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1. Introduction

E. B. Dynkin [4] has shown that the generator of a diffusion on a locally
compact, separable space Q has a canonical representation in terms of the
mean hitting times and hitting probabilities. Let x(t) be a strict Markov
process with generator @ whose domain is D(@). Let f e D(@), ( e Q, U be a

Uneighborhood of with compact closure and nonnull boundary and r be
defined as inf (t x(t) U). Then

(f)() lira E(f(x())) f()
E.()

It is easy to show that @ satisfies a maximum property and is a local operator
on C(Q). W. Feller [6] has posed the converse question, namely, does every
local operator on C(Q) which satisfies the maximum property generate a dif-
fusion. As a partial solution of this problem it will be shown that every such
operator arising from a set of mean hitting times and hitting probabilities
having certain smoothness properties does indeed generate a diffusion. The
method employed is the construction of a sequence of approximating random
walks which will be shown to converge to a limit process which is a diffusion.
This is an extension of the construction of F. B. Knight [10], [11] for the one-
dimensional case.
This paper is based on he author’s Ph.D. thesis written under the super-

vision of Professor Henry P. MeKean Jr.

2. Some definitions and the main result

Let Q be a locally compact, separable Itausdorff space with metric p(-, ).
Let C be the class of all compact subsets of the state space Q and S be the
z-field generated by C. The sets of S are called the Borel sets of Q [7].
Let A be a collection of open sets with nonnull boundaries of the space Q

such that

i. the closure of any set of A is a compact subset of Q,
ii. A is a base for the topology of Q, and

iii. if D1 D2 e A, then D1 u D2, D D2, and Dtn D2 A if they are non-
empty.

For D e A, let B(0D) be the class of Borel subsets of OD, the boundary of D.
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658 DONALD A. DAWSON

We will assume that Q is noncompact so that we can write Q U:=
r, D F_l and F e X.
A collection {has(., ), D e zX} of real-valued functions on D X B(OD) is

called a family of smooth hitting probabilities if"

io

iii.
iv.

V

ho(., A ), A e B(0D), is measurable with respect to S,
h0(, ), e D, is a probability measure on B(0D),
if OD, h0D(, {}) 1,
if f is a nonnegative function measurable with respect to B(OD), then
u(z) fof()ho)(z, d) is continuous if finite-valued on D and is con-
tinuous on/) if f is continuous on aD, and
ifD1,D.eXandDicD2, eDl,then

ho,2(, A) fo ho,x(f, dn)ha)(n, A).
D1

A finite real-valued function, v, is said to be subharmonic relative to thefamily
{hoD(., ), D e A} if it is upper semi-continuous and if

v(z) <_ fop ho,(z, dv)v(v) for every D A.

v is said to be superharmonic if -v is subharmonic.
The fine topology induced on Q by the family {hoD( ", ), D e A} is the least

fine topology such that all superharmonic functions are continuous in this
topology, that is, it is generated by sets of the form

N { n Q, v() v()l < e, e > 0, v superharmonic}.

N is called a fine neighborhood of .
A collection {e.(. D A} of real-valued functions on D is called a family

of smooth mean hitting times with respect to {ha.(-, ), D e A} if"

ii. if D, D. e A, D D., e D, then

111.

iv.
if D " D, D, D e A, e D for every m, then e,.() " e,(), and
eD() is a continuous function of e D.

A family of smooth mean hitting times is said to satisfy the fine neighbor-
hood condition if for any fine neighborhood N of and D, , D, N
there exists an e > 0 such that e,() >_ e for every m.
Given a class of regular sets A of a space Q, a family of smooth hitting prob-

abilities {ho,(., .):D e z} and a family of smooth mean hitting times,
{eD(. D e A}, satisfying the fine neighborhood condition we construct an
operator @ as follows. If u C(Q),
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fDS)u(() --= lim
D;

ho.(, d,)u(,,) u()
if the limit exists,

otherwise.

Then (} is a linear operator on the domain

n((R)) ==- {u u e C(Q), (u e C(Q)}

and is called a generalized differential operator.
Following [5] the definitions of Markov process, strict Markov process and

stationary Markov process will now be given.
Consider

a. a space ] and a function ’(w), f fl --. [0, ],
b. a function x(t, w) x(w) defined for w e 2, e [0, ’(w)], whose range is

the measure space (Q, S) (by convention we say that x(t, w) Q for
> r(w)),

c. for euchO < s < a a-field Finthespace= {w i*(w) >t} such that
F’ c F if s > s, and t _< t, and

d. for each s >_ 0, x e Q, a function P..(. on the smallest a-field F’ which
contains F for each >_ s.

These elements define a Markov process X (x , F P.) on the space
Q if the following conditions are satisfied"

1. s _< _< u and A e F implies that {A, i" > u} e F:,
2. {xteF} F’forany0 _< s_< t, FS
3. P. is a probability measure on the a-field F",
4. for any 0 <_ s _< t, F e S, P(s, x; t, F) - P.{x F} is an S-measurable

function of x,
5. P(s, x; s, Q {x}) 0, and
6. if0_< s_< t_< u, xeQ, FeS, then

P.{x I’ F} P(t, x u, F), a.e. [2t,
The function x(u, w) x(w) induces a mapping of the measure space

([s, t] >< 2, B’ X F) into (Q, S). (B is the a-field of subsets of [s, t]
generated by intervals.) The Markov process is said to be measurable if
this mapping is measurable for any 0 _< s _< t.

