THE CONSTRUCTION OF A CLASS OF DIFFUSIONS

BY
Donarp A. DawsonN

1. Introduction

. B. Dynkin [4] has shown that the generator of a diffusion on a locally
compact, separable space ) has a canonical representation in terms of the
mean hitting times and hitting probabilities. Let z({) be a strict Markov
process with generator & whose domain is D(®). Let fe D(®), £eQ, U be a
neighborhood of ¢ with compact closure and nonnull boundary and =¥ be
defined as inf (¢ : 2(¢) ¢ U). Then

B (f(2(7))) = [(&)
(ON() = tim =T .

It is casy to show that O satisfies a maximum property and is a local operator
on C(Q). W. Feller [6] has posed the converse question, namely, does every
local operator on C(Q) which satisfies the maximum property generate a dif-
fusion. As a partial solution of this problem it will be shown that every such
operator arising from a set of mean hitting times and hitting probabilities
having certain smoothness properties does indeed generate a diffusion. The
method employed is the construction of a sequence of approximating random
walks which will be shown to converge to a limit process which is a diffusion.
This is an extension of the construction of I'. B. Knight [10], [11] for the one-
dimensional case.

This paper is based on the author’s Ph.D. thesis written under the super-
vision of Professor Henry P. McKean Jr.

2. Some definitions and the main result

Let @ be a locally compact, separable Hausdorff space with metric p(-, -).
Let C be the class of all compact subsets of the state space @ and S be the
o-field generated by C. The sets of S are called the Borel sets of Q [7].

Let A be a collection of open sets with nonnull boundaries of the space
such that

i. the closure of any set of A is a compact subset of @,
ii. A is a base for the topology of @, and
iii. if Dy, DyeA, then Dy u Dy, Dy — D, , and Dy n Ds € A if they are non-
empty.

For D e A, let B(dD) be the class of Borel subsets of D, the boundary of D.
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We will assume that @ is noncompact so that we can write Q = Um_; ',y ,
Twm DO Mmeyrand Ty € A

A collection {hap(-, -), D €A} of real-valued functions on D X B(9D) is
called a family of smooth hiiting probabilities if :

1. hap(-, A), A e B(dD), is measurable with respect to S,

il. han(§, -), £eD, is a probability measure on B(dD),

iii. if £edD, han(E, {£}) = 1,

iv. if f is a nonnegative function measurable with respect to B(4D), then
u(z) = fap f(&)han(z, d§) is continuous if finite-valued on D and is con-
tinuous on D if f is continuous on 4D, and

v. if Dy, D:eA and D, C D,, Ee Dy, then

haDQ(E, A) = haDI(E, dﬂ)habz(‘ﬂ; A)-
D,

A finite real-valued function, v, is said to be subharmonic relative to the family
{han(-, +), D e A} if it is upper semi-continuous and if

v(z) < f han (2, dn)v(n) for every D € A.
aD

v 1s said to be superharmonic if —v is subharmonie.

The fine topology induced on @ by the family {hsn( -, - ), D e A} is the least
fine topology such that all superharmonic functions are continuous in this
topology, that is, it is generated by sets of the form

Ne={nineQ, |v(n) —v(§)]| < & & > 0, vsuperharmonic}.

N is called a fine neighborhood of £.
A collection {ep(-) : D e A} of real-valued functions on D is called a family
of smooth mean hitting times with respect to {han(-, -), D €A} if:

L 0 <ep(§) < =,teD,
]l ifDl,DgeA,ch:Dg,EGDl,then

en(®) = e0(®) + [ hon, (& dn)en(n),

ii. if D, T D, Dn, DeA, £eD, for every m, then ep, (£) T en(£), and
iv. ep(£) is a continuous function of e D.

A family of smooth mean hitting times is said to satisfy the fine neighbor-
hood condition if for any fine neighborhood N; of £ and DneA, D, | N;
there exists an ¢ > 0 such that ep,(£) > ¢ for every m.

Given a class of regular sets A of a space @, a family of smooth hitting prob-
abilities {hon(-, -) : DeA} and a family of smooth mean hitting times,
{en(+) : D e A}, satisfying the fine neighborhood condition we construct an
operator ® as follows. If ueC(Q),
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fa han (£, dn)u(n) — u()
1. D

Gu(t) = lim if the limit exists,
DeA GD(E)
Dl
= otherwise.

Then & is a linear operator on the domain
D(®) ={u:ueC(Q), GueC(Q)}

and is called a generalized differential operator.

Following [5] the definitions of Markov process, strict Markov process and
stationary Markov process will now be given.

Consider

a. a space @ and a function {(w), ¢ : Q@ — [0, =],

b. a function z(¢, w) = x,(w) defined for w e Q, t [0, {(w)], whose range is
the measure space (@, S) (by convention we say that z(¢, w) ¢ @ for
t> ¢(w)),

¢. foreach0 < s < tao-field F} in the space @, = {w : {(w) > t}, such that
I”;i C Fi: if S1 > 82, and ty _<_ tz, and

d. for each s > 0, z¢Q, a function P, () on the smallest o-field F° which
contains F7 for each { > s.

These elements define a Markov process X = (z., ¢, Fi, Ps.») on the space
Q if the following conditions are satisfied:

1. s <t < uand 4 ¢ F; implies that {4, { > u} e F5,,
2. {z,eT}eFiforany0 < s < TeS
3. P, is a probability measure on the o-field F”,
4, forany 0 < s <, TeS, P(s,z;¢, ') = P,,{x, eI} is an S-measurable
function of z,
P(s, s, @ — {2}) = 0, and
6. f0<s<t<uzxeQ I'eS, then
PodzueT | Fi} = P4, @54, T), a.e. [Q, Pl
The function z(u, w) = z,(w) induces a mapping of the measure space
([s, ] X @, B; X F?) into (Q, S). (B} is the o-field of subsets of [s, {]

generated by intervals.) The Markov process is said to be measurable if
this mapping is measurable for any 0 < s < &

'C;'l

A nonnegative function 7(w) is an s-Markov time if
i s < 7(w) < max [s, {(w)], weQ, and
i, jwir(w) <t < gf(w)elFi;,s <t
The subsets A C Q. such that forany ¢ > s, {A, 7 < ¢ < {} € F; form a o-field
in Q, denoted by F7;, .

The Markov process X = (x,, ¢, Fi, Ps,.) in (@, S) is said to be strict
M arkov if it is measurable and satisfies:
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i. foranyt > 0,TeS, P(s,z;(, T') = P,.{x,eT} is a B} X S measurable
funetion of s and z, and

il. if 7 is an s-Markov time, we have for any F;, measurable function
n(w) > 7(w) and for any z e Q, I' e S,

P, fa, el | Fry} = P(r, 229, 1), a.e. [, Pl

Let F* be the minimal system of subsets of the space Q) = {¢ > 0} that
contains all the sets {z,eT}, ¢ > 0, T'e S, and is closed with respect to the
operations of taking complements and countable unions and intersections.

The Markov process X = (z,, ¢, Fi, Ps ) is said to be stationary if for any
t > 0 there is a field homomorphism 6, : F* — F* such that
i‘ 8; Q{] = Qt 5
il. 0dxnel} = {xpnel}, h >0, €S, and
iii. forany A e F*, P, (6, A) = Py.(A).
Tfor a stationary process it suffices to consider the measures (- ) = Py(-)
and 0-Markov times which will be called simply Markov tvmes.
A stationary strict Markov process X = (x,, {, Fi, P’.) is a diffusion if

Pi(z(t, w) is a continuous function of 1¢[0, ¢]) = | for all £e@.

