MIXED SIEGEL MODULAR FORMS AND KUGA FIBER VARIETIES

MIN HO LEE

1. Introduction

Mixed automorphic forms were first introduced by Hunt and Meyer [1] in connection with holomorphic forms on elliptic surfaces. A generalization to mixed automorphic forms of higher weights was treated in [5] (see also [7], [8]).

Let E be an elliptic surface and let $\pi\colon E\to X$ be an elliptic fibration in the sense of Kodaira (cf. [2]). Thus E is a compact smooth surface over C,X is a compact Riemann surface, and the generic fiber of π is an elliptic curve. We assume that π has a global section and that there are no exceptional curves of the first kind in the fibers of π . Let E_0 be the union of the regular fibers of π and let $X_0=\pi(E_0)$. We identify the universal covering space of X_0 with the Poincaré upper half plane \mathscr{H} , and the fundamental group $\pi_1(X_0)$ with a subgroup Γ of $PSL(2,\mathbf{R})$. Thus we have $X_0=\Gamma\setminus \mathscr{H}$, where Γ acts on \mathscr{H} by linear fractional transformations. Given a point $z\in X_0$, we choose a holomorphic 1-form on $E_z=\pi^{-1}(z)$ and a basis $\{\alpha_z,\beta_z\}$ of $H_1(E_z,\mathbf{Z})$ that depends on $z\in X_0$ in a continuous manner. Then the many-valued function

$$\omega(z) = \frac{\int_{\alpha_z} \Phi}{\int_{\beta_z} \Phi}$$

on X_0 can be lifted to a holomorphic function $\omega \colon \mathcal{H} \to \mathcal{H}$ satisfying $\omega(\gamma z) = \chi(\gamma)\omega(z)$ for all $\gamma \in \Gamma$ and $z \in \mathcal{H}$, where $\chi \colon \Gamma \to SL(2,\mathbf{R})$ is the monodromy representation of $\Gamma = \pi_1(X_0)$ for the elliptic fibration $\pi \colon E \to X$. Hunt and Meyer [1] defined the space of mixed cusp forms $S_{2,1}(\Gamma,\omega,\chi)$ using the automorphy factor

$$j(\gamma, z) = (cz + d)^{2}(c_{\gamma}\omega(z) + d_{\gamma}),$$

Received August 27, 1992.

1991 Mathematics Subject Classification. Primary 11F46; Secondary 14K10.

where

$$\gamma = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma \quad \text{and} \quad \chi(\gamma) = \begin{pmatrix} * & * \\ c_{\chi} & d_{\chi} \end{pmatrix} \in SL(2, \mathbf{R}).$$

They proved that $S_{2,1}(\Gamma, \omega, \chi)$ is canonically isomorphic to the space $H^0(E, \Omega^2)$ of holomorphic 2-forms on E. In [5] the space $S_{2,n}(\Gamma, \omega, \chi)$ of mixed automorphic forms of type (2, n) was defined using the automorphy factor

$$j(\gamma, z) = (cz + d)^{2} (c_{\chi}\omega(z) + d_{\chi})^{n},$$

and it was proved that the space $S_{2,n}(\Gamma, \omega, \chi)$ is canonically isomorphic to the space $H^0(E^n, \Omega^{n+1})$ of holomorphic (n+1)-forms on the elliptic variety E^n , where E^n is obtained by resolving the singularities of the compactification of the *n*-fold fiber product of E_0 over X_0 .

Assuming that $\Gamma \subset SL(2, \mathbb{R})$ with $-1 \notin \Gamma$ and that χ is an inclusion $\Gamma \hookrightarrow SL(2, \mathbb{R})$, the above result of Hunt and Meyer was proved by Shioda [11] and the higher weight case was proved by Sŏkurov [12].