A nonnegative function r(w) is an s-Markov time if
i. s <_ r(w) <_ max Is, (w)], w e 2, nd

ii. {w’r(w) < < i(w)} eF’, s _< t.
The subsets A c 2 such that for any >_ s, {A, < < } e F form a a-field
in 2 denoted by F:+.
The Markov process X (x ’, F, P.) in (Q, S) is said to be strict

Marko if it is measurable and satisfies"
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i. for any >_ 0, I’ S, P(s, x; t, F) Ps,x{xt e F} iS a B X S measurable
function of s and x, and

ii. if r is an s-Markov time, we have for any F+ measurable function
r(w) >_ r(w) and rot a,,y x Q, s,

P,.x{z,e P F;+} P(r, x," 7, r), a.e. [a,, P..xl.
Leg F* be the minimal system, of subsets of the space f0 {f > 0} that

contains all the sets {zt F}, >_ 0, I-’ S, and is dosed with respect to the
operations of taking complements and countable unions and intersections.

The Markov process X (xt, , F*t, P.,x) is said to be stationary if for any
>_ 0 there is a field homomorphism 6t F* -+ F* such that
i. t0 fat,

ii. Ot{Xh e F} {gtq-h e P}, h >_ 0, F e S, and
iii. for anyAeF* Pt.,(et A Po.,(A
For a stationary process it suffices to consider the measures Px(" =-- Po.,("
and 0-Markov times which will be called simply Markov times.
A stationary strict Markov process X (xt , Ft, t’-) is a diffusion if

P,(x(t, w) is a continuous function of e [0, ’]) for all eQ.

A]N IESULT. Let A be a class of regular subsets of Q, {hey(., ), D A}
be a family q( smooth hitting probabilities and {e/)(. ), D A} be a family of
smooth mean hitting times which satisfy the fine neighborhood condition. Then
for any Fn there exists a diffusion X (:t g" Ft, P) such that if

"(w) inf (t" 2(t) D), D cA, D 1’,, 0eD.
then

(2.) o((’)

(2.2) Eo() e(o),

and

(2.3) ’(w) r(w).

.),

This implies that a restriction of the generalized differential operator @, arising
from the families {ho,(., ), D AI and {e,(. ), D e AI, to some linear sub-
space of C(Q) is the generator of the diffusion X.

Let us first give an outline of the proof of this result. We begin by defining
a sequence, {e}, of open coverings of the space Q. Next we construct a
sequence of generalized random walks in which at each step a jump is made
to the closest boundary of a set of e,, in accordance with the given hitting
probabilities. Then by mapping the ordered set of jumps into [0, 1] we con-
struct a continuous, strict, nonstationary Markov process x(s). To obtain
the probability structure of x(s) we make use of the projective limit of the
generalized random walks. It is then shown that we can define a natural
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time parameter for the paths of x(s) by means of limits of sums of mean hitting
times associated with the successive steps of the random walks. This natural
time parameter is shown to be a continous, strictly increasing function of
s. Finally by reparameterizing the paths of x(s) with the natural time param-
eter it is verified that we obtain the required diffusion.

3. The sequence of generalized random walks

In this section a sequence of generalized random walks will be constructed.
By a generalized random walk is meant a random walk with the time parameter
ranging over the ordinals. Following [1, pp. 71-76] the ordinals will be des-
ignated by 1, 2, ,, ,2, ...,, ...,, ,o ..-, e0, ..’,

and if X is a set of ordinals h(X) is the ordinal number of the well ordered set
of all ordinals smaller than or equal to some ordinal of X.
We first define a sequence of coverings, {e.}, of the space Q. We require

the following lemma.

LEMMA 3.1. Given " > O, Q, there exists a .D A such that D and
e,(’) - e where is the sup norm.

Proof. Choose a set D’ such that e D’ and D’e A. Then there is a set
D c D’ such that D, D A and such that

Then
for D.

e,() e,() I ho,(, dz)e,(z) < 2,
D

Q.E.D.
Since Q is separable there is a countable class of sets ,, m eZ+},

Z+Z+ {0, 1,2, such that {’ me is a base for the topology on Q
Z+and each e A. Moreover, there is a subclass e0 of m m such that

(i) if D e0, Iev 5 1, (ii) e0 is locally finite, that is, any compact subset
of Q has nonnull intersection with only finitely many sets of e0, and (iii)
e0 is an open covering of Q which is a refinement of {I’" i e Z+} where

PI’v Um= ,. Also, Q Urn=, F and I’,, D I’m--1 [9, Chapter 5].
Z+Hence for any K and } e Q there is a set D e A such that e D and

0 < e, 2-. Let us make some selection of such sets for each } and K
(axiom of choice), D(K, }), such that diam (D(K, }) 0 uniformly for
}eQasK--, . Let {D(K,}),}eQ}.
We now define the sequence of coverings {e,} inductively, starting with

e0. Given em_, we obtain em as follows. For any set D e the collec-
tion of sets {D(m, ) D(m, )e, [)} forms an open covering of the
compact set D and hence there is a finite subeovering, e(D), e is the col-
lection of open sets obtained by considering all intersections of sets of era-1
and sets of {e((D), D e ,}. e. is locally finite. Furthermore, em is a
refienent of (%_, that is, every set of em is a subset of a set of e ,. Let
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- m=l em, e, --= A n the field generated by m and the closures of sets of
[.j *em, and e* -= -m,

Given ( e Q, K e Z+ we assign a set D(K, ) as follows"

D(K, ) {D" eD, De:} U{D, D, De

Since eK is locally finite, D(K, ) is nonnull and D(K, ) e A. Furthermore,
eD(K, ) and 0 < eD(K.) <-- 2--K" In other words, D(K, ) isthe smallest

open set containing in e*.
We can now construct the space of paths of the random walks. Since Q

is noncompact, we can adjoin to Q the point , define Q’ as Q u { }, and
topologize Q’ so that it is the one point compactification of Q. The open sets
of Q’ are the open sets of Q and the complements in Q’ of the compacts subsets
of Q.