MaiNn Resvnr. Let A be a class of regular subsels of Q, {hon(-, -), D e A}
be a family of smooth hitting probabilities and {en(-), D e A} be a family of
smooth mean hitling times which satisfy the fine neighborhood condition. Then
for any T, there exists a diffusion X = (&, ", F; , P.) such that if

#P(w) =inf (t: &) ¢ D), Ded  DCY,, LHeD,

then

(2.1) Peo(2(72) € - ) = han(ks, ),
(2.2) By (77) = en(k),

and

(2.3) (w) = 7 (w).

This implies that a restriction of the generalized differential operator &, arising
Jrom the families {hap(-, -), D eA} and {en(-), D eA}, to some linear sub-
space of C(Q) 1is the generator of the diffusion X.

Let us first give an outline of the proof of this result. We begin by defining
a sequence, {@,}, of open coverings of the space . Next we construct a
sequence of generalized random walks in which at each step a jump is made
to the closest boundary of a set of @, in accordance with the given hitting
probabilities. Then by mapping the ordered set of jumps into [0, 1] we con-
struct a continuous, strict, nonstationary Markov process x2(s). To obtain
the probability structure of x(s) we make use of the projective limit of the
generalized random walks. It is then shown that we can define a natural
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time parameter for the paths of z(s) by means of limits of sums of mean hitting
times associated with the successive steps of the random walks. This natural
time parameter is shown to be a continous, strictly increasing function of
s.  TFinally by reparameterizing the paths of z(s) with the natural time param-
cter it is verified that we obtain the required diffusion.

3. The sequence of generalized random walks

In this section a sequence of generalized random walks will be constructed.
By a generalized random walk is meant a random walk with the time parameter
ranging over the ordinals. Tollowing [1, pp. 71-76] the ordinals will be des-
ignated by 1, 2, -, @, -+, 2, ---,w2, e @ e ,‘w“‘”’ cee g, e
and if X is a set of ordinals 2(X) is the ordinal number of the well ordered set
of all ordinals smaller than or equal to some ordinal of X.

We first define a sequence of coverings, {@,}, of the space Q. We require
the following lemma.

Lemma 3.1. Given ¢ > 0, £€Q, there exists a D e A such that £ e D and
en(+) || < & where || - || is the sup norm.

Proof. Choose a set D’ such that £e D’ and D’ ¢ A. Then there is a set
D < D’ such that £e D, DeA and such that

len(£) — en(n) | < ¢ for n e D.
Then

en(m) = ew() = [ han(n, d2)ewr(2) < 22,
Q.I.D.

Since  is separable there is a countable class of sets {T,,, meZ'},
Zt =10, 1,2, ---}, such that {T',,, m e Z"} is a base for the topology on Q
and each T',, e A.  Moreover, there is a subclass @ of {I',, m e Z} such that
()if DeCo, | en || <1, (Ii) @islocally finite, that is, any compact subset
of @ has nonnull intersection with only finitely many sets of @,, and (iii)
@ is an open covering of  which is a refinement of {I';:7%eZ'} where
I'y = Ub T, Also, Q@ = Up_ T, and T,y D I'ny [9, Chapter 5).

Hence for any K e Z" and £eQ there is a set D e A such that £eD and
0 < |lep] <27% Let us make some selection of such sets for each £ and K
(axiom of choice), D(K, £), such that diam (D(K, £)) | 0 uniformly for
teQas K — «. Let D = {D(K, £), £eQ}.

We now define the sequence of coverings {©,} inductively, starting with
€;. Given @,_1, we obtain @,, as follows. TFor any set D e @,_; the collec-
tion of sets {D(m, £) : D(m, £) €D, , £e D} forms an open covering of the
compact set D and hence there is a finite subcovering, €, (D). €, is the col-
lection of open scts obtained by considering all intersections of sets of @,_;
and sets of {G,I,L(D), De@,i}. €, is locally finite. Furthermore, @, is a
refinement of ©,,;, that is; every set of @, is a subset of a set of @,,_; . Let
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e = Us_ e, Cr = An the field generated by €,, and the closures of sets of
Cn,and €* = Un_ ).

Given t e Q, K ¢ Z* we assign a set D(K, £) as follows:

D(K,t) = N{D:teD, Deex} — UID, t¢D, D eCxl.

Since Cg is locally finite, D(K, &) is nonnull and D(K, £) e A. [urthermore,
teD(K,£)and 0 < || ep.py || < 27%. Inother words, D(K, £) is the smallest
open set containing ¢ in € .

We can now construct the space of paths of the random walks. Since @
is noncompact, we can adjoin to Q the point «, define Q" as Qu { =}, and
topologize Q@ so that it is the one point compactification of Q. The open sets
of Q' are the open sets of Q and the complements in @’ of the compacts subsets

of Q.

A K-path starting at & , designated by wg(-), is a mapping from the set
{1, 2, -, &} into Q  such that:
i. ’wK(O) = Eo,
il. wg(a + 1) edD(K, wg(a)) unless wr(a) = =, if wx(a) = «, then
wg(a + 1) = o, and
iii. if {wx(am), meZ"} has « asa cluster point, then wx(h({an})) = .

The class of all such K-paths is designated by Q. wg(-) has K generalized
subsequences wx(-), 0 < ¢ < K — 1. wk(-) is the generalized subsequence
of wx(-) such that wi(0) = wx(0), wk(a 4+ 1) edD(i, wk(a)), and if
Wi (otm) corresponds to wx(B,.) for m e Z*, then wi (h({am})) = wx(h({Bn})).
Clearly wi(-) e Q8.

Let x = Ugo @F. We can define a mapping

Mx : Qx — Qg (onto) by Mx(wx(-)) = wg (-).

Under this mapping we can construct the total inverse image in Q¢ of any
wx_l( . )

We are now going to interpret Qx as the sample space of a generalized random
walk having the one step transition probabilities induced by the hitting prob-
abilities.

Let F&¥ be the least o-field of subset of Qx generated by sets of the form

{we(+) T wx(a)ed, A eC, a < a)
and
{we(+) T wr(a) = », a < af.
Similarly, let Fi**~ be the least o-field of subsets of Qx generated by sets of
the form
fwe(-) T wr(a) e A, A eC, o < a}
and
fwr(:) t wx(a) = ©, a < a.
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Let Fi&® and Fi**” be the corresponding fields of subsets of Qx .
TFor each & e @, by the iteration of the transition probabilities
Pug @y (wx(a + 1) e A) = hop ug @) (We(a), 4), AeS,

we can obtain a probability measure on the field Fx*~ which assigns zero
measure to the set {wg(-) : wx(0) # &}. By the Kolmogorov extension
theorem this measure can be extended to a probability measure on F&™.
The probability measure space thus obtained will be denoted by

(Q(w——) [’g’-) P(“’_) .
If & el and wx(-) e QIETO) let

o5 (wx(-)) = glb {a : we(a) ¢ T,).
Ior el , let

B = {wx(-) t wa(+) e O, 85 (wa()) > w}.

Clearly B e F&™. Let D™ = D(K, wx(m)) and eK = eDKm('wK(m)).
We next proceed to extend the probability measure Py, go to F¥”and then
tO 17(50)

LumMa 3.2. IfteTl,, then Ex (D o2 %) < er,(£) where
%k = €x, m < &, )
= 0, m > & .
Proof.
era(®) =+ [ hanga(8 dm)er, (m)
D!

= ox + ] hapg1 (&, dn) [é?{ + f hapg2 (1, d’?z)er”(nz):l
oapg! dDg?

= Brdek + &l + [ en,(0)Prduon(2) e dnl.
By the continuation of this procedure for a finite number of steps we obtain
er,(§) = Exdex + - + &xl + ]1‘ er,(n) Px,s(wg(m) edn).

