{2}} N$. Hence N is normal in G and $G=N$ by (a). Now the assertion follows from (2.3).
(2.6) [4, 2.12]. Suppose that G is edge-transitive on Γ and that there exist non-regular arcs. Let s be the smallest integer for which a non-regular arc of length s exists, and let \mathcal{O} and \mathcal{N} be the two G-orbits of vertices of Γ (allowing $\mathcal{O}=\mathcal{N}$ if G is vertex-transitive). Then G is transitive on (\mathcal{O}, m) and (\mathcal{N}, m) for $m \leq s$, and one of the following holds:
(a) There are no left or right regular arcs of length greater than $s-1$.
(b) sis odd, $\mathcal{O} \neq \mathcal{N}$, and if notation is chosen so that the elements of (\mathcal{O}, s) are right singular, then every regular arc of length greater than $s-1$ is in $(0,2 n)$ for some n, and the elements in (m, \mathcal{N}) (resp. (\mathcal{N}, m) are right (resp. left) singular for $m \geq s$.

The integer s in (2.6) is called the singularity of Γ.
(2.7) Let Γ be a tree, $s \in N$ and p be a prime. Suppose that the following hold for $\alpha \in \Gamma$:
(a) G_{α} is finite.
(b) G_{α} is transitive on all arcs of length s starting at α.
(c) Stabilizers of arcs of length s are p^{\prime}-groups.
(d) $|\Delta(\alpha)|=1+p^{n_{\alpha}}, n_{\alpha} \geq 1$.

Then $s \in\{1,2,3,4,5,7,9,13\}$.
Proof. Let T be a Sylow p-subgroup of $G_{\alpha \beta}, \beta \in \Delta(\alpha)$, and

$$
\gamma=\left(\alpha, \beta, \alpha_{2} \ldots \alpha_{t}\right)
$$

be an arc of length $t \leq s-1$. Then (d) and an easy inductive argument yield

$$
T_{\gamma} \in S y l_{p}\left(G_{\gamma}\right)
$$

and T_{γ} is transitive on $\Delta\left(\alpha_{t}\right) \backslash\left\{\alpha_{t-1}\right\}$. This observation enables us to apply the proof in [10].

Definition. An n-translation on a line ℓ is a permutation x on ℓ such that $\alpha_{i}^{x}=\alpha_{i+n}$ for all $i \in \mathbf{Z}$ and $\alpha_{i} \in \ell$.

A track is a pair (T, τ) where T is a line and τ is a 2 -translation on T.
A K-track is a triple (T, τ, K) where (T, τ) is a track and K is a subgroup of G_{T} which is normalized by τ.
(2.8) Suppose that Γ is a tree and α and β are adjacent vertices in Γ. Let K be a subgroup in $G_{\alpha \beta}$,

$$
x \in N_{G_{\alpha}}(K) \backslash G_{\beta} \quad \text { and } \quad y \in N_{G_{\beta}}(K) \backslash G_{\beta}
$$

Then there is a K-track $(T, x y, K)$ with $\alpha, \beta \in T$.
The proof is the same as in $[4,2.10]$.
Definition. Let $\gamma=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ be an arc of Γ and K be a subgroup of G_{γ}. We define $S_{\gamma, K}$ to be the set of subgroups $X \neq 1$ of G_{γ} such that:
(1) $K \leq N_{G}(X)$.
(2) $\quad N_{G}(X)_{\alpha_{o}}$ is a transitive on $\Delta\left(\alpha_{o}\right)$, and $N_{\sigma}(X)_{\alpha_{n}}$ is transitive on $\Delta\left(\alpha_{n}\right)$.
(3) $N_{G}(X)_{\alpha_{i}}$ normalizes $\Delta\left(\alpha_{i}\right) \cap \gamma$ for $0<i<n$.
(4) There exists $x \in N_{G}(X)$ with $\alpha_{o}^{x}=\alpha_{n}$.
(2.9) Suppose that Γ is a tree, $\gamma=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ is an arc of Γ and $X \in S_{\gamma, K}$. Set $N=N_{G}(X)$, and let $\tilde{\Gamma}$ be the graph with vertex set α_{0}^{N} where two vertices α and α^{\prime} are adjacent, if and only if they have distance n in Γ. Assume that one of the following holds:
(i) $n=2$.
(ii) $\Delta\left(\alpha_{i}\right) \cap \gamma$ is the set of fixed points of X in $\Delta\left(\alpha_{i}\right)$ for $0<i<n$.

Then the following hold:
(a) $\quad \alpha_{0}$ has the same valency in $\tilde{\Gamma}$ as in Γ.
(b) N is vertex-transitive on $\tilde{\Gamma}$.

Proof. Let r be the valency of α_{0} in Γ. As $N_{\alpha_{0}}$ operates transitively on $\Delta\left(\alpha_{0}\right)$, we get $n_{1}, \ldots, n_{r} \in N_{\alpha_{0}}, n_{1}=1$, and $\gamma_{i}=\gamma^{n_{i}}$ such that

$$
\gamma_{i} \cap \gamma_{j}=\left\{\alpha_{0}\right\} \quad \text { for } i \neq j
$$

Let β be a vertex of $\tilde{\Gamma}$ adjacent to α_{0}. Then by definition there exists a unique $\operatorname{arc} \gamma^{\prime}=\left(\alpha_{0}, \ldots, \beta\right)$ of length n in Γ. It suffices to prove

$$
\gamma^{\prime} \in\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}
$$

After conjugation with a properly chosen element of $\left\{n_{1}^{-1}, \ldots, n_{r}^{-1}\right\}$ we may assume that

$$
n \geq\left|\gamma \cap \gamma^{\prime}\right| \geq 1
$$

Set $\gamma \cap \gamma^{\prime}=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$. If (i) holds, there exists $\gamma^{g}=\left(\beta \beta_{1} \beta_{2}\right), g \in N$, and since N_{β} is transitive on $\Delta(\beta)$, we may assume

$$
\gamma \cap \gamma^{g} \supseteq\left\{\alpha_{1}\right\} \quad \text { and } \quad \alpha_{1}=\alpha_{1}^{g} .
$$

Hence $\gamma^{\prime}=\gamma$, since $N_{\alpha_{1}}$ leaves invariant $\left\{\alpha_{0}, \alpha_{2}\right\}$.
Now assume that (ii) holds. Then $\Delta\left(\alpha_{k}\right) \cap \gamma=\Delta\left(\alpha_{k}\right) \cap \gamma^{\prime}$ and $\gamma=\gamma^{\prime}$.
(2.10) [4, (2.11)]. Suppose that (T, τ, K) is a K-track in a tree Γ and G_{α} is finite for all $\alpha \in T$. For any $U \leq G$ let T_{U} be the set of all fixed points of U in T. Then either $T_{U}=T$ or T_{U} is a finite subarc of T.

3. Point stabilizers with $L_{2}\left(2^{n}\right)$-sections

(3.0) Hypothesis. Let Γ be a tree and G be a group of automorphisms of Γ such that for $\alpha \in \Gamma$ the following hold:
(i) G is edge-transitive on Γ.
(ii) No proper normal subgroup of G is edge-transitive on Γ.
(iii) G_{α} is finite.
(iv) $|\Delta(\alpha)|=2^{n_{\alpha}}+1, n_{\alpha} \geq 1$, and there exists a normal subgroup N_{α} of G_{α} such that $O_{2}\left(G_{\alpha}\right) \leq N_{\alpha}, N_{\alpha} / O_{2}\left(G_{\alpha}\right) \simeq L_{2}\left(2^{n_{\alpha}}\right)$, and N_{α} is transitive on $\Delta(\alpha)$.

Throughout this paper we use the following facts about $L_{2}\left(2^{n}\right)$ and its operation on $2^{n}+1$ symbols.
(3.1) Let S be a Sylow 2-subgroup of N_{α} and K be a complement for S in $N_{N_{\alpha}}(S)$. Then the following hold:
(a) All elements in $S \backslash O_{2}\left(G_{\alpha}\right)$ have exactly one fixed point in $\Delta(\alpha)$.
(b) K is cylcic, $|K|=2^{n_{\alpha}}-1$, and all elements in K \# fix exactly 2 points in $\Delta(\alpha)$; and $C_{N_{\alpha}}(K) \leq K O_{2}\left(G_{\alpha}\right)$ if $K \neq 1$.
(c) K operates transitively on $\left(S / O_{2}\left(G_{\alpha}\right)\right.$ \# .
(d) $\left|N_{N_{\alpha}}(K) / K N_{o_{2}\left(G_{\alpha}\right)}(K)\right|=2$ if $K \neq 1$.
(e) If z is an involution in $N_{\alpha} \backslash O_{2}\left(G_{\alpha}\right)$, then z is conjugate in N_{α} to an element of $N_{N_{\alpha}}(K)$.
(f) If $K \neq 1$ and P is a 2-subgroup of N_{α}, then

$$
<K, P>O_{2}\left(G_{\alpha}\right)=N_{\alpha} \text { or }<K, P>\leq N_{N_{\alpha}}(K) O_{2}\left(G_{\alpha}\right) .
$$

(g) $\quad N_{\alpha} \cap G_{\beta}=N_{N_{\alpha}}\left(S^{z}\right)$ for $\beta \in \Delta(\alpha)$ and suitable $g \in N_{\alpha}$.
(h) $\quad N_{\alpha}=\langle S, g\rangle$ for $g \in N_{\alpha} \backslash N_{N_{\alpha}}(S)$.
(3.2.) For $\delta \in \Gamma$ define $L_{\delta}=O^{2 \prime}\left(G_{\delta}\right)$. Suppose that $\beta \in \Delta(\alpha)$. Then the following hold:
(a) $L_{\alpha}=N_{\alpha}$, and $G_{\alpha}=G_{\alpha \beta} L_{\alpha}$.
(b) $G_{\alpha \beta}=\left(G_{\alpha \beta} \cap O^{2}\left(L_{\alpha}\right)\right)\left(G_{\alpha \beta} \cap O^{2}\left(L_{\beta}\right)\right)$.
(c) $G_{\alpha \beta}=K_{2}\left(G_{\alpha \beta}\right), K$ a subgroup of odd order.
(d) If $O_{2}\left(G_{\alpha}\right) \neq 1$, then

$$
O_{2}\left(G_{\alpha}\right) O_{2}\left(G_{\beta}\right) \in S y l_{2}\left(G_{\alpha \beta}\right) \quad \text { and } \quad S y l_{2}\left(G_{\alpha \beta}\right) \subseteq S y l_{2}\left(G_{\alpha}\right)
$$

(e) No non-trivial normal subgroup of $L_{\alpha}\left(\right.$ resp. $\left.O^{2}\left(L_{\alpha}\right)\right)$ is normal in ($L_{\beta} r$ resp. $O^{2}\left(L_{\beta}\right)$).

Proof. With the Frattini argument we get $G_{\alpha}=G_{\alpha \beta} N_{\alpha}$, and (2.5) implies

$$
G_{\alpha \beta}=\left(G_{\alpha \beta} \cap N_{\alpha}\right)\left(G_{\alpha \beta} \cap N_{\beta}\right) .
$$

Pick $T \in S y l_{2}\left(N_{\beta} \cap G_{\alpha \beta}\right)$. Since $N_{\beta} \cap G_{\alpha \beta}$ and $N_{\alpha} \cap G_{\alpha \beta}$ are 2-closed and normal in $G_{\alpha \beta}$, the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)$ implies $T \leq N_{\alpha}$, hence (a) and (c) hold.

The normal subgroup $O^{2}\left(L_{\alpha}\right)$ is also transitive on $\Delta(\alpha)$, therefore a further application of (2.5) yields (b).

Let X be a normal subgroup of $L_{\alpha}\left(\right.$ resp. $\left.O^{2}\left(L_{\alpha}\right)\right)$ which is also normal in $L_{\beta}\left(\right.$ resp. $\left.o^{2}\left(L_{\beta}\right)\right)$. Then $X \leq G_{\alpha \beta}$, and (2.1) implies that X fixes every edge and thus every vertex in Γ, so $X=1$, and (e) is proved.

In particular, $O_{2}\left(G_{\alpha}\right)=O_{2}\left(G_{\beta}\right)=1$ or $O_{2}\left(G_{\alpha}\right) \neq O_{2}\left(G_{\beta}\right)$. In the second case we may assume $O_{2}\left(G_{\alpha}\right) \nsubseteq O_{2}\left(G_{\beta}\right)$ and get (d) from (a) and (3.1)(c).

We now fix some notation for the remainder of the paper:
(3.3) Notation. $Q_{\delta}=O_{2}\left(G_{\delta}\right)$,

$$
Z_{\delta}=\left\langle Z(S) \cap Q_{\delta} / S \in S y l_{2}\left(G_{\delta}\right)\right\rangle
$$

$\mathrm{L}_{\delta}=O^{2^{\prime}}\left(G_{\delta}\right)$ and $\overline{L_{\delta}}=L_{\delta} / Q_{\delta}$ for $\delta \in \Gamma ;|\gamma|$ denotes the length of an arc γ of Γ.

We fix $\alpha \in \Gamma, \beta \in \Delta(\alpha), S=O_{2}\left(G_{\alpha \beta}\right)$ and a complement K for S in $G_{\alpha \beta}$, and set $K_{\delta}=K \cap L_{\delta}$ for $\delta \in \Gamma$.
(T, τ, K) is a K-track with $\alpha, \beta \in T, s$ is the singularity of Γ, and \mathscr{O} and \mathcal{N} are the G-orbits on Γ (allowing $\mathscr{O}=\mathcal{N}$, if G is vertex-transitive).

We set $T=\left(\ldots \alpha_{-i} \ldots \alpha_{o} \ldots \alpha_{i} \ldots\right), i \in \mathbf{N}, \alpha_{o}=\alpha$ and $\alpha_{1}=\beta$, and we then identify the vertices in T with their indices such that

$$
T=(\ldots-i \ldots 0 \ldots i \ldots)
$$

$\alpha=0, \beta=1$, and $G_{\alpha_{i}}=G_{i}, Z_{\alpha_{i}}=Z_{i}, K_{\alpha_{i}}=K_{i}, n_{\alpha_{i}}=n_{i}$ etc. for $\alpha_{i} \in T$.
For $i \in T$ we define $b_{i}=\max \left\{|j-i| / j \in T\right.$ and $\left.Z_{i} \leq G_{j}\right\}$, if such a max-
imum exists, and $b_{i}=\infty$ otherwise. Note that in the case $b_{i}<\infty, i-b_{i}$ and $i+b_{i}$ are not only integers but also vertices in T and $Z_{i} \leq G_{i-b_{i}}$ or $Z_{i} \leq G_{i+b_{i}}$. Suppose $Z_{i} \leq G_{i-b_{i}}$ (resp. $G_{i+b_{b}}$); then (3.1)(a) and (3.2) imply $Z_{i} \leq Q_{k}$ for $i-b_{i}<k \leq i$ (resp. $\left.i \leq k<i+b_{i}\right)$.
(3.4) Suppose that $n_{0}>1$ and $n_{1}>1$. Then
(a) $T=C_{\Gamma}(K)$ and
(b) $\quad C_{G_{j}}(K) \leq G_{T}$ for $j \in T$.

Proof. Assume that $T \neq C_{\Gamma}(K)$. Then there exists $\varrho \in C_{\Gamma}(K)$ and an arc

$$
\gamma=\left(\varrho, \varrho_{1} \ldots \varrho_{n}\right)
$$

such that $\varrho_{n} \in T$ and $\varrho_{n-1} \notin T$. Therefore $K \leq G_{\gamma}$, and K fixes three vertices in $\Delta\left(\varrho_{n}\right)$, a contradiction to (3.1)(b). Assume that $X=C_{G_{j}}(K) \notin G_{T}$. Then there exist $k \in T$ and $k^{\prime} \in \Delta(k) \cap T$ such that $X \leq G_{k}$ and $X \not \leq G_{k^{\prime}}$. Now (3.1)(b) and (3.2)(a) yield a contradiction.
(3.5) Suppose that $\gamma=(m \ldots r)$ is a right (resp. left) singular subarc of T. Then $\mathrm{O}_{2}\left(G_{\gamma}\right)$ fixes every element in $\Delta(r)($ resp. $\Delta(m))$.

Proof. If $K=1$, then $n_{m}=n_{r}=1$ and $|\Delta(m)|=|\Delta(r)|=3$, and the assertion is obvious.

Assume that $K \neq 1$ and that γ is right singular. By way of contradiction we may additionally assume that $O_{2}\left(G_{\gamma}\right) \notin Q_{r}$. From (3.1)(a) we get that no element in $O_{2}\left(G_{\gamma}\right) \backslash Q_{r}$ fixes an element in $\Delta(r) \backslash \gamma$. On the other hand $K \leq G_{\gamma}$ and K has orbits of length 1 and $2^{n_{r}}-1$ on $\Delta(r) \backslash \gamma($ see (3.1)(b)). This yields that G_{γ} is transitive on $\Delta(r) \backslash \gamma$, contradicting the hypothesis.

We will use (3.5) in the following without reference.

$$
\text { 4. The case }\left|G_{T}\right| \equiv 1 \text { (2) }
$$

(4.0) Hypothesis and notation. (3.0) and (3.3) hold, and in addition:
(a) $n_{0}>1$ and $n_{1}>1$.
(b) $Z_{0} \neq 1 \neq Z_{1}$.
(c) $s \equiv 1$ (2) and $s \geq 5$.
(d) $\left|G_{T}\right| \equiv 1$ (2).
(e) γ is a regular subarc of maximal length r in T such that $Q=O_{2}\left(G_{\gamma}\right) \neq 1$.
(4.1) Assume that $Q_{1} \cap Q_{-1}$ is normal in G_{0}. Then the following hold:
(a) $Q_{0} / Q_{1} \cap Q_{-1}$ is elementary abelian of order $2^{2 n_{1}}$.
(b) $Q_{0}=\left[Q_{0}, Q_{1}\right]\left[Q_{0}, Q_{-1}\right]\left(Q_{1} \cap Q_{-1}\right)$.
(c) If Z_{0} is a natural module for ${\overline{L_{0}}}_{0}$ and $\left[Q_{1} \cap Q_{-1}, L_{0}\right] \leq Z_{0}$, then $Q_{1} \cap Q_{-1}$ is elementary abelian.

Proof. Set $A=Q_{1} \cap Q_{-1}$. We apply (3.2). Since Sylow 2-subgroups of $\overline{L_{1}}$ (and \bar{L}_{-1}) are elementary abelian of order $2^{n_{1}}$, we get $\phi\left(Q_{0}\right) \leq A$ and $\left|Q_{0} / A\right| \leq 2^{2 n_{1}}$. Hence Q_{0} / A is elementary abelian, and the operation of K_{1} and K_{-1} on Q_{0} / A yields

$$
Q_{0} \cap Q_{1}=A \quad \text { or } \quad Q_{0} / A=\left(Q_{0} \cap Q_{1}\right) / A \times\left(Q_{0} \cap Q_{-1}\right) / A .
$$

In the first case $G_{(-1012)}=K\left(Q_{0} \cap Q_{1}\right)=K A$, and (-1012) is not (left-) regular, a contradiction to $s \geq 5$.

Thus the second case holds. If $\left[Q_{1}, Q_{0} \cap Q_{-1}\right] \leq A$, then $Q_{0} \cap Q_{-1}$ is normal in $\left.<Q_{1}, Q_{-1}\right\rangle Q_{0}=L_{0}$ and $A=Q_{0} \cap Q_{-1}=Q_{0} \cap Q_{1}$, a contradiction. Hence we have

$$
\left[Q_{1}, Q_{0} \cap Q_{-1}\right] \nless A
$$

and with the same argument

$$
\left[Q_{-1}, Q_{0} \cap Q_{1}\right] \nsubseteq A .
$$

Now again the operation of K_{1} and K_{-1} implies assertion (b).
Assume now that Z_{0} is natural and $\left[A, L_{0}\right] \leq Z_{0}$. By (1.3),

$$
A=C_{A}\left(K_{0}\right) \times Z_{0} \quad \text { and } \quad \phi(A)=\phi\left(C_{A}\left(K_{0}\right)\right) .
$$

On the other hand $\phi(A)$ is normal in a Sylow 2 -subgroup S of L_{0}. Thus

$$
\phi(A) \cap Z(S) \neq 1,
$$

which contradicts $\phi(A) \cap Z(S) \leq \phi(A) \cap Z_{0}=1$.
Without loss of generality we may assume $\gamma=(0 \ldots r)$. Note that by (2.10), γ has finite length and subarcs of T of length greater than r have stabilizers of odd order. We will use this last fact without reference.
(4.2) (a) $|Q|=2^{n_{0}}$.
(b) $r \equiv 0$ (2), $s-1 \leq r$, and $r=s-1$ or $\tilde{\gamma} \in(0, r)(0 \in o)$ for every maximal regular arc $\tilde{\gamma}$ in Γ.
(c) $\left|N_{G_{l}}(K) / K\right|=2$ and $C_{\sigma_{l}}(K) \leq K$ for $i \in T$.
(d) For $i \in T, x \in N_{\sigma_{t}}(K) \backslash K$ and $m \in \mathbf{N}, x$ interchanges the two vertices $i+m$ and $i-m$ of distance m from i in T.
Proof. We have $Q \leq G_{0}$ but $Q \cap Q_{0}=1$. The operation of K on Q ((3.1)(c)) yields (a). Assertion (b) follows from (2.6) and the maximality of r, and (c) and (d) are consequences of (3.1) and (3.4).
(4.3) $b_{1} \in\{r / 2-1, r / 2\}$.

Proof. Set $b=b_{1}+1$, and pick $x \in N_{G_{1}}(K) \backslash K$. Then $Z_{1}^{x}=Z_{1}$, and by (4.1)(d),

$$
C_{T}\left(Z_{1}\right)=(-(b-2) \ldots b)
$$

Therefore Z_{1} is in G_{b} but not in Q_{b}, and the maximality of r yields

$$
\left|C_{T}\left(Z_{1}\right)\right|=2 b-2 \leq r \quad \text { and } \quad b_{1} \leq r / 2
$$

Now assume $r / 2\rangle b$. For $\tau^{*} \in\langle\tau\rangle$ with $1^{r^{*}}=2 b-1$ we get

$$
C_{T}\left(Z_{1}^{\tau}\right)=(b \ldots 3 b-2)
$$

and $\left[Q, Z_{1}^{\tau^{*}}\right]=1$, as $2 b-1<r$. Hence $\left\langle Z_{1}, Z_{1}^{\tau^{*}}, K\right\rangle \leq N_{G}(Q)=N$, and N_{b} operates transitively on $\left.\Delta\right) b$). We choose $z \in Z_{1} \backslash Q_{b}$. From (3.1)(e) we get that z normalizes K^{u} for suitable $u \in N_{b}$. Together with (3.1)(a) and (3.4)(a) this implies that

$$
\gamma^{*}=\left(r^{u z} \ldots(b+1)^{u z} b(b+1)^{u} \ldots r^{u}\right)
$$

or

$$
\gamma^{* *}=\left(r^{u} \ldots(b+1)^{u} b(b+1)^{u z} \ldots r^{u z}\right)
$$

is a subarc of T^{u}. As γ^{*} and $\gamma^{* *}$ are stabilized by $K^{u} Q$, the maximality of r implies $\left|\gamma^{*}\right|=\left|\gamma^{* *}\right|=2(r-b) \leq r$ and $r / 2 \leq b$, a contradiction.
(4.4) $b_{0} \in\{r / 2-2, r / 2-1, r / 2\}$.

Proof. Set $b=b_{0}+2$. Then $C_{T}\left(Z_{2}\right)=(-(b-4) \ldots b)$, and we get the assertion with the same argument as in (4.3).
(4.5). One of the following holds:
(a) $\left[Z_{1}, Z_{b_{1}+1}\right] \leq Z_{1} \cap Z_{b_{1}+1}$.
(b) $r=s-1,\left[Z_{0}, Z_{b_{0}}\right] \neq 1$, and b_{0} is in the same G-orbit as 0 (i.e., (a) holds with the roles of 0 and 1 interchanged).

Proof. Set $h=b_{1}+1, R=\left[Z_{1}, Z_{h}\right], X=\left[Z_{0}, Z_{b_{0}}\right]$, and assume that (a) does not hold. Then $R \neq 1, b_{h}=b_{0}<b_{1}$, and h is in the same G-orbit as 0 , in particular $b_{1} \equiv 1$ (2).

Suppose that b_{0} is in the same G-orbit as 0 . Then $Z_{0} \neq Z\left(L_{0}\right)$ and $X \neq 1$. From (4.3) and (4.4) we get
(1) $r / 2-2 \leq b_{0}=b_{1}-1<r / 2$.

As $X \leq Z_{0} \cap Z_{b_{0}}$ and $\left|Z_{0}\right|=\left|Z_{b_{0}}\right|$, (1.3) implies
(2) $Z_{0} / Z\left(\mathrm{~L}_{0}\right)$ is a natural module for $\overline{L_{0}}$.

Assume $r \leq s$. Then (4.2)(b) yields $r=s-1$, and assertion (b) follows. Therefore we may assume
(3) $s<r$.