The purpose of this paper is to obtain a result similar to the ones described above in the case of Siegel modular forms. Let G be a semisimple Lie group whose quotient G/K by a maximal compact subgroup K is isomorphic to \mathcal{H}^m and let Γ be a discrete subgroup of G such that the quotient $X = \Gamma \setminus \mathcal{H}^m$ has a structure of a complex manifold, where \mathcal{H}^m is the Siegel upper half space of degree m. Then both G and $Sp(m, \mathbb{R})$ act on \mathcal{H}^m . Let $\rho \colon G \to Sp(m, \mathbb{R})$ be a homomorphism and let $\tau \colon \mathcal{H}^m \to \mathcal{H}^m$ be a holomorphic map such that

$$\omega(gz) = \rho(g)\omega(z)$$

for all $g \in G$ and $z \in \mathscr{H}^m$. Then the equivariant pair (ρ, ω) defines a Kuga fiber variety $\pi \colon Y_\omega \to X$ over X whose fibers are complex tori. In this paper, we define mixed Siegel modular forms and show that the space of holomorphic forms of the highest degree on the fiber space Y_ω^n of the n-fold fiber product $\pi^n \colon Y_\omega^n \to X$ of the Kuga fiber variety $\pi \colon Y_\omega \to X$ is canonically embedded in the space $\mathscr{M}_{m+1,n}(\Gamma,\omega,\rho)$ of mixed Siegel modular forms of type (m+1,n) associated to Γ,ω and ρ .

I would like to thank the referee for various helpful suggestions.

2. Kuga fiber varieties

Let V be a vector space over \mathbf{R} of dimension 2m, and let β be an alternating bilinear form on V. We set

$$Sp(\beta) = \{g \in GL(V) | \beta(gx, gy) = \beta(x, y) \text{ for all } x, y \in V\}.$$

694 MIN HO LEE

and let $\mathcal{H}(\beta)$ be the set of all complex structures J on V such that the bilinear form $\beta(x, Jy)$ on V is symmetric and positive definite. Then $Sp(\beta)$ acts on $\mathcal{H}(\beta)$ transitively by

$$(g, J) \mapsto gJg^{-1}$$
 for $g \in Sp(\beta)$, $J \in \mathcal{H}(\beta)$.

Let $\{e_1,\ldots,e_m,f_1,\ldots,f_m\}$ be a basis for V and let $\varphi\colon V\to \mathbf{R}^{2m}$ be the isomorphism such that

$$\varphi(e_i) = \varepsilon_i$$
 and $\varphi(f_i) = \varepsilon_{m+i}$

for $1 \le i$, $j \le m$, where $\{\varepsilon_i | 1 \le i \le 2m\}$ is the standard basis for \mathbb{R}^{2m} . We assume that the choice of the basis for V has been made in such a way that β corresponds to the $(2m \times 2m)$ -matrix

$$\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$
,

i.e.,

$$\beta(e_i, e_j) = \beta(f_i, f_j) = 0,$$

$$\beta(e_i, f_i) = -\delta_{ij}$$

for $1 \le i$, $j \le m$, where δ_{ij} is the Kronecker delta. Then φ induces an isomorphism $\tilde{\varphi}$ of $\mathcal{H}(\beta)$ to the Siegel upper half space

$$\mathcal{H}^m = \{ z \in M_m(\mathbb{C}) | z = {}^t z, \text{ Im } z \gg 0 \}$$

(see [10, §II.8]).

Let G be a semisimple Lie group and let K be a maximal compact subgroup of G. We assume that the symmetric space D = G/K has a G-invariant complex structure. Let $\rho: G \to Sp(\beta)$ be a homomorphism and let $\tau: D \to \mathcal{H}(\beta)$ be a holomorphic map such that

$$\tau(gz) = \rho(g)\tau(z)$$

for all $g \in G$ and $z \in D$. Then ρ determines the semidirect product $G \bowtie_{\rho} V$ in which the multiplication is given by

$$(g_1, v_1) \cdot (g_2, v_2) = (g_1g_2, \rho(g_1)v_2 + v_1)$$

for all $g_1, g_2 \in G$ and $v_1, v_2 \in V$. The group $G \ltimes_{\rho} V$ acts on $D \times V$ by

$$(g,v)\cdot(x,w)=(gx,\rho(g)w+v)$$

for $(g, v) \in G \ltimes_{\rho} V$ and $(x, w) \in D \times V$.

