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1. Introduction

Let R be the ring of integers in a number field K, A be a nonzero ideal in R
and fl(x),..., fk(x) be homogeneous polynomials in n variables over R. In
this paper we obtain small solutions to the system of congruences

f(x)= --f(x)=0 (modA),

the notion of smallness being given two interpretations, as indicated in
Lemma 2.
The problem of finding small solutions of congruences has received consid-

erable attention in the case where R is the set of rational integers. For
instance, Schinzel, Schlickewei and Schmidt [6, Theorem 1] have shown that
for any positive integer m and quadratic form Q(x) over Z in n > 3 variables,
there is a nonzero solution x of the congruence

Q(x) 0 (mod m) (1.2)

such that maxlxl < m1/2+1/2(n-1). Using the same method of proof, Heath-
Brown [4, Theorem 2] has shown that if n 4, rn is an odd prime and det Q is
a square (mod m), then (1.2) has a nonzero solution with maxlxl < mx/2.

In this paper we generalize the geometric method of Schinzel et al [6] to
algebraic number fields and apply it in turn to systems of linear forms,
quadratic forms and forms of higher degree.
We wish to thank our thesis advisor Donald J. Lewis under whom most of

this work was conducted, and Hugh L. Montgomery for his comments on the
writing of this paper. We also wish to thank Wolfgang M. Schmidt for helping
us detect the limitations of this method for forms of degree > 2.
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2. A lemma

We begin by proving the following result.

LEMMA 1. Let F(x) be a k-tuple offorms in R[Xl,..., xn] and A a nonzero
ideal in R written as A BC2 where B I-Ii=lPi, a product of distinct prime
ideals. Suppose that for i= 1,...,s there exists a subspace of [R/Pi] of
dimension di, (as an R/P vector space), on which F(x) 0 (mod Pi). Then:

(a) There exists an R-submodule L of R on which F(x) 0 (mod B), such
that

JR"" L] filR/I

(b) If all of the fi have degrees >_ 2, then there exists an R-submodule M of
R on which F(x) 0 (mod A) such that [R: M] IR/CInI-[i_IlR/PiI-d,.

Proof For i= 1,..., s let V/ be the subspace of [R/Pi] of dimension d
on which F vanishes. The inverse image of V V2 V in Rn under
the mapping

R" - RIB1" - R/P]" X R/P ",

is an R-submodule L of R satisfying the conditions of part(a).
Now suppose that all of the f have degrees >_ 2. Let M be the submodule

of R" given by

M=CL= { k cy" c C,y L, > 0}.i=l

Since R/A is a principal ideal ring it follows that every point in M satisfies
the congruence F(x)--0 (modA). Moreover IR/CLI- IR/CI’IR/LI,
finishing the proof.

3. Small solutions in number fields

Let K be a number field of degree m over Q, d the discriminant of K over
Q, R the ring of integers in K, and say m r + 2s where r is the number of
real conjugates of K and 2s is the number of complex conjugates. For any
x K let N(x) Nr/Q(X) denote the norm of x, and II x II denote the size of
x, that is, the-maximum of the absolute values of the conjugates of x. For any
nonzero ideal A in R, letN(A) R/AI denote the absolute norm of A. We
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can define the notion of smallness in various ways, two of which are treated in
the following

LEMMA 2. Let M be an additive subgroup of Rn offinite index.
(a) There exists a nonzero point x (xx,..., xn) in M such that

maxlN(x,)l < ar[R: M]x/ m!(4)where ar dl

(b) There is a nonzero point y (Yx,..-, Y) in M such that

(( 2 )Sdt/2 tin)TMmaxllYll < [R" M]

Proof. To prove parts (a) and (b) we use the canonical imbedding of R
into R’ defined as follows. For any x in R let

o(x ) (x(t),..., x (r), Re x(’+ t), Im x(r+ t),..., Re x(r+), Im x(+))

where x(1),...,x(0 are the real conjugates of x and x(+x),...,x(+),
(+),..., (+’) are the complex conjugates of x. Define 8: R --, R" by

8(xt,..., x) (o(xt), o(x2),..., o(x,,)).

Then 8(R) is a lattice in R’ of volume 2-Sd/2 (For example, see [5, p.
56]), and 8(M) is a sublattice .W of 8(R) of volume [R" M]2-’d/2. (By
volume of a lattice we mean the volume of a fundamental parallelepiped.)

For any positive number h, let St(h) be the set of mn-tuples

Xll,.-., Xlm, X21,.-., X2m,..., Xnl,..., Xnm)

in R’’ satisfying the inequalities

Ix,xl Ix,,llx2,+x + x2/21 Ix2-x + x2l < ,, 1 < < n.