A K-path starting at (0, designated by w(. ), is a mapping from the set
{1, 2, ..-, e0} into Q’ such that:
i. wx(0) o,

ii. wK(a + 1) e OD(K, w(oe)) unless w(a) , if w(a) , then
wK(a+ 1) ,and

iii. if {w(am), m e Z+} has as a cluster point, then w:(h({a,,} .
The class of all such K-paths is designated by 2. w(. has K generalized
subsequences w(. ), 0 <_ i <_ K 1. w(. is the generalized subsequence
of w(.) such that w(0) w(0), wK(a + 1)cOD(i, w(a)), and if
w:() corresponds to w() for m e Z+, then w(h( {c} )) w:(h( {f} ).
Clearly w(.) e fo.

Let f (J0e 2. We can define a mapping

M" f--. ’K--1 (onto) by M(w(.)) w-(.).
Under this mapping we can construct the total inverse image in f of any
WK--i(" ).
We are now going to interpret 2 as the sample space of a generalized random

walk having the one step transition probabilities induced by the hitting prob-
abilities.

Let F(") be the least a-field of subset of 2 generated by sets of the form

{w,( w,,(,) A, A C, , <
and

{w(. w() ,
Similarly, let F"-) be the least a-field of subsets of generated by sets of
the form

{w(-) w(a) eA, A e C, a < a0}
and

{w(-) w() , < 0}.
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iLet ./7(") and (-0-) be the corresponding fields of subsets of .
For each 0 e Q, by the iteration of the transition probabilities

P()(w(a + 1)A) ho(.,())(w(a), A ), A S,

we can obtain a probability measure on the field -)which assigns zero
measure to the set {w(-) w,(0) 0. By the Kolmogorov extension
theorem this measure can be extended to a probability measure on F-).
The probability measure space thus obtained will be denoted by

FK, ).

If o F and w(. o, let

6(w(.)) glb {a" w(a)
For ,, e I’, let

5 w(. w(. ) 0, 5(w(. )) .
Clearly B F-). Let n+ D(K, w(m)) and e e,(w(m)).

p(-)We next proceed to extend the probability measure ,0 to F)and then
to p

LMMh 3.2. If F then E,() ev,() vhere

0, m .
I’roof

DK

DK DK2

By the con.tinution of this procedure for finite number of steps we obtMn

E,[ + + ] + [ e,,,,(n)P,(w(m) dn).eI’n()

If w(.)eB, w(1), w(2), form
compact spce nd hence hs nonempty set of cluster points {y, y, }.

D(-)THEOnEM 3.1. The , probability that a path belonging to _B3 has more
than one cluster point is zero.

t"roq(. The cluster points belong to the closed set

O{0D D ee(F,)} where
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Let [Gj j e Z+} be the subsets of [m} that have nonnull intersections with
F. Then it suffices to show that h: which is defined to be the set of paths

r(-)in B which have cluster points in G8 and Gt, p(Gs, Gt) 0, has -K.0-
probability zero. A: e F-). Since p(OG,, OGt) 0, there is a set Gt Gt
such that p(OG, OGt) 0 and such that ea,,() > for some > 0and every

e Gt. Every path in A: makes infinitely many exits from the interior of
(--) stG to the complement of G. If ,0 (h) a > 0, it follows that

er(0)
for rbitmry N by an rgument similar to that given in the proof of Lemm 3.2.
However this yields contradiction, whence o-z,0 (A) 0, Q.E.D.

D(--)LEMMA 3.3. ,o (") can be extended to a probability measure on the #-field
F by continuity.

Proof. This is ccomplished by considering the regular content
P>(w() e defined on the class of compact sets by the continuity of the
w(a) s a w nd then extending this to regular Borel mesure on
by the method of Hlmos [7, chpt. 10]. In more detail the content is defined
s follows. We en write C =0 where the 0,, are open sets
O 0+1 for ny C C. Let

P>(w() e C) lim, ->-,0 [U=, ,=,{w(. w(m), 0,}].

The limit exists and by a result of Halmos [7, Theorem C, p. 238] it follows
that P()(wK() e is a regular content on C, Q.E.D.

Since er(" is continuous it is easy to show that

This construction can be extended to obtain J)(") for a o q- 1, o q- 2,K,0

.-, o.2, -.., Co (Principle of transfinite induction [l]). That is, we can
0 (0) D(o)

,0 is concentrated on paths which aredefine (t2, ,. r,0). Note that p(0)
left continuous at in the sense of condition iii of the definition of K-paths.
Furthermore, an argument similar to that of Theorem 3.1 yields the following
result.

THEOREM 3.2. Let {am} be a sequence of ordinals less than o. Then,
except for a set of paths of P() probability zero, either W:(am) converges to ao-
point of Q as m -- - or else w(h{am} .