Let $u(x) = (u_1(x), \dots, u_k(x))$ be a global complex analytic coordinate system of the bounded symmetric domain D. Define the map $z: D \times V \to \mathbb{C}^m$ by

$$z(x,w) = (\tau'(x),1)E\varphi(w),$$

where $\tau' = \tilde{\varphi} \circ \tau$ and

$$E = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \in M_{2m}(\mathbf{R}).$$

This induces the map $\mu: D \times V \to \mathbb{C}^{k+m}$ given by

$$\mu(x,w) = (u(x), z(x,w)).$$

Thus μ is a diffeomorphism of $D \times V$ onto $u(D) \times \mathbb{C}^m$. If J is the natural complex structure on $u(D) \times \mathbb{C}^m$, then $\mathcal{F} = \mu^{-1}(J)$ defines a complex structure on $D \times V$ with global coordinates

$$u_1,\ldots,u_k,z_1,\ldots,z_m.$$

Proposition 2.1. The complex structure \mathcal{F} on $D \times V$ is invariant under the action of $G \ltimes_{\sigma} V$.

Proof. We shall give the proof of this proposition for later purpose although it is essentially contained in [3]. If $(g, v) \in G \ltimes_{\rho} V$ and $(x, w) \in D \times V$, then we have

$$(g,v)\cdot(x,w)=(gx,\rho(g)w+v).$$

Since D is assumed to have a G-invariant complex structure, $u_1(gx), \ldots, u_k(gx)$ are holomorphic functions of u_1, \ldots, u_k , and similarly u_1, \ldots, u_k are holomorphic functions of $u_1 \circ (g, v), \ldots, u_k \circ (g, v)$. On the other hand, we have

$$z((g,v)\cdot(x,w)) = z(gx,\rho(g)w+v)$$

$$= (\tau'(gx),1)E\varphi(\rho(g)w+v)$$

$$= (\tau'(gx),1)E(\rho'(g)\varphi(w)+\varphi(v)),$$

where ρ' is the symplectic representation of G on \mathbf{R}^{2m} determined by ρ and φ . Hence we have

$$z((g,v)\cdot(x,w))=(\tau'(gx),1)^t\rho'(g)^{-1}E\varphi(w)+(\tau'(gx),1)E\varphi(v).$$

If

$$\rho'(g) = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix},$$

then we have

$$\tau'(gx) = \rho'(g)\tau'(x) = (a'\tau'(x) + b')(c'\tau'(x) + d')^{-1}.$$

Since $\tau'(x)$ and $\tau'(gx)$ are symmetric and

$$\begin{pmatrix} \tau'(gx) \\ 1 \end{pmatrix} = \rho'(g) \begin{pmatrix} \tau'(x) \\ 1 \end{pmatrix} (c'\tau'(x) + d')^{-1},$$

we have

$$(\tau'(gx),1) = {}^{t}(c'\tau'(x) + d')^{-1}(\tau'(x),1)^{t}\rho'(g).$$

Hence we have

$$(\tau'(gx),1)^{t}\rho'(g)^{-1}E\varphi(w) = {}^{t}(c'\tau'(x)+d')^{-1}(\tau'(x),1)E\varphi(w)$$
$$= {}^{t}(c'\tau'(x)+d')^{-1}z(x,w).$$

Thus it follows that

$$z((g,v)\cdot(x,w))={}^{t}(c'\tau'(x)+d')^{-1}z(x,w)+(\tau'(gx),1)E\varphi(v).$$

Since τ' is holomorphic and the complex structure on D is G-invariant, the right hand side of the above relation is a holomorphic function of $(x, w) \in D \times V$. The same relation also indicates that z_1, \ldots, z_m are holomorphic functions of $z_1 \circ (g, v), \ldots, z_m \circ (g, v)$. Thus it follows that

$$u_1 \circ (g, v), \ldots, u_k \circ (g, v), z_1 \circ (g, v), \ldots, z_m \circ (g, v)$$

are again global complex coordinates of $D \times V$.