Hence, Ex (D ol 6%) < er,(£), QE.D.
If wx(-)eBE, wx(1), wx(2), --- form a countable set of points in a
compact space and hence has a nonempty set of cluster points {y:, y2, ---}.

TuroreM 3.1.  The P - probabilily that a path belonging to BY has more
than one cluster point 1s zero.

Proof. 'The cluster points belong to the closed set
Uf{aD : D eex(I,)} where Cg(I',) = €Cxnl,.
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Let {G; : j e Z*} be the subsets of {T',} that have nonnull intersections with
I, . Then it suffices to show that A} which is defined to be the set of paths
in B% which have cluster points in G, and G, p(G., G;) # 0, has P, -
probability zero. A% e F&™. Since p(3G, , 0G,) = 0, there is a set G D G,
such that p(3G, , 0G) > 0 and such that eq, (£) > nfor some g > 0 and every
£e@,. Every path in A} makes infinitely many exits from the interior of
G, to the complement of G;. If PED(AY) = a > 0, it follows that

er, (&) =2 a-N-q

for arbitrary N by an argument similar to that given in the proof of Lemma 3.2.
However this yields a contradiction, whence P%%,’ (A%) = 0, Q.E.D.

LeMMma 3.3. Pé‘j’g?( -) can be extended to a probability measure on the o-field
F$ by continuity.

Proof. This is accomplished by considering the regular content
P (wx(w) € - ) defined on the class of compact sets by the continuity of the
wx(a) a8 & — w and then extending this to a regular Borel measure on Fg”
by the method of Halmos [7, chapt. 10]. In more detail the content is defined
as follows. We can write ¢ = M;_; O,, where the O, are open sets and

Om DO Opya for any C e C.  Let
P (wx(w) € C) = limpae P (U Moo fwk(-) 2 we(m) € O,)].

The limit exists and by a result of Halmos [7, Theorem C, p. 238] it follows
that P& (wx(w) € - ) is a regular content on C, Q.E.D.
Since er,(-) is continuous it is easy to show that

en(®) = Bee| ot |+ [ en )P (nelo) can)

m=1 n

This construction can be extended to obtain PL%, for « = w + 1, w + 2,

-, w2, -+ & (Principle of transfinite induction [1]). That is, we can
define (i, FEV, PEL). Note that PXg) is concentrated on paths which are
left continuous at <« in the sense of condition iii of the definition of K-paths.
TFurthermore, an argument similar to that of Theorem 3.1 yields the following
result.

TarorEM 3.2. Lel {an} be a sequence of ordinals less than & . Then,
except for a set of paths of Pl(fg‘),— probability zero, etther wx(am) converges to a
point of @ as m — w— or else wx(h{an}) = .

THEOREM 3.3. Except for a set of paths of P 3)-probability zero, wx(&) = .

Proof. TIf&n(wx(-)) > w, wx(m) — 2 as m — « where

Xo € U{a]) D e (O/K(I‘n)}‘
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Moreover for points z., = wx(m) sufficiently near zy, epw&,em(Tm) | O
except for a set of paths of Pfégz-probability zero. Otherwise as in the proof
of Theorem 3.1 we can show that er,(£) is arbitrarily large yielding a contra-
diction. Since epx,5( - ) is bounded away from zero in a neighborhood of ¢ for
£¢ U{aD, D e Cg(I',)}, this implies that zo must lie on the intersection of the
boundaries of two distinet sets, that is zoe D1 n Dy, Dy £ Do, Dy and D €
Cx(T,). In the same way we conclude that if &%(wx(-)) > «°, we(w”)
must lie on the intersection of the boundaries of at least three distinct sets.
Let w,, be defined recursively by wn, = wm_ and wy = . Then in general
wx(wn) must lie on the intersection of the boundaries of at least m + 1
different sets. IHowever since there are only finitely many sets in @x(T',.),
S (wx(+)) < &. Hence wg(e) = w since P} is concentrated on paths
left continuous at «, Q.E.D.

COROLLARY. er,(£) = Ex(D i, k).

The generalized random walk which has been constructed is designated by
Rx . Theimportance of the fact that wx(g) = o is that the cardinal number
of & is Ny so that all the subsets of Q% determined by conditions on the sue-
cessive steps of the random walk are measurable.

4. The projective limit of (0, F”, PLY)

Let the topology on K,Z? be the product topology induced by the topology
of Q" in the space [[{Qa, a < .

LemMa 4.1. Let Deeg. Thenif £eD,
PSP (wx(or) e A) = han(§, A)
where 6x = inf {a : wg(a) ¢ D).

Proof. Proceeding stepwise we obtain

oo, 4) = hangsCe, ) +{ [ ot an)

dDgl—aD

. l: R hal)Kr(‘f]p, A) + hal)Kp(’/Ip, dnp+1)hap(?1p~|-1, A):I} .

dDRP—AD

The contribution of the last term on the right hand side goes to zero as P&
Hence the result follows since the remaining terms represent PY (wx(67) € A),
Q.E.D.

TuroreM 4.1. The measure spaces (2, F<©, PEY) form a stochastic
process tn the sense of Bochner [2] with mappings Mgy « -+ My Q7 — QR for
L > K.

Proof. We will first show that the spaces (%, F£¥, PEY) are regular,
that is, any measurable set can be approximated in measure by a compact set.
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By the approximation theorem [3, Theorem 2.3, p. 605] it suffices to show
that a set of the field F¥” may be approximated in measure by a compact
set. But the latter follows immediately from Tychonoff’s theorem since if
Ag, a < m, are Borel subsets of Q" then

PED (we(m) e - , wr(a) e A, a < m)

is a regular Borel measure.
The mappings M« are continuous in the product topology of

I1{Q% : o < .

We next prove that for each K > 0 the total inverse mapping Mz of Mg is
a measure preserving mapping from

(eg) (e9) () (e0)
(Qifo—la ’Ke—ola Ke—olyfo) onto (9?7 1K€07PK€20)'

It suffices to demonstrate that Mz preserves the measure of a set of the field
F$Y . But this follows immediately from Lemma 4.1.

The theorem then follows from a result of Bochner [2, Theorem 5.1.1],
Q.E.D.

The projective limit process obtained will be denoted by R, with proba-
bility measure space (2 , Foo Pw,s).  The projective limit Q., of the spaces
{QR} is the set of all sequences (wi(-), we(-), ---) such that Mx(wx(-)) =
wx_1(+) for each K > 0. Each set Bx € Fi® is the projection onto QF of
the set of all elements of whose K* components are in Bx. The theorem
means that the finitely additive measure induced on Q, by the projective
inverses of all Bx e FX¥, P2 (Bx), K € Z*, can be extended to a countably
additive measure P ¢,( - ) on the least o-field containing the projective inverses
of each such Bgx. The elements of Q, will be called R.-paths and will be
denoted by w, .

Foreach a < &, K > 0, let Ex(a, we) or simply Ex(a) be the least ordinal
such that if M x wx(-) = wxk_1(- ), then the ordered set wx (1), - -+ , we(Fr(a))
contains wg_1(1), -+ -, wg_1(a) as an ordered subset. Fx(e, -) is a random
variable on (. , F.,) whose range is the set of ordinals {1, 2, - - - | &}.