By the inequality of the arithmetic and geometric means, St(h) contains the
convex body S2(A) defined by the inequalities

1,..., n. It is well known that the volume of S2(A) is (kT-’m’r’/m!),
(e.g., see [5, p. 66]), and thus by Minkowski’s fundamental theorem, S2(A)
contains a nonzero point p of .a if h ar[R: M]x/. It is dear that d-t(!)
is a nonzero point of M all of whose components have norms bounded by ,.
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To prove (b) we proceed as above replacing the region S(X) by the convex
body S3(2) defined by

Ixi[ <, l<i<n,l<j<r,

[x.+x/+l <X, i=l,...,n,j=r+l,r+3,...,m-1.

The volume of $3(2) is (2r)rrs)2s) n and so now it suffices to take

2 dl/2 1/n
1/m

X= [R"’M]

4. Linear congruences

Let U [uj] be a k n matrix over Z of rank r. For any positive integer
m let kerm(U) denote the set of points in [Z/(m)]" satisfying the linear system
of congruences Uxr =- Or (rood m), where xr is a column matrix of variables
xl,..., x, and Or is a column matrix of zeros. Since Z is a P.I.D. there exist
matrices S Mk(Z) and T M,(Z), with det S -1-1, det T +/- 1 such that
SUT is a diagonal matrix with diagonal entries (d,..., d,0,...,0), where
dl,..., dr are the invariant factors of U.

It is clear that x kerm(SUT) if and only if x--0 (rood m/(m, d)),
1,..., r. Thus, since kermU = kerm SUT we have

Let M be the set of points in Z" satisfying Uxr yr (mod m); it follows that

r

[Z"" M] =m I-I(m,d,)
i--1

and hence by Lemma 2 we deduce:

THEOREM 1. For any positive integer m and k n matrix U over Z with
invariant factors dx,..., dr there is a nonzero solution x of the congruence
Uxr _= 0r(mod m) such that

max Ixil mrl" l fi (m, di)
i-1
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This improves Theorem 1 of A. Brauer and R. L. Reynolds [3] who made
use of the pigeon-hole principle to obtain a solution with 0 < maxlxl _< mk/.
We note in particular that the bound given in Theorem 1 is nontrivial if
(d,, m) > 1, even when r k n. It is easy to construct examples showing
that the exponent r/n in Theorem 1 is best possible. For example the
congruence

X q- bx2
q" b2x3 q- -k b"-x,, =-0 (mod m), (4.1)

where b [ml/"], has no nonzero solution with maxlxl < [ml/"]. A second
example is

X2

X3

=- bx (mod rn )

bZxx (mod m)

x,, =- b"-x (mod rn). (4.2)

One can easily show that there is no nonzero solution of (4.2) with maxlxl <
b"/(b + 1). Thus for any e > 0 there is a positive number mo(e) such that if
m > m0() then (4.2) has no nonzero solution with maxlxl < (1 )m(-/.
More generally, for any k and n with k < n and any prime p, we can show

that there exists a k n system of congruences (mod p) such that max lxil
> 1/2[pk/] for all nonzero solutions x. Indeed, any integral point x, with x 0
(mod p) is a solution of p(n-X)k distinct k n systems (mod p). Thus for any
set S of distinct nonzero integral points (mod p) such that pnk > iSiP(-X)k,
there exists some k n system having no solution in S.
For a general Dedekind domain one can prove the following analogue of

Theorem 1, albeit a weaker version.

PROPOSITION 1. Let U be a k n matrix over a Dedekind domain R, of
rank r over the field offractions of R. Let A be a nonzero ideal in R and M the
set of points in R satisfying the congruence UxT" Or (mod A). Then [Rn:
M] < IR/A r.

In particular, if R is the ring of integers in a number field K, then there is a
nonzero solution x of the congruence Uxr= Or (modA) such that
maxlN(xi) < arlN(A)I /", ar as given in Lemma 2.

5. Systems of quadratic forms

LEMMA 3.
finite field

Let Q(x),..., Qk(X) be quadratic forms in n variables over a
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(a) For 1 < k < n/2 there exists a subspace of F of dimension [(n
k)/(k + 1)] on which Q1,..., Qk are identically zero. (This holds even when q is
even .)

(b) If q is odd, n is even and Q(x) is a quadratic form of determinant A,
then Q(x) vanishes on an n/2 dimensional subspace if and only if (- 1)"/2A is a
square in Fq.

(c) If q is odd, then any two quadratic forms Ql, Q2 vanish on a subspace of
dimension [(n- 3)/2].

David Leep has informed me that he can prove (c) when q is even as well.