Let L be a lattice in V and let Γ be a torsion-free cocompact discrete subgroup of G such that $\rho(\Gamma)L \subset L$. Then the semidirect product $\Gamma \ltimes_{\rho} L$ operates on $D \times V$ properly discontinuously, and by proposition 2.1 the complex structure \mathscr{T} on $D \times V$ determined by the holomorphic map $\tau \colon D \to \mathscr{H}(\beta)$ induces a complex structure on the manifold $\Gamma \ltimes_{\rho} L \setminus D \times V$. We denote by Y_{τ} the complex manifold $\Gamma \ltimes_{\rho} L \setminus D \times V$ obtained this way. Then the projection map $D \times V \to D$ induces a fiber bundle $\pi \colon Y_{\tau} \to X$ known as a Kuga fiber variety over the complex manifold $X = \Gamma \setminus D$ whose fibers are complex tori of dimension M (see [3] and [10, Chapter 4] for details; see also [4, §1], [6]).

3. Mixed Siegel modular forms

In this section we define mixed Siegel modular forms which generalize usual Siegel modular forms. Let \mathcal{H}^m be the Siegel upper half space of degree m > 1 on which the symplectic group $Sp(m, \mathbf{R})$ operates. We define the automorphy factor

$$j: Sp(m, \mathbf{R}) \times \mathscr{H}^m \to \mathbf{C}^{\times}$$

by

$$j(\sigma, z) = \det(cz + d),$$

where

$$z \in \mathscr{H}^m$$
 and $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp(m, \mathbf{R}).$

Let G be a semisimple Lie group such that the quotient G/K of G by a maximal compact subgroup K is isomorphic to \mathcal{H}^m . Thus G can be written as a product $Sp(m, \mathbf{R}) \times G_c$ with G_c compact, and the groups Γ , G and $Sp(m, \mathbf{R})$ act on \mathcal{H}^m . We denote by p the natural projection of G onto $Sp(m, \mathbf{R})$. Let $\rho: G \to Sp(m, \mathbf{R})$ be a homomorphism and let $\omega: \mathcal{H}^m \to \mathcal{H}^m$ be a holomorphic map such that

$$\omega(\gamma z) = \rho(\gamma)\omega(z)$$

for all $z \in \mathscr{H}^m$ and $\gamma \in \Gamma$.

Definition 3.1. A holomorphic map $\psi \colon \mathscr{H}^m \to \mathbb{C}$ is a mixed Siegel modular form of type (k, l) associated to Γ , ω and ρ if

$$\psi(\gamma z) = j(p(\gamma), z)^{k} j(\rho(\gamma), \omega(z))^{l} \psi(z)$$

for all $\gamma \in \Gamma$ and $z \in \mathcal{H}^m$.

We shall denote by $\mathcal{M}_{k,l}(\Gamma, \omega, \rho)$ the space of mixed Siegel modular forms of type (k, l) associated to Γ , ω and ρ .

4. Kuga fiber varieties determined by subgroups of symplectic groups

In this section, as in §3, G is a semisimple Lie group whose quotient G/K by a maximal compact subgroup K is isomorphic to \mathcal{H}^m . Thus G can be written as a product $G = Sp(m, \mathbf{R}) \times G_c$ with G_c compact, and both G and $Sp(m, \mathbf{R})$ act on the Siegel upper half space \mathcal{H}^m . Let $\rho: G \to Sp(m, \mathbf{R})$ be a

698 MIN HO LEE

homomorphism and let $\omega \colon \mathscr{H}^m \to \mathscr{H}^m$ be a holomorphic map such that $\omega(gz) = \rho(g)\omega(z)$ for all $z \in \mathscr{H}^m$ and $g \in G$. If L is a lattice in \mathbb{R}^{2m} and if Γ is a torsion-free cocompact discrete subgroup of G with $\rho(\Gamma)L \subset L$, then, as described in §2, ρ and ω determine a Kuga fiber variety $\pi \colon Y_\omega \to X$ over the complex manifold X whose fibers are complex tori of dimension m.