5. The nonstationary Markov process, X
We shall now introduce a nonstationary strict Markov process,

X= (xs,lyF;fyPs,z),

up to the boundary of T',. It will later be shown that X can be reparam-
eterized to yield the required diffusion.
Let
B;E {K/2",K=O, 1, "',2n}, B2=_"= U:=1an,
and
B = {t:teB;, 1> SO}U{SO}.
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DeriNiTiON 5.1. If peZ* or p = w and 4 and t, e By, a 2-partition of
[ti, to] of length p is the ordered subset of B;,

i+ (e—1)/2, -+ (— )2+ - + (L — ©)/277, b}

DeriNtTION 5.2. If p e Z™, tr ¢ By and s € [0, ta], a 2-partition of length p of
[so , to] is the set of points consisting of s, together with the elements which are
greater than s, of the 2-partition of [0, ¢;] which contains exactly (p — 1)
points greater than s, .

DEeriniTION 5.3. If {y ¢ By and so€ [0, to], a 2-partition of [so, to] of length
w™" is obtained as follows. We first take a 2-partition of [0, £ of length w,
partition each of the subintervals so obtained by a 2-partition of length w
and iterate this procedure a total of m times. The required 2-partition then
consists of s together with the elements of all the above two partitions which
are greater than s, .

DEriNiTION 5.4. If th e By, $0€[0, &3] and a < & a 2-partition of length o
is constructed as follows. If o < & it must be of the form

o= 0nw" + -+ a

with @, % 0, ap, --+, aneZ". If m = O the 2-partition of length ay is the
2-partition of finite length ao of Definition 5.2. If m > 0 and a; = 0 for all
1 < m, then take a 2-partition of [sy, &] of length a, + 1 and partition the
an intervals so obtained by 2-partitions of length ™. In this case we are
finished. If m > 0 and a; # 0 for some ¢ < m, take a 2-partition of [so, 5]
of length a,, + 2 and partition each of the first a, intervals so obtained by
2-partitions of length ™. We then repeat this procedure for the (a. + 1)t
interval with respect to the ordinal @, @™ =+ - -+ 4+ ao where m’ is the largest
integer less than m such that a.» # 0. Working inductively, we obtain the
required 2-partition of length « in at most m steps.

We shall now define a natural ordering on the elements of w,,. Let wg(m)
and w,(q) belong to w, and suppose that K > p. Then we say that
wr(m) > wy(q) if m > Ex -+ Ep(q). Let {we(m) : KeZ", m < &}
considered as an ordered set of elements under this ordering be denoted by
0(w.). The elements of 6(w.) will be designated by (), m < & and
K € Z" where (%) corresponds to wx(m). 6(w,) is a chain which has no gaps
[9].

Let 6,(ww) be defined to be the ordered subset of elements of 8(w.) which
are less than or equal to (*’), that is, the set corresponding to jumps up to
the boundary of T',, .

If we = ({wi(+)}, {w(-)}, -+ ), we define werx,m to be the same sequence
of generalized sequences with the elements of each {w,(-)} which are less than
(%) deleted and letting (£ )wixm = (%) for all K'.

The first step in the construction of the Markov process X is the definition
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of an order isomorphism A : 6,(w,) — B3’. Since w, can be considered to be
a mapping w, : 8(w,) — @', A induces a mapping from Bj* — Q'. For a
fixed We € Qo , &0 € Ty and s € [0, 1) this induced mapping will be designated by
w( y Weo 5 S0 50)-

A is defined inductively as follows.

A:{(g),~ (5")} {S0, 80, Sg"',l}

where {so, s, -+, 5", 1} are the successive elements of the 2-partition of
[so, 1] of length 8 . Given the mapping

A {(), s CE)} = sk, o, 8T
where sg = s and s = 1 we obtain the mapping

A {(Kg-l), SN 6%:_‘;1 } —s {82(+1, .. S"nKIi"l'l}

as follows. We map

1 1
A {(EK+1(¢¥)) .. (Ex+1(¢lx+ ))} N {sll-gﬁ.l(a)’ e Sf:fi"l(a-’- )}
1 . oy
where {sg&i‘, .. | skXi1**™D} are the successive elements of a 2-partition

of [sx, s + ] of length p where p is the ordinal number of the well ordered set
(), -, (Crir™)).

Since 0,(w.) has no gaps, it can easily be shown that the mapping is onto
B3°. Furthermore, if s > ¢t > sy, s, te B, and A(¥) = ¢, then

’II)(S, Wes 5 So EO) = 'U)(S, Weot-K m 5 t} ’ll)(t, Weo 5 S0, EO)).

An sy-path from & e T',, to 9T, is a continuous mapping from [s,,1],0 < s < 1
to T, , denoted by z(s), such that (i) z(so) = %, (ii) z(s) €Tn, 80 < s < 1,
and (iii) z(1) € a7, .

TuEOREM 5.1.  The mapping w(s, W , So, &) can be uniquely extended to an
so-path x(s) for almost every w., . The class of O-paths x(s) will be designated
by Q.

Proof. If relsy, 1], rn — 7 and 7, € B3°, then {w(r,)} is a infinite set of
points in the compact set T', and thus has at least one limit point, say w(r).
Either of the following cases can occur. The first case is that in which for
any p there is an M such that w(rn) e A, A € @,(T,) for every m > M and
w(r) e A. But since

sup {diam A : A eCy(T,)} -0 as p— o,

given £ > 0 there is an M’ such that for m > M’, p(w(ry), w(r)) < e. Hence
w(rm) — w(r). The second case is that in which for all sufficiently large K,
rp; = A(%) for infinitely many r,;, < r. But by Theorem 3.2, w(r,,) con-
verges to a single limit point with probability one. But then since

sup {diam A : A eCx(T,)} | 0 as K — oo,
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we can conclude that w(r.) converges to a single limit point, namely w(r).
In this case reB%Y. Hence for re[sy, 1], 7 ¢ B,, we can uniquely define
(7, Wy, ) or simply

x('r) = U)(’I‘, Weo ) 30; EO) = lhnp»oo ’lU("'p ) Weo ) So ) EO),
where 7, — r and 7, € By, for almost every w, € O, , Q.E.D.

There is a one to one injection of Q, onto @. Let the o-field F;; C F,, be
defined as follows:
i f0<s<t<1andsand¢belong to By, F;; is the smallest s-sub-
field of F, generated by the projective inverses of sets of the form

(W = x(Mm/2", We,) € AT) for s < m/2" < ¢, AT ¢C;
ii. if0<s<t<1,F;,isdefined to be
N{F,,..,peZ", meZ"}
where {s,} and {¢.} are sequences of points of B, such thats, | sand ¢, T .
The definition is consistent for s, ¢ e B, since the paths are continuous.
Lemma 5.1, {2(t) €T} e Fy; where 0 < s < t and I' e S.

Proof. 1t suffices to show this for I' e C.  We can then write I' = U, U,
where U1 © Un and the U, are open sets. If ¢ | tandt, e By, then because
of the continuity of the paths

{x(t) eT} = N, Ug Nyak{z(t,) e Uy}
which belongs to F;;, Q.E.D.
P, induces a probability measure P, on the sets of the form
{x(t)eA,teBs, A€eS,t > s}.

By continuity this can be extended to sets of the form {z(t)eA, A ¢S}
for ¢ e [s, 1] by first defining a regular content on C and then extending it to a
measure as in Lemma 3.3. The same can be done for any finite set of times
t1, *++, tp. Then by the Kolmogorov extension theorem P, can be ex-
tended to F;1. We now wish to show that the process X = (x(¢), 1, Fs; , P, ;)
is actually a (nonstationary) strict Markov process.

LEMMA 5.2.  Puyg[2(s) € 9Dx , some se (s, sx)] = 0, that is, with prob-
ability one r°% = inf {s: x(s) ¢ Dx} = sx.