P()o-probability zero, w:( o)T)EOnEM 3.3. Except for a set of paths of ,
(Proof. If (.)) > o, w:(n) Xo s m o where
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Moreover for points x wK(m) sufficiently near x0, e.(K.xm) (x) 0
D(s0)except for a set of paths of .0-probablllty zero. Otherwise as in the proof

of Theorem 3.1 we can show that er(0) is arbitrarily large yielding a contra-
diction. Since e.(,)(. is bounded away from zero in a neighborhood of for, UIOD, D e(Fn)}, this implies that x0 must lie on the intersection of the
boundaries of two distinct sets, that is Xo OD1 n OD2, DI # D., D and D. e

e(F). In the same way we conclude that if (wK(. )) > o, w()
must lie on the intersection of the boundaries of at least three distinct sets.
Let o, be defined recursively by con o_ and o0 0. Then in general
w(o) must lie on the intersection of the boundaries of at least m + 1
different sets. However since there are only finitely many sets in e(F),
(w(.)) < 0 Hence w(v0) since P() is concentrated on pathsK,0

left continuous at , Q.E.D.
e0

The generalized random walk which has been constructed is designated by
Rx. The importance of the fact that w/c(e0) oc is that the cardinal number
of ’0 is N0 so that all the subsets of f2;: determined by conditions on the sue-
eessive steps of the random, walk are measurable.

4. The projective limit of (a2, .;’, po,o)
Let the topology on 2 be the product topology induced by the topology

of Q’ in the space [[{Q:,a Co}.

LMMA4.1.. Let D e e Then if eD,

wh i,,f { () D}.

Proof. Proceeding stepwise we obtain

ho,(,A_) ho,,(,A) +{Ji,,-o,
[... +ho,(n,A)+,_o, ho,(nv, dn+)ho.(n-,-,A)’}.

The contribution of the last term on the right hand side goes to zero as p -- e0.

Hence the result follows since the remaiIfing terms represent -K.
Q.E.D.

THEOREM 4.1 ]’he measure spaces ,o).form a stochastic
process in the sense of Bochner [2] with mappings MK+I M o __+ o for
L>K.

Proof. We will first show that the spaces (i]o, F(o) D(*O).to) are regular,
that is, any measurable set can be approximated in measure by a compact set.



666 DONALD A. DAWSON

By the approximation theorem [3, Theorem 2.3, p. 605] it suffices to show
that a set of the field/(0) may be approximated in measure by a compact
set. But the latter follows immediately from Tychonoff’s theorem since if
A,, a < m, are Borel subsets of Q’ then

wK(a) e A, a < m),.o(w(m)
is a regular Borel measure.
The mappings MK are continuous in the product topology of

IIIQ’. _< 0}.

We next prove that for each K > 0 the total inverse mapping M ofM is
a measure preserving mapping from

-K--1,1’ K--1 -K--I,0) onto (ft, *,o

It suffices to demonstrate that M preserves the measure of a set of the field
-. But this follows immediately from Lemma 4.1.
The theorem then follows from a result of Bochner [2, Theorem 5.1.1],

Q.E.D.
The projective limit process obtained will be denoted by R with proba-

bility measure space (2, F P,0). The projective limit 2 of the spaces
{2:} is the set of all sequences (’Wl( ), ?V2( ), SUCh that M:(w:(. ))
wK_(. for each K > 0. Each set B e F() is the projection onto 2: of
the set of all elements of whose Kt components are in B. The theorem
means that the finitely additive measure induced on gt by the projective
inverses of all B:e F(), P(:)o(B:), K e Z+, can be extended to a countably
additive measure P(R),0 (") on the least z-field containing the projective inverses
of each such B. The elements of will be called R-paths and will be
denoted by w.

For each a

_
’0, K > 0, let E(a, w) or simply EK(a) be the least ordinal

such that ifM w(. w_l( ), then the ordered set w( 1 ), WK(EK(a)
contains W_l(1), w:_(a) as an ordered subset. E(a, is a random
variable on (2, F) whose range is the set of ordinals 1, 2, ’0}.

5. The nonstationary Markov process, X

We shall now introduce a nonstationary strict Markov process,

x (x., , F;,, P.,.),

up to the boundary of F. It will later be shown that X can be reparam-
eterized to yield the required diffusion.

Let
,2 U BB= --= {K/2’, K 0, 1,... B n-----1 2,

and
B {t" eBe, > s0}U[s0l.
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DEFINITION 5.1. If p e Z+ or p and tl and t e B., a 2-partition of
[tl, t] of length p is the ordered subset of B,

{tx, t A- (t2- tx)/2, tx A- (t2- 6)/2 A- A- (t2- t)/2v-, t2}.

DEFINITION 5.2. If p e Z+, t2 e B2 and So e [0, t2], a 2-partition of length p of
[So, t2] is the set of points consisting of So together with the elements which are
greater than So of the 2-partition of [0, t2] which contains exactly (p 1)
points greater than so.

DEFINITION 5.3. If t2 e B2 and So e [0, t], a 2-partition of [So, t2] of length
om is obtained as follows. We first take a 2-partition of [0, t2] of length ,
partition each of the subintervals so obtained by a 2-partition of length
and iterate this procedure a total of m times. The required 2-partition then
consists of so together with the elements of all the above two partitions which
are greater than So.

DEFINITION 5.4. If t2 e B, So e [0, t] and a < e0 a 2-partition of length a

is constructed as follows. If a < eo it must :be of the form

a= am o .4- -4- ao

with am 0, a0, am e Z+. If m 0 the 2-partition of length a0 is the
2-partition of finite length a0 of Definition 5.2. If m > 0 and ai 0 for all
i < m, then take a 2-partition of [So, t2] of length am + 1 and partition the
am intervals so obtained by 2-partitions of length om. In this case we are
finished. If m > 0 and ai 0 for some i < m, take a 2-partition of [so, t]
of length am -f- 2 and partition each of the first am intervals so obtained by
2-partitions of length m. We then repeat this procedure for the
interval with respect to the ordinal am, m’ -4- + a0 where m’ is the largest
integer less than m such that am, 0. Working inductively, we obtain the
required 2-partition of length a in at most m steps.