Assume $Z\left(L_{h}\right) \neq 1$. We have $\left[Z_{1}, Z\left(L_{h}\right)\right]=1$ and $Z\left(L_{h}\right) \leq Z_{h+1} \cap Z_{h-1}$. Hence by (1), $Z\left(L_{h}\right)$ stabilizes the subarc ($0 \ldots 2 h$) of length r in T, and (4.2)(a) implies $Z\left(L_{h}\right)=Q$ and $\left|Z\left(L_{h}\right)\right|=2^{n_{0}}$. Together with (2) we get

$$
\left|Z(S) \cap Z_{0}\right|=2^{2 n_{0}} \quad \text { for } S \in S y l_{2}\left(G_{0} \cap G_{1}\right)
$$

On the other hand (3.2)(e) implies $Z\left(L_{0}\right) \cap Z\left(L_{1}\right)=1$, hence

$$
\left|Z_{1}\right| \geq 2^{3 n_{0}} \quad \text { and } \quad\left|Q_{h} \cap Z_{1}\right| \geq 2^{2 n_{0}}
$$

Thus $Q_{h} \cap Q_{-(h-2)} \cap Z_{1} \neq 1$, and $Q_{h} \cap Q_{-(h-2)} \cap Z_{1}$ stabilizes $(-(h-1) \ldots$ $h+1$) of length r, where $h+1$ is odd. This contradicts (3) and (2.6). Since h is in the same G-orbit as 0 , we have shown together with (2):
(4) $Z\left(L_{0}\right)=1$, and Z_{0} is a natural module for $\overline{L_{0}}$.

The subgroup X stabilizes ($-b_{0} \ldots 2 b_{0}$) of length $3 b_{0}$, and the maximality of r implies $3 b_{0} \leq r$. From (1) and (3) we get
(5) $b_{0}=r / 2-2, \quad b_{1}=r / 2-1$ and $r=8$ or 12 ,
or
(6) $b_{0}=2, b_{1}=3$ and $r=6$.

As Z_{0} is a natural module and $Z_{0} \leq Q_{1}$, (3.2)(e) yields $C_{L_{i}}\left(Q_{i}\right) \leq Q_{i}$ for $i=0,1$. Therefore we can apply (1.11). If (1.11)(d) holds, then $\left|L_{0}\right|=2^{3 n 0}$ and $s<5$, a contradiction. Thus we get together with (4):
(7) $Z_{1}=Z\left(L_{1}\right)$ and $\left|Z_{1}\right|=2^{n_{0}}$.

Now (7) and (4) imply $X=C_{z_{0}}\left(Z_{b_{0}}\right)=Z_{1}=C_{z_{b_{0}}}\left(Z_{0}\right)=Z_{b_{0}-1}$, and the operation of $\langle\tau\rangle$ yields $b_{0}=2$. Together with (5) we have proved:
(8) $b_{0}=2, b_{1}=3, r=6$ or $b_{0}=2, b_{1}=3, r=8$.

Set $V=\left\langle Z_{0}^{G_{1}}\right\rangle$ and $A=Q_{1} \cap Q_{-1}$. From (8) we get $Z_{0} \leq A$ and $V \leq Q_{1}$, and from (4) and (7), $\left[V, Q_{1}\right]=Z_{1}=Z\left(L_{1}\right) \leq Z_{0}$. The operation of K_{0} yields

$$
\left|V Q_{0} / Q_{0}\right|=2^{n_{0}} \quad \text { and } \quad<V, V^{\tau^{-1}}>Q_{0}=L_{0}
$$

We now apply (4.1). Then $Q_{0} \cap Q_{1} \leq V A$, and $V^{\prime} \leq Z_{0}$ and (1.3) imply that Q_{0} / A is direct sum of natural modules for \bar{L}_{0}. Let d be an element of order three in L_{0}; then (1.3),(4) and (4.1) yield:
(9) Q_{0} / A is direct sum of natural modules for $\bar{L}_{0},\left|Q_{0} / A\right|=2^{2 n_{1}}$, and $A=C_{Q_{0}}(d) \times Z_{0}$.

Assume $r=6$; then $\left|L_{0}\right|_{2}=2^{3 n_{0}} 2^{2 n_{1}}$ and $Q_{1} \cap Q_{-1}=Z_{0}$. This implies (by (9)) that $C_{\varrho_{0}}(d)=1$, and, from (1.4), Q_{0} is elementary abelian and a direct sum of natural modules. But then $Q_{0}=Z_{0}$ and $b_{0}=1$ which contradicts (8).

Note that we got this last contradiction with the help of (1.4) where $n_{0}>1$ is assumed. We will see in Section 5 that for $n_{0}=1$ another possibility arises which does not lead to a contradiction.

We may now assume $r=8$. Set $L=\left\langle V^{r^{-1}}, V\right\rangle$, then $L Q_{0}=L_{0}$ and $[A, L]=Z_{0}$. Hence $\left[O^{2}\left(L_{0}\right), A\right]=Z_{0}$, and (4) and (9) imply

$$
A=C_{Q_{0}}\left(K_{0}\right) \times Z_{0}
$$

Set $D=C_{Q_{0}}\left(K_{0}\right)$ and pick $t_{0} \in N_{0^{2}\left(L_{0}\right)}(K) \backslash G_{1}$ and $t_{1} \in N_{L_{1}}(K) \backslash G_{0}$. Then t_{0} normalizes K_{0} and therefore D; hence

$$
\left[D, t_{0}\right] \leq\left[D, O^{2}\left(L_{0}\right)\right] \cap D=Z_{0} \cap D=1
$$

According to (2.8) and (3.4) we may assume $t_{0} t_{1}=\tau$ and $t_{1}^{2} \in G_{T}$. Thus τ normalizes $D \cap D^{r_{1}}$, and $\left|G_{T}\right| \equiv 1$ (2) implies $D \cap D^{r_{1}}=1$. On the other hand $r=8$ and $Q^{r^{-1}}$ and $Q^{r^{-2}}$ are contained in A. But the K-invariant subgroups of A of order $2^{n_{0}}$ are in D or Z_{0}. In the second case they are L_{0}-conjugates of Z_{1} (by (4)). Hence $b_{1}=3$ implies

$$
<Q^{r^{-1}}, Q^{\tau^{-2}}>\leq D
$$

It follows that $Q^{r^{-1_{1}^{-1}}}=Q^{r^{-2}}$ and $Q^{r^{-1}} \leq D \cap D^{t_{1}}$, a contradiction.
From now on we may suppose that b_{0} is in the same G-orbit as 1 . (4.3) and (4.4) yield:
(10) $b_{0}=r / 2-2$ and $b_{1}=r / 2$.

In particular Z_{1} stabilizes the $\operatorname{arc}(-(h-2) \ldots h)$ of length r. Then (4.2)(a) implies $\left|Z_{1}\right|=2^{n_{0}}$, and K operates transitively on $Z_{1}^{\prime \prime}$. We get:

$$
\begin{equation*}
Z_{1}=Z\left(L_{1}\right),\left|Z_{1}\right|=2^{n_{0}} \text { and } X=1 \tag{11}
\end{equation*}
$$

Assume that $r \leq s$. Then there exists a maximal regular subarc of T starting at 1. So we are allowed to interchange the rôles of 0 and 1 , and from (4.3), we get $b_{0} \geq r / 2-1$, a contradiction to (10). We have shown:
(12) $s<r$.

Assume that $b_{1}=3$. Then (10) yields $b_{0}=1$ and $r=6$. Together with (12) and (2.6) we get $\left|L_{0}\right|_{2}=2^{3 n_{0}} 2^{2 n_{1}}$. In addition, by (4.1) we have

$$
\begin{gathered}
L_{1}=<Z_{0}, Z_{2}>Q_{1},\left|Q_{1} / Q_{0} \cap Q_{2}\right|=2^{2 n_{0}}, Q_{1}=\left(Z_{0} \cap Q_{1}\right)\left(Z_{2} \cap Q_{1}\right)\left(Q_{0} \cap Q_{2}\right), \\
\left|Q_{0} \cap Q_{2}\right|=2^{n_{0} 2^{n_{1}}} \text { and } Z_{0} \cap Z_{2}=Z_{1}
\end{gathered}
$$

This yields $\left|Q_{0} / Z_{0}\right|=2^{n_{1}}$. On the other hand

$$
Q_{0}=C_{Q_{0}}\left(K_{1}\right) Z_{0} \quad \text { and } \quad\left[L_{0}, Q_{0}\right] \leq Z_{0}
$$

As $K=K_{1} K_{0}$ normalizes $C_{\mathbf{Q}_{0}}\left(K_{1}\right)$, this implies $Q_{0}=C_{Q_{0}}(K) Z_{0}$, contradicting (4.2)(c). So we have shown:
(13) $b_{1} \geq 5$.

Pick $y \in Z_{h}$ and $x \in Z_{1}$, and let k be minimal in $\left(-\left(b_{1}-5\right) \ldots 3\right)$ such that k is fixed by y. Then (2.6) implies that x stabilizes

$$
\left(\left(-\left(b_{1}-5\right)\right)^{y^{-1}} \ldots k \ldots 1\right), \quad \text { if } k \leq 1
$$

and

$$
\left(1 \ldots k(k-1)^{y^{-1}} \ldots\left(-\left(b_{1}-5\right)\right)^{y^{-1}}\right), \quad \text { if } k>1
$$

and that $[x, y]$ and therefore R stabilizes $\left(-\left(b_{1}-5\right) \ldots h+b_{0}\right)$. Hence $R \leq Q_{1}$, since $b_{1} \geq 5$, and (1.3), (11) and (3.2)(e) imply that Z_{h} is a natural module for $\overline{L_{h}}$. Then $Z_{h}=Z_{h-1} Z_{h+1}$, and Z_{h-1} and Z_{h+1} stabilize the vertex 2. On the other hand $h=b_{0}+3$ by (10), and $Z_{h} \nless Q_{3}$, a contradiction to (3.1)(a).
(4.6) Suppose that $1 \neq\left[Z_{1}, Z_{b_{1}+1}\right] \leq Z_{1} \cap Z_{b_{1}+1}$. Then one of the following holds.
(a) $b_{0}=b_{1}=1, r=s-1=4$ and:
(a1) Q_{0} and Q_{1} are elementary abelian of order $2^{3 n}$;
(a2) $\left|Z\left(L_{0}\right)\right|=\left|Z\left(L_{1}\right)\right|=2^{n_{0}}$ and $n_{0}=n_{1}$;
(a3) $Q_{i} / Z\left(L_{i}\right)$ is a natural module for $\overline{L_{i}}(i=0,1)$.
(b) $b_{0}=3, b_{1}=2, r=s-1=6, n_{0}=3 n_{1}$ and:
(b1) $Z_{0}=Z\left(L_{0}\right),\left|Z_{0}\right|=2^{n_{1}}$, and Q_{0} is special of order $2^{9 n_{1}}$;
(b2) Z_{1} is a natural module for $\overline{L_{1}}, Q_{1} / Z_{1}$ is special, and $\left(Q_{1} / Z_{1}\right) / Z\left(L_{1} / Z_{1}\right)$ is a direct sum of three natural modules for \bar{L}_{1}.
(c) $b_{0}=3, b_{1}=2, r=s-1=6, n_{0}=n_{1}$ and:
(c1) $Z_{0}=Z\left(L_{0}\right),\left|Z_{0}\right|=2^{n_{0}}$, and Q_{0} is special of order $2^{3^{n_{0}}}$;
(c2) Q_{1} is special, and Z_{1} and $\left(Q_{1} / Z_{1}\right) / Z\left(L_{1} / Z_{1}\right)$ are natural modules for $\overline{L_{1}}$.

Proof. Set $h=b_{1}+1$ and $R=\left[Z_{1}, Z_{b_{1}+1}\right]$. Then R is contained in $Z_{1} \cap Z_{b_{1+1}}$ and stabilizes $\gamma^{\prime}=\left(-(h-2) \ldots\left(h+b_{h}\right)\right)$. The length of γ^{\prime} is $2 b_{1}+b_{h}$, and the maximality of r implies:
(1) $2 b_{1}+b_{h} \leq r$.

First suppose that h is in the same G-orbit as 1 . Then (1) and (4.3) imply:
(2) $b_{1}=2$ and $r=6$, and γ^{\prime} is a maximal regular subarc of T.

Now (4.2)(b) yields $r=s-1$, since γ and γ^{\prime} are not in the same set (θ, r) (resp. (\mathcal{N}, r)), and $\left|Q_{2}\right|=2^{2 n_{0}} 2^{3 n_{1}}$. From $\left[R, Z_{1}\right]=1$ we know that R is central in a Sylow 2-subgroup of $G_{2} \cap G_{3}$ and therefore is contained in Z_{2}. Pick

$$
t \in N_{G_{2}}(K) \backslash K
$$

Then (4.2)(d) and (3.1) imply $R^{t}=R$ and $R \leq Z\left(L_{2}\right)$. Hence $Z\left(L_{3}\right) \cap R=1$ ((3.2)(e)), and from $\left[R, Z_{1}\right]=\left[R, Z_{3}\right]=1,(1.3)$ and (1.11) we derive that either $Z_{2}=Z\left(L_{2}\right)$ or $Z_{i} / Z\left(L_{i}\right)$ is a natural module and $\left|Z_{i}\right|=2^{3 n_{0}}$ for $i=2,3$. In the second case $n_{0}=n_{1}, Q_{2}=Z_{2} Z_{1} Z_{3}$ and $Z_{2}=R Z\left(L_{1}\right) Z\left(L_{3}\right)$. It
follows that $\left[Z_{2}, Q_{j}\right] \leq Z\left(L_{j}\right)$ for $j=1,3$, and $Z\left(L_{1}\right) Z\left(L_{3}\right)$ is a normal subgroup of L_{2}. Now (1.5) implies that $Z_{1} Z_{3} / Z\left(L_{1}\right) Z\left(L_{3}\right)$ is elementary abelian which contradicts $\left[Z_{1}, Z_{3}\right]=R \notin Z\left(L_{1}\right) Z\left(L_{3}\right)$.

Thus we have shown $Z_{2}=Z\left(L_{2}\right)$ and $Z\left(L_{3}\right)=1$ by (3.2)(e). Hence Z_{3} is a natural module for $\overline{L_{3}}$. In particular, $Z_{3}=Z_{2} Z_{4}$ and $b_{2}=3$. Conjugation with τ^{-1} yields:
(3) $b_{0}=3, b_{1}=2, r=s-1=6, Z_{0}=Z\left(L_{0}\right),\left|Z_{0}\right|=2^{n_{1}}$, and Z_{1} is a natural module for L_{1}.

Since $s=7$, the order of a Sylow 2-subgroup of L_{0} is:

$$
\begin{equation*}
\left|L_{0}\right|_{2}=2^{3 n_{0}} 2^{3 n_{1}} \tag{4}
\end{equation*}
$$

Set $V=\left\langle Z_{1}^{G_{0}}\right\rangle$. Then (3) implies

$$
V^{\prime}=Z_{0}, \quad V / Z_{0} \leq Z\left(Q_{0} / Z_{0}\right), \quad Q_{1} Z_{4} \in S y l_{2}\left(L_{1}\right)
$$

and

$$
<Z_{-2}, Z_{4}>Q_{1}=L_{1}
$$

We get

$$
\left[Z_{4}, Q_{1} \cap Q_{2}\right] \leq\left[V^{r}, Q_{1} \cap Q_{2}\right] \leq Z_{2}
$$

and

$$
\left[<Z_{4}, Z_{-2}>, Q_{2} \cap Q_{0}\right] \leq Z_{1}
$$

Therefore $Q_{0} \cap Q_{2}$ is normal in L_{1}, and by (4.1) and (1.3), $Q_{1} / Q_{0} \cap Q_{2}$ has order $2^{2 n_{0}}$ and is direct sum of natural modules for $\overline{L_{1}}$, in particular $n_{1} \leq n_{0}$.

As we have seen above, $\left[O^{2}\left(L_{1}\right), Q_{0} \cap Q_{2}\right] \leq Z_{1}$; on the other hand, nontrivial elements of odd order in $L_{2}\left(2^{n}\right)$ act fixed-point-freely on natural modules ((1.3)). This yields

$$
C_{Q_{1}}\left(K_{1}\right) \leq Q_{0} \cap Q_{2}, \quad Q_{0} \cap Q_{2}=C_{Q_{1}}\left(K_{1}\right) \times Z_{1} \quad \text { and } \quad\left|C_{Q_{1}}\left(K_{1}\right)\right|=2^{n_{0}} .
$$

Set $D=C_{Q_{1}}\left(K_{1}\right)$. Then $Q_{0}=V D$, and with the same arguments as in (4.1)(c) we conclude that D is elementary abelian. Hence:
(5) Q_{0} is special, $n_{1} \leq n_{0}$, and $\left(Q_{1} / Z_{1}\right) / Z\left(L_{1} / Z_{1}\right)$ is direct sum of natural modules for $\overline{L_{1}}$.

Since $Q_{0} \cap Q_{2}$ has order $2^{n_{0}} 2^{2_{n}}$ and stabilizes ($-1 \ldots 3$), a K-invariant subgroup of order $2^{n_{0}}$ stabilizes the maximal regular subarc ($-2 \ldots 4$) in T. This subgroup must be D. In particular we have $[D, K]=D$ and therefore [D, K_{0}] $=D$, since K_{1} centralizes D.

Let N be a normal subgroup of L_{0} in Q_{0} and $Z_{0}<N$, and let t be an element in $N_{L_{0}}(K) \backslash G_{1}$. If $D \cap N \neq 1$, then the operation of K_{0} on D yields $D \leq N$ and $\left[D, Q_{1}\right]=Z_{1} \leq N$. Hence $D V=Q_{0}=N$.

If $\left|N / Z_{0}\right|>2^{2 n_{0}}$, then $\left|Q_{0} / N\right|<2^{2 n_{1}} \leq 2^{2 n_{0}}$, and (1.2) implies $\left[Q_{0}, L_{0}\right] \leq N$. Thus $D=\left[D, K_{0}\right] \leq N$ and $N=Q_{0}$.

Now let N / Z_{0} be a minimal normal subgroup of G_{0} / Z_{0}. Since $D \leq\left[Q_{0}, L_{0}\right]$, we get with the above argument $\left[Q_{0}, L_{0}\right]=Q_{0}$ and $L_{0}=L_{0}^{\prime}$. If N / Z_{0} is central in L_{0} / Z_{0}, then the 3-subgroup-lemma shows $\left[N, L_{0}\right]=1$, a contradiction.

Now assume that N / Z_{0} is not central. Then either $N=Q_{0}$ or N / Z_{0} and Q_{0} / N are non-central factors of L_{0}. In the second case (4), (5) and (1.2) imply $n_{0}=n_{1}$.

Assume the first case and $n_{1} \neq n_{0}$. Then (5) implies

$$
\left[Q_{0}, Q_{1}, Q_{1}, Q_{1}, Q_{1}\right]=1
$$

Hence, from (1.13), we get $\left[Q_{0}, Q_{1}, Q_{1}, Q_{1}\right] \neq 1$ and $n_{0}=3 n_{1}$. Together with (5) and (4) this yields assertion (b).

Assume $n_{1}=n_{0}$. Then (5), (4) and (1.5) imply assertion (c).
Suppose now that h is in the same G-orbit as 0 . Then (1), (4.3) and (4.4) yield:
(6) $b_{1}=r / 2-1, b_{0} \leq 2$ and $r=4$ or 8 .

Assume that $r=8$, then $b_{0}=2$ (by (4.4)), $\gamma^{\prime}=(-2 \ldots 6)$ and $R^{r}=Q$. Therefore Z_{2} is contained in G_{4} but not in Q_{4}, and $\left[Z_{2}, Z_{4}\right]=R$. On the other hand, (4.2)(d) yields $\gamma^{\prime t}=\gamma^{\prime}$ and $R^{t}=R$ for $t \in N_{G_{2}}(K) \backslash K$. This implies

$$
R \leq Z\left(L_{2}\right) \quad \text { and } \quad\left[Z_{2}, L_{2}\right] \leq Z\left(L_{2}\right)
$$

But then Z_{2} centralizes $O^{2}\left(L_{2}\right) Q_{2}=L_{2}$, and we get $\left[Z_{2}, Z_{4}\right]=1$, a contradiction.

Assume that $r=4$. If $b_{0}=2$, then Z_{2} stabilizes γ. The action of K on Z_{2} and (4.1)(a) imply $Q=Z_{2}$ and $\left|Z_{2}\right|=2^{n_{0}}$. In particular Z_{2} is central in L_{2} and $R=1$, a contradiction. Together with (6) we have shown:
(7) $b_{0}=b_{1}=1$ and $r=4$.

From $\left[R, Z_{1}\right]=\left[R, Z_{2}\right]=1$ and (1.3) we get that $n_{0}=n_{1}$ and that $Z_{i} / Z\left(L_{i}\right)$ is a natural module for $\overline{L_{i}}(i=1,2)$. Set $\{1,2\}=\{i, j\}$ and $n=n_{0}$, then we have $\left|L_{i}\right|_{2}=2^{4 n}$, since $s=r+1=5$. Now (1.2) implies

$$
\left[Q_{i}, L_{i}\right]=Z_{i} \quad \text { and } \quad Q_{i}=C_{Q_{i}}\left(K_{i}\right) Z_{i}
$$

in particular, $\left|C_{Q_{i}}\left(K_{i}\right)\right|=2^{n}$ and $C_{Q_{i}}\left(K_{i}\right) \cap Z\left(L_{i}\right) \neq 1$. On the other hand (3.2)(e) yields $Z\left(L_{i}\right) \cap Z\left(L_{j}\right)=1$, and $Z\left(L_{i}\right)$ is a subgroup of Z_{j}. Hence the elements of K_{j} operate fixed-point-freely on $Z\left(L_{i}\right)$. Therefore

$$
\left|Z\left(L_{i}\right)\right|=2^{n} \quad \text { and } \quad C_{Q_{i}}\left(K_{i}\right)=Z\left(L_{i}\right)
$$

and assertion (a) follows (after conjugation with τ^{-1}).
(4.7) Suppose that $\left[Z_{1}, Z_{b_{1}+1}\right]=1$. Then one of the following holds:
(a) $b_{1}+1$ is in the same G-orbit as 0.
(b) $r=s-1,\left[Z_{0}, Z_{b_{0}}\right]=1$, and b_{0} is in the same G-orbit as 1 .

Proof. Set $b=b_{1}+1$ and assume that 1 is in the same G-orbit as b (we write $1 \sim b$). Then we have $Z_{1}=Z\left(L_{1}\right)$ and $Z_{b}=Z\left(L_{b}\right)$, and (4.2)(b) and (4.3) imply that $b_{1} \geq 2$, since b is odd. Therefore we get $Z_{1} \leq Z_{0}$, and Z_{1} stabilizes $\left(-b_{0} \ldots b\right)$ in T; in particular:
(1) $b_{0} \leq b-2$.

First assume that $b_{1}=r / 2$. Then Z_{b} stabilizes the arc $\gamma^{\prime}=(1 \ldots(r+1))$ in T of length r which has to be a maximal regular subarc of T. Now (2.6) and (4.2) imply $r=s-1$. This allows us to interchange the rôles of 0 and 1 (and γ and γ^{\prime}).

Set $0=1^{\prime}$ and $1=0^{\prime}$. If $\left[Z_{1^{\prime}}, Z_{b_{1^{\prime}+1}}\right]=1$, we get assertion (b), or $b_{1,}+1^{\prime} \sim 1^{\prime}$. In the second case we get as above $Z_{1},=Z\left(L_{1}\right)$, a contradiction to (3.2)(e).

If $\left[Z_{1}, Z_{b_{1},+1}\right] \neq 1$, we can apply (4.5) and (4.6) and get one of the following possibilities:
(2) $\left[Z_{0^{\prime},}, Z_{b_{0_{0}}, 0^{\prime}}\right] \neq 1$;
(3) b_{0}, is odd.

Case (2) contradicts $\left[Z_{1}, Z_{b_{1}+1}\right]=1$, and since $b_{0^{\prime}}+1$ is odd, case (3) can not occur.

Now we may assume that $b_{1}=r / 2-1$ and $b_{0}=r / 2-2$. Choose $\tau^{\prime} \in\langle\tau\rangle$ such that $2^{r^{\prime}}=r-2$. Then $Q Z_{b}$ centralizes $E_{b}=\left\langle Z_{2}, Z_{2}^{\left.r^{\prime}\right\rangle}\right\rangle$, and $\overline{E_{b}}=\overline{L_{b}}$. As K normalizes E_{b}, we have $K \cap E_{b}=K_{b}$. Thus K_{b} centralizes $Q Z_{b}$.