Proof. 1If z(s) = z(sx), se (s, sk), then there is a K* > K and s¢ ¢ B,
such that x(s) ¢ D+ and z(s) # x(sks) for se (so, sx). That is, if

Poyelz(s) = 2(sk), se (s, sx)] > 0
then there is a K* > K and s; ¢ Bz n (s0, sx) such that
Pogr auom[(s) € 0Dk« , 2(s) # x(sk), se (s, sx)] > O.
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Hence it suffices to show that
P.y.:,lx(s) € 9Dk , x(s) 5 x(sx), s€ (s, sx)] = O.

Since 9Dx is separable, it suffices to show that if G; and G, are disjoint sets of
A n 8Dx , then

Py, .:l2(s) € Gy, some s e (8o, k), 2(sx) €G] = 0.
Let Aw = {x: hopgr(z, G1) > 1 — 27"}, Because of the property iv of the
hitting probabilities,
{(s) eGy, some se(so,sx), z(sk)eGa

c Mhoyfx(s) eAn, some se (8o, sk), z(sx) €Gs, seBs}.
But
Py iof®(s) € Am, seByn (o, sk), z(sk) e Go} < 27,

so that by an application of the Borel-Cantelli Lemma we obtain the result,
Q.E.D.
Let Nx(s, w) or simply Ng(s) be the lub {a : A(§) < s} for seB,. Let

r(&, p) be the smallest integer m > p such that D(m, &) < D(p, &) and
define rx(¢) inductively by

ro(§) = r(§ 0) and rx(§) = r(§ re—(£)).

Lemma 5.3. IfUed, UCT,, &eln,se¢By,s <t and ay, -+, argeo—1
are a gwen set of ordinals, then

P .(BE(1) = a1, -+, Brgtp-1(1) = argzpy—1, 2(t) e U)
18 measurable on 3D (rx(&), &).

Proof. Because of the continuity of the paths (Theorem 5.1), if f(-) is a
continuous function with support in I', , then

/Ps.'(El(l) = a1, B = angtp—1, (t) e dy)f(y)

= lim [ P,.(Ex(1) = ou, -, Brgtp—1 = rgty—15

°*°° wry(Nxs(8)) € ) (y).

Hence it suffices to show that P,,.(wx/(1) e B1, -, wg/(p) e By), B;¢C, is
measurable on 8D (rx(%), &) for arbitrary K' > K. We prove this by
induction on p. If p is finite the result follows from the property iv of the
hitting probabilities. The result follows for p = w— since

P..(wx(1) €By, -+ ) = limmaw Ps.(wr(1) € By, + -+, wer(m) € Bu).

Since B, ¢ C, we can find a sequence {U,} of open sets such that U, | B,.
But then the result follows for p = w since
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Pg,.(wKr(l) eBl y "%ty wx/(w) eBw)
= Po.(Nn Uy Neoplwg (1) € By, -+, wer(g) € Unl).

The last argument remains true if we replace {1, 2, - - -} by any sequence of
ordinals. Hence the result follows for p = & by the principle of transfinite
induction, Q.E.D.

TueoreM 5.2. If0 < s<tandT CT,,T €S, then
P(s,z;t, T) = P, (x(t) el)
s an S-measurable function of x.

Proof. 1t suffices to show this for 'eC or T'e A and for ¢t — s > 0. Let
K be such that 27 < ¢ — s. Given &eT, either (i) no other sets of
Crg ¢ (T) intersect D(rx(%0), &) or else (ii) & lies on the boundaries of a
finite collection of sets which do, that is, £, edDyn <+ n 3D, .

Case (i). If z(s) = neD(rx(%), &), the time 7* = 7°"F¢050 gt which
the boundary of D(rx(%), &) is first reached takes on at most countably
many values {r,, r e 2T} with 7, ¢ B, and satisfies s < 7* < s + 27 < ¢
(Lemma 5.2). The value of 7*(w.) = A(g(,) depends on the ordinals
En(1),1 < m < rg() — 1. 7%(ws,) is also determined by

Wrgtp (1) and  En(1, Weirg o)1), 1 <m < re(bo) — 1.

Let EF be the subset in Fs; which contains the paths, w., , for which 7* = 7,.

Then Ef ¢ F;, and P,,,(EY, ©(t) eT') is measurable on dD(rx(%), %) by
Lemma 5.3. Hence, if £ e D(rx(&), &),

Pos(a®) er) = [

D (rg (§0) ,£0)

oo a0 dn) | 3 PrvaBS, (1) eT) |

which is continuous in D(rx(&), &) by property iv of the hitting proba-
bilities. Hence if P, (2(t) eT') < a, then there is a neighborhood N, of
£ in which this is true.

Case (ii). In this case nedDy n --- n 8D, and z(s) = 5. A similar
argument shows that if P, (x(¢) eT') < a, then there is a relatively open
subset N, of & contained in D(rx(&), &) n 0Dy n --- n 8D, in which this is
true.

Hence if we let A = {£: P, (x(t) eT') < a}, A = Ugs N; where N; is
either an open set or else a relatively open set in D1 n - -+ n dD,,. But since
there is a countable base for the sets of the form N, A is the union of a count-
able class of measurable sets and is measurable, Q.E.D.

We need the following lemma.

LEMMA 5.4. Let f(-) be a measurable function on Q,

2¢N{dD : De@nT,} and |f(-) < M.
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Then F(u, y) = fq P(u,y ; t, d2)f(2) satisfies limyoequys F(u, y) = F(s, x0)
fors < t.

Proof. Given z, and € > 0 we are required to find a neighborhood, N, ,
of zoand a § > O such that if pe N,; and 0 < u — s < §, then
| F(u, n) — F(s, )| < e&.

Choose K such that 27 < ¢ — s. If 2(s) = ne D(rx(x), o), then the
time, 7*, at which the boundary of the set D (rx(zo), Zo) is first reached takes
on at most countably many values {r,, r ¢ Z'} and satisfies s < 7* < s + 275
< t. Given ¢ > 0 there is a 6 > 0 such that

Poo(r* <s+8) <e/M
for all n in some neighborhood N3, C D(rx(wo), z) of 2. Ifs <u <s+ 6
and n e Ni , then

Flum) — [

9D (rk (x9) 120)

D R AT OY

< (¢/M)-M = e.

But by the smoothness of the hitting probabilities the integral expression is a
continuous function of 5 € D(rx(xo), o). Hence we can find a neighborhood
of o, N,, © N2 , such that forne N,yand s < u < s + 5,

IF(’M, 77) - F(S, xO), < Z¢,

Q.E.D.
TaeoreEM 5.3. X = (z(1), 1, Fi:, Ps.,) is a stmple Markov process.
Proof. We must show that if 0 < s <t < u, then
P,.(x(u) el | F35) = P(t, z(t); w, T'), a.e. O, P, ..
By the definition of conditional probability it suffices to show that if
0<s<t<uzeDandAeF;, then
P, (A, x(u)el') = fA P(t, 2(t); u, T') P, (dw).

We first prove the result for ¢ e By. But if A(k) = ¢,

WU, Weo 3 8, ) = W(U, Weork,m 5 £, W(L))
and hence

[ PG, 2(0); 4, T)Py.a (@) = Pual4, (u) €T)
A
because A7'(t) takes on at most countably many values [5, Theorem 5.2,

p. 116]. Now let te[0, 1] — By, tn | ¢t where tneBsand tn < u. A eF3y,
and hence
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(1) Pa(d,2(w) e) = [ Pltw, a(tn), 4, T)Pys (d0).

But by the continuity of the paths and Lemma 5.4 we have
P(tm, x(tm), u, I') — P(¢, x(t), u, ') as m— «.
Hence the result follows by passing to the limit in equation (5.1), Q.E.D.