We shall now define a natural ordering on the elements of w.. Let w(m)
and wv(q) belong to w. and suppose that K > p. Then we say that
w,(m) >_ wv(q) if m > E,: Ev(q). Let {w,:(m)’KeZ+, m <
considered as an ordered set of elements under this ordering be denoted by
t(w). The elements of O(w,) will be designated by (), m < e0 and
K e Z+ where () corresponds to wr:(m). O(w.) is a chain which has no gaps
[91.

Let tn(w) be defined to be the ordered subset of elements of t(w) which
are less than or equal to (]0), that is, the set corresponding to jumps up to
the boundary of Fn.

If w ({w(.)}, {w2(. )}, ), we define w+, to be the same sequence
of generalized sequences with the elements of each {w,(. )} which are less than
() deleted and letting (o,)+.m () for all K’.
The first step in the construction of the Markov process X is the definition
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of an order isomorphism A 0n (woo) -- B. Since woo can be considered to be
a mapping woo" 0(woo) -- Q’, A induces a mapping from B ----> Q’. For a
fixed woo e, 0 e F nd So e [0, 1 this induced mpping will be designated by
(’, , so, o).
A is defined inductively as follows.

A" (]),..-, (o)} {So,S,...,s"-,1}
s- 1} are the successive elements of the 2-partition ofwhere {So, So,

[So, 1] of length . Given the mpping

..., ...,
where s s0 8nd sK 1 we obtsi the mspping

8K+I

as follows. We map

A [EK+!(a) (’/K+l(a/l) (a)),.. OK-I
^EK+ (a/l)
Kq-1

where {sK+I()K+I Si1(+1)} are the successive elements of a 2-partition, s+]of [sK of length p where p is the ordinal number of the well ordered set
[’EK+.I(ot)
\ K+ ), \ /+ )}.

Since 0n(woo) has no gaps, it can easily be shown that the mapping is onto
s0B Furthermore, if s >_ >_ So, s, e B and h() t, then

w(s, woo, So, o) w(s, w+:,, t, w(t, woo, So, o) ).

An so-path from 0 e P to 0F is a continuous mapping from [So, 1], 0

_
So < 1

to , denoted by x(s), such that (i) X(So) o, (ii) x(s) e Fn, So

_
s < 1,

and (iii) x 1 e 0F.

THEOREM 5.1. The mapping w(s, woo, So, o) can be uniquely extended to an
so-path x(s) for almost every woo. The class of O-paths x(s) will be designated
by .

Proof. If r e [So, 1], rm -- r and rm e B, then {w(r)} is a infinite set of
points in the compact set F nd thus hs t least one limit point, sy w(r).
Either of the following cses ca occur. The first cse is that in which for
ny p there is n M such that w(r) A,A e(F) for every m >_ M nd
w(r) e A. But since

sup {diam A A e e(r.)} o as p -- ,M’given e > 0 there is an such that for m >_ M, p(w(r), w(r)) < e. Hence
w(r,) w(r). The second case is that in which for all sufficiently large K,
r A(:) for infinitely many r < r. But by Theorem 3.2, w(r) con-
verges to a single limit point with probability one. But then since

sup{diamA’Aee(F)} $ 0 as K--. ,
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we can conclude that w(r) converges to a single limit point, namely w(r).
In this case r e B. Hence for r e [So, 1], r B, we can uniquely define
x(r, w) or simply

x(r) =- w(r, woo, So, o) limoo w(r, woo, So, o),

where r -- r and r e B, for almost every woo e t,, Q.E.D.

There is a one to one injection of too onto . Let the a-field F:t. c Foo be
defined as follows"
i. if 0 <_ s <_ <_ 1 and s and belong to B, F’t is the smallest z-sub-
field of Foo generated by the projective inverses of sets of the form

(woo x(m/2, woo e A’) for s <_ m/2 <_ t, A’ e C;
ii. if 0 _< s <_ <_ 1, F:t is defined to be

{F:tm, p eZ+, m eZ+}
where [s} and [t} are sequences of points of B such that s s and t " t.

The definition is consistent for s, e B since the paths are continuous.

LEMMA 5.1. {x(t) e F} e F:t where 0 <_ s <_ and r e S.

Proof. It suffices to show this for F e C. We can then write r [J:--1 U
where U+I c U and the U are open sets. If tr $ and t e B, then because
of the continuity of the paths

which belongs to F’t, Q.E.D.
P. induces a probability measure P. on the sets of the form

{x(t) eA, teB, A eS, >_ s}.

By continuity this can be extended to sets of the form {x(t)eA, A e S}
for e [s, 1] by first defining a regular content on C and then extending it to a
measure as in Lemma 3.3. The same can be done for any finite set of times
t, t. Then by the Kolmogorov extension theorem P, can be ex-
tended to F:. We now wish to show that the process X (x(t), 1, F:t, P,)
is actually a (nonstationary) strict Markov process.

LEMMA 5.2. Po,o[x(s) e OD, some s e (So, s)] O, that is, with prob-
ability one r inf {s’x(s) tD} s.