THEOREM 4.1. If $k = m(m+1)/2 = \dim \mathcal{H}^m$, then the space $H^0(Y_{\omega}, \Omega^{k+m})$ of holomorphic (k+m)-forms on the Kuga fiber variety Y_{ω} is canonically embedded in the space $\mathcal{M}_{m+1,1}(\Gamma, \omega, \rho)$ of mixed Siegel modular forms of type (m+1,1) associated to Γ , ω and ρ .

Proof. Let $\psi \in H^0(Y_\omega, \Omega^{k+m})$ be a holomorphic (k+m)-form on Y_ω . Then ψ is a holomorphic (k+m)-form on $\mathscr{H}^m \times \mathbb{C}^m$ that is invariant under the action of $\Gamma \ltimes_\rho L$, where L is a lattice in \mathbb{C}^m . Thus ψ can be written in the form

$$\psi = f(u, z) du_1 \wedge \cdots \wedge du_k \wedge dz_1 \wedge \cdots \wedge dz_m,$$

where $u_1,\ldots,u_k,z_1,\ldots,z_m$ are the global coordinates of $\mathcal{H}^m\times \mathbf{C}^m$ constructed in §2. Given $x\in X$, ψ descends to a holomorphic *m*-form on the fiber $Y_{\omega,x}$ over x. The fiber $Y_{\omega,x}$ is a complex torus of dimension m, and hence the dimension of the space of holomorphic m-forms on $Y_{\omega,x}$ is one. Since any holomorphic function on a compact complex manifold is constant, the restriction of f(u,z) to the complex torus $Y_{\omega,x}$ is constant. Thus f(u,z) depends only on u; and hence ψ can be written in the form

$$\psi = f(u) du_1 \wedge \cdots \wedge du_k \wedge dz_1 \wedge \cdots \wedge dz_m,$$

where f is a holomorphic function on \mathcal{H}^m . To consider the invariance of ψ under the group $\Gamma \ltimes_{\rho} L$, we set

$$du = du_1 \wedge \cdots \wedge du_k$$
 and $dz = dz_1 \wedge \cdots \wedge dz_m$,

and let $(\gamma, v) \in \Gamma \ltimes_{\rho} L$. Then we have

$$du \circ (\gamma, v) = j(p(\gamma), u)^{-(m+1)} du,$$

where p is the natural projection of G onto $Sp(m, \mathbf{R})$ (see e.g., [9, §1.6]). On the other hand, as in the proof of Proposition 2.1, we have

$$dz \circ (\gamma, v) = d \Big[{}^{t} (c_{\rho}\omega(u) + d_{\rho})^{-1} z + (\omega(\gamma u), 1) Ev \Big],$$

where

$$E = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \in M_{2m}(\mathbf{R}) \quad \text{and} \quad \rho(\gamma) = \begin{pmatrix} * & * \\ c_{\rho} & d_{\rho} \end{pmatrix};$$

here ω plays the role of τ' in the proof of Proposition 2.1. Hence we obtain

$$\psi = \psi \circ (\gamma, v) = f(\gamma u) j(p(\gamma), v)^{-(m+1)} \det \left[{}^t (c_\rho \omega(u) + d_\rho)^{-1} \right] du \wedge dz$$
$$= f(\gamma u) j(p(\gamma), u)^{-(m+1)} j(\rho(\gamma), \omega(u))^{-1} du \wedge dz.$$

Thus we have

$$f(\gamma u) = j(p(\gamma), u)^{m+1} j(\rho(\gamma), \omega(u)) f(u),$$

and it follows that

$$f(u) \in \mathscr{M}_{m+1,1}(\Gamma,\omega,\rho).$$

Therefore the assignment $\psi \mapsto f(u)$ determines a canonical embedding of $H^0(Y_\omega, \Omega^{k+m})$ in $\mathscr{M}_{m+1,1}(\Gamma, \omega, \rho)$.