On the other hand $Q Q_{0}$ is a Sylow 2-subgroup of G_{0} and $Z_{b} Q_{1}$ is a Sylow 2-subgroup of G_{1}. The structure of $\operatorname{Aut}\left(L_{2}\left(2^{n}\right)\right)$ implies

$$
\left[L_{0}, K_{b}\right] \leq Q_{0} \quad \text { and } \quad\left[L_{1}, K_{b}\right] \leq Q_{1}
$$

Hence $L_{0}=C_{L_{0}}\left(K_{b}\right) Q_{0}$ and $L_{1}=C_{L_{1}}\left(K_{b}\right) Q_{1}$, and, by (2.1), $C_{\sigma}\left(K_{b}\right)$ is edgetransitive on Γ and $K_{b}=1$, contradicting $n_{1}>1$.
(4.8) Suppose that $\left[Z_{1}, Z_{b_{1}+1}\right]=1$. Then one of the following holds.
(a) $b_{1}=1, b_{0}=2, r=s-1=4$ and:
(a1) $Z_{0}=Z\left(L_{0}\right),\left|Z_{0}\right|=2^{n_{0}}, Q_{0}$ is special, and Q_{0} / Z_{0} is a direct sum of two natural modules for $\overline{L_{0}}$;
(a2) $2 n_{0}=n_{1} ;$
(a3) Q_{1} is elementary abelian of order $2^{4 n_{0}}$, and Q_{1} is an orthogonal module for L_{1}.
(b) Assertion (a) holds with the rôles of 0 and 1 interchanged.

Proof. Set $b=b_{1}+1$. Then $Z_{b}=Z\left(L_{b}\right)$, and (4.7) implies that b is in the same G-orbit as 0 or that $r=s-1$ and that we are allowed to interchange the rôles of 0 and 1 . Therefore we may assume without loss that b is in the same \boldsymbol{G}-orbit as $\mathbf{0}$. This yields:
(1) $Z_{0}=Z\left(L_{0}\right)$.

Now (3.2)(e) implies $Z_{0} \leq Z_{1}$, otherwise Z_{1} would be central in L_{1} and $Z_{0} \cap Z_{1}$ would be central in $\left\langle L_{0}, L_{1}\right\rangle$. From (4.3) and (4.4) we get:
(2) $b=b_{0}=r / 2$ and $b_{1}=r / 2-1, Q=Z_{b}$, and Z_{0} is elementary abelian of order $2^{n_{0}}$.

Set $H=Z_{1} \cap Q_{b}$. We first assume that $H \not \subset Q_{b+1}$. Since $Z\left(L_{b+1}\right)=1$ (see (1) and (3.2)(e)), we have $R=\left[H, Z_{b+1}\right] \neq 1$. Let $a=[h, z]$ be a non-trivial element in R such that $h \in H$ and $z \in Z_{b+1}$. We may assume that z does not fix 0 .

If $b_{1} \geq 4$, then Z_{1} fixes -1 , and $(-1)^{z^{-1}}$ has distance two or four from 1 . Therefore $s \geq 5$ and (2.6) imply that Z_{1} fixes (-1$)^{x^{-1}}$, and we conclude that a stabilizes $\gamma^{\prime}=\left(-1 \ldots\left(b+b_{1}+1\right)\right)$. But by (2), the length of γ^{\prime} is greater than r, a contradiction. Together with (2) we have shown:
(3) $b_{1}=1, b_{0}=2$ and $r=4$; or $b_{1}=3, b_{0}=4$ and $r=8$.

Assume that $r=8$. Then $b_{1}=3$, and with the same argument as above R stabilizes ($0 \ldots 8$) of length r. This implies $R=Q=Z_{4}$, and $|R|=2^{n_{0}}$. From (1), (1.3) and $Z\left(L_{5}\right)=1$, we get $Z_{5}=Z_{4} Z_{6}$. Now, conjugation with τ^{-2} yields $Z_{1}=Z_{0} Z_{2}$. Hence (3) implies $Z_{2}=H \leq Q_{s}$, a contradiction to the assumption $H \leq Q_{b+1}$.

Now assume $r=4$. We want to show assertion (a). Since $s=5$, we get

$$
\left|L_{0}\right|_{2}=2^{2 n_{0}} 2^{2 n_{1}}
$$

Additionally we have $Z_{2} Q_{0} \in S y l_{2}\left(L_{0}\right)$ and $Z_{2} \cap Q_{0}=1$. Therefore we get

$$
Q_{1}=Z_{0} \times Z_{2} \times\left(Q_{0} \cap Q_{2}\right)
$$

Assume that $\phi\left(Q_{1}\right) \neq 1$. Then $\phi\left(Q_{0} \cap Q_{2}\right) \neq 1$, and $\phi\left(Q_{0} \cap Q_{2}\right) \leq Q_{-1} \cap Q_{3}$, since \bar{L}_{1} has elementary abelian Sylow 2-subgroups. Thus $\phi\left(Q_{0} \cap Q_{2}\right)$ stabilizes $(-2 \ldots 4)$ of length 6 , contradicting $r=4$.

We have shown that Q_{1} is elementary abelian of order $2^{2 n_{0}} 2^{n_{1}}$. Now (1.2) implies:
(4) $n_{1} \leq 2 n_{0}$.

Since Q_{1} is abelian, Q_{0} / Z_{0} is, by (1.3) and (4.1), a direct sum of k natural modules for $\overline{L_{0}}$, and (4) yields $k=1$ or 2 .

If $k=1$, then (1.5) and $n_{0}>1$ imply that Q_{0} is abelian. It follows that

$$
Q_{1} \cap Q_{0}=Z\left(L_{0}\right)
$$

by (1). This contradicts (4.1). Hence $k=2$, and from (4) we get $n_{1}=2 n_{0}$. In particular Q_{1} is a module of order $2^{4 n_{0}}$. Thus $\left[Q_{1}, Q_{0}, Q_{0}\right] \neq 1,(1.1)$ and (1.3) imply that Q_{1} is an orthogonal module for L_{1}.
From now on we assume that $H \leq Q_{b+1}$. Then H stabilizes $(-(b-2) \ldots(b+2))$ of length r. Hence (2), (1.3) and the operation of K on H imply:
(5) $H=Z_{2}$, and $Z_{1}=Z_{0} Z_{2}$ is direct sum of natural modules for $\overline{L_{1}}$, in particular $n_{1} \leq n_{0}$.

We have $K=K_{0} K_{1}$ (see (3.2)). On the other hand

$$
Z_{b} Q_{0} \in S y l_{2}\left(L_{0}\right) \quad \text { and } \quad\left[K_{b}, Z_{b}\right]=1
$$

The structure of $\operatorname{Aut}\left(L_{2}\left(2^{n}\right)\right)$ yields $\left[K_{b}, L_{0}\right] \leq Q_{0}$. This implies

$$
K_{b} \cap K_{0}=1 \quad \text { and } \quad\left|K_{b} K_{0}\right|=\left|K_{0}\right|^{2} \leq\left|K_{1} K_{0}\right|=|K|
$$

Hence (5) and (3.1) yield:
(6) $n_{1}=n_{0}$, and Z_{1} is a natural module for $\overline{L_{1}}$.

Assume $b_{1}=1$. Then (6) yields $\left[Z_{1}, Q_{0}\right]=Z_{0}$. Since Z_{1} is not in Q_{0} and K operates on Z_{1}, we get $\left[O^{2}\left(L_{0}\right), Q_{0}\right]=1$ and $Z_{1}=\left(Z_{1} \cap O^{2}\left(L_{0}\right)\right) Z_{0}$, which implies $\left[Z_{1}, Q_{0}\right]=1$, a contradiction. Since b_{1} is odd, we have shown:
(7) $b_{1} \geq 3$.

Set $V_{k}=\left\langle Z_{k+1}^{L_{k}}\right\rangle$ for $k \in T$. Then (7), (2.6) and $s \geq 5$ yield

$$
V_{0} \leq Q_{0} \cap Q_{1}
$$

and (6) implies [V_{0}, Q_{0}] $=Z_{0}$. In particular V_{θ} and V_{b-2} are abelian. The transitivity of L_{0} on $\Delta(0)$ and (3.1) imply

$$
Z_{1}^{L_{0}}=Z_{1} \cup Z_{-1}^{Z_{b}}
$$

since $Z_{b} Q_{0} \in S y l_{2}\left(L_{0}\right)$. Set $R=\left[Z_{-1}, Z_{b}\right]$; then $V_{0}=R Z_{1} Z_{-1}$. We get

$$
R \leq V_{0} \cap V_{b-2}
$$

since Z_{b} is contained in V_{b-2}, and $\left[R, Z_{b}\right]=1$, since V_{b-2} is abelian. Thus, by (1.3), $V_{0} / C_{V_{0}}\left(O^{2}\left(L_{0}\right)\right)$ is a natural module for L_{0}.

Assume that $R_{0}=C_{R}\left(O^{2}\left(L_{0}\right)\right) \notin Z_{0}$. Since R_{0} is contained in V_{b-2}, it fixes b. Pick

$$
t \in N_{o^{2}\left(\Sigma_{0}\right)}\left(K_{0}\right) \backslash K_{0}
$$

By (4.2), $R_{0} Z_{0}$ stabilizes $\left(b^{t} \ldots b\right)=(-b \ldots b)$ of length r and $\left|R_{0} Z_{0}\right|=2^{n_{0}}$. But now (2) yields $R_{0} \leq Z_{0}$, a contradiction. We have shown:
(8) $V_{0}=Z_{1} Z_{-1}$ and $\left|V_{0}\right|=2^{3 n_{0}}$.
V_{0} stabilizes $(-(b-2) \ldots(b-2))$ and $R \neq 1$ stabilizes

$$
\hat{\gamma}=(-(b-2) \ldots 2(b-2))
$$

The maximality of r and (2) yield $3(b-2) \leq r$ and:
(9) $r \leq 12$.

Assume $r=12$. Then $\hat{\gamma}$ has length r, and $R=Z_{2}$. Since $Z_{5}=Z_{4} Z_{6}$, we get $\left[Z_{-1}, Z_{5}\right]=Z_{2}$. Conjugation with τ yields:
(10) $\left[Z_{j}, Z_{j+6}\right]=Z_{j+3}$ for all $j \in T$ which are in the same G-orbit as 1 .

Next we want to show that (10) holds for an arbitrary arc $\lambda=\left(\delta_{-3} \ldots \delta_{3}\right)$ of length 6 in Γ, where δ_{-3} is in the same G-orbit as 1 . It suffices to show that λ is conjugate to a subarc of T. Applying (2.6) we may assume that

$$
\left\langle\delta_{-2} \ldots \delta_{3}\right\rangle=(0 \ldots 5)
$$

But then Q fixes ($0 \ldots 5$) and operates transitively on $\Delta(0) \backslash\{1\}$. Hence λ is conjugate to a subarc of T. We have shown:
(11) $\left[Z_{\delta_{-3}}, Z_{\delta_{3}}\right]=Z_{\delta_{0}}$ for all arcs $\left(\delta_{-3} \ldots \delta_{0} \ldots \delta_{3}\right)$ of length 6 in Γ, where δ_{-3} is in the same G-orbit as 1 .

Pick $z \in Z_{0}$ and $z^{\prime} \in Z_{10}$. Then z fixes 6 , but not 7 , and z^{\prime} fixes 4 but not 3 . Hence $\left(10^{z} \ldots 6 \ldots 10\right)$ and $\left(0^{z^{\prime}} \ldots 4 \ldots 0\right)$ are arcs of length 8 , and by (11),

$$
\left[Z_{9}, Z_{9}^{z}\right]=Z_{6} \quad \text { and } \quad\left[Z_{1}, Z_{1}^{z '}\right]=Z_{4}
$$

Since Z_{1} and Z_{9} are elementary abelian and contain Z_{0} and Z_{10} respectively, the elements $\left(z z^{\prime}\right)^{2}$ and $\left(z^{\prime} z\right)^{2}$ are involutions. But then

$$
\left(z z^{\prime}\right)^{2}=\left(z^{\prime} z\right)^{2} \in Z_{4} \cap Z_{6}
$$

and $Z_{4} \cap Z_{6}$ is a non-trivial subgroup stabilizing ($-2 \ldots 12$), a contradiction to the maximality of r. We have shown (together with (2), (7) and (9)):
(12) $b_{0}=4, b_{1}=3$ and $r=8$.

From (5), (6) and (8) we get $V_{0}=Z_{-1} Z_{1}$ and $V_{2}=Z_{1} Z_{3}=Z_{1} Z_{4}$. Thus we have

$$
V_{2} \cap Q_{0}=Z_{1} \leq V_{0} \quad \text { and } \quad\left[V_{2}, Q_{0} \cap Q_{1}\right] \leq V_{2} \cap Q_{0} \leq V_{0}
$$

In particular, $\left[Q_{1} \cap Q_{-1},\left\langle V_{2}, V_{2}^{\gamma^{-2}}\right\rangle\right] \leq V_{0}$, and $Q_{1} \cap Q_{-1}$ is normal in G_{0}. Hence (4.1) and (1.3) imply that $Q_{0} / Q_{1} \cap Q_{-1}$ is a natural module for \bar{L}_{0} (since $n_{0}=n_{1}$) and

$$
Q_{1} \cap Q_{-1}=C_{Q_{0}}\left(K_{0}\right) V_{0}
$$

Pick $t \in N_{\text {or }^{2}\left(L_{0}\right)}(K) \backslash K$. Then t normalizes K_{0} and every subgroup of $C_{Q_{0}}\left(K_{0}\right)$ which contains Z_{0}, since $\left[C_{Q_{0}}\left(K_{0}\right), t\right] \leq C_{Q_{0}}\left(K_{0}\right) \cap V_{0} \leq Z_{0}$.

Assume $\left|C_{Q_{0}}\left(K_{0}\right)\right| \geq 2^{2 n_{0}}$. (4.2)(d) implies that $C_{Q_{0}}\left(K_{0}\right) \cap L_{4}$ stabilizes (-4...4) of length r. Hence $C_{Q_{0}}\left(K_{0}\right) \cap L_{4}>Z_{0}$ would contradict (4.2)(a).

So we may assume that there exists $i \in\{2,3\}$ such that $L_{i} \cap C_{Q_{0}}\left(K_{0}\right) \notin Q_{i}$. Then

$$
\left(C_{Q_{0}}\left(K_{0}\right) \cap L_{i}\right) Q_{i} \in S y l_{2}\left(L_{i}\right), \quad L_{i}=C_{L_{i}}\left(K_{0}\right) Q_{i} \quad \text { and } Z_{0} \leq Q_{i} \cap C_{Q_{0}}\left(K_{0}\right)
$$

If $i=3$, then $C_{G}\left(K_{0}\right)_{3}$ and $C_{G}\left(K_{0}\right)_{4}$ operate transitively on $\Delta(3)$ and $\Delta(4)$ respectively, since $Z_{0} Q_{4} \in S y l_{2}\left(L_{4}\right)$. Hence (2.1) and $K_{0} \neq 1$ imply $i=2$.

Let x be an element in $N_{L_{2}}\left(Z_{0}\right)$. If $x \notin G_{0}$, then the arc joining 0 and 0^{x} has length $n \leq 4$. Sinces ≥ 5, we may assume that $0^{*} \in T$. But then Z_{0} stabilizes a subarc of length $r+n$ in T, a contradiction to the maximality of r.

So we have shown that $N_{L_{2}}\left(Z_{0}\right) \leq G_{0}$. On the other hand $C_{Q_{0}}\left(K_{0}\right) \cap Q_{2}=$ Z_{0}, because otherwise either $C_{Q_{0}}\left(K_{0}\right) \cap L_{4}>Z_{0}$ or $C_{Q_{0}}\left(K_{0}\right) \cap L_{3} \notin Q_{3}$, con-
tradicting what we have already proved. Hence we get $C_{L_{2}}\left(K_{0}\right)$ $\leq N_{L_{2}}\left(Z_{0}\right) \leq G_{0}$, a contradiction to $C_{L_{2}}\left(K_{0}\right) Q_{2}=L_{2}$.

Now assume $\left|C_{Q_{0}}\left(K_{0}\right)\right|=2^{n_{0}}$. Then $Q_{1} \cap Q_{-1}=V_{0}$, and we get $\left|Q_{0}\right|=2^{5 n_{0}}$, and, by (1.3) and (1.4), $Q_{0}^{\prime}=Z_{0}=\phi\left(Q_{0}\right)$. In particular, $Q_{0} / Z_{0}=W_{1} / Z_{0} \times V_{0} / Z_{0}$, where W_{1} / Z_{0} is a natural module for \bar{L}_{0} and $W_{1} \nsubseteq Q_{1}$. Since $Q_{0}^{\prime} \leq Z_{0}$, we get that $Q_{0} \cap Q_{2}$ is normal in G_{1} and together with (4.1) and (1.3) that $Q_{1} / Q_{0} \cap Q_{2}$ is a natural module for \bar{L}_{1}. Now (1.5) implies $Q_{1}^{\prime}=Z_{1}$. On the other hand, by (12), $Z_{-1} \cap Q_{2}=Z_{0}$, hence $\left[V_{0}, K_{1}\right]=V_{0}$. Pick

$$
g \in L_{1} \backslash G_{0}
$$

Then $<W_{1}, W_{1}^{g}>Q_{1}=L_{1}$ normalizes $\left(W_{1} \cap Q_{1}\right)\left(W_{1}^{g} \cap Q_{1}\right) / Z_{1}=X$, and $W_{1} \cap Q_{1} / Z_{0}$ has order $2^{n_{0}}$. Hence X is a natural module for L_{1}, and K_{1} normalizes

$$
\left(W_{1} \cap Q_{1}\right) Z_{1}
$$

and centralizes

$$
Q_{1} /\left(W_{1} \cap Q_{1}\right)\left(W_{1}^{s} \cap Q_{1}\right)
$$

Thus we get

$$
V_{0}=\left[V_{0}, K_{1}\right] \leq\left(W_{1} \cap Q_{1}\right) Z_{1}
$$

Now the order of V_{0} implies $\left(W_{1} \cap Q_{1}\right) Z_{1}=V_{0}$ and $W_{1} \cap V_{0} \notin Z_{0}$, a contradiction.

5. A special case

(5.0) Hypothesis and notation. Hypothesis (4.0) holds with (4.0)(b) replaced by
(b') $n_{0}>1$ and $n_{1}=1$.
We use notation (3.3). In addition we define $\tilde{Z}_{i}=\left[Z_{i}, K\right]$ for $i \in T$. If $\tilde{Z}_{i} \neq 1$, we set

$$
r_{i}=\max \left\{j-i / j \in T, j>i \text { and } \tilde{Z}_{i} \leq G_{j}\right\}
$$

and

$$
\ell_{i}=\max \left\{i-j / j \in T, i>j \text { and } \tilde{Z}_{i} \leq G_{j}\right\}
$$

Clearly $b_{i} \leq r_{i}$ and $b_{i} \leq \ell_{i}$, and, by (2.10), any subarc of T of length greater than r has stabilizer of odd order. We will use this fact in this section without reference. Note that we no longer assume that ($0 \ldots r$) is a maximal regular subarc of T. But the operation of τ yields that at least one of $(0 \ldots r)$ and $(1 \ldots(r+1))$ is maximal regular. Note also that $C_{T}\left(Z_{i}\right)$ for $i \in T$ may no longer be symmetric in i.
(5.1) For $i \in T$ the following hold:
(a) $K \leq L_{0}$ and $\left[K, L_{1}\right] \leq Q_{1}$.
(b) $K \in S_{\tilde{\gamma}, \kappa}$ for $\tilde{\gamma}=\left(\begin{array}{ll}-1 & 0\end{array}\right)$.
(c) $O^{2^{\prime}}\left(N_{G}(K)_{1}\right)$ is isomorphic to a subgroup of $C_{2} \times \Sigma_{4}$.
(d) If $Q_{i-1} \cap Q_{i+1}$ is normal in G_{i} then $Q_{i} / Q_{i-1} \cap Q_{i+1}$ is elementary abelian of order $2^{2 n_{i}}$ and $Q_{i}=\left(Q_{i-1} \cap Q_{i}\right)\left(Q_{i+1} \cap Q_{i}\right)$.
(e) If $\left[Z_{i}, K\right]=1$, then $C_{T}\left(Z_{i}\right)=\left(i-b_{i} \ldots i+b_{i}\right)$.

Proof. The hypothesis and (3.2)(b) yield

$$
K=K_{0} \quad \text { and } \quad\left[K, L_{1}\right] \leq Q_{1}
$$

Hence $N_{G}(K)_{1}$ operates transitively on $\Delta(1)$, and (3.1) implies $K \in S_{\tilde{\gamma}, \boldsymbol{K}}$ (for definition see Section 2). Thus we can apply (2.9). Any normal subgroup X of $O^{2^{\prime}}\left(N_{G}(K)_{1}\right)$ which is also normal in $O^{2^{\prime}}\left(N_{\sigma}(K)_{-1}\right)$ stabilizes $1^{N_{G}(K)}$ by (2.1). Since $\tau \in N_{G}(K)$, it follows that

$$
X \leq G_{T} \cap O^{2^{\prime}}\left(N_{G}(K)_{1}\right)=K \cap O^{2^{\prime}}\left(N_{G}(K)_{1}\right)=1 .
$$

Hence we can apply (1.10) and get (c).
Assertion (d) follows as in (4.1).
Assume now that $\left[Z_{i}, K\right]=1$ and without loss of generality that Z_{i} stabilizes $i+b_{i}$ but not $i-b_{i}$. Then there exists $i-b_{i}<h<i$ such that $Z_{i} \leq L_{h}$ but $Z_{i} \leq Q_{h}$. Hence we get

$$
\left[L_{h}, K\right] \leq Q_{n} \quad \text { and } \quad\left[L_{i+b_{i}}, K\right] \leq Q_{i+b_{i}}
$$

If follows from (a) that h and $i+b_{l}$ are in the same G-orbit as 1 , and

$$
i-h \equiv b_{i} \quad \text { (2); }
$$

in particular, $i-h \leq b_{i}-2$.
Pick $\delta \in\{h, h-1\} \cap i^{G}$. Then $\delta+b_{i}>i$ and $\left[Z_{\delta}, Z_{i}\right]=1$. If $\delta=h$, then $Z_{h}=Z\left(L_{h}\right)$ and hence also $Z_{i}=Z\left(L_{i}\right)$; in particular $\left[Z_{h-2}, Z_{i}\right]=1$, since $b_{i}+h-2 \geq i$. Thus we have found that $\left[Z_{u}, Z_{l}\right]=1$ for $u=h-1$ or $h-2$. Then $d\left(u, u^{*}\right)=2$ or 4 for $x \in Z_{i} \backslash G_{u}$. Since $s \geq 5$, this implies $Z_{u}=Z_{u+2}$ or $Z_{u}=Z_{u+4}$, and the operation of $\langle\tau\rangle$ yields $Z_{u} \leq G_{T}$, a contradiction.
(5.2) One of the following holds.
(a) $b_{0}=1, b_{1}=2, r=4, n_{0}=2$ and:
(a1) Q_{0} is elementary abelian of order 2^{4};
(a2) Q_{0} is an orthogonal module for \bar{L}_{0};
(a3) Q_{1} is extra special of order 2^{5};
(a4) Q_{1} / Z_{1} is a direct sum of two natural modules for $\overline{L_{1}}$.
(b) $b_{0}=3, b_{1}=2, r=s-1=6, n_{0}=3$ and:
(b1) Q_{0} is extra special of order 2^{9};
(b2) Z_{1} is a natural module, $\left(Q_{1} / Z_{1}\right) / Z\left(L_{1} / Z_{1}\right)$ is a direct sum of three natural modules for $\overline{L_{1}}$, and Q_{1} / Z_{1} is special.
(c) $b_{0}=3, b_{1}=2, s=5, r=6, n_{0}=2$ and:
(c1) Q_{0} is extra special of order 2^{5}, and Q_{0} / Z_{0} is a orthogonal module for $\overline{L_{0}}$;
(c2) Q_{1} is special, Z_{1} is a natural module for $\overline{L_{1}}$, and Q_{1} / Z_{1} is a direct sum of two natural modules for $\overline{L_{1}}$;
(c3) $(1 \ldots(r+1))$ is a maximal regular subarc of T.
Proof. From (5.1)(a) and the operation of τ on T we get $K \leq L_{i}$ for $i \in T$ and $i \equiv 0$ (2), and $\left[K, L_{j}\right] \leq Q_{j}$ for $j \in T$ and $j \equiv 1$ (2).

Suppose first that $\tilde{Z}_{0} \neq 1$. Then r_{0} and $-\ell_{0}$ are in the same G-orbit as 0 (we write $r_{0} \sim 0$ etc.), since otherwise $\left[\tilde{Z}_{0}, K\right]$ would be in $Q_{k}, k=r_{0}$ resp. $-\ell_{0}$, contradicting $\left[\tilde{Z}_{0}, K\right]=\tilde{Z}_{0} \nsubseteq Q_{k}$.

Set $b=r_{0}-\ell_{0}$. If $\ell_{0}<r_{0}$, we get $\tilde{Z}_{r_{0}} \nsubseteq Q_{b}$ but $\tilde{Z}_{b} \leq Q_{r_{0}}$. Hence

$$
\left[\tilde{Z}_{r_{0}}, \tilde{Z}_{b}\right]=1
$$

and $<\tilde{Z}_{r_{0}}, N_{L_{b}}(K)>Q_{b}=L_{b}$ centralizes \tilde{Z}_{b}, a contradiction since $K \leq L_{b}$.
If $r_{0}<\ell_{0}$ we apply the same argument with the rôles of r_{0} and ℓ_{0} interchanged. This shows:
(1) $r_{0}=\ell_{0}$ and $r_{0} \sim 0$.