Proof. If x(s) x(s), s e (So, s), then there is a K* > K and s’ e B
such that x(s) t Do and x(s) x(s.) for s e (s’, s) That is, if

Po,o[X(S) x(s), s e (So, s)] > 0

then there is a K* >_ K and s’ e B (So, s) such that

Po.,(o.)[x(s) e OD., x(s) x(s), s e(s:, s)] > 0.
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Hence it suffices to show that

Pso.o[X(S) e OD x(s) x(s), s e (So, s)] 0.

DSince 0 K is. separable, it suffices to show that if G1 and G are disjoint sets of
A n OD, then

Ps0.0[x(s) e G, some s e (s0, s), x(s)e G] 0.

Let A {x ho,(x, G) > 1 2-}. Because of the property iv of the
hitting probabilities,

{x(s) eG, some s e(So,S),x(s)eG2}
c N={x(s) eA, some s e (So, s), x(s)e G,

But
P,o.o{X(s) e A s eB n (So, s), x(s) e G} 2-,

so that by an application of the Borel-Cantelli Lemma we obtain the result,
Q.E.D.

Let N(s, w) or simply N(s) be the lub {a" A() s} for s e S. Let
r(0, p) be the smallest integer m > p such that D(m, o) c D(p, 0) and
define r() inductively by

r0() r(, 0) and r() r(, r_()).

LEMMA 5.3. If U e A, U c F, 0 e F, s e B, s t, and
are a given set of ordinals, then

P,,.(E(1) a ..., E(o)_(1) a(o)_ x(t) e U)

is measurable on OD(r(o), o).

Proof. Because of the continuity of the paths (Theorem 5.1), if f(. is a
continuous function with support in F,, then

f P,,.(E(1) a, ..., E(o)- ar(o)-, x(t) e dy)f(y)

lim f P.,. (E(1) a, .-., E(0)-

wo(No(t) e dy)f(y).

Hence it suffices to show that P,..(w,(1) e B, ..., w,(p) e B), B e C, is
measurable on OD(r(o), 0) for arbitrary K’ K. We prove this by
induction on p. If p is finite the result follows from the property iv of the
hitting probabilities. The result follows for p - since

P,..(w,(1) B, lim F....(w,(1) B ..., w,(m) B).

Since B e C, we can find a sequence {U} of open sets such that U B.
But then the result follows for p since
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Ps,.(w,(1) e B1, ..., w,(oo) e B,)

Ps,.(N U N[w,(1) BI, ..., w,(q) e Urn]).

The last argument remains true if we replace {1, 2, by any sequence of
ordinals. Hence the result follows for p s0 by the principle of transfinite
induction, Q.E.D.

THEOREM 5.2. If 0

_
S

_
and F c F., F e S, then

P(s, x; t, F) Ps,(x(t) e F)

is an S-measurable function of x.

Proof. It suffices to show this for F e C or F e/ and for s > 0. Let
K be such that 2-(-) < s. Given 0 e F, either (i) no other sets of
e(0)(r) intersect D(rK(0), o) or else (ii) 0 lies on the boundaries of a
finite collection of sets which do, that is, 0 e OD n n ODin.

* D(K(o) ,o)Case (i). If x(s) e D(r(o), o), the time r r at which
the boundary of D(r(0), 0) is first reached takes on at most countably
many values {r,, r eZ+} with r eB2 and satisfies s < r* < s + 2- <
(Lemma 5.2). The value of r*(w) A(0)) depends on the ordinals
Era(l), 1

_
m

_
rx(o) 1. r*(w) is also determined by

and Era(l, w+rK(0>.) 1

_
m

_
r(0) 1.

Let E* be the subset in F which contains the paths, w, for which
Then E* e F: and P,o,,(E*, x(t)e F) is measurable on OD(r(o), 0) by
Lemma 5.3. Hence, if e D(r(o), o),

P.(x(t) e F) ho)(:(o),o)($, &q) [-’:_ P,,,(E*,, x(t) e F) 1
which is continuous in D(rK(0), 0) by property iv of the hitting proba-
bilities. Hence if P,o(x(t)e r) < a, then there is a neighborhood N of
0 in which this is true.

Case (ii). In this case e0D [ OD, and x(s) 7. A similar
argument shows that if P,,(x(t)e F) < a, then there is a relatively open
subset N0 of o contained in D(r:(o), o) OD OD,, in which this is
true.
Hence if we let A {:Ps.(x(t) eF) < a}, A [J,Nwhere Nis

either an open set or else a relatively open set in OD OD. But since
there is a countable base for the sets of the form N, A is the union of a count-
able class of measurable sets and is measurable, Q.E.D.
We need the following lemma.

LEMMA 5.4. Let f(. be a measurable function on Q,

xo {OD De e r} and If(’)! - M.



672 DONALD Ao DAWSON

Then F(u, y) =-- f P(u, y t, dz)f(z) satisfies limxo, $, F(u, y) F(s, Xo)
fors < t.

Proof. Given Xo and > 0 we are required to find a neighborhood, No,
ofxoanda > 0suchthatifeNoand0 g u- s ,then

F(u, ,) F(s, Xo) < .
Choose K such that 2- < s. If x(s) veD(r(xo), x0), then the
time, r at which the boundary of the set D(r(xo), Xo) is first reached takes

* 2--gon at most countably many values {r, r e Z+} and satisfies s
< t. Given > 0 there is a > 0 such that

for all in some neighborhood N D(r(xo), Xo) of xo. If s
and e N, then

(e/M).M e.

But by the smoothness of the hitting probabilities the integral expression is
continuous function of n e D(r(xo), Xo). Hence we can find a neighborhood
of x0, N,o N,, such that for n e N,o and s u < s + 6,

IF(u, ,) F(,, x0) <
Q.E.D.