THEOREM 5.4. Let {w: w(0) = &, v(w) > t} e Fy, for t [0, 1], that 1s,
let (w) be a 0-Markov time. Then if

Foop ={B:BeFy;Bn (w:r(w) <t)eFp:,tel0, 1]},
Po,x{x(’))) el , F(.)‘r+} = P(T: x("’), M P)
with probability one where n(w) is a Fi,, measurable function and n(w) > (w).

Proof. (Thisis a slight modification of a result of E. B. Dynkin [5, Theorem
5.9, p. 134].)
Let f(2) be measurable. By Lemma 5.4,

((u,y) : Flu,y) <a)n@ X [s,¢)

is a measurable subset of @ X [s, 1), 0 < s < t < 1. Thus following the
argument of Dynkin it suffices to show that if fe C(Q) and = < ¢, then

EO,x{f(x(t))l F(.)H-} = Er,x('r)(f(x(t)))) a.e. @, PS»’B .

Let the points {t; , k ¢ Z*} define a sequence of subdivisions {A}}, m € Z7, of
the interval [0, {] such that

max; diam(A7) | 0 as m — o,
Let
(W) = & if 7(w)eAy and 7(w) ¢ B,

=r(w) if 7(w)eB;.
The random variable 7,, takes on only countably many values and therefore
Eo f(x(8))| Forpd = F(m, 2(tm)), ae @, , P,
The restrictions of 7,, to Q. are clearly Fg,, measurable and
{A, 7 < 1} e Foy 4 for each A € F§,, .
We thus have for m ¢ Z" and A ¢ F§,,
(5.2) Eoo{xa Xrm<1 f(2(1))} = Eoa{xa Xrp<t F(tm , 2(1m))},

where x4 is the characteristic function of the set A. But since F(r, z(7)) is
F., measurable, it suffices to show that

Eoo{xa f(2(1))} = Eooixa F(7, 2(7))}.



674 DONALD A. DAWSON

Moreover, by Lemma 5.4 and the continuity of the paths,
F(tm,2(tm)) = F(r,2(7)) as m— .
Hence by passing to the limit in equation (5.2) we obtain

Eoo{xa f(@())} = Eoulxa F(r, 2(7))},
Q.E.D.

CoroLLARY. Similarly, if n(w) ts Fi. measurable, then
850{:1:(77) el I F81'+ = P(T7 x('r)? 7, P)
with probability one, that is, X is a strict Markov process.

6. Introduction of the natural time parameter

Following Knight [10], [11] we are going to introduce a continuous natural
time parameter into each of the Rx and by carrying out a limiting process
show that it is possible to define a single time parameter for R., .

Let

R =ex if m<éx,
=0 if m>d,,
where 6% (wx(+)) = glb {a : wx(a) ¢ Tn}.

Given a path wx(-) we construct a continuous parameter path wx(t) by
setting wr(¢) = wx(0) for 0 < ¢ < & and we(f) = wx(m) for > gy 88 <
t < > ™1 e2. The continuous parameter process thus constructed up to the
boundary of T, is designated by Rx. The associated projective limit space
and process are designated by (Q%, Fe, Pa:) and R, respectively.
(Q: ,Fa, PE:) and (Qw, Fu, Pw.t) are equivalent measure spaces.

The time lag Lx_1,x(¢) between Rx_; and Rx is defined by

Lg3,x(We, t) = Lg1x(t) = nEP Zm=1 8r-1

for Y 2 ém <t < 2 21 er . By iterating (K — r) timesthe operation
of finding the time lag we can define a time lag between any pair Rx and R} |
K < r. Specifically,

Lk r(Zm—l éx) = Lg K+1(Zm—1 &) + L1, K+2(Zf»5f1(p) +1)
+ ot L (R )

and
Lgo(t) = Le, (251 8%)

for D2 on <t < D 2r1ér. From the corollary to Theorem 3.3 it follows

that
Eui(Le, (22 8)) = 0.

We will now prove a generalization of Theorem 1.3—-2 of [10].



THE CONSTRUCTION OF A CLASS OF DIFFUSIONS 675

THEOREM 6.1.
Pogflsup | Lx(8)] : 0 < ¢ < 250 8%] > e} < er,(§)e727%.
Proof. We can write

(Zm—l ox — frf:;” ég-q-r) Zm‘=l(éK — Mx r)
where

M?.r = Z{é:(+r :Exyr - - EK+1(m) < s < Egyr +++ Egu(m + 1) — 1}-

Since 8% (wx(+)) is a stopping time [3], D_%-.(¢k — M%) is a martingale in g,
g £ &. Hence by the Kolmogorov inequality for countable martingales [12],

A = Pw s(supqsco‘ Zgnwl(ég - sz’)l > 8)
< 8—2E,, e(mel(éK - M’f:’.r))z-

Iftm>p
Ew,é{(ég - Mjg,r)(ég - M?,r)} = Eeo,t{(é}; - Mlg.r)(Eco.E(eg_ Mg,r)lpép))}
=0
and hence

A < B (3ia(8m) — 282 M2, + (ME)Y).

But since we may first take a conditional expectation with respect to the
field F¥¥, A < ¢ Bu (O ia((MR,.)* — (&7)?). However we have the
result

Buy fo = [Ew,m,.m f, MK"mds] dt = fo i [ fo ' [ f‘ ' ds] dt] Puos(M2., ¢ db)

= 27 B «([MR..]).
Moreover

Mg,»™ Mg, ™ ME,»™
Ew,gjo‘ [Ew.wx.,.,‘(t) j; ds:l dt = Ew'g‘/o‘ [Ew,wK+,t(t)[m,f -_ t]dt]
Mg,»™
SBer [ (@™ + () at
0

Mg, ™
< oy f (275 4 978y g4
(1]
< gmEDgm
Hence we obtain
Bl 2ona(M2) — (82)")} < 2Bwf 2 sa[2” % Veg — ()%}

< VB 20 ] = e, (£)-2757.
Therefore
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Pogflsup | Le()] 1 0 < t < Dot @] > e}

. = Poi(supo<ey | D tm(8k — MR,)| > &) < 2% V7%, (8),
QE.D.

TaEOREM 6.2. If

LKr (Zm—l 62) = sup {I LK r(t)l 0 < t < Zm—l }
then

P, e{Sup»x LK r(2m=1 BK) > 25}
< {eF"(E)5_22—(K—3) . [1 _ (eI‘n(E) + 28)8—22—~(K—-3)J—1} .

Proof. We will follow the method of Knight [10]. Tor a fixed » > K take
s > r. Then

P Lx o(ra 8) > 6| Li (2 &%) > 28}
> PofLi(XiaeR) < LE (O eR) — 6| L, (Dot ) > 23}
> Eogll — ((2n18k) + L (Xma %)) (L (2nma(ek — 8)'2777 |
Lx, (2ot 87) > 28))]

> 1 — (er,(§) + 20)57727%7,
Hence
P, E{LK s(Zm—l e}?) > 8 | maxg<,< LK T(Zm—l é}?) > 26}
> 1 — (er,(§) + 28)5 727",
But recalling that P(A | B) = P(A n B)/P(B) we obtain
P i{lubys g Lic (2 om 8) > 20
< {(er,(£))8727 L — (er,(§) + 28)8°27“ 7).

Hence the theorem is proved.
Theorem 6.2 implies that

TER), wal = 22 {ek 2 p < Nx(A(R))}
converges with P, ;-probability one as K — «. Let
TE[(R), we) = limgaw TE[ (%), wa].

. . . £
Hence we obtain a continuous time parameter for the Re process.