We may choose the maximal regular subarc γ of T such that

$$
\gamma=(0 \ldots r) \text { or }(1 \ldots(r+1))
$$

Assume that $(0 \ldots r)$ is a maximal regular subarc and $r_{0} \leq r / 2-2$ or that $(1 \ldots(r+1))$ is a maximal regular subarc and $r_{0} \leq r / 2-1$. In both cases (2.6) yields $r \equiv 0$ (2), and Q centralizes $\left\langle Z_{2}, Z_{2 r_{0}+2}\right\rangle$. On the other hand

$$
<Z_{2}, Z_{2 r_{0}+2}>Q_{r_{0}+2}=L_{r_{0}+2}
$$

and K normalizes $C_{G}(Q) \cap L_{r_{0+2}}$. Thus $K \leq C_{G}(Q)$; in particular

$$
\gamma=(1 \ldots(r+1)),
$$

and $(0 \ldots r)$ is not regular.
Since $K \in S_{\tilde{\gamma}, K}$ for $\tilde{\gamma}=(-101)$ (see (5.1)(b)), we can define $\tilde{\Gamma}$ with respect to $N_{G}(K)$ as in (2.9). From (5.1)(c) we get that maximal regular arcs in $\tilde{\Gamma}$ have length $\tilde{r} \leq 4$, hence $r=6$ or 8 . If $r=8$, then $r_{0}=2$ and $\tilde{r}=4$, and Q is contained in $Z\left(N_{G}(K)_{5}\right)$. Hence $C_{L_{5}}(Q)$ and $C_{L_{4}}(Q)$ are transitive on $\Delta(5)$ and $\Delta(4)$ respectively, contradicting (2.1).

Thus we may assume $r=6$ and $r_{0}=2$. If $b_{0}=1$, then Q centralizes $\left.<Z_{2}, Z_{4}\right\rangle$, and

$$
<Z_{2}, Z_{4}>Q_{3}=L_{3}
$$

Hence $C_{L_{3}}(Q)$ and $C_{L_{4}}(Q)$ are transitive on $\Delta(3)$ and $\Delta(4)$ respectively, contradicting (2.1). Thus $b_{0}=2$, and $1 \neq\left[Z_{0}, Z_{2}\right]$ stabilizes ($-2 \ldots 4$) of length 6 . Conjugation with τ yields $O_{2}\left(G_{(0 \ldots . .6)}\right) \neq 1$, a contradiction. Hence we have shown (together with (2.6)):
(2)(a) $r_{0}=r / 2$, or
(b) $r_{0}=r / 2-1,(1 \ldots(r+1))$ is not regular and $s<r$.

Set $\tilde{R}=\left[\tilde{Z}_{0}, \tilde{Z}_{r_{0}}\right]$. Since $<\tilde{Z}_{0}, N_{G}(K) \cap L_{r_{0}}>Q_{r_{0}}=L_{r_{0}}$, we have $\tilde{R} \neq 1$.
Assume now that $\tilde{Z}_{1} \neq 1$, too. By (5.1)(a), \tilde{Z}_{1} is normal in L_{1}. Thus

$$
\tilde{Z}_{1}=\left(\tilde{Z}_{0} \cap \tilde{Z_{1}}\right) \times\left(\tilde{Z}_{2} \cap \tilde{Z}_{1}\right)
$$

and \tilde{Z}_{1} stabilizes $\left(-\left(r_{0}-2\right) \ldots r_{0}\right)$, which implies $r_{1} \geq r_{0}-1 \leq \ell_{1}$. If $r_{1}=r_{0}-1$, we get $\left[\tilde{Z}_{1}, \tilde{Z}_{r_{0}}\right]=\tilde{R} \neq 1$ contradicting $\tilde{Z}_{r_{0}} \leq Q_{1}$. With the same argument $\ell_{1}>r_{0}-1$. Since r_{0} is even and ℓ_{1} and r_{1} are odd, it follows that

$$
r_{1} \geq r_{0}+1 \leq \ell_{1}
$$

and, by (2), $r_{1}=\ell_{1}=r_{0}+1, r_{1}+\ell_{1}=r$, and maximal regular subarcs in T are $\langle\tau\rangle$-conjugates of ($0 \ldots r$). Hence $\left|\tilde{Z}_{1}\right|=\left|\tilde{Z}_{0} \cap \tilde{Z}_{1}\right|^{2}=2^{n_{0}}$, which contradicts the operation of K on \tilde{Z}_{0}. We have shown:
(3) $\tilde{Z}_{1}=1$.

Assume $Z_{1} \neq Z\left(L_{1}\right)$. By (1.11), $Z_{i} / Z\left(L_{i}\right)$ is a natural module for $\overline{L_{i}}(i=0,1)$. But (3) yields $[Z(S), K]=1$, contradicting the operation of K on \tilde{Z}_{0}. Together with (5.1)(c) we have shown:

$$
\begin{equation*}
Z_{1}=Z\left(L_{1}\right) \text { and }\left|Z_{1}\right|=2 \tag{4}
\end{equation*}
$$

Assume $b_{0}=r_{0}$ and, without loss of generality, $Z_{0} \leq G_{r_{0}}$. Then

$$
\left[Z_{0}, \tilde{Z}_{r_{0}}\right] \leq Z_{0} \cap Z_{r_{0}}
$$

and, by (1.3), $Z_{0} / Z\left(L_{0}\right)$ is a natural module for $\overline{L_{0}}$. Additionally, (4) and (3.2)(e) imply $Z\left(L_{0}\right)=1$. Thus, by (1.3), $Z_{0}=Z_{0}$, but $Z_{1} \leq Z_{0}$ and $\left[Z_{1}, K\right]=1$, a contradiction. We have shown:
(5) $b_{0}<r_{0}$.

Assume $\tilde{R} \cap \tilde{Z}_{0} \neq 1$. This yields $\tilde{R} \cap \tilde{Z}_{0} \cap \tilde{Z}_{r_{0}} \neq 1$, since $\tilde{R} \leq Z_{0} \cap Z_{r_{0}}$ and K normalizes \tilde{R}. Hence $\tilde{R} \cap \tilde{Z}_{0} \cap \tilde{Z}_{r_{0}}$ stabilizes ($-r_{0} \ldots 2 r_{0}$), and (2) and (5) imply $b_{0}=1, r_{0}=2$ and $r=6$. Thus, by (5.1)(d),

$$
Q_{1}=\left(Z_{0} \cap Q_{1}\right)\left(Z_{2} \cap Q_{1}\right)\left(Q_{2} \cap Q_{0}\right) \quad \text { and } \quad Z_{0} \cap Z_{2}=Z_{1}
$$

In particular, $\tilde{R} \leq Z_{1}$, and (4) contradicts $\tilde{R} \cap \tilde{Z}_{0} \neq 1$.
We have shown:
(6) $\tilde{R} \cap \tilde{Z}_{0}=1$.

Assume $b_{0} \geq 2$ and, as above without loss of generality, $Z_{0} \leq G_{b_{0}}$. Then (5) yields

$$
\left[Z_{0}, K\right] \leq Q_{b_{0}}
$$

and hence $b_{0} \geq 3$.
If $Z_{1} \leq \tilde{R}$, then $Z_{1} \leq Z_{0} \cap Z_{r_{0}}$ and $b_{1} \geq\left(r_{0}-1\right)+b_{0}$. Thus by (3), (5.1)(e) and (2), $r \geq 2 b_{1} \geq 2\left(r_{0}-1\right)+2 b_{0} \geq r-4+2 b_{0}$ and $b_{0} \leq 2$, a contradiction.

If $Z_{1} \nsubseteq \tilde{R}$, then by $(5.1)(\mathrm{c}), C_{z_{0}}(K)=Z_{1} \tilde{R}$, since $C_{z_{0}}(K)$ is central in a Sylow 2-subgroup of $N_{G}(K)_{1}$, and $\left[Z_{0}, \tilde{Z}_{r_{0}}, \tilde{Z}_{r_{0}}\right]=1$. Now (1.3) implies $Z_{0}=Z\left(L_{0}\right) Z_{0}$. But (4) and (3.2)(e) yield $Z\left(L_{0}\right)=1$ and $Z_{1} \leq \tilde{Z}_{0}$, a contradiction to $Z_{1} \leq C_{G}(K)$. Hence:
(7) $b_{0}=1$.

From (7) and (5.1)(d) we get

$$
\begin{gathered}
L_{1}=<Z_{0}, Z_{2}>Q_{1}, \quad\left|Q_{1} / Q_{0} \cap Q_{2}\right|=2^{2 n}, \\
Q_{1}=\left(Z_{0} \cap Q_{1}\right)\left(Z_{2} \cap Q_{1}\right)\left(Q_{0} \cap Q_{2}\right) \quad \text { and } \quad Z_{0} \cap Z_{2}=Z_{1} .
\end{gathered}
$$

In particular, $\left[Q_{0} \cap Q_{2}, O^{2}\left(L_{0}\right)\right]=1$; thus $Z_{0} \cap Q_{0} \cap Q_{2}$ is normal in L_{1} and

$$
Z_{0} \cap Q_{0} \cap Q_{2}=Z_{1}
$$

This implies, together with (4), that $r_{0}=2$ and $\left|Z_{0}\right|=2^{n_{0}} 4$, and (1) and (1.2) yield the assertions (a1) and (a2) for Z_{0}. To prove assertion (a) it remains to show $Q_{0} \cap Q_{2}=Z_{1}$ and $r=4$.

If $r=4$, then $\left|L_{0}\right|=4^{3}$ by (2.6) and $Q_{0} \cap Q_{2}=Z_{1}$. Hence it suffices to show $r=4$.

Assume $r \neq 4$. Then (2) yields $r=6,\left|L_{0}\right|_{2}=2^{8}$ and $\left|Q_{0} \cap Q_{2}\right|=8$. On the other hand we get $Q_{0}=\left(Q_{0} \cap Q_{2}\right) Z_{0}$ and $\left[Q_{0}, \tilde{Z}_{2}\right] \leq Z_{0}$ which implies

$$
\left[Q_{0} \cap Q_{2}, K\right] \leq Z_{1}
$$

since $K \leq L_{0}$. Hence by (4) we have $Q_{0} \cap Q_{2} \leq C_{Q_{1}}(K)$ and, by (5.1)(c), $\left|Q_{0} \cap Q_{2}\right| \leq 4$, a contradiction.

From now on we assume that $\tilde{Z}_{0}=1$. Then $Z_{0}=Z\left(L_{0}\right)$, and (3.2)(e) yields $Z\left(L_{1}\right)=1$. Hence $Z_{0} \leq Q_{1}$ or $Z_{1}=Z_{0} \times Z_{2}$. In the first case we get

$$
Z\left(L_{1}\right)=Q_{1}=1 \quad \text { and } \quad\left|Q_{0}\right|=\left|L_{0}\right|_{2}=2
$$

a contradiction. In the second case we get $\tilde{Z}_{1}=1$, and (5.1)(c) implies:

$$
\begin{equation*}
\tilde{Z}_{1}=1, Z_{1}=Z_{0} \times Z_{2},\left|Z_{0}\right|=2 \text { and } b_{0} \geq 2 \tag{8}
\end{equation*}
$$

Note that (5.1)(e) implies now that $C_{T}\left(Z_{i}\right)$ is symmetric in i for $i \in T$; in particular, $2 b_{i} \leq r$. Since $Z_{1}=Z_{0} \times Z_{2}$, we have $b_{1}=b_{0}-1$, and since K centralizes Z_{1}, b_{0} is in the same G-orbit as 1 .

Set $R=\left[Z_{1}, Z_{b_{0}}\right]$. Then $R \neq 1$ and $R \leq Z_{1} \cap Z_{b_{0}}$. On the other hand,

$$
Z_{b_{0}}=Z_{b_{0}-1} Z_{b_{0}+1},
$$

which implies $R=Z_{2}=Z_{b_{0}-1}$ and $b_{0}=3$, since $\left|G_{T}\right|$ is odd. We have shown:
(9) $b_{0}=3$ and $b_{1}=2$.

As $s \geq 5$, we know from (9) that Z_{δ} fixes exactly the vertices of distance less than 4 (resp. 3) from $\delta \in \Gamma$. Now choose T^{*} to be a line in Γ stabilized by K such that

$$
T^{*}=\left(\ldots \delta_{-i} \ldots \delta_{i} \ldots\right) \text { and } C_{T^{*}}(Q)=\left(\delta_{0} \ldots \delta_{r^{*}}\right)
$$

and r^{*} is maximal with this property. If $\delta_{0} \sim 0$, then $\left[Q, Z_{\delta_{0}}\right]=1$ and $z \in Z_{\delta_{0}}^{\#}$ fixes δ_{3} but not δ_{4}. Hence we get another line stabilized by K :

$$
T^{* *}=\left(\ldots \delta_{i} \ldots \delta_{3} \delta_{4}^{z} \ldots \delta_{i}^{z} \ldots\right) \text { and } c_{T^{*}}(Q)=\left(\delta_{r^{*}} \ldots \delta_{3} \ldots \delta_{r *}^{z}\right)
$$

The maximality of r^{*} implies $2\left(r^{*}-3\right) \leq r^{*}$ and $r^{*} \leq 6$.
If $\delta_{0} \sim 1$, then $C_{\delta_{\delta_{0}}}(Q)=Z_{\delta_{1}}$, and $z \in Z_{\delta_{1}}^{\#} 1$ fixes δ_{4} but not δ_{5}. Arguing as above we get

$$
T^{* *}=\left(\ldots \delta_{i} \ldots \delta_{4} \delta_{5}^{z} \ldots \delta_{i}^{z} \ldots\right) \text { and } c_{T^{* *}}(Q)=\left(\delta_{r^{*}} \ldots \delta_{4} \ldots \delta_{r^{*}}^{z}\right)
$$

and $r^{*} \leq 8$. Hence in both cases we get $r \leq r^{*} \leq 8$.
We define $V_{0}=\left\langle Z_{1}^{L_{0}}\right\rangle$ and $V_{2}=V_{0}^{\tau}$. Then $V_{0}^{\prime}=Z_{0}$ and $V_{2}^{\prime}=Z_{2}$ by (8) and (9), and $Q_{0} \cap Q_{2}$ is normal in L_{1}. Hence (5.1)(d) implies

$$
Q_{1}=\left(Q_{1} \cap V_{0}\right)\left(Q_{1} \cap V_{2}\right)\left(Q_{0} \cap Q_{2}\right) \quad \text { and } \quad L_{1}=\left\langle V_{0}, V_{2}\right\rangle\left(Q_{0} \cap Q_{2}\right)
$$

Thus

$$
Q_{0} \cap Q_{2}=D \times Z_{1}
$$

where $D=C_{Q_{1}}(d)$ and d is an element of order 3 in $\left\langle V_{0}, V_{2}\right\rangle$. Moreover

$$
\phi\left(Q_{0} \cap Q_{2}\right)=\phi(D)=1
$$

since D has trivial intersection with Z_{1}. We have shown:
(10) $r \leq 8, Q_{0}=D V_{0}$ is extra special and $Q_{1} / D \times Z_{1}$ is a direct sum of natural modules for $\overline{L_{1}}$.

If $r=8$ then $r=r^{*}$, and we have shown above that ($0 \ldots 8$) can not be regular, hence $K Q=G_{(1 \ldots 9)}$ and $[K, Q]=1$. On the other hand

$$
Q \leq Q_{4} \cap Q_{6}=D^{r^{2}} \times Z_{5}
$$

and we get $\left[K, Q, Q_{5}\right]=1$ and $\left[Q_{s}, Q, K\right] \leq\left[Z_{s}, K\right]=1$. Thus the 3-subgroup-lemma yields $Q \leq Z_{5}$, which contradicts (8) and (9).

We have shown $r \leq 6$. Since $(-3 \ldots 3)$ is stabilized by Z_{0}, we get after conjugation with τ^{2} :
(11) $r=6$, and (1...7) is maximal regular subarc of T.

Assume first that ($0 \ldots 6$) is also a maximal regular subarc of T. Then (2.6) implies $r=s-1$, and we are in a similar situation as in (4.6) after steps (4) and (5). With the same argument as there we get assertion (b).

Assume now that (0...6) is not regular. Then (2.6) implies $s=5$ and $\left|L_{0}\right|_{2}=2^{2 n_{0}} 8$. Thus we are in a similar situation as in the proof of (4.5) after
step (9) (with the roles of 0 and 1 interchanged). In (4.5) we used (1.4) and Hypothesis (4.0)(a) to get a contradiction. Since in our situation now $n_{1}=1$, we get no contradiction but with the same argument as in (4.4) that Q_{1} is special and that Q_{1} / Z_{1} is direct sum of natural modules. Since $\left|Q_{0} / Z_{0}\right|=2^{n_{0}} 4$, we get $n_{0}=2$ from (1.2), and assertion (c) follows with (1.1) and (1.5).

6. The case $\left|G_{T}\right| \equiv 0$ (2)

(6.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in this section. Additionally we choose $0 \in \mathscr{O}$ and assume:
(a) $\left|G_{T}\right| \equiv 0(2)$.
(b) $s \equiv 1$ (2) and $s \geq 5$.
(c) $Z_{0} \neq 1 \neq Z_{1}$.
(d) $\max \left\{n_{0}, n_{1}\right\}>1$.
(e) $(0 \ldots r)$ is a maximal regular subarc of T.

Note that maximal regular subarcs of T have length $s-1$ or are in $(\mathbb{O}, 2 m)$ (see (2.6)).
(6.1) For $Q=O_{2}\left(G_{T}\right)$ and $\gamma=(012)$ the following hold:
(a) $Q \neq 1$ and $G_{T}=Q K$.
(b) $Q \in S_{\gamma, K}$.

Proof. For the definition of $S_{\gamma, K}$ see (2.9). By (3.2)(c), $G_{(01)}$ is 2-closed, hence (a) holds.

Set $M=N_{G}(Q)$. There is a finite subarc $\tilde{\gamma}$ in T of maximal length such that $G_{\gamma} \neq G_{T}$ (see (2.10)). $\tilde{\gamma}$ is a maximal regular subarc of T, and Q is a normal subgroup of G_{γ}; thus $G_{\tilde{\gamma}}=M_{\tilde{\gamma}}$. We may assume that $\tilde{\gamma}=(0 \ldots 2 m)$ and $2 m \geq s-1$ (see (2.6)). Hence $o^{r^{m}}=2 m$ and $\left\langle M_{\tilde{\gamma}}, M_{\tilde{\gamma}}^{{\underset{\tau}{m}}_{m}^{\tau}}\right\rangle$ is transitive on $\Delta(2 m)$. Conjugation with τ implies that M_{0} and M_{2} are transitive on $\Delta(0)$ and $\Delta(2)$ respectively.

Next we shall prove that there is an element $x \in M_{1}$ such that $0^{x}=2$. Assertion (3.1)(b) implies that it suffices to show $N_{M_{1}}(K) \nsubseteq M_{0} \cup M_{2}$. Pick

$$
x^{\prime} \in N_{M_{0}}(K) \quad \text { and } \quad x^{\prime \prime} \in N_{M_{2}}(K)
$$

such that $(-1)^{x^{\prime}}=1$ and $3^{x^{\prime \prime}}=1$. Then

$$
0^{\tau^{-1} x^{\prime}}=(-2)^{x^{\prime}} \neq 0, \quad 2^{r x^{\prime \prime}}=4^{x^{\prime \prime}} \neq 2 \text { and } 1^{r^{-1 x^{\prime}}}=1^{7 x^{\prime \prime}}=1
$$

Since $\left\langle\tau^{-1} x^{\prime}, \tau x^{\prime \prime}\right\rangle \leq N_{M_{1}}(K)$, we have $N_{M_{1}}(K) \nsubseteq M_{0} \cup M_{2}$.
To prove assertion (b) it remains to show that M_{1} normalizes $\{0,2\}$. Assume not; then (3.1) implies that M_{1} is transitive on $\Delta(1)$. Hence, by (2.1), M is edgetransitive on Γ and $Q=1$, a contradiction to (a).

Notation. $Q=O_{2}\left(G_{T}\right), \gamma=\left(\begin{array}{ll}0 & 1\end{array} 2\right), M=N_{G}(Q)$. For $X, Y \in S_{\gamma, K}$ we define $X \ll Y$, if $N_{G}(X)_{0} \leq N_{G}(Y)_{0}$. Let $S_{\gamma, K}^{*}$ be the set of \ll-maximal elements in $S_{\gamma, K}$.
(6.2) Suppose that $X \in S_{\gamma, K}$ and $\tilde{M}=N_{G}(X)$. Then the following hold:
(a) \tilde{M}_{1} normalizes $\{0,2\}$ and $\tilde{M}_{1} \nsubseteq \tilde{M}_{0}$.
(b) $\quad Q_{1} \cap \tilde{M}_{0} \in \operatorname{Syl} l_{2}\left(\tilde{M}_{0}\right) \cap \operatorname{Syl} l_{2}\left(\tilde{M}_{2}\right)$.

Suppose that $X \in S_{\gamma, K}^{*}$; then no non-trivial characteristic subgroup of $Q_{1} \cap \tilde{M}_{0}$ is normal in \tilde{M}_{0}.

Proof. Assertion (a) follows from the definition of $S_{\gamma, K}$, and (b) is a consequence of (a), (3.1) and (3.2).

Assume that $X \in S_{\gamma, K}^{*}$ and that $C \neq 1$ is a characteristic subgroup of $Q_{1} \cap \tilde{M}_{0}$, which is normal in \tilde{M}_{0}. From (a) and (b), it follows that C is also normal in \tilde{M}_{1} and \tilde{M}_{2}. Hence $C \in S_{\gamma, K}$ and $\tilde{M}_{0} \leq N_{\sigma}(C)_{0}$. The maximality of X implies $\tilde{M}_{0}=N_{G}(C)_{0}$. Thus $Q_{1} \cap \tilde{M}_{0} \in S y l_{2}\left(G_{0}\right)$, and (b) implies that G_{1} is 2-closed, a contradiction to the hypothesis.
(6.3) Suppose that $X \in S_{\gamma, K}^{*}$ and $\tilde{M}=N_{G}(X)$. Define $\tilde{\Gamma}$ with respect to \tilde{M} as in (2.9), and let Δ be the connected component of $\tilde{\Gamma}$ containing 0 . Then the following hold:
(a) $\tilde{M}_{\Delta} \leq Q_{0} K$.
(b) $\tilde{M} / \tilde{M}_{\Delta}$ is vertex-transitive on Δ, and 0 has the same valency in Δ as in Γ.
(c) $\left|\tilde{M}_{0}\right|_{2}=2^{k n}\left|\tilde{M}_{\Delta}\right|, k=1,2,3$ or 4 .
(d) $\mathrm{O}_{2}\left(\tilde{M}_{0}\right)$ is elementary abelian.
(e) If $k \leq 2$, then Sylow 2-subgroups of \tilde{M}_{0} are elementary abelian.
(f) If $k>2$, then $O_{2}\left(\tilde{M}_{0}\right) / Z\left(O^{2^{\prime}}\left(\tilde{M}_{0}\right)\right)$ is a natural module for $O^{2^{\prime}}\left(\tilde{M}_{0} / O_{2}\left(\tilde{M}_{0}\right)\right)$.
(g) Maximal regular arcs in Δ have length k.

Proof. Since \tilde{M}_{Δ} fixes $\Delta(0)$ pointwise, we get (a) from (3.2).
Set $T=Q_{1} \cap \tilde{M}_{0}, W=\tilde{M} / \tilde{M}_{\Delta}$ and $B=T \tilde{M}_{\Delta} / \tilde{M}_{\Delta}$. Then (6.2)(b) implies

$$
B \in S y l_{2}\left(W_{0}\right) \cap S y l_{2}\left(W_{2}\right)
$$

and from (2.9) we get assertion (b). Now (2.1) yields that no non-trivial normal subgroup of $O^{2^{\prime}}\left(W_{i}\right)$ is normal in $O^{2^{\prime}}\left(W_{j}\right)$ for $\{i, j\}=\{0,2\}$. Thus we can apply (1.10) and get:
(1) B is elementary abelian of order $2^{k n_{0}}, k \leq 2$, or
(2) $O_{2}\left(W_{i}\right)$ is elementary abelian of order $2^{2 n_{0}}$ or $2^{3 n_{0}}$, and
$O_{2}\left(W_{i}\right) / Z\left(O^{2^{\prime}}\left(W_{i}\right)\right)$ is a natural module for $O^{2^{\prime}}\left(W_{i} / O_{2}\left(W_{i}\right)\right)$.
It is now easy to verify (c) and (g), and (e) and (f) follow, if we have proved (d). Hence it remains to prove (d).