THEOREM 5.3. X (x(t), 1, F; P,.,) is a simple Markov process.

Proof. We must show that if 0 s u, then

P.,.(x(u) r F;,) P(t, x(t); u, r), a.e. e,, P.,..

By the definition of conditional probability it suffices to show that if
0 s < < u, xeDandAeF;,then

P,.,(A, x(u) e F) fa P(t, x(t); u, r)P,,, (dw).

We first prove the result for e B=. But if h () t,

w(u, w= ;s, x) w(u, w=+,, t, w(t))
and hence

f p(t, x(t); r)p.., (dw) P,.(A, x(u)u

because a-(t) takes on at most countably many values [5, Theorem 5.2,
p. 116]. Now lette[0, 1] B=,t twhereteB=and
and hence
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(5.1) Ps,(A, x(u) e F) J P(t,,,, x(t,), u, r)P,, (dw).

But by the continuity of the paths and Lemma 5.4 we have

P(t,, x(t,), u, F) --+ P(t, x(t), u, I’) as m -- .Hence the result follows by passing to the limit in equation (5.1), Q.E.D.

THEOREM 5.4. Let {w" w(O) o, r(w) > t} e F]t for e [0, 1], that is,
let -(w) be a O-Markov time. Then if

F,+ =- {B’BeF;;Bn (w’r(w) < t) eF]t,te[0,1]},

P0,{x(,) r F,+} P(r, x(r); ,, r)

with probability one where v(w) is a F;,+ measurable function and v(w) >_ r(w).

Proof. (This is a slight modification of a result of E. B. Dynkin [5, Theorem
5.9, p. 1341.)
Let f(z) be measurable. By Lemma 5.4,

(u, y) F(u, y) < a) n Q X Is, t)

is a measurable subset of Q X Is, t), 0 <_ s < <_ 1. Thus following the
argument of Dynkin it suffices to show that if f e C(Q) and r <_ t, then

Eo,x{f(x(t))] F+} E,()(f(x(t))), a.e. 2, Ps,x.

Let the points {t,/ e Z+} define a sequence of subdivisions/A}, m e Z+, of
the interval [0, t] such that

maxkdiam(A) 0 as m-- .
Let

rm(W) t if r(W) e/ and r(w) B2

--r(w) if r(w) eB2.

The random variable rm takes on only countably many values and therefore

Eo,{f(x(t))l F,+} F(r, x(r)), a.e. t, P,.

The restrictions of to are clearly F,+ measurable and

{A, < 1} F,+ for each A F+.
We thus have for m e Z+ and A e F]+,

(5.2) E0,{x x<f(x(t))} Eo,{x x< F(r x(r) )},

where x is the characteristic function of the set A. But since F(r, x(r)) is
F]+ measurable, it suffices to show that

Eo,{xf(x(t))} Eo.{x F(r, x(r))}.
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Moreover, by Lemma 5.4 and the continuity of the paths,

F(’,, x(’)) ---> F(r, x(r)) as m -+ ..
Hence by passing to the limit in equation (5.2) we obtain

Eo.{xf(x(t))} E0,{x F(r, x())},

Similarly’, if v(w) is F’,+ measurable, then

P.,.{x(n) r F:.+} P(r, x(r); v, F)

with probability one, that is, X is a strict Markov process.

6. Introduction of the natural time parameter
Following Knight [10], [11] we are going to introduce a continuous natural

time parameter into each of the RK and by carrying out a limiting process
show that it is possible to define single time parameter for R,.

Let
e e if m<,

0 if m ,
where (.)) glb {a( () r}.

Given pth w(. we construct continuous prmeter pth w(t) by
setting w(t) w(O) for 0 < g nd w(t) w(m) for

_
g

< . The continuous prmeter process thus constructed up to the
boundary of F is designuted by R. The ssocited proective limit spce

* respectively.and process re designated by (, F, P.) and R,
(, F, P.) nd (, F, P.) are equivalent mesure spces.
The time lg L_,(t) between R_ nd R is defined by

L_,(w, t) L_,(t)

for =e_ < =e_. By iterating (K r) times the operation
of finding the time lg we can define time lg between ny pir R nd R,
K < r. Specifically,

+ +
and

L:,,(t) +7)
for =e < =e. From the corollary to Theorem 3.3 it follows
that

We will now prove generalization of Theorem 1.3-2 of [10].
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THEOREM 6.1.
0P..,{[suplL,(t)l’O <_ < .,=] > } < er()-22-(-)

Proof. We can write

where

M;,, {ei+," +, E+(m)

Since is a stopping time [3],(wx(. q M.,) is a martingale in q,
q g e0. Hence by the Kolmogorov inequality for countable martingales [12],

--2S,(:u(- i.)).
Ifmp

E,{(- M,)(e- /,)} E,{(e- M,)(E,(e%-
=0

and hence
A < -2 o )2 M,.) ]).

But since we may first take a conditional expectation with respect to the
field F) A -e E,(2%((M,.)’ (e)). However we have the
result

([... ).
Moreover

E., E.,..+..(,) ds dt E., [E.,..+..(o[M,.- t]’ dt]

N E., + 2-) dt

2-(-a);.
Hence we obtain

o )2 2E.,{ ro-(-)E,{ Z-,((M;, (e))} _< -, (e)]}
< 2-(K-a)E e0 .2--(K--)

Therefore
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P.{[supl L.(t)l "O < < _,,= e,] > }
P=,(SUpq_< Eq=l(o M;,)[ e) g 2-(-)e-er.(),

Q.E.D.