7. Extension of the natural time parameter to X
Let s € Bz and consider the path w(u, ws ; S0, &). Let
Tfovﬁo(S, w) = T?f[A_l(s), Weo]

and
Tsovso(s) w) = Tgko[A_l(s)) woo]‘
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Clearly T.e0(s, W) = liMgae Taoto(S, W).  Tegoro(s, w) is called the natural
time parameter for a path starting at & e T, at time s. We will now show
that T, (s, w) can be extended to a continuous strictly increasing function
of s e[so, 1] for almost every w.

TuaeorEM 7.1. Ezxcept for a set of paths of measure zero, Ts,y.¢,(s,w) can be
extended uniquely to a continuous nondecreasing funciion of s.

Proof. Given 6 > 0 it suffices to find a neighborhood
Ns(w) = (8 — &8 + 8)
such that
| Topto(s + & w) — Typeo(s — & w)| < 6.

Let '
Ag = {w: lubsx Lg, (D_rlr &%) > 25, w(so) = &} °.
As K — o, Py t,(A%) | 0and Py, (Ug— Ax) = 1 by Theorem 6.2.

If wedAx, | Tope(s, w) — Tayps(s, w)| < 25, Choose K, such that
27% 0 < 5and consider any K > K,. There are two cases to be considered.

The first case is that in which s lies between A(%) and A(*%*) for some a.
Let N, = (A(%), A(*%?)). Since & + &2t < 27" < 5,if s’ ¢ N, , then

| Teo,EO(SI’ w) — T'sp,0(8s 'w)l < 5é.

Since P,y (Uz—14x) = 1, we have the result for this case. The second
case is that in which se B, and A7'(s) = h((¥),peZ"). By the corollary
to Theorem 3.3, Y. 5212 converges with P, :,-probability one and hence
there is an N < A™(s) such that Y_3-y®¢2 < 5. Then if

e (M), ACT ),
| Tso,go(sl, w) — Tso.20(8, w)l < 5é.
Since there are at most countably many values of this type we are finished.

LeEMma 7.1. If se By, Tx (s, w) is measurable with respect to F, . .
0150 0

Proof. Recall that Thy s, (s, w) = D wE%8% . If No(s, w1) = No(s, ws),
then A(7, wi) = A(5, wy) for m < No(s, w1). Hence

{w: No(s, w) = ao} = {w(ss) eds, -+, w(ss®) e AT}

which belongs to Fo,. Now if No(s) = ag, Ni(s) is the sum of at most
countably many ordinals each of which is determined by conditions on at
most countably many points of [sy, s] and so on. But then

fwitg <aln{w:N,(s) =a,r=01 K, ag > m} eFy

since éx < a induces a condition of the form [w(sx) ¢ B], BeS. The result
then easily follows.
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LemMMA 7.2. Ty, .4(s, w) is measurable with respect to Fiy, .

Proof. If se By, Tepo(8, w) = limgae T (s, w) and the measurability
follows from Lemma 7.1. If s¢ B;, then

Tso.Eo(s; w) = limsslsywwz Tao'Eo(si , w),
Q.E.D.
If D eA, let 7°(w) = inf [s : z(s) ¢ D).

TueorEM 7.2. IfDeCy, D C T,, then

f Tso:fo(TD(w), w)Pao,So(dw) = 60(&).

Proof. Recall that by Theorem 6.2,
Puy bk Ly (20t &2) > 25}
< er, (88727 V(1 — (er, (k) + 28)87727 %Y
and by Theorem 3.3 that if K’ > K then

[ Thiea(e (), 0) Pao(d) = en(te).

Given 8 > 0 choose K” large enough so that
[1— (era(4) + 285727771 > §
forall 8 > &, K > K”. Then

[ Tooi("(0), 0) Pag () — en(8,)

< {der,(8) 27 V[ Xmaalm + D(m™ = (m + D7)]5" + b}
= {der,(£)27 V[ 2Xna2m + D (m)(m + 175" + &}
< 26

for sufficiently large K and the result is proved.

THEOREM 7.3. Let UeA, UCT,. Then
(i) {w:w(0) = &eU, r°(w) > t} e Fo,, and
(11) fTso-fo(TU(w)r w)Pso-Eo(dw) = eU(E(l)’

Proof. By a theorem due to Hunt (8], [5, Theorem 2, p. 185] there is a
sequence of closed sets C,, T U such that 7° T 7”. Hence there is a sequence
{Un} of sets of @* such that U,, T U and 7+ 1 7.

(i) is true for U,, since r'™ takes on only countably many values. But
(i) then follows since r'™ 1 =Y.

(ii) is true for U, by Theorem 7.2. Since both T, (7", w) and

Tsovﬁo(TU’ w) < T, Eo(TP”7w)>
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f Too £ (77, W) Pyy g, (dw) T f Tso.0 (77, w) Py ¢, (dw)

by the dominated convergence theorem. But since limm. v, (&) = ev(%)’

[ Tovta, 0) Py (@) = el

and the theorem is proved.

CorOLLARY. LetT' C T,and T'eS. Then

(i) {w:w(s) = &el, 7" (w) > t} e Frye,and

(i) 4f Topt(r (W), w) = O with P,,z,-probability one, then there existsa
sequence {Un} of open sets, Un | T such that ey, (&) | O.

Proof. Using the result of Hunt on analytic sets [5, Theorem 3, p. 188]
(1) follows by an argument similar to that used in proving (i) of the theorem.

From [5, Theorem 3, p. 188] there is a sequence of open sets U, C T,
U. | T,such that T, (7""(w), w) | O with probability one. Hence

[ P67 ), 0) Payy(dw) = e, (&) | 0,
Q.E.D.

TueorEM 7.4. Let v(w) be a 0-Markov time. Then
TOvio(S: w) = TO»Eo(Tf w) + Ts20(s, w-:)
if (w) < s except for a set of paths of Py,¢,-probability zero where wi(t) =
w(t + 7) fort > 0.

Proof. Let w(s) = w(s, we, 0, &). Coglsider the Kt random walk and
the corresponding jump times {sg, ---, si* }. Then either (i) r = sg for
some a, or (ii) 7€ (s§, si™") for some a. Hence

(7'1) [ T{)(,;o(s) w) - [T:){,;O(T(@U), w) + Tf,a;('r)(sy w:-)]l < 2_K

for K' > K except for a set of Pg,-probability zero because of the strict
Markov property. The theorem follows by passing to the limit in equation
(7.1).

We will now show that T, (s, w) is a strictly increasing function of s for
almost every path w. Let

~(w) = sup {s : Toy(s, w) = 0}
for paths such that z(0) = & .

THEOREM 7.5. {w : 7(w) > t, w(0) = &} € Fo;, that s, 7(w) is a 0-Markov
time.

Proof. {w:r(w) >t} = {w: To (¢, w) = 0} which belongs to Fo; by
Lemma 7.2, Q.E.D.
IfDee, D CT,,and w(0) = teD,let #°(w) = Toi(r"(w), w).
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THEOREM 7.6. Py :(7” = 0) is an upper semi-continuous function of & ¢ D.

Proof. Let &, — & with {£,} and &in D. Let a, = Po,gm(v‘-p = 0). Then
it suffices to show that if a,, — a then ay > a. Note that

Po sy (7° = 0) = limg o Pog(7° < 8).
Given § > 0, ¢ > 0 we may choose D; C D, D, ¢ @, such that

Py (771 > 6/2) < e.
Then
Posy(7° < 8) = Pogo((7° — #™) < 8/2) — &

Choose Ny such that | a, — a| < cand &, ¢ Diform > N;. Thenif m > Ny,

Posy(7° < 8) > Pog(7° — 71 = 0) — &,
Therefore
Po(7° < 8) > Pog, (77 — 7% = 0) — 2¢

for m sufficiently large, say m > N, > N;, since property iv of the hitting
probabilities implies that Py :(7° — 7”* = 0) is a continuous function of &.