Set $Y=O^{2}\left(O^{2^{\prime}}\left(\tilde{M}_{0}\right)\right)$; then $\tilde{M}_{0}=Y K T$. If $\left[Y, O_{2}\left(\tilde{M}_{0}\right)\right]=1$, then $\phi(T)$ is characteristic in T and normal in \tilde{M}_{0}, and by (6.2)(c), $\phi(T)=1$. Thus we may assume $V=\left[Y, O_{2}\left(\tilde{M}_{0}\right)\right] \neq 1$ and $Z_{1} \leq O_{2}\left(\tilde{M}_{0}\right)$, and again by (6.2)(c) we can apply (1.6). Since (2.1) implies $\left[Z_{1}, Y\right] \neq 1$, we get $V=\left[Z_{1}, Y\right]$ and $V \leq Z\left(O_{2}\left(\tilde{M}_{0}\right)\right)$.

If $T=Q_{1}$, then, by (1.7), there exists a non-trivial subgroup A in Q_{1} which is normal in $O^{2}\left(G_{1}\right)$ and \tilde{M}_{0}. Since \tilde{M}_{0} is transitive on $\Delta(0)$ and $O^{2}\left(G_{1}\right)$ on $\Delta(1)$, (2.1) contradicts $A \neq 1$. Hence $T<Q_{1}$, and we can choose $t^{\prime} \in N_{Q_{1}}(T) \backslash T$ such that $t^{\prime 2} \in T$. From (6.2)(a) we have $t \in N_{M_{1}}(K) \backslash \tilde{M}_{0}$ such that $t^{2} \in T$. Thus, in addition, we may choose t^{\prime} such that $\left[t, t^{\prime}\right] \in T$. Note that $\left\langle t^{\prime}, K\right\rangle$ normalizes $O_{2}\left(\tilde{M}_{0}\right)$, since $\left\langle t^{\prime}, K\right\rangle \leq G_{0}$ and $O_{2}\left(\tilde{M}_{0}\right)=Q_{0} \cap T$.

First assume that $\left[O^{2^{\prime}}\left(\tilde{M}_{\Delta}\right), Y\right] \neq 1$. Then (1.6) yields

$$
V=\left[O^{2^{\prime}}\left(\tilde{M}_{\Delta}\right), Y\right] \leq O^{2^{\prime}}\left(\tilde{M}_{\Delta}\right)
$$

Set $R=\left\langle\left(V V^{t}\right)^{\left\langle t^{\prime}, K\right\rangle}\right\rangle$. As shown above, $R \leq O_{2}\left(\tilde{M}_{0}\right)$ and $[R, Y] \leq V \leq R$. Hence R is normal in \tilde{M}_{0}. On the other hand $\left\langle t, t^{\prime}, K\right\rangle$ normalizes R, so $R \in S_{\gamma, K}$ and $t^{\prime} \in N_{G}(R)_{0} \backslash \tilde{M}_{0}$. This contradicts the maximality of X. Thus we have shown:
(3) $\left[O^{2^{\prime}}\left(\tilde{M}_{\Delta}\right), Y\right]=1$.

Now assume that $H \neq \phi\left(O_{2}\left(\tilde{M}_{0}\right)\right) \neq 1$. Then (2) and (3) imply $H \leq \tilde{M}_{\Delta}$ and $[H, Y]=1$. Since t^{\prime} normalizes $O_{2}\left(\tilde{M}_{0}\right)$, it also normalizes H. Thus $H H^{t}$ is normalized by $\left\langle t, t^{\prime}, \tilde{M}_{0}, K>\right.$, and $H H^{t} \in S_{\gamma, K^{*}}$. Again, $t^{\prime} \in N_{G}\left(H H^{t}\right)_{0} \backslash \tilde{M}_{0}$, contradicting the maximality of X.
(6.4) There exists $\tilde{s} \in\{4,5\}$ such that the following hold:
(a) $\left|M_{0}\right|_{2}=2^{(s-1) n_{0}}|Q|$.
(b) $\mathrm{O}_{2}\left(M_{0}\right)$ is elementary abelian.
(c) $O_{2}\left(M_{0}\right) / Z\left(O^{2^{\prime}}\left(M_{0}\right)\right)$ is a natural module for $O^{2^{\prime}}\left(M_{0} / O_{2}\left(M_{0}\right)\right)$.
(d) Maximal regular subarcs of T have length $2 \tilde{s}-2$.
(e) $s \leq 2 \tilde{s}-3$.

Proof. (6.1)(b) yields $Q \in S_{\gamma, K}$. Choose $X \in S_{\gamma, K}^{*}$ such that $Q \ll X$. Set $\tilde{M}=N_{G}(X)$. Then, by definition, $M_{0} \leq \tilde{M}_{0}$, and an application of (6.3)(d) yields $M_{0}=\tilde{M}_{0}$ and, without loss, $Q=X$, since $Q \leq O_{2}\left(\tilde{M}_{0}\right)$. Thus we may apply (6.3) to M_{0}. Let k and Δ be as in (6.3). Define $\tilde{s}=k+1$. Then $\tilde{s}=2,3,4$ or 5 , and maximal regular arcs in Δ have length k.

Let $\tilde{\gamma}$ be a maximal regular subarc of T of length r. Then we may assume $\hat{\gamma} \in(0, r)$ and $r \equiv 0$ (2) (see (2.6)) and, by (6.0)(e), $\hat{\gamma}=(0 \ldots r)$. The restric-
tion of $\hat{\gamma}$ to Δ is again a maximal regular arc, since Q is normal in $G_{\hat{\gamma}}$. Hence $r=2 k=2 \tilde{s}-2$. It remains to show (e), since then $s \geq 5$ implies $\tilde{s}=4$ or 5 .

Assume that $s=2 \tilde{s}-1$. Then $\gamma_{1}=(1 \ldots(2 \tilde{s}-1))$ is also a maximal regular subarc of T, and Q is normal in $G_{\gamma_{1}}$. Pick $\tau^{*} \in\langle\tau\rangle$ such that

$$
\gamma_{1}^{r^{*}}=(-(2 \tilde{s}-3) \ldots 1)
$$

Then $\left\langle G_{\gamma_{1}}, G_{\gamma 1}^{\gamma *}\right\rangle$ is a subgroup of M_{1}, and (3.1) implies that $\left\langle G_{\gamma_{1}}, G_{\gamma 1}^{\tau *}\right\rangle$ is transitive on $\Delta(1)$. This contradicts (6.2)(a).
(6.5) $Q \cap Z_{i}=1$ for $i \in T$.

Proof. It suffices to show $Z_{0} \cap Q=Z_{1} \cap Q=1$. Assume that $R=Z_{i} \cap Q \neq 1$ for some $i \in\{0,1\}$. Then (6.4) yields $\left[R, O^{2^{\prime}}\left(M_{0}\right)\right]=1$.

If $i=1$, then $R \in S_{\gamma, K}$ and $Q_{1} \leq N_{G}(R)_{1}$, and (6.1)(b) implies

$$
Q_{1} \in S y l_{2}\left(N_{G}(R)_{0}\right)
$$

If $i=0$, then $R \leq Z\left(L_{0}\right)$, and (6.2)(b) implies $R \leq Z_{1}$. Thus we may assume $i=1, R \in S_{\gamma, K}$ and $Q_{1} \in S y l_{2}\left(N_{G}(R)_{0}\right)$. But now (6.2) implies that $R \in S_{\gamma, K}^{*}$ and that no non-trivial characteristic subgroup of Q_{1} is normal in $N_{G}(R)_{0}$. Hence (6.4)(c) and (1.7) yield a contradiction to (2.1), as in (6.3).

Note that (6.4), (6.5) and (2.10) imply that b_{i} (for $i \in T$) is an integer.
(6.6) Suppose that there exists $i \in T$ such that $Q_{i-1} \cap Q_{i+1}$ is normal in G_{i}. Then $Q_{i}=\left[Q_{i}, Q_{i-1}\right]\left[Q_{i}, Q_{i+1}\right]\left(Q_{i-1} \cap Q_{i+1}\right)$, and $Q_{i} / Q_{i-1} \cap Q_{i+1}$ is elementary abelian of order $2^{2 n_{i-1}}$.

The proof is the same as in (4.1).
(6.7) $b_{0}>2$.

Proof. In the following we apply (6.4) without reference. Suppose that $b_{0}=2$. We get $\left[O^{2^{\prime}}\left(M_{0}\right), O_{2}\left(M_{0}\right)\right] \leq Z_{0}$, and $Z_{0} / Z_{0} \cap Z\left(O^{2^{\prime}}\left(M_{0}\right)\right)$ is a natural module. In particular $Z_{1} Z_{0}$ is normal in M_{0} and thus also normal in G_{0}.

First assume that $C_{L_{1}}\left(Z_{1}\right)=Q_{1}$. Then $Q_{0} \cap Q_{1}=C_{Q_{0}}\left(Z_{1} Z_{0}\right)$, and $Q_{0} \cap Q_{1}$ is normal in G_{0}. Hence $Q_{0} \cap Q_{1}=Q_{1} \cap Q_{-1}$, and (-1012) is left singular. This contradicts (2.6) and $s \geq 5$.

Assume now $C_{L_{1}}\left(Z_{1}\right) \neq Q_{1}$. Then $Z_{1}=Z\left(L_{1}\right) \leq Z_{0}$, and (3.2)(e) implies $Z\left(L_{0}\right)=1$. Hence by (1.3):
(1) $b_{1}=3,\left[S, Z_{0}\right]=Z_{1}$, and Z_{0} is a natural module for $\overline{L_{0}}$.

Set $V=\left\langle Z_{0}^{G_{1}}\right\rangle, A=V \cap Q_{0}$ and $B=V^{r^{-1}} \cap Q_{0}$, then $\left[V, Q_{1}\right]=Z_{1}$ and $S=V Q_{0}$ (since $b_{0}=2$). In particular we get $\left[Q_{1} \cap Q_{-1},\left\langle V, V^{\tau^{-1}}\right\rangle\right]=Z_{0}$, and $Q_{1} \cap Q_{-1}$ is normal in G_{0}. Together with (6.6) and (1.3) we have shown:
(2) (a) $\left[Q_{1}, V\right]=Z_{1}$,
(b) $\quad Q_{0}=A B\left(Q_{1} \cap Q_{-1}\right)$,
(c) $Q_{0} / Q_{1} \cap Q_{-1}$ is direct sum of natural modules for $\overline{L_{0}}$,
(d) $\left|Q_{0} / Q_{1} \cap Q_{-1}\right|=2^{2 n_{1}}$ and $n_{1} \geq n_{0}$.

Suppose that $n_{0}=1$ and pick $q \in Q^{\#}$. Then (1) and (2)(a) imply $\left|Z_{0}\right|=4$, $\left|Z_{1}\right|=2$ and $[q, V] \leq Z_{1}$. Hence:
(3) $\left|V / C_{V}(q)\right| \leq 2$.

Set $X=C_{G}(q)$, and note that $B Q_{1}=S \in S y l_{2}\left(L_{1}\right)$. Since $O^{2^{\prime}}\left(M_{0}\right) \leq X, X_{0}$ is transitive on $\Delta(0)$. Thus, by (2.1), X_{1} is not transitive on $\Delta(1)$. There exists $y \in X_{0}$ with $1^{y}=-1$ and $A^{y}=B$, hence, by (3), $\left|B / C_{B}(q)\right| \leq 2$. Now, (2) implies

$$
\left|C_{B}(q) Q_{1} / Q_{1}\right| \geq 2^{n_{1}-1}
$$

Thus $\bar{X}_{0} \cap X_{1}$ and $\bar{X}_{2} \cap Z_{1}$ generate a subgroup of $\overline{L_{1}}$ with Sylow 2-subgroups of order at least $2^{n_{1-1}^{1}}$. Since $<X_{0} \cap X_{1}, X_{2} \cap X_{1}>$ is not transitive on $\Delta(1)$, from [6, II § 8] we have $n_{1}=2$ and $\left|C_{B}(q) Q_{1} / Q_{1}\right|=2$ is the only possibility.

Let N be a normal subgroup of G_{1} such that $Z_{1} \leq N \leq V$ and N / Z_{1} is a minimal normal subgroup of G_{1} / Z_{1}. We want to show $N=V$, so assume $N \neq V$. From (2)(a) and (b) we have $\left[N \cap Q_{-1}, Q_{0}\right] \leq N \cap Z_{0}=Z_{1}$ and hence

$$
\left[\left(N \cap Q_{-1}\right) Z_{0}, Q_{0}\right] \leq Z_{1}
$$

But $\left(N \cap Q_{-1}\right) Z_{0}$ is normal in $\left\langle V, V^{r^{-1}}\right\rangle$ and $\overline{\left\langle V, V^{r^{-1}}\right\rangle}=\overline{L_{0}}$. Thus (1) implies $\left[N \cap Q_{-1}, Q_{0}\right]=1$ and $N \cap Q_{-1}=Z_{1}$. Now the order of N / Z_{1} is at most $2^{3}((2)(d))$, and (1.2) yields $\left|N / Z_{1}\right|=2$ and $[N, K]=1$. On the other hand, $N \cap Q_{0} \notin Q_{-1}$ and $K=K_{1}=K_{-1}$, since $N \cap Q_{-1}=Z_{1}$ and $n_{0}=1$. This contradicts (3.1)(b) and (c). We have shown:
(4) V / Z_{1} is an irreducible module for $\overline{L_{1}}$.

Since the orthogonal and the natural module are the only irreducible $G F(2)$-modules for $L_{2}(4)$ (see (1.12)), we get $|V|=2^{5}$. We conclude that $V \cap Q_{-1}=Z_{0}$ and, by (6.5), $Q \cap V=1$.

On the other hand $\left[Q, V^{r^{-1}}\right] \leq Z_{-1} \leq Z_{0}$ and $\left[Q, V^{\top}\right] \leq Z_{3} \leq Z_{2}((2)(a))$, and it follows that $\left[Q,\left\langle B, A^{\tau}\right\rangle\right] \leq V$. Since K normalizes $\left\langle B, A^{\tau}\right\rangle$ and $\overline{\left\langle B, A^{r}\right\rangle}=\bar{L}_{1}$, we have $K \leq\left\langle B, A^{r}\right\rangle$ and $[Q, K] \leq Q \cap V=1$. But now $K \leq X_{1}$, and (3.1)(f) implies that X_{1} is transitive on $\Delta(1)$, a contradiction. We have shown:
(5) $n_{0}>1$.

Choose $t \in N_{M_{1}}(K) \backslash M_{0}$ with $t^{2} \in Q_{1}$. Note that by (3.2)(b), (1.3) and (1), $K=K_{1} \times K_{0}$, since $Z_{1}=Z\left(L_{1}\right)$. If $\left[K_{0}, t\right]=1$, then the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n_{1}}\right)\right)$ implies $\left[K_{0}, L_{1}\right] \leq Q_{1}$, in particular $\left[K_{0}, B\right] \leq Q_{1} \cap Q_{-1}$. This contradicts (2)(c) and (1.3). Hence $\left[K_{0}, t\right] \neq 1$ and $R=K_{0} K_{0}^{t} \cap K_{1} \neq 1$. Note that R centralizes Q.

Since (2)(a) yields $[Q, A] \leq \mathrm{Z}_{1}$, with the 3-subgroup-lemma we get $[A, R, Q]=1$. Thus $[A, R] \leq O_{2}\left(M_{0}\right) \leq Q_{-1}$, and it follows that $\left[L_{-1}, R\right] \leq Q_{-1}$, since $A Q_{-1} \in S y l_{2}\left(L_{-1}\right)$. On the other hand $Z_{1} Q_{-2} \in \operatorname{Syl} l_{2}\left(L_{-2}\right)$, since $b_{1}=3$, and $\left[L_{-2}, R\right] \leq Q_{-2}$. Therefore $C_{L_{i}}(R)$ is transitive on $\Delta(i)$ for $i=-1,-2$, and (2.1) implies $R=1$, a contradiction.
(6.8) There exists no pair (G, Γ) which satisfies (6.0).

Proof. Let (G, Γ) be a counterexample, and let \tilde{S} be the integer defined in (6.4). If $Z_{0} \notin Z\left(O^{2^{\prime}}\left(M_{0}\right)\right.$), then (6.4) implies $b_{0}=2$ which contradicts (6.7). Hence:
(1) $Z_{0} \leq Z\left(O^{2^{\prime}}\left(M_{0}\right)\right)$.

Now (6.4) and (6.5) yield:
(2) (a) $\tilde{s}=5, s=5$ or 7, and maximal regular subarcs of T have length 8 .
(b) $Z_{0}=Z\left(L_{0}\right), b_{0}=4$ and $\left|Z_{0}\right|=2^{n_{0}}$.

In addition (6.2)(b) implies $Z_{1} \leq Z\left(S \cap M_{0}\right)$ and $Z_{1}=Z_{0} \times Z_{2}$. Thus with (1.2) and (1.3):
(3) $b_{1}=3,\left|Z_{1}\right|=2^{2 n_{0}}$, and Z_{1} is direct sum of natural modules for $\overline{L_{1}}$, in particular $n_{0} \geq n_{1}$.

Set $V=\left\langle Z_{1}^{L_{0}}\right\rangle$ and $V_{2}=V^{\top}$. Then (6.4) implies

$$
V \leq O_{2}\left(M_{0}\right) \text { and } Z_{1} Z_{-1} \leq V \leq Z_{1} Z_{-1} Q
$$

According to (6.1)(b) and (6.2) there exists $t \in N_{M_{1}}(K) \backslash M_{0}$. Since K_{0} centralizes $Z\left(O^{2^{\prime}}\left(M_{0}\right)\right)$ and K_{0}^{t} centralizes $Z\left(O^{2^{\prime}}\left(M_{2}\right)\right)=Z\left(O^{2^{\prime}}\left(M_{0}^{t}\right)\right)$ and

$$
Z\left(O^{2^{\prime}}\left(M_{0}\right)\right) \cap Z\left(O^{2^{\prime}}\left(M_{2}\right)\right)=Q
$$

by (1.3) and (6.4)(c) we have $K_{0} \cap K_{0}^{t}=1$. Since (3.2)(b) and (c) and (3) imply $K=K_{0} K_{1}$ and $|K| \leq\left|K_{0}\right|^{2}$, we derive:
(4) $K=K_{0} \times K_{0}^{t}$ and $n_{0}=n_{1}$.

In particular we have $Q \leq C_{Q_{0}}(K)$ and $Q=C_{Q_{0}}(K)$ by (3.4).
Hence

$$
\tilde{V}=\left[O_{2}\left(M_{0}\right), K_{4}\right] \leq Z_{1} Z_{-1}
$$

and (2)(b) implies $Z_{4} O_{2}\left(M_{0}\right) \in S y l_{2}\left(M_{0}\right)$. Now the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n_{0}}\right)\right)$ yields

$$
\left[K_{4}, M_{0}\right] \leq O_{2}\left(M_{0}\right)
$$

Thus \tilde{V} is normal in M_{0} and $\left[O_{2}\left(M_{0}\right), M_{0}\right] \leq \tilde{V}$. It follows that $Z_{1} \tilde{V}=V=Z_{1} Z_{-1}$. Conjugation with τ yields:
(5) $V=Z_{1} Z_{-1}$ and $V_{2}=Z_{1} Z_{3}$.

We have $L_{0}=\left\langle Z_{-4}, Z_{4}\right\rangle Q_{0}$, since $b_{0}=4$, and get the following commutator relations:

$$
\left[Q_{1} \cap Q_{-1}, Z_{4}\right]=\left[Z_{-1}\left(Q_{2} \cap Q_{-1}\right), Z_{4}\right]=\left[Z_{-1}, Z_{3}\right] Z_{2},
$$

since $b_{1}=3$ and $\left[V_{2}, Q_{2}\right]=Z_{2}$, and

$$
\left[Q_{1} \cap Q_{0}, Z_{4}\right] \leq V_{2} \cap Q_{0}=Z_{1}
$$

by (5).
Thus we have $\left[Q_{1} \cap Q_{-1}, Z_{4}\right] \leq Q_{1} \cap Q_{-1}$, and $Q_{1} \cap Q_{-1}$ is normal in L_{0}. From (6.6), (5), the second commutator relation and (1.3), $Q_{0} / Q_{1} \cap Q_{-1}$ is a natural module for $\overline{L_{0}}$.

Next we show $Q_{1} \cap Q_{-1}=Q V$. As shown above, $\left[\left\langle Z_{4}, Z_{-4}\right\rangle, Q_{1} \cap Q_{-1}\right]$ $\leq V$, hence

$$
Q_{1} \cap Q_{-1}=C_{Q_{0}}\left(K_{0}\right) V
$$

since K_{0} operates fixed-point-freely on $Q_{0} / Q_{1} \cap Q_{-1}$ (note that $K_{0} \neq 1$ by hypothesis and (4)).

Set $D=C_{Q_{0}}\left(K_{0}\right)$. Assume $D \notin Q_{2}$. Then the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n}\right)\right)$ yields

$$
\left[K_{0}, L_{2}\right] \leq Q_{2} \quad \text { and } \quad L_{2}=C_{L_{2}}\left(K_{0}\right) Q_{2}
$$

which implies $\left[K_{0}, V_{2}\right] \leq Z_{2}$, since $Z_{1}=Z_{0} Z_{2}$ and $\left[Z_{0}, K_{0}\right]=1$. But then

$$
\left[K_{0}, L_{4}\right] \leq Z_{2} \leq Q_{0} \quad \text { and } \quad\left[K_{0}, L_{0}\right] \leq Q_{0}
$$

a contradiction.
Now assume $D \notin Q_{3}$; then $\left[K_{0}, L_{3}\right] \leq Q_{3}$ and $L_{3}=C_{L_{3}}\left(K_{0}\right) Q_{3}$. On the other hand $b_{0}=4$ and $Z_{0} Q_{4} \in S y l_{2}\left(L_{4}\right)$, hence $\left[K_{0}, L_{4}\right] \leq Q_{4}$ and $L_{4}=C_{L_{4}}\left(K_{0}\right) Q_{4}$. Thus $C_{G}\left(K_{0}\right)_{i}$ is transitive on $\Delta(i)$ for $i=3,4$. Now (2.1) yields $K_{0}=1$, a contradiction.

We have shown that $D \leq Q_{3}$ and therefore $D \leq L_{4}$. Since $b_{0}=4$, we get

$$
D=Z_{0}\left(D \cap Q_{4}\right) \quad \text { and } \quad Z_{0} \cap Q_{4}=1
$$

If $D \cap Q_{4} \neq Q$, then $N_{D \cap Q_{4}}(Q)>Q$ and $N_{D \cap \Omega_{4}}(Q) \notin Q Z_{0}$, but

$$
N_{D Q_{4}}(Q) \leq O_{2}\left(M_{0}\right)
$$

and $Q Z_{0}$ is the centralizer of K_{0} in $O_{2}\left(M_{0}\right)$ (see (6.4) and (3)). This contradiction shows $D \cap Q_{4}=Q$ and $D=Q Z_{0}$, in particular $Q_{1} \cap Q_{-1}=Q V$.

Now we apply (1.5) and (6.4) to Q_{0} / V and \bar{L}_{0} and get that Q_{0} / V is elementary abelian, in particular $\left[Q_{0}, Q\right] \leq V$. On the other hand

$$
\begin{gathered}
{\left[Q, Q_{1}\right]=\left[Q, Z_{4}\left(Q_{1} \cap Q_{0}\right)\right]=\left[Q, Z_{-2}\left(Q_{1} \cap Q_{2}\right)\right]=\left[Q, Q_{1} \cap Q_{0}\right]=} \\
{\left[Q, Q_{1} \cap Q_{2}\right] \leq V \cap V_{2}=Z_{1} \quad(\text { see }(5)) .}
\end{gathered}
$$

Now let K^{*} be the subgroup of maximal order in K such that $\left[K^{*}, L_{1}\right] \leq Q_{1}$. From (4) we get $\left|K^{*}\right|=\left|K_{0}\right| \neq 1$. This yields

$$
\left[L_{1}, K^{*}, Q\right] \leq\left[Q_{1}, Q\right] \leq Z_{1} \quad \text { and } \quad\left[K^{*}, Q, L_{1}\right]=1
$$

hence, with the 3 -subgroup-lemma, $\left[Q, L_{1}, K^{*}\right] \leq Z_{1}$; in particular
$\left[Q, Q_{2}, K^{*}\right] \leq Z_{1}$. Since $\left[Q, Q_{2}\right]$ is a module for M_{2}, by (6.5) either $\left[Q, Q_{2}\right] \leq Z_{2}$ or $\left[Q, Q_{2}\right] Z_{2}=V_{2}$. In the first case, $\left[Q, Q_{2}, K_{2}\right]=1$ and $\left[K_{2}, Q, Q_{2}\right]=1$ and hence, as above, $\left[Q_{2}, K_{2}, Q\right]=1$. Conjugation with τ^{-1} yields $\left[Q_{0}, K_{0}, Q\right]=1$. But, as we have seen, $Q_{0}=\left[Q_{0}, K_{0}\right]\left(Q_{1} \cap Q_{-1}\right)$ and $Q_{1} \cap Q_{-1}=Q V$; thus $\left[Q_{0}, Q\right]=1$ which contradicts (6.5).