Proof. Part (a) can be proved by induction on the dimension of the
subspace, using Chevalleys’s Theorem. Part (b) follows from the fact that the
dimension of any maximal isotropic subspace of the quadratic space (Fq, Q)
is 1/2 the dimension of the hyperbolic part of Fq" relative to Q.

Part (c) follows readily from a theorem of Amer [1, Satz 8] which states that
for any field F of characteristic 4: 2, any two quadratic forms Q, Q2 over F
have a d-dimensional subspace of common zeros if and only if Q + tQ2 has a
d-dimensional subspace of zeros over F(t), where is an indeterminate. But
any quadratic form in 5 variables over Fq(t) has a nontrivial zero in Fq(t) and
so it follows that Q + tQ2 has a [(n 3)/2] dimensional subspace of zeros.

THEOREM 2. Let Q,..., Qk be quadratic forms in n variables over the ring
of integers R in a number field K, and let A be a nonzero ideal in R. Suppose
that k < n/2. Then there exists a nonzero solution x Rn of the congruences

Qx(x) =- Qk(X) 0 (moO A) (5.1)
such that

maxlN(x,) _< alN(a)l k/(+)+k/(k+)(E-t) (5.2)
where I is the remainder upon dividing (n k) by (k + 1).

Remarks. An analogous statement can be made for the other type of
"smallness" discussed in Lemma 2. Also, parts (b) and (c) of Lemma 3 give
rise to sharper versions of the theorem when k 1 or 2. When k--2 we
obtain maxlN(x) < arlN(A)l /2+3/2("-).

Proof First assume that (k + 1)l(n k). Let A BC2, B I-I=Pi. For
1,..., s there exists a subspace of [R/Pi] n of dimension (n k)/(k + 1)

on which Qx,..-, Q, are identically zero. Thus by Lemma 1 there is an
R-module M of solutions of (5.1) such that

[R"" M] IN(C)I"fiIN(P)["-("-V(k+)
i---1

IN(A)I("+)/(+).
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By Lemma 2, M contains a nonzero point x such that maxlN(x)l satisfies
(5.2). If (k + 1) (n k) then we set variables equal to zero from the start,
where ! is the remainder upon dividing (n k) by (k + 1).
When K Q and k 1 then Theorem 2 is just Theorem 1 of Schinzel,

Schlickewei and Schmidt [6]. For a system of k quadratic forms over Z and
any positive integer m, R. Baker [2, Theorem 1] has shown that for any > 0,
if n > n0(, k) then there is a solution of

Ql(x)-= -= Qk(X)-=0 (modm)

such that 0 < maxlx,I < m0/)+’. However, no estimate was given on how
large n must be. If the number of variables is relatively small compared to k,
then one cannot expect to do better than a size of mk/(k+l) as the following
example shows.

Example. Let n 2(k + 1), p be a prime, a be a quadratic nonresidue
(mod p) and

Li(x)=Li(Xl,...,Xk+), 1 < < k,

be a system of linear forms as given by (4.2). For 1,..., k set

)2.Q,(xl,.. x,,)=L,(xl,., xk+l)
9-

aL,(Xk+2,., x,,

If x is a nonzero solution of Ql(x) -= 0k(X) 0 (rood p) then

b ) +1) k
maxlx,l> b+l [p/(k

where b [pl/(k+l)]. In this case, Theorem 2 gives us a nonzero solution with

maxlxl < pk/(k+)+k/(k+X)(2k+). One would like to be able to remove the
extra piece k/(k + 1)(2k + 1) from the exponent.

6. Further discussion

The method of obtaining small solutions as in Lemma 1 breaks down when
we apply it to forms of degree greater than two. The difficulty stems from the
fact that if d < q and n < (1/d!)ld-1 then there exists a form of degree d
over Fq in n variables which does not vanish on any/-dimensional subspace of
Fff, (as a counting argument will readily verify). Now, the effectiveness of
Lemma 1 depends on the size of l/n: the larger this ratio, the smaller the
solution we obtain. Thus for a single form of degree d with 2 < d < n the best
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we can do is to set all but d + I variables equal to zero and settle for a one
dimensional subspace of zeros of the resulting form. This idea yields:

PROPOSITION 2. Let R be the ring of integers in a number field K, A a
nonzero ideal in R and fl(x),..., fk(x) forms in R[xl,..., xn]. If n >
ik..ldeg(fi) then there exists a nonzero solution x of (1.1) such that

maxlN(x,) < arlN(A)I*/*+.

Remark. The restriction on n given in Proposition 2 cannot be weakened,
for if n ,.k= deg(f) then (1.1) may not have any nonzero solutions.
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