Hence
Poso(7° £ 8) > Py, (7° = 0) — 26 = a, — 2¢ > a — 3e.

Therefore, Py, (7° < 6) > a and Py (7° = 0) > a and the proof is com-
pleted.

COROLLARY. Po(7° = 0) is a subharmonic function of £ e D.

Proof. Poi(7° = 0) < [ap, han, (£, dn)Po,(7° = 0) if D;e€ and D, < D,
Q.E.D.

TaeoreMm 7.7. If Dn | &, Dne@, D, C T,, then
PO,%o(?D — = 0) »J/ P0,Eo(7"D = 0).

Proof. Since Py (7 = 0) is an upper semi-continuous function there is a
neighborhood of & , N, € C, such that

Poy(7” = 0) < Pog(7° = 0) + ¢
for £e¢ N¢, . But then if D, C Ng,,

Po'io(fb - ;Dm = O) = f;p hBDm(EO ) d’ﬂ)PO,n(fD = 0) S Po,so(FD = 0) + &

and the theorem is proved.

CoROLLARY 1. If Pog (7"

0) > 0, then

Potp(7®» =0) 11 as m— .
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Proof.
Py, (7 = 0)
= [ Puglo(s"") edn, % = 01Puy (7" = 0)
Dy,
< Pog(7%m = 0) (Pogy(7° = 0) + ¢).
Hence

Pogy(7°" = 0) 2> Pogy(7” = 0)[Poty(7° = 0) + €]
and the result follows immediately.
CoROLLARY 2. If P, (7° = 0) > 0, then
Poso (7% = 0 jor some KeZ') = 1.

Proof. This result follows immediately by application of the Borel-Cantelli
lemma.

TaEOREM 7.8. To(s, w) is a strictly increasing function of s for almost
every w.

Proof. Since the open sets of [0, 1] have a countable base, it suffices to show
that if De@, D C T, Py (7° = 0) = 0. Assume that there is some D e @
and a £ e D such that Py ¢, (7” = 0) = ¢ > 0. We will deduce a contradiction
from this hypothesis and thus prove the result. Let

D* = {t:£eD, | Pyi(7° = 0) — Poy (7° = 0) | < a/2}.

Because Py ¢(7” = 0) is a subharmonic function of ¢ D* is a fine neighborhood
of & . Moreover, D* ¢ S by a result of Saks [13]. If £ e D*, Py (7 = 0) > 0.

We will now show that 7(w) > 7°"(w) for almost every w by demonstrating
that otherwise we obtain a contradiction. Assume that r(w) < 7° (w)
on a set B of positive probability. On B, except for a set of paths of Py ,-
probability zero, there is a #(w) > 7(w) such that T, ¢ (t(w), w) = 0 by
Corollary 2 of Theorem 7.7. But then by Theorem 7.4, Ty (t(w), w) = 0
contradicting the definition of 7(w).

But then T, (7" (w), w) = 0 with P, -probability one so that by the
corollary to Theorem 7.3 there is a sequence {U,} of open sets U, | D*
such that ey, (%) | 0 as m — «. But this is a contradiction of the fine
neighborhood condition and so the theorem is proved.

8. The required diffusion

We will now show that if we reparameterize X with the natural time param-
eter the required diffusion X = (&(t), ¢", Fi, P,) is obtained.

Since we have shown that for almost every path, w, To (s, w) is a con-
tinuous, strictly increasing function of s, T, (s, w) has a continuous, strictly
increasing inverse Tz, (t, w).
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Let F? be the smallest o-subfield of F{® containing all sets of the form

(s <M n(w: i(s,w)ed), AeS,0<s<t
where if (0) = &,

(1) = a(Tok(t, w)), ¢ < ¢"(w) = Toko(1, ).
Let F = Un, F,.
To,(t, w) is a 0-Markov time for the X process since
(w : Tﬂ_.éo(t) w) 2> 8) = (w : TO-Eo(S) w) < t)

which belongs to F§, by Lemma 7.2.
If we define ©,[%(-, w)] = #'(s, w) where (¢t + s, w) = &(s, w), s > 0,
then we obtain with Py ¢ -probability one

"Et(s; w;:o,‘c’o"l(t,w)) = x('s; ’U))

for s > t. Moreover by Theorem 7.4 it can be shown that ®, induces a field
homomorphism on F.
Hence &(¢) can be described by a set of stationary transition probabilities

Pe(2(t) € A) = Puoeo(E(t + to) € A)
= P0.€o(w(T0.,%o(ta w)) GA), AeS.

Up to subsets of a set of zero measure, namely, the set of paths having dis-
continuities, T (s, w) induces a one to one measure preserving transforma-
tion, T*, of F& onto F,

T*(A) = {#(Toz(s, w)) : weA}.

Z(¢, w) is a continuous function of ¢ except for a set of paths of P¢,-measure
zero.

THEOREM 8.1 The process X = (&(t), ", F}, P,) is a stationary strict
Markov process.

Proof. It suffices to show that if 7(w) is a 0-Markov time, that is,

{w:r(w) >t} eFy,
then
Pf:o{j;(n: w) el | F2+} = Pi(f){z(ﬂ) € P} a.e.,

where Fo, = {B: BeF,Bn (w: r(w) < t) ¢ F3}, and 5(w) is an Fr, measur-
able function such that n(w) > 7(w).

Let 7' (w) = T[{,%o(f(w), w). We will now show that =’ (w) is a 0-Markov
time for the process X.

(w: 7 (w) <8 w0) = &) = Upeny(w 2 Togy(s, w) > 7, r(w) < 7).
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But (w: Tog (s, w) = 7, 7(w) < r) is equal to the intersection of

(w:r(w) <7)eForgee-r1ns and (w: To-,éo(r, w) < 8)

and therefore belongs to Fo,. Hence (w : r(w) < s) e Fi, .
Moreover, T maps Fo,, onto Fut one to one up to subsets of asetof Py,
measure zero. Therefore Theorem 5.4 implies that

Posla(n’) €T | Foi} = Pooeniz(n’) €T} a.e.
which then yields the result.

TueoreEM 8.2. For any set DeA, D C T, &eD, A eB(dD),
(i) Pep(#(7°) € A) = hap(k, A) and
(ii) E:(7°) = en(&) where 7° = inf {t : &(¢) ¢ D}.

Proof. Let Dee* Then because Ty (s, w) is strictly increasing,
inf {¢t : #(t) ¢ D} = Ty, (+"(w), w), for paths for which 2(0) = & . Further-
more,

Py(2(7") € A) = han(fo, A)

by Lemma 5.2 and E;,(7°) = en(&) by Theorem 7.2. Also, if D €A, then
E; (") = en(%) by Theorem 7.3.

Now say that there is a set D eA, D C T, , such that P.(2(#") e ) #
han(-, -). By adding D to €, and proceeding as above we can construct a new
diffusion X* = (&*(¢), ™, Fi*, P¥) such that P¥(&*(#°) e ) = hap (-, -).
However the infinitesimal generator of X*, ®* is the same as the generator of
X, ®. Since the infinitesimal generator uniquely determines the process
[12, Theorem A, p. 614] it follows that X = X™ and hence

Po(&(#)e-) = PE@* () e-).

Hence the theorem is proved.

We have thus accomplished what we set out to do. That is, we have con-
structed a diffusion X = (&(¢), ¢", F}, P.) up to the boundary of I, with the
specified mean hitting times and hitting probabilities.
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