Assume $\left[Q, Q_{2}\right] Z_{2}=V_{2}$. Then $\left[V_{2}, K^{*}\right] \leq Z_{1}$ and $\left[Z_{4}, K^{*}\right] \leq Z_{1} \leq Q_{0}$, and we get

$$
\left[K^{*}, L_{0}\right] \leq Q_{0} \quad \text { and } \quad L_{0}=C_{L_{0}}\left(K^{*}\right) Q_{0}
$$

But now $C_{G}\left(K^{*}\right)_{i}$ is transitive on $\Delta(i)$ for $i=0,1$, and (2.1) yields $K^{*}=1$, a contradiction.

7. Some small cases

(7.0) Hypothesis and notation. Hypothesis (3.0) and notation (3.3) hold in this section. In addition we assume that ($0 \ldots s$) is right singular. Note that by (3.5), $O_{2}\left(G_{(0 . . s)}\right) \leq Q_{s}$.
(7.1) $s \geq 3$, or $G_{0} \simeq G_{1} \simeq L_{2}\left(2^{n_{0}}\right)$ and $n_{0}>1$.

Proof. Assume $s \leq 2$. Let S be a Sylow 2-subgroup of $L_{0} \cap L_{1}$. If $s=1$, then $S=Q_{1}$, and L_{1} is 2-closed, a contradiction.

If $s=2$, then $Q_{1} \leq Q_{2}$, and (3.2)(e) yields $Q_{1}<Q_{2}$ or $Q_{1}=Q_{2}=1$. In the first case the operation of K implies $Q_{2} \in S y l_{2}\left(L_{2}\right)$ and L_{2} is 2-closed, a contradiction. In the second case (after conjugation with τ^{-1}) we find that $L_{0} \simeq L_{1} \simeq L_{2}\left(2^{n_{0}}\right)$, and S has order $2^{n_{0}}$. The operation of $K=K_{0} K_{1}$ and (3.2) yield $K=K_{0}=K_{1}, n_{0}=n_{1}>1, L_{0}=G_{0}$ and $L_{1}=G_{1}$.
(7.2) Suppose that $s=3$. Then one of the following holds.
(a) $n_{0}=1, n_{1}>1$ and:
(a1) $O^{2}\left(L_{0}\right) \simeq C_{3}$;
(a2) Q_{1} is elementary abelian and $C_{L_{1}}\left(Q_{1}\right)=Q_{1}$;
(a3) There exist arcs of length s with stabilizers of even order.
(b) $n_{0}>1, n_{1}>1$ and:
(b1) $O^{2}\left(L_{0}\right) \simeq L_{2}\left(2^{n_{0}}\right)$ and $O^{2}\left(L_{1}\right) \simeq L_{2}\left(2^{n_{1}}\right)$;
(b2) Sylow 2-subgroups of G_{0} are elementary abelian of order $2^{n_{0}+n_{1}}$.
Proof. Set $R=Q_{1} \cap Q_{2}$, then R is in Q_{3}. Since $Q_{1} \cap Q_{2}$ and $Q_{2} \cap Q_{3}$ are L_{2}-conjugates, we get $R=Q_{2} \cap Q_{3}$, and R is normal in $<Q_{1}, Q_{3}>Q_{2}=L_{2}$; in particular

$$
L_{2} / R \simeq L_{2}\left(2^{n_{0}}\right) \times Q_{2} / R \quad \text { and } \quad Q_{1} \in S y l_{2}\left(<Q_{1}, Q_{3}>\right)
$$

If $C_{<Q_{1, Q_{3}>}}(R) \leq R$, we apply (1.7) and get a contradiction to (3.2)(e).
Thus we may assume $C_{\left.<Q_{1}, \varrho_{3}\right\rangle}(R) \notin R$. From (1.9) we get:
(1) $O^{2}\left(L_{1}\right) \simeq L_{2}\left(2^{n_{1}}\right)^{\prime}$ and $O^{2}\left(L_{0}\right) \simeq L_{2}\left(2^{n_{0}}\right)^{\prime}$, and Sylow 2-subgroups of G_{0} are elementary abelian of order $2^{n_{0}}$ or $2^{n_{0}{ }^{+n_{1}}}$; or
(2) $n_{0}=1 . O^{2}\left(L_{0}\right) \simeq C_{3}$ and $C_{L_{1}}\left(Q_{1}\right) \leq Q_{1}$, and Q_{1} is elementary abelian.

In case (1) we get $\left|G_{0}\right|_{2}=2^{n^{0+n_{1}}}$ since $s=3$, and (3.2)(b) yields assertion (b).

In case (2), again, (3.2)(b) implies $n_{1}>1$ and assertion (a).
(7.3) Suppose that $Z_{0}=1$ or $Z_{1}=1$. Then $s=2$ and $G_{0} \simeq G_{1}$ $\simeq L_{2}\left(2^{n}\right), n_{0}>1$.

Proof. If $Z_{i}=1$ for some $i \in\{0,1\}$, then $Q_{i}=1$ and $\left|L_{i}\right|_{2}=2^{n_{i}}$. This implies $s=2$, and the assertion follows from (7.1).
(7.4) Suppopse that s is even and $s>2$. Then $s=4$, and Q_{i} is elementary abelian and a natural module for $\overline{L_{i}}(i=0,1)$.

Proof. Let $\gamma=(0 \ldots s)$ be a subarc of length s in T, and set $Q=O_{2}\left(G_{\gamma}\right)$. From (2.6)(a) we get that all arcs of length greater than $s-1$ are singular. Hence (3.5) and (2.10) imply $Q=O_{2}\left(G_{T}\right)$.

Assume $Q \neq 1$. Then there exists $\delta \in \Gamma$ of minimal distance from 0 such that $Q \nsubseteq G_{\delta}$. Let $\bar{\gamma}=\left(\delta_{0} \ldots \delta_{n}\right), \delta_{0}=0$ and $\delta_{n}=\delta$, be the arc joining 0 and δ. The minimality of n yields $Q \leq G_{\delta_{i}}$ for $i<n$. Now define $\hat{\gamma}$ to be the arc

$$
\left(\delta_{n-s-1} \ldots \delta_{n-1}\right)
$$

if $n-1 \geq s$, and

$$
\left(s-(n-1) \ldots \delta_{0} \ldots \delta_{n-1}\right)
$$

if $n-1<s$, such that $\hat{\gamma}$ has length s. Then $\hat{\gamma}$ is a subarc of T^{8} for some G-conjugate of the K-track (T, τ, K) (see (2.6)). In particular $\left\langle K^{s}, Q>\leq G_{\hat{\gamma}}\right.$, and (3.5) and (2.10) imply $Q \leq G_{\delta}$, a contradiction.

We have shown that G_{γ} is a 2^{\prime}-group. Now (2.7) implies $s=4$.
Pick $S \in S y l_{2}\left(L_{0} \cap L_{1}\right)$. The transitivity of $L_{0} \cap L_{1}=N_{L_{0}}(S)$ on the arcs

$$
\left(\begin{array}{lll}
0 & 1 & \delta_{2} \\
\delta_{3} & \delta_{4}
\end{array}\right) \quad \text { and } \quad\left(10 \delta_{-1} \delta_{-2} \delta_{-4}\right)
$$

(see (2.6)) yields

$$
|S|=2^{2 n_{1}+n_{1}}=2^{2 n_{0}+n_{1}}
$$

This implies $n_{1}=n_{0}$ and $|S|=2^{3 n_{0}}$; in particular $\left|Q_{0}\right|=\left|Q_{1}\right|=2^{2 n_{0}}$.
Assume first that $C_{L_{i}}(Q) \leq Q_{i}$ for $i=0,1$. Then we apply (1.11) and get either the assertion or $Z_{j}=Z\left(L_{j}\right)$ for some $j \in\{0,1\}$. In the second case $\left|Q_{j} / Z_{j}\right|<2^{2 n_{0}}$, and (1.2) yields a contradiction.

We may assume now without loss that $C_{L_{0}}\left(Q_{0}\right) \notin Q_{0}$. Applying (1.9) we get $n_{0}=1$ and $L_{1} \simeq \Sigma_{4}$. But now (3.2) implies

$$
S=\left(S \cap O^{2}\left(L_{0}\right)\right)\left(S \cap O^{2}\left(L_{1}\right)\right)=Q_{1}
$$

a contradiction.

8. The stabilizer of $\Delta(\alpha)$

(8.0) Hypothesis and notation. In this section we assume Hypothesis B and use notation (3.3) as far as it suits this hypothesis. In addition,

$$
X_{\Delta(\delta)}=\bigcap_{\rho \in \Delta(\delta)} X_{\delta \rho}
$$

for $\delta \in \Gamma$ and $X \leq G$.
(8.1) Suppose that Γ is a tree. Then $G_{\Delta(\delta)}$ is solvable and $O\left(G_{\Delta(\delta)}\right)=1$ for $\delta \in \Gamma$, and one of the following holds.
(a) There exists an edge-transitive normal subgroup E of G such that:
(a1) $O^{2}\left(E_{\delta}\right) / O_{2}\left(E_{\delta}\right) \cong L_{2}\left(2^{n_{\delta}}\right)$, or $n_{\delta}=1$ and $O_{2}\left(E_{\delta}\right) \in S y l_{2}\left(E_{\delta}\right)$;
(a2) no proper normal subgroup of E is edge-transitive on Γ;
(a3) $\quad C_{G_{\alpha}}\left(Q_{\alpha}\right) \leq Q_{\alpha}$ if and only if $C_{G_{\beta}}\left(Q_{\beta}\right) \leq Q_{\beta}$.
(b) $s=3$, and $\left\{G_{\alpha}, G_{\beta}\right\}$ is parabolic of type $\operatorname{Aut}\left(L_{2}\left(2^{n_{\beta}}\right)\right) \int \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)$ or $\operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right) \int \operatorname{Aut}\left(L_{2}\left(2^{n_{\beta}}\right)\right)$.
(c) (possibly after changing notion) $n_{\beta}=1$ and $s=3, Q_{\alpha}$ is elementary abelian,

$$
G_{\alpha} / Q_{\alpha} \simeq H \leq \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)
$$

Q_{α} is isomorphic to a submodule of the natural permutation $G F(2)$-module for $G_{\alpha} / Q_{\alpha}, G_{\beta}=G_{\alpha \beta} W, W \simeq \Sigma_{3}$, and W is normal in G_{β}.

Proof. The first property is obvious:
(1) $G_{\delta} / G_{\Delta(\delta)}$ is isomorphic to a subgroup of $\operatorname{Aut}\left(L_{2}\left(2^{n_{\delta}}\right)\right)$ which contains $L_{2}\left(2^{n^{\delta}}\right)^{\prime}, \delta \in \Gamma$.

Since $O\left(G_{\Delta(\alpha)}\right)$ is normal in $G_{\alpha \beta}$, we get $\left[O\left(G_{\Delta(\alpha)}\right), G_{\alpha \beta}\right]$ $\leq O\left(G_{\Delta(\alpha)}\right) \leq O\left(G_{\alpha \beta}\right)$. Hence (1) and the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n_{\beta}}\right)\right)$ yield $O\left(G_{\Delta(\alpha)}\right) \leq O\left(G_{\Delta(\beta)}\right)$. The same argument applied to $O\left(G_{\Delta(\beta)}\right)$ shows $O\left(G_{\Delta(\alpha)}\right)=O\left(G_{\Delta(\beta)}\right)$. Hence $O\left(G_{\Delta(\alpha)}\right)$ is normal in $\left\langle G_{\alpha}, G_{\beta}\right\rangle=G$. We get:
(2) $O\left(G_{\Delta(\alpha)}\right)=O\left(G_{\Delta(\beta)}\right)=1$.

Let H_{δ} be the largest perfect normal subgroup in $G_{\Delta(\delta)}$. Again the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n_{\delta}}\right)\right)$ yields $H_{\alpha}=H_{\beta}$ and:
(3) $H_{\alpha}=H_{\beta}=1$, in particular $G_{\Delta(\delta)}$ is solvable for $\delta \in \Gamma$.

If $Q_{\alpha} \leq G_{\Delta(\beta)}$ and $Q_{\beta} \leq G_{\Delta(\alpha)}$, then the above argument shows $Q_{\alpha}=Q_{\beta}=1$, and (2) and (3) imply $G_{\Delta(\alpha)}=G_{\Delta(\beta)}=1$, and (a) holds.

Thus we may assume, without loss, $Q_{\alpha} \notin G_{\Delta(\beta)}$. Since Q_{α} is normal in $Q_{\alpha \beta}$, we get:
(4) $\left[Q_{\alpha}, G_{\Delta(\beta)}\right] \leq Q_{\alpha} \cap G_{\Delta(\beta)} \leq Q_{\beta}$.

Set $W_{\beta}=<Q_{\alpha}^{G_{\beta}}>Q_{\beta}$. Then (4) implies that every chief factor of W_{β} which is in $W_{\beta} \cap G_{\Delta(\beta)}$ but not in Q_{β} is central. Hence, [6, V 25.7] and the structure of $\operatorname{Aut}\left(L_{2}\left(2^{n_{\beta}}\right)\right)$ yield $W_{\beta} \cap G_{\Delta(\beta)}=Q_{\beta}$ and $W_{\beta} / Q_{\beta} \simeq L_{2}\left(2^{n_{\beta}}\right)$.

Assume that $Q_{\beta} \notin G_{\Delta(\alpha)}$. Then we define $W_{\alpha}=<Q_{\beta}^{G_{\alpha}}>Q_{\alpha}$ and, as above, get

$$
W_{\alpha} \cap G_{\Delta(\alpha)}=Q_{\alpha} \quad \text { and } \quad W_{\alpha} / Q_{\alpha} \simeq L_{2}\left(2^{n_{\alpha}}\right)
$$

Set

$$
E=\left\langle O^{2}\left(W_{\alpha}\right)\left(O^{2}\left(W_{\beta}\right) \cap G_{\alpha}\right), O^{2}\left(W_{\beta}\right)\left(O^{2}\left(W_{\alpha}\right) \cap G_{\beta}\right)\right\rangle
$$

and $T_{\delta}=C_{\sigma_{\delta}}\left(Q_{\delta}\right)$ for $\delta=\alpha, \beta$. Then (2.3) and (2.4) imply that (a1) and (a2) hold in E, and (3) and (4) yield $T_{\delta} \cap G_{\Delta(\delta)}=Z\left(Q_{\delta}\right)$. Hence $T_{\delta} \notin Q_{\delta}$ if and only if $C_{w_{\delta}}\left(Q_{\delta}\right) \notin Q_{\delta}$.

Thus either case (a) holds for E, or we have one of the following:
(I) $Q_{\beta} \notin G_{\Delta(\alpha)}, C_{W_{\beta}}\left(Q_{\beta}\right) \notin Q_{\beta}$ and $C_{W_{\alpha}}\left(Q_{\alpha}\right) \leq Q_{\alpha}$,
(II) $Q_{\beta} \notin G_{\Delta(\alpha)}, C_{W_{\alpha}}\left(Q_{\alpha}\right) \notin Q_{\alpha}$ and $C_{W_{\beta}}\left(Q_{\beta}\right) \leq Q_{\beta}$,
(III) $Q_{\beta} \leq G_{\Delta(\alpha)}$.

Since (I) and (II) only differ in notation, we may assume without loss of generality that we are in case (I) or (III).

Assume (III). This implies $Q_{\beta} \leq Q_{\alpha}$ and $Q_{\alpha} \in S y l_{2}\left(W_{\beta}\right)$. By (2.1), $<W_{\beta}, O^{2}\left(G_{\alpha}\right) Q_{\alpha}>$ is edge-transitive on Γ. Thus no non-trivial subgroup of W_{β} is normalized by $O^{2}\left(G_{\alpha}\right) Q_{\alpha}$. Hence (1.7) implies $C_{w_{\beta}}\left(Q_{\beta}\right) \nsubseteq Q_{\beta}$. So we have shown in both cases (I) and (III):
(5) $C_{w_{\beta}}\left(Q_{\beta}\right) \notin Q_{\beta}$.

Then $W_{\beta}=Q_{\beta} C_{w_{\beta}}\left(Q_{\beta}\right)$, and $\phi\left(Q_{\alpha}\right)$ is normal in the edge-transitive subgroup $\left.<W_{\beta}, G_{\alpha}\right\rangle$. This implies:
(6) $W_{\beta}=Q_{\beta} W_{\beta}^{*}, W_{\beta}^{*} \simeq L_{2}\left(2^{n}\right)$, and Q_{α} is elementary abelian.

Set $R_{\beta}=\bigcap_{\beta \neq \beta^{\prime} \in \Delta(\alpha)} G_{\Delta\left(\beta^{\prime}\right)}$. The subgroup $\bigcap_{\beta^{\prime} \in \Delta(\alpha)} G_{\Delta\left(\beta^{\prime}\right)}$ is normal in $\left\langle G_{\alpha}, W_{\beta}\right\rangle$. Hence, as above,

$$
\bigcap_{\beta^{\prime} \in \Delta(\alpha)} G_{\Delta\left(\beta^{\prime}\right)}=1=R_{\beta} \cap G_{\Delta(\beta)}
$$

For subsets $\left\{\beta_{1} \ldots \beta_{k}\right\}$ in $\Delta(\alpha)$ we define

$$
Y_{k}=\bigcap_{i=1}^{k} G_{\Delta\left(\beta_{i}\right)} \text { and } \tilde{Y}_{k}=\prod_{i=1}^{k} R_{\beta_{i}}
$$

Assume first that $R_{\beta}=1$. Since $\left[Q_{\alpha} K_{\beta}\right] \leq R_{\beta}$ it follows that $K_{\beta}=1$ and $2^{n_{\beta}}=2$. We know that $Z\left(Q_{\beta_{i}} Q_{\alpha}\right)=\left\langle a_{i}\right\rangle$ is cyclic of order 2 , since, by (3.2)(e), $Z\left(Q_{\beta_{i}} Q_{\alpha}\right) \cap Q_{\beta_{j}}=1$ for $i \neq j$.

If $\Pi_{i=1}^{k} a_{i}=1$, then $a_{k}=\Pi_{i=1}^{k-1} a_{i} \in Q_{\beta_{k}}$ and thus $k-1 \equiv 0$ (2). On the other hand, if $k<2^{n_{\alpha}}+1$, then $a_{1}, \ldots, a_{k} \in Q_{\alpha} \backslash Q_{\theta_{k+1}}$ yields $k \equiv 0$ (2), a contradiction. This shows that Q_{α} is isomorphic to the non-trivial submodule of a natural permutation $G F(2)$-module for G_{α} / Q_{α}.

Now assume that $R_{\beta} \neq 1$, and let k be maximal such that

$$
\tilde{Y}_{k}=\sum_{i=1}^{k} R_{\beta_{i}} \quad \text { and } \quad \tilde{Y}_{k} \cap Y_{k}=1
$$

and assume that there exists $\beta_{k+1} \in \Delta(\alpha) \backslash\left\{\beta_{1}, \ldots, \beta_{k}\right\}$. Then $R_{\beta_{k+1}} \leq Y_{k}$ and hence $\tilde{Y}_{k+1}=\mathrm{X}_{i=1}^{k+1} R_{\beta_{i}}$. By the maximality of k there exists

$$
1 \neq r y \in \tilde{Y}_{k+1} \cap Y_{k+1}
$$

for $r \in R_{\boldsymbol{A}_{k+1}}^{\sharp}$ and $y \in \tilde{Y}_{k}$. Then

$$
y \in G_{\Delta\left(\beta_{k+1}\right)} \quad \text { and } \quad r \in Y_{k+1} y^{-1} \subseteq G_{\Delta\left(\beta_{k+1}\right)}
$$

which contradicts $\left.R_{\beta_{k+1}} \cap G_{\Delta\left(\beta_{k+1}\right)}\right)=1$.
We have shown that there exists a normal subgroup $W=\mathrm{X}_{\beta^{\prime} \in \Delta(\alpha)} R_{\beta^{\prime}}$, in G_{α}, and R_{β} is a subgroup of $\operatorname{Aut}\left(W_{\beta}^{*}\right)$ containing the normalizer of a Sylow 2-subgroup of W_{β}^{*} In particular, $\left(R_{\beta} \cap Q_{\alpha}\right) W_{\beta}^{* \prime} \simeq L_{2}\left(2^{n_{\beta}}\right)$, and $\left(R_{\beta} \cap Q_{\alpha}\right) W_{\beta}^{* \prime}$ is normal in G_{β}, since $G_{\alpha \beta}$ normalizes R_{β}. According to (6) we may choose $W_{\beta}=\left(R_{\beta} \cap Q_{\alpha}\right) W_{\beta}^{* \prime}$.

There exists an involution $t \in W_{\beta}$ with $\alpha^{t}=\alpha^{\prime}$ for $\alpha \neq \alpha^{\prime} \in \Delta(\beta)$. Set $X=G_{\alpha} \cap G_{\beta} \cap G_{\alpha^{\prime}}$. Then $[X, t] \leq W_{\beta} \cap G_{\alpha} \cap G_{\alpha^{\prime}}=1$. Hence a subgroup X_{0} in X is transitive on $\Delta(\alpha) \backslash\{\beta\}$, if and only if it is also transitive on $\Delta\left(\alpha^{\prime}\right) \backslash\{\beta\}$. This shows that $s \geq 3$ and that there exists no regular arc ($\alpha \beta \alpha^{\prime} \beta^{\prime}$) of length 3 , and since $Q_{\alpha} \nsubseteq G_{\Delta(\beta)}$ we get $s=3$.

Assume that $n_{\beta}>1$. Then $C_{G_{\alpha}}(W)=1$ and $G_{\alpha} \leq \operatorname{Aut}(W)$ (here and in the following we interpret the natural monomorphism into the automorphism group as inclusion). Set

$$
W_{0}=\underset{\beta^{\prime} \in \Delta(\alpha)}{\times} \operatorname{Aut}\left(R_{\beta^{\prime}}\right)
$$

As $G_{\Delta(\alpha)}$ fixes every $\beta^{\prime} \in \Delta(\alpha)$ and $\operatorname{Aut}(W)=\operatorname{Aut}\left(R_{\beta}\right) \mid \Sigma_{|\Delta(\alpha)|}$, we get

$$
G_{\Delta(\alpha)}=W_{0} \cap G_{\alpha} \leq G_{\alpha} \leq \operatorname{Aut}\left(R_{\beta}\right) \mid \Sigma_{|\Delta(\alpha)|}
$$

On the other hand $G_{\alpha} W_{0} / W_{0} \simeq H \leq \operatorname{Aut}\left(L_{2}\left(2^{n} \alpha\right)\right)$, and G_{α} operates in its natural permutation representation on $\left\{R_{\beta^{\prime}} / \beta^{\prime} \in \Delta(\alpha)\right\}$. But then $G_{\alpha} W_{0}$ is conjugate in $\operatorname{Aut}(W)$ to $\operatorname{Aut}\left(R_{\beta}\right) \int H$. Hence we may assume

$$
R_{\beta}\left|L_{2}\left(2^{n_{\alpha}}\right)^{\prime} \leq G_{\alpha} \leq \operatorname{Aut}\left(R_{\beta}\right)\right| \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)
$$

It is easy to see with Schur's lemma that $\operatorname{Aut}\left(R_{\beta}\right)$ is a subgroup of $\operatorname{Aut}\left(L_{2}\left(2^{n}\right)\right)$, hence

$$
G_{\alpha} \leq \operatorname{Aut}\left(R_{\beta}\right) \ \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right) \leq \operatorname{Aut}\left(L_{2}\left(2^{n_{\beta}}\right)\right) \ \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)
$$

With the same argument we get

$$
\begin{aligned}
G_{\beta} & \leq \operatorname{Aut}\left(\left(\underset{\beta \neq \beta \in \Delta(\alpha)}{\times} R_{\beta^{\prime}}\right) \times L_{2}\left(2^{n_{\beta}}\right)\right) \\
& \leq \operatorname{Aut}\left(\underset{\beta^{\prime} \in \Delta(\alpha)}{\times} L_{2}\left(2^{n^{\prime}}\right)\right) \\
& \leq \operatorname{Aut}\left(L_{2}\left(2^{n_{\beta}}\right)\right) \backslash \Sigma_{|\Delta(\alpha)|}
\end{aligned}
$$

Set

$$
\tilde{W}_{0}=\underset{\beta^{\prime} \in \Delta(\alpha)}{\times} \operatorname{Aut}\left(L_{2}\left(2^{n_{\beta^{\prime}}}\right)\right) .
$$

Then $G_{\Delta(\alpha)} W_{\beta} \leq \tilde{W}_{0}$, and $G_{\beta} / G_{\beta} \cap \tilde{W}_{0}$ is isomorphic to a subgroup of the normalizer of a Sylow 2-subgroup in $\operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)$. In particular the permutation representation of $G_{\beta} / G_{\beta} \cap \tilde{W}_{0}$ on $\left\{R_{\beta^{\prime}} / \beta \neq \beta^{\prime} \in \Delta(\alpha)\right\}$ is unique, and G_{β} is in $\operatorname{Aut}\left(X_{\beta^{\prime} \in \Delta(\alpha)} L_{2}\left(2^{n^{\prime}}\right)\right)$ conjugate to a subgroup of

$$
\operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right) \backslash \operatorname{Aut}\left(L_{2}\left(2^{n_{\alpha}}\right)\right)
$$

This shows assertion (b), if $n_{\beta}>1$.
Assume $n_{\beta}=1$. Then W is elementary abelian of order $2^{2^{n} \alpha+1}$, and G_{β} is no longer a subgroup of $\operatorname{Aut}(W)$. But now $O^{2}\left(G_{\Delta(\alpha)}\right)$ is normal in $\left\langle G_{\alpha}, G_{\beta}\right\rangle$ $=G$. Hence $G_{\Delta(\alpha)}=Q_{\alpha}=W$, and assertion (c) follows.