Now we consider fiber products of Kuga fiber varieties. Let $\pi\colon Y_\omega \mapsto X$ be the Kuga fiber variety constructed above. For each positive integer n, we consider the n-fold fiber product

$$Y_{\omega} \times_{\pi} Y_{\omega} \times_{\pi} \cdots \times_{\pi} Y_{\omega}$$

of Y_{ω} over X. We shall use Y_{ω}^{n} to denote this fiber product and $\pi^{n}: Y_{\omega}^{n} \to X$ to denote the fibration induced by π .

Theorem 4.2. The space $H^0(Y^n_\omega, \Omega^{k+mn})$ of holomorphic (k+mn)-forms on Y^n_ω is canonically embedded in the space $\mathscr{M}_{m+1,n}(\Gamma, \omega, \rho)$ of mixed Siegel modular forms of type (m+1,n) associated to Γ , ω and ρ .

Proof. If ψ is a holomorphic (k+mn)-form on Y_{ω}^{n} , then ψ can be considered as a holomorphic (k+mn)-form on $\mathcal{H}^{m} \times (\mathbb{C}^{m})^{n}$ that is invariant under the action of $\Gamma \ltimes_{\rho} L$. Thus, as in the proof of Theorem 4.1, there is a holomorphic function f(u) on \mathcal{H}^{m} such that

$$\psi = f(u) dy \wedge dz^{(1)} \wedge \cdots \wedge dz^{(n)},$$

where $u=(u_1,\ldots,u_k),\ z^{(j)}=(z_1^{(j)},\ldots,z_n^{(j)}),$ and $(u,z^{(j)})$ are the canonical coordinates of $\mathcal{H}^m\times \mathbb{C}^m$ for each j with $1\leq j\leq n$ considered in §2. Using

700 MIN HO LEE

the results given in the proof of Theorem 4.1, for each $(\gamma, v) \in \Gamma \ltimes_{\rho} L$, we obtain

$$\psi \circ (\gamma, v) = f(\gamma u) j(p(\gamma), u)^{-(m+1)} j(\rho(\gamma), \omega(u))^{-n}$$
$$\times du \wedge dz^{(1)} \wedge \cdots \wedge dz^{(n)}.$$

Thus we have

$$f(\gamma u) = j(p(\gamma), u)^{m+1} j(\rho(\gamma), \omega(u))^{n} f(u),$$

and it follows that

$$f(u) \in \mathscr{M}_{m+1,n}(\Gamma,\omega,\rho).$$

Therefore the assignment $\psi \mapsto f(u)$ determines a canonical embedding of $H^0(Y_\omega, \Omega^{k+mn})$ in $\mathscr{M}_{m+1,n}(\Gamma, \omega, \rho)$.

REFERENCES

- B. Hunt and W. Meyer, Mixed automorphic forms and invariants of elliptic surfaces, Math. Ann. 271 (1985), 53-80.
- K. Kodaira, On compact analytic surfaces II-III, Ann. Math. 77 (1963), 563-626; 78 (1963), 1-40.
- 3. M. Kuga, Fiber varieties over a symmetric space whose fibers are abelian varieties I, II, Lect. Notes, Univ. Chicago, 1963/64.
- Invariants and Hodge cycles, Advanced Studies in Pure Math. 15 (1989), 373-413.
- M.H. Lee, Mixed cusp forms and holomorphic forms on elliptic varieties, Pacific. J. Math. 132 (1988), 363-370.
- 6. _____, Conjugates of equivariant holomorphic maps of symmetric domains, Pacific J. Math. **149** (1991), 127-144.
- 7. _____, On the Kronecker pairing for mixed cusp forms, Manuscripta Math. 71 (1991), 35-44.
- 8. _____, Periods of mixed cusp forms, Manuscripta Math. 73 (1991), 163-177.
- A. Nenashev, Siegel cusp modular forms and cohomology, Math. USSR Izv. 29 (1987), 559–586.
- I. Satake, Algebraic structures of symmetric domains, Princeton Univ. Press, Princeton, N.J., 1980.
- 11. T. SHIODA, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59.
- V. SŎKUROV, Holomorphic differential forms of higher degree on Kuga's modular varieties, Math USSR Sb. 30 (1976), 119–142.

University of Northern Iowa Cedar Falls, Iowa