9. Finite graphs

(9.0) Hypothesis and notation. In this section we assume Hypothesis (3.0) and use notation (3.3). In addition:
(1) $\max \left\{n_{0}, n_{1}\right\}>1$,
(2) $s \geq 3$,
(3) arcs of length s have stabilizers of odd order in G.

It follows from (3) and (3.1)(e) that there are involutions

$$
t_{0} \in N_{L_{0}}(K) \backslash L_{1} \quad \text { and } \quad t_{1} \in N_{L_{1}}(K) \backslash L_{0}
$$

Hence we may assume $\tau=t_{0} t_{1}$ (see (2.8)); then $\tau^{t_{i}}=\tau^{-1}$ and $k^{t_{0}}=-k$ and $k^{t_{1}}=2-k$ for $k \in T$. Furthermore

$$
\operatorname{Aut}^{0}(\Gamma)=\left\langle x \in \operatorname{Aut}(\Gamma) / 0^{x} \in 0^{G}\right\rangle
$$

$$
\begin{aligned}
& X=N_{A u t}^{0}(\Gamma) \\
&(G), \mathscr{K}=\left\{T^{s} / g \in X\right\} \text { and } \\
& \mathscr{K}_{2(s-1)}=\left\{\gamma / \gamma \text { arc of length } 2(s-1) \text { and } \gamma \subseteq T^{s} \in \mathscr{K}\right\}
\end{aligned}
$$

$\gamma\left(\delta_{1}, \delta_{2}\right)$ denotes the unique arc starting at δ_{1} which joins the two vertices δ_{1} and δ_{2}.
(9.1) Suppose that γ is an arc of length s. Then γ is contained in a unique element of \mathscr{K}.

Proof. Since γ is conjugate to $(0 \ldots s)$ or $(1 \ldots s+1)$ (see (2.6)), γ is contained in some element of \mathscr{K}.

Now assume that γ is a counterexample. Then $\gamma \subseteq T \cap T^{8}$ for some $g \in X$ and $T \neq T^{g}$, and without loss of generality we may assume

$$
T \cap T^{s}=(0 \ldots w), \quad w \geq s
$$

In particular $G_{(0 \ldots, \ldots)}=K=K^{g}$, since G_{γ} has odd order. Thus

$$
(0 \ldots w) \text { and }\left(0^{s} \ldots w^{g}\right)
$$

are both subarcs of T^{s}.
First suppose that $w \equiv 1(2)$. Then $\Delta(0)$ or $\Delta(w)$ contains more than three elements which contradicts $K=K^{8}$ and (3.1)(b). Hence $w \equiv 0$ (2), and there exists $\tau^{*} \in\left\langle\tau^{8}\right\rangle$ such that

$$
0^{g^{r^{*}}}=0 \quad \text { and } \quad w^{g^{r^{*}}}=w
$$

or

$$
0^{g^{r^{*}}}=w \quad \text { and } \quad w^{g^{r^{*}}}=0
$$

In the first case $g \tau^{*} \in G_{(0 \ldots w)}=K^{g}$, and $g \tau^{*}$ and τ^{*} normalize T^{s}. It follows that $\langle g\rangle$ normalizes T^{g}, contradicting $T \neq T^{g}$.

In the second case there exists a reflection t^{\prime} on T^{g} such that

$$
g \tau^{*} t^{\prime} \in G_{(0, \ldots w)} .
$$

Thus as above, t^{\prime}, τ^{*} and g normalize T^{8}, a contradiction.
(9.2) Let $X=O^{2^{\prime}}\left(\left\langle G_{(0 \ldots, .,-1)}, G_{(s-1 \ldots 2(s-1))}\right\rangle\right)$. Then:
(a) $X / X \cap Q_{s-1} \simeq L_{2}\left(2^{n_{s-1}}\right)$.
(b) K normalizes X.
(c) $X \cap Q_{s-1}$ is a natural module for $X / X \cap Q_{s-1}$, or $X \cap Q_{s-1}=1$.

Proof. We define

$$
T_{1}=O_{2}\left(G_{(0 \ldots, s-1)}\right), \quad T_{2}=O_{2}\left(G_{(s-1 \ldots 2(s-1))}\right),
$$

$K^{*}=C_{K}\left(T_{1}\right)$ and $R=<T_{1}, T_{2}>\cap Q_{s-1}$. Since K operates on T_{1} and T_{2} and arcs of length s have stabilizers of odd order, we get together with [6, I 14.4]:
(1) T_{i} is elementary abelian of order $2^{n_{s-1}}$ and $T_{i} \cap Q_{s-1}=1, i=1,2$.
(2) $T i Q_{s-1} \in \operatorname{Syl} l_{2}\left(L_{s-1}\right), i=1,2$, and $<T_{1}, T_{2}>/ R \simeq L_{2}\left(2^{n_{s-1}}\right)$.
(3) K^{*} centralizes $\left.<T_{1}, T_{2}\right\rangle$.
(4) There exists a complement $X \simeq L_{2}\left(2^{n_{s-1}}\right)$ in $\left.<T_{1}, T_{2}\right\rangle$ which contains K_{s-1}.

Hence it suffices to show that R is a natural module or $R=1$.
If $s=3$, we apply (7.2) and get $\left\langle T_{1}, T_{2}\right\rangle \leq O^{2}\left(L_{s-1}\right)$ and $R=1$, since $\left[T_{i}, K\right]=T_{i}$ for $i=1,2$.
If $s \equiv 0$ (2), we apply (7.3) and get that $R=1$ or $R=Q_{s-1}$ is a natural module.

Hence we may assume $s \geq 5$ and $s \equiv 1$ (2), in particular $\mu=(s-1) / 2$ is an integer and a vertex in T.

Suppose first that $K^{*} \neq 1$. If $C_{Q_{s-1}}\left(K^{*}\right) \npreceq Q_{s-2}$, then the operation of K on $C_{Q_{s-1}}\left(K^{*}\right)$ yields $Q_{s-2} C_{Q_{s-1}}\left(K^{*}\right) \in \operatorname{Syl}_{2}\left(L_{s-2}\right)$ and $\left[L_{s-2}, K^{*}\right] \leq Q_{s-2}$. Together with (2) and (3) this contradicts (2.1).

We have shown:
(5) $C_{Q_{s-1}}\left(K^{*}\right) \leq Q_{s-2}$.

Since $\left\langle T_{1}, T_{2}\right\rangle$ operates transitively on $\Delta(s-1)$, we get

$$
R \leq C_{Q_{\rho-1}}\left(K^{*}\right) \leq \bigcap_{\rho \in \Delta(s-1)} Q_{\rho}=H
$$

Now, an application of (4.6), (4.8) and (5.2) yields one of the following cases:
(i) $H=1$.
(ii) $H=Z_{s-1}=Z\left(L_{s-1}\right)$ and $H \leq G_{\mu}$.
(iii) $s=7, H=T_{3} Z_{s-1}$, where $T_{3}=O_{2}\left(G_{(\mu \ldots . . s+\mu-1)}\right)$, and Z_{s-1} is a natural module for $\overline{L_{s-1}}$.

In case (i) we get $R=1$. In case (ii), $R \leq Z\left(<T_{1}, T_{2}>\right)$, and (4) and the operation of K imply $R=1$.

Assume now case (iii). With the help of (4.8) and (5.2) it is easy to check that [T_{1}, K_{μ}] $=1$ and hence $K_{\mu} \leq K^{*}$. On the other hand, $\mu=3$ and $s-1=6$, and (3.2) implies $K_{\mu}=K^{*}$. Since T_{3} stabilizes the maximal regular arc $(\mu \ldots s+\mu-1)$, we get $T_{3} \cap Q_{\mu}=1$ and $C_{T_{3}}\left(K_{\mu}\right)=1$ or $K_{\mu}=1=K^{*}$. So $C_{T_{3}}\left(K_{\mu}\right)=1$ and $R=1$ or $R=Z_{s-1}$, and the assertion holds.

Suppose now that $K^{*}=1$. Then we are in case (5.2)(a) or (b) and $K=K_{s-1}$. If $s=5$, then $\left.C_{L_{3}}(K)=Z_{3} \times<Z_{1}, Z_{5}\right\rangle$ and $\left|Z_{3}\right|=2$ and $\left\langle Z_{1}, Z_{5}\right\rangle \simeq \Sigma_{3}$. If $s=7$, then $C_{L_{5}}(K)=\left\langle Z_{7}, Z_{3}\right\rangle \simeq \Sigma_{4}$. Let d be an element of order 3 in $C_{L_{s-2}}(K)$, and let Ω be the set of all elementary abelian subgroups F in Q_{s-2} such that $F \cap Q_{s-3} \cap Q_{s-1}=1,|F|=2^{n_{s-1}}$ and $[K, F]=F$. If (5.2)(a) holds, it is easy to check that $\Omega=\left\{T_{1}, T_{1}^{d}, T_{1}^{d^{-1}}\right\}$. We want to show the same, if (5.2)(b) holds.

Define $\bar{Q}_{s-2}=Q_{s-2} / Q_{s-3} \cap Q_{s-1}$ and $\bar{\Omega}=\{\bar{F} / F \in \Omega\}$. Clearly $|\bar{\Omega}| \geq 3$, since $\overline{T_{1}}, \overline{T_{1}^{d}}$ and $T_{i}^{d^{-1}}$ are contained in $\bar{\Omega}$. Assume $|\bar{\Omega}|>3$, then the operation of d implies $|\bar{\Omega}| \geq 6$, and there are at least 42 images of involutions and at most 21 images of 4-elements in \bar{Q}_{s-2}. We now take a factor group Q^{δ} of Q_{s-2} which is a non-abelian extension of \bar{Q}_{s-2} of order 2^{7}. All such possible extensions contain more than 214 -elements. Hence we have shown:
(6) $|\bar{\Omega}|=3$.

Now let $T_{3}=O_{2}\left(G_{(2 \ldots . .8)}\right)$. Then $Q_{4} \cap Q_{6}=T_{3} Z_{5}$, and there exists a reflection t on T in L_{4} which inverts the elements of K and interchanges T_{1} and T_{3}. Since $|K|>3$, there are only two K-modules of order 2^{3} in $T_{1} T_{3} Z_{5} / Z_{5}$, namely $T_{1} Z_{5} / Z_{5}$ and $T_{3} Z_{5} / Z_{5}$. On the other hand

$$
Z_{5}=Z_{6} Z_{6}^{d} \leq C_{Q_{5}}(K) \quad \text { and } \quad \Omega \cap T_{1} Z_{5}=\left\{T_{1}\right\}
$$

thus we have shown for $s=5$ and $7, \Omega=\left\{T_{1}, T_{1}^{d}, T_{1}^{d-1}\right\}$. One of these three elements in Ω, say T_{1}^{d}, is contained in Q_{s-1} and since $d \in\left\langle Z_{s}, Z_{s-4}\right\rangle$, there exists $z \in Z_{s}$ such that $T_{1}^{d^{-1}}=T_{1}^{z}$. Hence we have shown:
(7) T_{1} and T_{1}^{z} are the only complements for Q_{s-1} in $T_{1} Q_{s-1}$ which are normalized by K.

Now reflecting T with $t_{0}^{\boldsymbol{r}^{3}}$ yields:
(8) T_{2} and $T_{2}^{\tilde{z}}$ are the only complements for Q_{s-1} in $T_{2} Q_{s-1}\left(\tilde{z} \in Z_{s-1}\right)$ which are normalized by K.

If we now take Y as described in (4), we can fine $x \in\left\langle Z_{s-4}, Z_{s}\right\rangle$ such that $Y^{x}=\left\langle T_{1}, T_{2}\right\rangle$.
(9.3) Suppose that $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \Gamma, \gamma\left(\alpha_{1}, \alpha_{3}\right) \in \mathscr{K}_{2(s-1)}$ and

$$
d\left(\alpha_{2}, \alpha_{3}\right)=2(s-1)
$$

Then $\gamma\left(\alpha_{2}, \alpha_{3}\right) \in \mathscr{K}_{2(s-1)}$.
Proof. We use the following notation: $\gamma_{i}=\gamma\left(\alpha_{j}, \alpha_{k}\right)$ for $\{i, j, k\}$ $=\{1,2,3\}$,

$$
\gamma_{1} \cap \gamma_{2} \cap \gamma_{3}=\{\lambda\}, T_{i}=O_{2}\left(G_{\gamma\left(\alpha_{i}, \lambda\right)}\right)
$$

$L=\left\langle T_{1}, T_{2}\right\rangle, t_{\lambda}$ is a reflection on γ_{3} contained in $O_{2}\left(G_{\left(\lambda \delta_{1} \ldots \delta_{s-1}\right)}\right)$ for some $\operatorname{arc}\left(\lambda \delta_{1} \ldots \delta_{s-1}\right)$ of length $s-1$.

By (9.2), $L / O_{2}(L) \simeq L_{2}\left(2^{n_{\lambda}}\right)$, and $O_{2}(L)$ is a natural module or $O_{2}(L)=1$. It is easy to check that $T_{1}^{\nu} \cap T_{2} \neq 1(v \in L)$ implies $T_{1}^{v}=T_{2}$.

There exists $t \in T_{1}$ which interchanges the two vertices in $\Delta(\lambda) \cap \gamma_{1}$. Hence γ_{2} and γ_{3}^{t} have an arc of length s in common. It follows from (9.1) that $\gamma_{2}=\gamma_{3}^{*}$. The structure of $L_{2}\left(2^{n \lambda}\right)$ yields the existence of $t^{\prime} \in T_{2}$ such that $\left\langle t, t^{\prime}\right\rangle Q_{\lambda} / Q_{\lambda} \simeq \Sigma_{3}$, and the structure of L implies $\left\langle t, t^{\prime}\right\rangle \simeq \Sigma_{3}$. Note that the relation $t^{t^{\prime t}}=t^{\prime}$ holds.

Set $v=t^{\prime}$, then $t^{\prime} \in T_{1}^{\nu} \cap T_{2}$ and $T_{1}^{\nu}=T_{2}$. On the other hand $T_{1}^{t_{\lambda}}=T_{2}$, thus $v t_{\lambda}$ normalizes T_{1} and T_{2}. From the structure of L and L_{λ} we conclude that $\left[L, v t_{\lambda}\right]=1$. By (7.4), this is only possible if $s \equiv 1$ (2). Hence $v t_{\lambda}$ stabilizes the $\operatorname{arc}\left(\lambda_{1} \ldots \lambda \ldots \lambda_{2}\right)$ of length $s-1$ where λ_{i} is the midpoint in $\gamma\left(\alpha_{i}, \lambda\right)$. So $v t_{\lambda}$ has order 1 or 2 , and v and t_{λ} commute. Therefore $\gamma\left(\lambda, \alpha_{3}\right)$ and $\left(\lambda \ldots \delta_{s-1}\right)$ have an $\operatorname{arc}\left(\lambda \ldots \lambda_{3}\right)$ of length $(s-1) / 2$ in common. Since both v and t_{λ} fix two vertices in $\Delta\left(\lambda_{3}\right)$, we get $v, t_{\lambda} \in Q_{\lambda_{3}}$, and v and t_{λ} fix the elements in $\Delta\left(\lambda_{3}\right) \cap \gamma_{2}$. Thus $v t_{\lambda}$ stabilizes $\tilde{\gamma}=\left(\lambda_{1} \ldots \lambda \ldots \lambda_{3} \mu\right)$ where $\mu \in \Delta\left(\lambda_{3}\right) \cap \gamma_{2}$ and $\mu \notin\left(\lambda \ldots \lambda_{3}\right)$. Since $\tilde{\gamma}$ has length s, it follows that $v t_{\lambda}=1$ and $v=t_{\lambda}$. Hence $\alpha_{1}^{\nu}=\alpha_{1}^{t_{\lambda}}=\alpha_{2}$ and
$\alpha_{3}^{t_{\lambda}}=\alpha_{3}^{\nu}=\alpha_{3}$, since $v=t^{\prime t} \in T_{2}^{t}=T_{3}$, and we have shown $\gamma_{2}^{t_{\lambda}}=\gamma_{1}$ $\in K_{2(s-1)}$.
(9.4) There exists an equivalence relation \approx on Γ such that:
(a) $\tilde{\Gamma}=\Gamma / \approx$ is an $(s-1)$-gon (where two equivalence classes are adjacent, iff they contain some pair of adjacent vertices).
(b) X operates on $\tilde{\Gamma}$.
(c) X_{0} and X_{1} operate faithfully on $\tilde{\Gamma}$.

Moreover, for $\tilde{X}=X^{\tilde{\mathrm{r}}}$, one of the following holds:
(1) $s=3, \quad \tilde{G} \simeq L_{2}\left(2^{n_{0}}\right) \times L_{2}\left(2^{n_{1}}\right), \quad \tilde{\mathbf{X}} \leqslant \operatorname{Aut}\left(L_{2}\left(2^{n_{0}}\right) \times L_{2}\left(2^{n_{1}}\right)\right), \quad$ and $\left\{X_{0}, X_{1}\right\}$ is parabolic of type $L_{2}\left(2^{n_{0}}\right) \times L_{2}\left(2^{n_{1}}\right)$.
(2) $s=4, \tilde{G} \simeq L_{3}\left(2^{n_{0}}\right), \tilde{X} \leq \operatorname{Aut}\left(L_{3}\left(2^{n_{0}}\right)\right)$ and $\left\{X_{0}, X_{1}\right\}$ is parabolic of type $L_{3}\left(2^{n_{0}}\right)$.
(3) $\left.\left.s=5, \tilde{G} \simeq S p_{4}\left(2^{n_{0}}\right) \operatorname{or} U_{4}\left(2^{n_{0}}\right), \tilde{X} \leqslant \operatorname{Aut}\left(S p_{4}\right) 2^{n_{0}}\right)\right)\left(\operatorname{resp} . \operatorname{Aut}\left(U_{4}\left(2^{n_{0}}\right)\right)\right.$), and $\left\{X_{0}, X_{1}\right\}$ is parabolic of type $\operatorname{Sp}_{4}\left(2^{n_{0}}\right)\left(\right.$ resp. $\left.U_{4}\left(2^{n_{0}}\right)\right)$.
(4) $s=7, \tilde{G} \simeq G_{2}\left(2^{n_{0}}\right)$ or ${ }^{3} D_{4}\left(2^{n_{0}}\right), \quad \tilde{X} \leqslant \operatorname{Aut}\left(G_{2}\left(2^{n_{0}}\right)\right) \quad$ (resp. Aut $\left({ }^{3} D_{4}\left(2^{n_{0}}\right)\right)$, and $\left\{X_{0}, X_{1}\right\}$ is parabolic of type $G_{2}\left(2^{n_{0}}\right)\left(\right.$ resp. ${ }^{3} D_{4}\left(2^{n_{0}}\right)$).

Proof. For $\delta \in \Gamma$ we define:

$$
\Gamma_{\delta}=\left\{\lambda \in \Gamma / \gamma(\delta, \lambda) \in \mathscr{K}_{2(s-1)}\right\} \cup\{\delta\}
$$

Note that $\gamma(\delta, \lambda) \in \mathscr{K}_{2(s-1)}$ implies $\gamma(\lambda, \delta) \in \mathscr{K}_{2(s-1)}$, since the elements in \mathscr{K} allow reflections. X operates on the graph $\hat{\Gamma}$ with vertex set $\left\{\Gamma_{\delta} / \delta \in \Gamma\right.$ \}, where two vertices Γ_{δ} and $\Gamma_{\delta^{\prime}}$ are adjacent iff $\delta \neq \delta^{\prime}$ and $\left\{\delta, \delta^{\prime}\right\} \subseteq \Gamma_{\delta} \cap \Gamma_{\delta^{\prime}}$. Now we define an equivalence relation \approx on Γ :
$\delta \approx \delta^{\prime}$ for $\delta, \delta^{\prime} \in \Gamma$ iff Γ_{δ} is in $\tilde{\Gamma}$ in the same connected component as $\Gamma_{\delta^{\prime}}$.
Set $\tilde{\Gamma}=\Gamma / \approx$ and denote by $\tilde{\delta}$ the equivalence class of $\delta \in \Gamma$. Two vertices $\tilde{\alpha}, \tilde{\beta}$ are adjacent iff there exist $\alpha^{\prime} \in \tilde{\alpha}$ and $\beta^{\prime} \in \tilde{\beta}$ such that $\beta^{\prime} \in \Delta\left(\alpha^{\prime}\right)$.

It is easy to see that X operates on $\tilde{\Gamma}$. We want to show first that $\tilde{\Gamma}$ is nontrivial:
(1) If δ has distance less than $2(s-1)$ from 0 (resp. 1), then $\tilde{\delta} \neq \tilde{0}$ (resp. $\tilde{\delta} \neq \tilde{1})$ or $\delta=0($ resp. $\delta=1)$.

Let $\delta \neq 0$ be of distance less than $2(s-1)$ from 0 . Assume that $\delta \in \tilde{0}$. Then there exist elements $\delta_{0}, \delta_{1}, \ldots, \delta_{n}$ such that $\delta_{0}=0$ and $\delta_{n}=\delta$ and $\Gamma_{\delta_{i}}$ is adjacent to $\Gamma_{\delta_{i+1}}$ in $\hat{\Gamma}$ for $i=0, \ldots, n-1$, which means

$$
\gamma\left(\delta_{i}, \delta_{i+1}\right) \in \mathscr{K}_{2(s-1)} .
$$

Let n be minimal with these properties.
There exists $\delta_{k}, 0<k<n$, such that $d\left(\delta_{0}, \delta_{k}\right)$ is maximal. Set

$$
\begin{aligned}
& \gamma_{1}=\gamma\left(\delta_{k}, \delta_{k+1}\right) \cap \gamma\left(\delta_{k}, \delta_{k-1}\right)=\left(\delta_{k} \ldots \lambda\right), \\
& \gamma_{2}=\left(\lambda \ldots \delta_{k+1}\right) \quad \text { and } \quad \gamma_{3}=\left(\lambda \ldots \delta_{k-1}\right) .
\end{aligned}
$$

Since γ_{1} is contained in at least two different elements of \mathscr{K}, it has length less than s. On the other hand $d\left(\delta_{0}, \lambda\right)+\left|\gamma_{i}\right| \leq d\left(\delta_{0}, \delta_{k}\right)$ for $i=2,3$. Hence the length of γ_{i} is $s-1$ for $i=1,2,3$, and we can apply (9.3) to get

$$
\delta_{k-1}, \delta_{k+1} \in \Gamma_{\delta_{k-1}} \cap \Gamma_{\delta_{k+1}} .
$$

But now $\delta_{0}, \ldots, \delta_{k-1}, \delta_{k+1}, \ldots, \delta_{n}$ have the same properties as $\delta_{0}, \ldots, \tilde{\delta}_{n}$, contradicting the minimality of n.

The same argument holds for 1 in place of 0 .
(2) Suppose that $\tilde{\delta}$ and $\tilde{\lambda}$ are adjacent in $\tilde{\Gamma}$. Then for every $\delta \in \tilde{\delta}$ there exists $\lambda \in \tilde{\lambda}$ such that $\delta \in \Delta(\lambda)$.

By definition, there exist $\delta_{0} \in \tilde{\delta}$ and $\lambda_{0} \in \tilde{\lambda}$ such that $\delta_{0} \in \Delta\left(\lambda_{0}\right)$. Assume that $\delta \in \tilde{\delta}$ and $\gamma\left(\delta_{0}, \delta\right) \in \mathscr{K}_{2(s-1)}$. It suffices to show (2) for all such vertices δ.

Let λ^{*} be the vertex of distance $s-1$ from δ_{0} and δ in $\gamma\left(\delta_{0}, \delta\right)$. Then $\gamma\left(\lambda_{0}, \lambda^{*}\right)$ has length s, and (9.1) implies that there is a unique element T^{*} in \mathscr{K} containing $\gamma\left(\lambda_{0}, \lambda^{*}\right)$. Pick $\lambda_{1} \in T^{*}$ of distance $2(s-1)$ from λ_{0} and $2(s-1)-1$ from δ_{0} and $\delta_{1} \in T^{*} \cap \Delta\left(\lambda_{1}\right)$ of distance $2(s-1)$ from δ_{0}. Note that $\tilde{\delta}_{0}=\tilde{\delta}_{1}$ and $\tilde{\lambda}_{0}=\tilde{\lambda}_{1}$.

If $\delta \in T^{*}$, then $\delta=\delta_{1}$ and $d\left(\delta, \lambda_{1}\right)=1$. So assume $\delta \notin T^{*}$. Then we can apply (9.3), and get $\gamma\left(\delta_{1}, \delta\right) \in T^{* *} \in \mathscr{K}$.

Hence there exists $\lambda_{2} \in \Delta(\delta) \cap T^{* *}$ of distance $2(s-1)$ from λ_{1}, and since $\lambda_{1} \in T^{* *}$ it follows that $\lambda_{2} \in \tilde{\lambda}_{1}=\tilde{\lambda}$.
(3) For $\delta, \lambda \in \Gamma$ the following hold:
(a) $d(\tilde{\delta}, \tilde{\lambda})=\min \left\{d\left(\delta^{\prime}, \lambda^{\prime}\right) \mid \delta^{\prime} \in \tilde{\delta}, \lambda^{\prime} \in \tilde{\lambda}\right\}$.
(b) $|\Delta(\tilde{\delta})|=|\Delta(\delta)|$.
(c) $\tilde{\Gamma}$ is a generalized ($s-1$)-gon; in particular $\tilde{\Gamma}$ is finite.

Parts (a) and (b) are easy consequences of (2). By (1), $\tilde{\Gamma}$ has diameter $s-1$, and the classes of vertices in T form a circuit of length 2(s-1). Again by (1), $2(s-1)$ is the girth of $\tilde{\Gamma}$.

Set $\tilde{X}=\tilde{X^{T}}$. In the following we use \sim convention for subgroups and subsets of \tilde{X} and $\tilde{\Gamma}$.
(4) Any arc of length s in $\tilde{\Gamma}$ is contained in a unique element of $\tilde{\mathscr{K}}$.

Since the elements of $\tilde{\mathscr{K}}$ are circuits of length $2(s-1)$, this follows immediately from (2.6) and (3)(c).
(5) $\quad X_{0}$ and X_{1} operate faithfully on $\tilde{\Gamma}$.

Suppose that $x \in X_{0}^{\#}$ fixes every $\tilde{\delta}$ in $\tilde{\Gamma}$. Then we can choose δ such that x
fixes δ^{\prime} for $\gamma(0, \delta)=\left(0 \ldots \delta^{\prime} \delta\right)$ but not δ. Hence $d\left(\delta, \delta^{x}\right)=2$ and $\delta^{x} \in \tilde{\delta}$ which contradicts (1). The same argument shows that X_{1} operates faithfully on $\tilde{\Gamma}$.
(6) Suppose that $s=4$. Then assertion (9.4)(2) holds.

If $s=4$, then $\tilde{\Gamma}$ is a generalized 3-gon. It follows that $\tilde{\Gamma}$ is the incidence graph of a projective plane \mathscr{P} of order q_{0}. Hence \tilde{X} operates as a group of collineations on \mathscr{P}, and the elements in $Z_{i}^{\#}(i \in T)$ induce elations on \mathscr{P}. Since \tilde{G} is transitive on the points and lines of \mathscr{P}, the assertion follows from [13, 13.11].

From now on we assume $s \neq 4$ and refer to Sections 4 and 5, where the structure of L_{0} and L_{1} is described, and (6.8) and (7.2) as (*). Set $\mu=(s-1) / 2, W=\left\langle t_{0}, t_{1}\right\rangle$ and $q_{i}=2^{n_{i}}$.
(7) $K_{i}=K_{i+2 \mu}$ for $i \in T$.

We apply (*). Then $s=3,5$ or 7, and in all but one case there exists a subgroup D_{i} such that $\left[D_{i}, K_{i}\right]=1$,

$$
C_{T}\left(D_{i}\right)=(i-\mu, \ldots, i+\mu) \quad \text { and } \quad D_{i} Q_{i_{ \pm \mu}} \in S y l_{2}\left(L_{i \pm \mu}\right) .
$$

In the remaining case ((4.8)(a), resp. (5.2)(a)) we have $K_{i}=K_{i}^{-} \times K_{i}^{+}$with $\left|K_{i}\right|=q^{2}-1,\left|K_{i}^{-}\right|=q-1$ and $\left|K_{i}^{+}\right|=q+1$, and get $\left[D_{i}, K_{i}^{-}\right]=1$, where D_{i} has all the other above properties. In addition,

$$
|K| \mid\left(q^{2}-1\right)(q-1)
$$

and K_{i}^{+}is the unique subgroup in K of order $q+1$. Hence $K_{i}^{+}=K_{i+2 \mu}^{+}$, and it is easy to apply the following argument to K_{i}^{-}instead of K_{i} to get $K_{i}=K_{i+2 \mu}$.

Thus we assume $\left[D_{i}, K_{i}\right]=1$. This implies $\left[K_{i}, \bar{L}_{i+\mu}\right]=1$ and with the same argument $\left[K_{i+2 \mu}, \overline{L_{i+\mu}}\right]=1$. If $K_{i}=C_{K}\left(\bar{L}_{i+\mu}\right)$ and $K_{i+2 \mu}=C_{K}\left(\overline{L_{i+\mu}}\right)$, then $K_{i}=K_{i+2 \mu}$. Hence we may assume $K_{i} \neq C_{K}\left(\overline{L_{i+\mu}}\right)$. Since $K=K_{i} K_{i+1}$ (by (3.2)), it follows that $i+\mu \in i^{G}$ and $q_{i}<q_{i+1}$. Hence we are in case (4.8)(a) (resp. (5.2)(a)), $|K|=\left(q_{i}-1\right)^{2}\left(q_{i}+1\right)$ and $\left|C_{K}\left(\overline{L_{i+\mu}}\right)\right|=q_{i}^{2}-1$. But then there is a unique subgroup of order $q_{i}-1$ in $C_{K}\left(\overline{L_{i+\mu}}\right)$ and again $K_{i}=K_{i+2 \mu}$.
(8) $\tau^{2 \mu} \in X_{\Gamma}$ and $\tilde{W} \simeq D_{4 \mu}$.

Since W is an infinite dihedral group and $\tau^{k} \notin X_{\tilde{\Gamma}}$ for $0<k \leq 2 \mu-1$ by (1), it suffices to show $\tau^{2 \mu} \in X_{\tilde{\Gamma}}$.

We define $t_{2 i}=t_{0}^{\tau^{i}}$ and $t_{2 i+1}=t_{1}^{\boldsymbol{r}^{i}}$ for $i \in \mathbf{Z}$. Note that t_{i} inverts the elements in K_{i} and $\tau^{2 \mu}=t_{0} t_{2 \mu}=t_{1} t_{2 \mu+1}$. From (7) we know that $t_{0} t_{2 \mu}$ centralizes K_{0} and that $t_{1} t_{2 \mu+1}$ centralizes K_{1}. Hence $\tau^{2 \mu}$ centralizes K.

Set $A=\left\langle\tau^{2 \mu}\right\rangle$, and suppose that $\tilde{A} \neq 1$. If we are in cases (4.8)(a) (resp. (5.2)(a))-we shall call this the U_{4}-case-we choose notation such that $q_{0}=q_{1}^{2}$. The elements in $\tilde{A} \cap \tilde{K}$ are inverted by \tilde{t}_{0} and \tilde{t}_{1}, thus

$$
\tilde{A} \cap \tilde{K} \leq \tilde{K}_{0} \cap \tilde{K}_{1}
$$

and, by (*), $\tilde{K}_{0} \cap \tilde{K}_{1}=1$. Hence we get a direct product $\tilde{A} \times \tilde{K}_{i}(i=0,1)$, and since \tilde{K}_{i} operates transitively on $\Delta(\tilde{i}) \backslash \tilde{T}$ (see (3)(b)), there exists

$$
x=a k \in \tilde{A} \times \tilde{K}_{i},<a>=\tilde{A} \text { and } k \in \tilde{K}_{i},
$$

which fixes every element in $\Delta(\tilde{i})$ and in \tilde{T}. Thus x also fixes

$$
\Delta(\tilde{i})^{\tilde{\mu}}=\Delta(\widetilde{i+2 \mu})
$$

by (4). Hence x and $x^{\tilde{\mu}}=a k^{\tilde{\pi}}$ are in $C_{\tilde{\mathfrak{x}}}(\Delta(i+2 \mu)$). Now (7) implies

$$
k^{-1} k^{\tilde{\mu}} \in C_{\tilde{k}}(\Delta(\overleftarrow{i+2} \mu)) \cap \tilde{K_{i+2 \mu}}=1
$$

and $k=k^{r^{\tilde{\mu}}}$. It follows that $k^{\bar{i}_{+}+\mu}=k^{\tilde{t}_{i}}=k^{-1}$, since $\tau^{\mu}=t_{t} t_{i+\mu}$. If we are not in the U_{4}-case or if $i=1$, then by ($*$), $\tilde{K}_{i} \cap \tilde{K}_{i+\mu}=1$. On the other hand,

$$
\mathbf{k}^{-2}=\left[k, \tilde{t}_{t+\mu}\right] \in \tilde{K}_{i} \cap \tilde{K}_{t+\mu} ;
$$

thus we have $k=1$.
If $i=0$ and we are in the U_{4}-case, it follows that $\tilde{K}_{0} \cap \tilde{K}_{2}=\tilde{R}_{0}^{*}$, where \tilde{K}_{0}^{+}is the unique subgroup of order $q_{1}+1$ in \tilde{K}, and $k \in \tilde{K}_{0}^{+}$.

The operation of $\tilde{\tau}$ on \tilde{T} implies that we have to treat the following two cases:
(i) $\tilde{A} \leq C_{\tilde{x}}(\Delta(\tilde{i}))$ for all $\tilde{i} \in \tilde{T}$,
(ii) the U_{4}-case holds, and $\tilde{A} \leq C_{\tilde{x}}(\Delta(\tilde{i})$) for all odd $\tilde{i} \in \tilde{T}$.

Assume (ii). Then $k \in \tilde{K}_{0}^{*}$, and k fixes every element in $\Delta(\tilde{i})$ for $i \equiv 1$ (2). Hence x fixes every element in $\Delta(\tilde{i}), i \equiv 1(2), \Delta(\bar{\delta})$ and $\Delta(\overline{4})$. Pick

$$
\tilde{\delta}_{3} \in \Delta(\tilde{3}) \backslash \tilde{T} \quad \text { and } \quad \tilde{\delta}_{5} \in \Delta(\tilde{\mathbf{5}}) \backslash \tilde{T}
$$

For $i=3,5$ and $\tilde{\varrho} \in \Delta(\tilde{0}), \gamma\left(\tilde{\varrho}, \tilde{\delta}_{i}\right)$ denotes the arc

$$
\left(\tilde{\varrho} \tilde{0} \tilde{1} \ldots \tilde{3} \tilde{\delta}_{3}\right)\left(\text { resp. }\left(\tilde{e} \tilde{0} \tilde{1} \ldots \tilde{\delta}_{5} \tilde{\delta}_{5}\right)\right. \text {). }
$$

By (4), $\gamma\left(\tilde{\varrho}, \tilde{\delta}_{i}\right)$ is contained in a unique element $\tilde{T}\left(\tilde{\varrho}, \tilde{\delta}_{1}\right)$ of \mathscr{X}, and x fixes all of these $\tilde{T}\left(\tilde{\varrho}, \tilde{\delta}_{i}\right)$. Hence again by (4), x fixes every element in $\Delta\left(\tilde{\delta}_{5}\right), \Delta(\tilde{5}), \Delta(\tilde{4})$, $\Delta(\overline{3}), \Delta\left(\bar{\delta}_{3}\right)$, and ($\tilde{\delta}_{3} 34 \tilde{S}_{3}$) is a G-conjugate of ($(\ldots \ldots 4)$.
Thus, in both cases (i) and (ii) it suffices to prove (**) to get a contradiction:
(**) Let x be an element in \tilde{X} which fixes the elements in

$$
\Delta(\overline{0}), \ldots, \Delta(\tilde{s-1})
$$

Then $x=1$.
By (4), x stabilizes every vertex in \tilde{T}. Pick $\tilde{\kappa} \in \tilde{T}, s \leq k \leq 2 s-3$, and

$$
\tilde{\delta} \in \Delta(\tilde{k}) \backslash\{\widetilde{k-1}\}
$$

Then $\gamma=(\tilde{\delta} \tilde{k} \ldots k-(s-1))$ is an arc of length s contained in a unique element \tilde{T}^{ε} of $\tilde{\mathscr{X}}$. Since x stabilizes

$$
(\tilde{k} \ldots k-(s-1))
$$

and the vertices in

$$
\Delta(\widetilde{k-(s-1})) \cap \tilde{T}^{z}
$$

it follows from (4) that x stabilizes \tilde{T}^{8} and hence $\tilde{\delta}$. Thus we have shown that x fixes the elements in $\Delta(\tilde{i})$ for $\tilde{i} \in \tilde{T}$.

Now let $\tilde{\delta}$ be any vertex in $\tilde{\Gamma}$, and choose $\tilde{k} \in \tilde{T}$ such that $d(\tilde{\delta}, \tilde{k})$ is minimal. By induction we may assume that x fixes every vertex in $\tilde{\Gamma}$ which has distance less than $d(\tilde{\delta}, \tilde{k})$ from some vertex in \tilde{T}. Let $\left(\tilde{\delta}_{0}, \ldots, \tilde{\delta}_{n}\right), \tilde{\delta}_{0}=\tilde{k}, \tilde{\delta}_{n}=\tilde{\delta}$, be the arc joining \tilde{k} and $\tilde{\delta}$. Then $n \leq s-1$ ((3)(c)) and

$$
\left(k+(s-n+1) \ldots \tilde{k}_{\ldots} \tilde{\delta}_{n-1}\right)
$$

is an arc of length s contained in some $\tilde{T}^{s} \in \tilde{\mathscr{K}}$. As above x stabilizes \tilde{T}^{s} and therefore $\tilde{\delta}$.
(9) Set $N=\tilde{W} \tilde{K}$ and $B=\overline{G_{01}}$. Then (B, N) is a BN-pair of \tilde{G}.

For the definition of a $B N$-pair see [11]. It suffices to show:
(***) $\quad \tilde{t}_{i} B w \subseteq B w B \cup B \tilde{t}_{i} w B$ for $i=0,1$ and $w \in \tilde{W}$.
Every $w \in W$ can be written as $\tilde{t}_{i} \tilde{\tau}^{m}$ or $\tilde{\tau}^{m}$ for some $0 \leq m \leq s-1$. We shall show ($* * *$) for $i=0$ and $w=\tilde{t}_{1} \tilde{\tau}^{m}$. The other cases follow with the same argument. For $x \in G_{01}$ we get

$$
(01)^{t_{0} x t_{1} 7^{m}}=\left(21^{t_{0} x t_{1}}\right)^{r^{m}}=\left(2+2 m 1^{t_{0} x t_{1} r^{m}}\right)
$$

Pick $2 k(s-1)+1 \in T$ such that $d(2+2 m, 2 k(s-1)+1)$ is minimal. Then

$$
d(2+2 m, 2 k(s-1)+1) \leq s-1
$$

and there exists $y \in G_{2 k(s-1)} \cap G_{2 k(s-1)+1}$ such that

$$
\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{t_{0} x t_{1} m^{m}} \subseteq T \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{t_{0} x t_{1} T^{m} m_{y}-m-1}=(01)
$$

or

$$
\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{t_{0} x t_{1} r^{m} m_{y \tau}-m-1} t_{0}=(01) .
$$

Hence $t_{0} x t_{1} \tau^{m} y \tau^{-m-1} \in G_{01}$ or $t_{0} x t_{1} \tau^{m} y \tau^{-m-1} t_{0} \in G_{01}$, and from

$$
\bar{G}_{2 k(s-1)} \cap G_{2 k(s-1)+1}=B
$$

we get

$$
\tilde{t}_{0} \tilde{x} \tilde{t}_{1} \tilde{\tau}^{m} \in B \tilde{t}_{0} \tilde{\tau}^{m+1} B \cup B \tilde{\tau}^{m+1} B=B w B \cup B t_{0} w B .
$$

Note that $B=S \tilde{K}$ for $S \in S y l_{2}(B)$ by (3.2)(c). Hence we can apply (9) and [11] to get the assertion.

10. Proofs of Theorems 1 and 2 and Corollary 1

Proof of Theorem 2. Let G be a counterexample. Suppose first that Γ is a tree and that G is not vertex-transitive. We apply (8.1) and conclude that (8.1)(a) holds for some normal subgroup E in G.

Assume that Hypothesis (3.0) holds in E. Then it follows from Sections $4,5,6,7$ and 9 that E is no counterexample. Since $G \leq \operatorname{Aut}(E)$ and G is a counterexample, the singularity s_{E} of E cannot be the singularity of G. Hence
there exists an arc $\gamma=(\lambda \ldots \delta)$ of length s_{E} which is regular under the operation of G. By (2.6) we may assume additionally $\gamma \subseteq T$ for some K-track (T, τ, K) defined in (3.3) with respect to E. Again by the above mentioned sections we get $\left|E_{\gamma}\right|_{2}=1$ or 2 and $s_{E} \equiv 1$ (2) or $n_{\alpha}=n_{B}>1$. Thus without loss of generality we may assume $n_{\lambda}>1$, and the choice of K assures that K does not fix every vertex in $\Delta(\lambda)$. But $\left[K, G_{\gamma}\right] \leq E_{\gamma}$, and the structure of G_{λ} and the transitivity of G_{γ} on $\Delta(\lambda) \backslash \gamma$ imply $2^{n_{\lambda}}| |\left[K, G_{\gamma} \mid\right.$, a contradiction.

Now assume that Hypothesis (3.0) does not hold in E. By (8.1)(a) we may assume that $n_{\alpha}=1$ and E_{α} is 2 -closed. Pick $S_{0} \in S y l_{2}\left(E_{\alpha \beta}\right)$. Then S_{0} is normal in E_{α} and $\left[S_{0}, E_{\alpha \beta}\right] \leq S_{0}$. The structure of $\operatorname{Aut}\left(L_{2}\left(2^{n^{n}}\right)\right)$ and (2.1) imply $E_{\beta} / O_{2}\left(E_{\beta}\right) \simeq L_{2}\left(2^{n} \theta\right)$ and $E=\left\langle O^{2}\left(E_{\alpha}\right), E_{\beta}\right\rangle$. Hence no non-trivial characteristic subgroup of S_{0} is normal in E_{β}. From (1.7) we get

$$
C_{E_{\beta}}\left(O_{2}\left(E_{\beta}\right)\right) \nsubseteq O_{2}\left(E_{\beta}\right)
$$

and thus, by (8.1), $C_{E_{\alpha}}\left(O_{2}\left(E_{\alpha}\right)\right) \nsubseteq O_{2}\left(E_{\alpha}\right)$. Again, (2.1) implies

$$
E=\left\langle C_{E_{\beta}}\left(O_{2}\left(E_{\beta}\right)\right), C_{E_{\alpha}}\left(O_{2}\left(E_{\alpha}\right)\right)\right\rangle
$$

Therefore $O_{2}\left(E_{\beta}\right) \cap O_{2}\left(E_{\alpha}\right)=1, \quad E_{\alpha} \simeq O_{2}\left(E_{\alpha}\right) \times A_{3}, \quad\left|O_{2}\left(E_{\alpha}\right)\right|=2^{n_{\beta}}$ and $E_{\beta} \simeq L_{2}\left(2^{n}\right)$.It is now easy to check that $s=3$ and $\left\{G_{\alpha}, G_{\beta}\right\}$ is parabolic of type $L_{2}\left(2^{n_{\beta}}\right) \times L_{2}(2)^{\prime}$, and G is not a counterexample.
Now assume that Γ is not a tree, and let G^{*} be the amalgamated product of G_{α} and G_{β} with respect to $G_{\alpha} \cap G_{\beta}$. We identify G_{α} and G_{β} with the corresponding subgroups in G^{*}. There exists a normal subgroup N in G^{*} such that $G^{*} / N \simeq G$. Let φ be the natural homomorphism from G^{*} to G.
G^{*} operates by right multiplication on the graph Γ^{*} with vertex set

$$
\left\{G_{\alpha} x / x \in G^{*}\right\} \cup\left\{G_{\beta} x / x \in G^{*}\right\}
$$

where two vertices are adjacent iff they have non-empty intersection.
According to [4, (2.4) and (2.5)], G^{*} and Γ^{*} fulfill Hypothesis B, Γ^{*} is a tree, and the vertex stabilizers are conjugate to G_{α} or G_{β}. What we have already proved shows that G^{*} is not a counterexample to Theorem 2.
Let \approx be the equivalence relation on Γ^{*} induced by N (i.e., $\delta^{\prime} \approx \delta$ for $\delta^{\prime}, \delta \in \Gamma^{*}$ iff $\delta^{\prime} \in \delta^{N}$) and define $\delta^{\prime N}$ to be adjacent to δ^{N} iff there exist $\delta_{1} \in \delta^{N}$ and $\delta_{2} \in \delta^{\prime N}$ such that $\delta_{1} \in \Delta\left(\delta_{2}\right)$. As the vertices of Γ^{*} are the cosets of G_{α} and G_{β}, the vertices in Γ^{*} / \approx are the cosets of $G_{\alpha} N$ and $G_{\beta} N$. If G is not vertextransitive on Γ,

$$
\left(G_{\delta} N x\right) \psi=\delta^{x \varphi}, \quad x \in G \text { and } \delta \in\{\alpha, \beta\},
$$

defines an isomorphism from Γ^{*} / \approx to Γ. This isomorphism is compatible with φ. Hence G operates in the same way on Γ as on Γ^{*} / \approx, and G is no counterexample.
Now assume that G is vertex-transitive. Then $n_{\alpha}=n_{\beta}>1$, and G_{α} is conjugate to G_{β} in G. From the structure of G^{*} we see that $\left\{G_{\alpha}, G_{\beta}\right\}$ is parabolic of type $L_{2}\left(2^{n_{\alpha}}\right) \times L_{2}\left(2^{n_{\alpha}}\right), L_{3}\left(2^{n_{\alpha}}\right)$ or $S p_{4}\left(2^{n_{\alpha}}\right)$. It is now easy to check that $s=3,4$ or 5 respectively. This shows that G is not a counterexample.

Proof of Theorem 1. Let G^{*} be the amalgamated product of M_{1} and M_{2} with respect to $M_{1} \cap M_{2}$. We define the graph Γ^{*} as in the proof of Theorem 2. As we have shown there, Hypothesis B holds in G^{*} with respect to Γ^{*}, and vertex-stabilizers in G^{*} are conjugate to M_{1} or M_{2}. Hence Theorem 2 implies Theorem 1.

Proof of Corollary 1. Let G be a counterexample. Then either (c) or (d) in Theorem 1 holds.

Assume case (d). Then $\left|O_{2}\left(M_{1}\right)\right|=2^{2^{n_{1+1}}}$ and $n_{1}>1$. Now an easy application of [3, Corollary 4] and the Main Theorem in [3] shows $G=M_{1} O(G)$.

Now assume case (c). We choose notation such that $n_{1}>1$. Since maximal elementary abelian subgroups of $O_{2}\left(M_{1}\right)$ have order 2^{3}, it is easy to see that M_{1} has sectional 2-rank 4 and that $O_{2}\left(M_{1}\right)$ is weakly closed in a Sylow 2-subgroup S of M_{1}. Hence S is a Sylow 2-subgroup of G, and G has sectional 2-rank 4. Now [12] implies that $\left\{M_{1}, M_{2}\right\}$ is parabolic of type J_{2}.

References

1. M. Aschbacher, Thin finite simple groups, J. Algebra, vol. 54 (1978), pp. 50-152.
2. B. Baumann, Über endliche Gruppen mit einer $z u L_{2}\left(2^{n}\right)$ isomorphen Faktorgruppe, Proc. Amer. Math. Soc., vol. 74 (1979), pp. 215-222.
3. D. M. Goldschmidt, 2-Fusion in finite groups, Ann. of Math. vol. 99 (1974), pp. 70-117.
4. ——, Automorphisms of trivalent graphs, Ann. of Math., vol. 111 (1980), pp. 377-406.
5. G. Higman, Odd characterizations of finite simple groups, Univ. of Michigan, 1968.
6. B. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967.
7. —_, Darstellungstheorie endlicher Gruppen II, Univ. Mainz.
8. Z. Janko, Some new simple groups of finite order I, Ist. Naz. Alta Math., Symposia Math. I (1968), pp. 25-64.
9. J.-P. Serre, Arbres, Amalgams, $S L_{2}$, Astérisque, vol. 46, Soc. Math. de France, 1977.
10. R. Weiss, Über lokal s-reguläre Graphen, J. Combinational Theory Ser. B, vol. 20 (1976), pp. 124-127.
11. P. Fong and G. Seitz, Groups with a (B, N)-pair of rank 2, I, II, Invent. Math., vol. 21 (1973), pp. 1-57; vol. 24 (1974), pp. 191-239.
12. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc. No. 147, 1974.
13. D.R. Hughes and F.C. Piper, Projective planes, Springer-Verlag, New York, 1973.

Universitat Bielefeld
Bielefeld, Germany