THEOREM 6.2. If

then

P,{SUOrKL,r(Zm:I eK) > 2}
< {er.()5-2-(-)’[1 (er() + 26)6-2-(-)]-1}.

Proof. We will follow the method of Knight [10]. For a fixed r > K take
s > r. Then

P.{L (E=i) > .(E-= e) > }
$

E.[ ((E=, e) + L.(E:U )) (L.r(E:U(
o e))]L.(E:) >

> 1 (er() + 2)8-2-(K-).

Hence

P.{L..(E=) > mx<. L.(E:U) >
> 1 (er() + 28)-2-(-).

But recalling that P(A B) P(A B)/P(B) we obtain
o 2}
< {(er())-e2-(K-)’[1 (er.() + 25)--e2--(K--a)]--i}.

Hence the theorem is proved.
Theorem 6.2 implies that

T[(.), ] E {’ N((;,))}
converges with P,o-probability one as K . Let

T0[ (%,), ] im T:[ (;,), ].
Hence we obtain a continuous time parameter for the R process.

7. xtemion of the naturI time parameter o X
Let s e B and consider the path w(u, w so, 0). Let

K SK --1T,o,o(S, w) To [ (s),
and

T,o,o(S, ) T0[-(s), ].
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Clearly T,o,to (s, w) limK To,to (s, w). T,o,to (s, w) is called the natural
time parameter for a path starting at o e Fn at time So. We will now show
that To,o (s, w) can be extended to a continuous strictly increasing function
of s e [So, 1] for almost every w.

THEOREM 7.1. Except for a set of paths of measure zero, To,o (s,w) can be
extended uniquely to a continuous nondecreasing function of s.

such that

Let

Given 8 > 0 it suffices to find a neighborhood

N,(w) (s , s -+- e)

ITo,eo(S+v,w) To,to(s- e,w)] < 8.

A: =- [w "lubr>:L*.r(_,=le:) > 28, W(So) 0} c.
As K -- , P,o,to(Ac) $ 0 and P,o,to( U;=l A) 1 by Theorem 6.2.

If weAx, [T,o,to(S, w) T,o,to(S, w)[ <_ 28. Choose Ko such that
2-(-1) < 8 and consider any K > Ko. There are two cases to be considered.
The first case is that in which s lies between A () and A("+) for some a.
Let N, (A (7), A ("+)). Since e’" + +1 < 2--(K--l) ( 8, if s’ e N,, then

To.o(s’, w) To.o(s w)l < 58.

Since P,o.o(U_- A) 1, we have the result for this case. The second
case is that in which s e Bs and A-(s) h ((Y), p e Z+). By the corollary

XT,A- (s)to Theorem 3.3, z_,= S converges with Po.o-probability one and hence
A ()there is an N A-(s) such that /_2,= 8. Then if,,

To.to(S’, w) T,o.to(S w)l < 58.

Since there are at most countably many values of this type we are finished.

LEMMA 7.1. If S B T.o,to( s, w) is measurable with respect to F:o,,
Proof. Recall that To,to(S w) v’(,)-

z_.= e. If No(S, w) No(s, w.),
then A(, w) A(’, w) for m <_ No(s, wl). Hence

{w" No(s, w) a0} {w(So) A, ..., w(s)A}

which belongs to F,. Now if No(s) ao, N(s) is the sum of at most
countably many ordinals each of which is determined by conditions on at
most countably many points of [so, s] and so on. But then

{w" ’ < a} n {w" Nr(s) a., r O, 1, ..., K, aK > m} e F, o,

since < a induces a condition of the form [w(s) e B], B e S. The result
then easily follows.
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LEMMA 7.2. T.(S, w) is measurable with respect to F:,
Proof. If s B., T,.(s, w) lim To.o(s, w) and the measurability

follows from Lemma 7.1. If s B, then

To.o (s, w) lim, . To,o si w
Q.E.D.

If D e A, let r’(w) inf Is x(s) D].

THEOaEM 7.2. If D D r then

T,o.o(r’(w), w)P,o.o(dw) e,(o).

Proqf. Recall that by Theorem 6.2,

< er(o)-:2-(-) [1 (er(o) + 2)5-2-(-)]-
and by Theorem 3.3 that if K’ K then

Given o > 0 choose K large enough so that

[1 (er.(o) + 2)-:2-(-)] >
for allb o,K > K. Then

< 4er,(o).2-(-)[:_(m + 1)(m- (m + 1)-)]7 + 0}
2-(-a) + + +

< 25o

for sufficiently large K and the result is proved.

TEOREM7.3. Let UeA, U F. Then
(i) {w" w(0) oe U, rV(w) > t} e F, and
(ii) f T,o.o(rV(w), w)P,o.o(dw) e(o).

Proof. By a theorem due to Hunt [8], [5, Theorem 2, p. 185] there is a
sequence of closed sets C U such that rc rv. Hence there is a sequence

U U{U} of sets of e* such thut U Uandr r
Um(i) is true for U since r takes on only countably many values. But

U U(i) then follows since r

(ii) is true for U by Theorem 7.2. Since both T,o.(rv, w) and
w) g T.0,
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(dw) Jo,o r w) Pso T, , r, w Ps,, dw

by the dominated convergence theorem. But since limm ev(0) ev(0)’

f T,.o(r, w)P,o,(dw) ev(o)

and the theorem is proved.

COROLLARY. Let F C Fn and F S. Then
(i) {w" W(So) 0 e F, rr(w) > t} F*o,and
(ii) if T,o,o r

r w w) 0 with P,o-probability one, then there exists a
sequence {Urn} of open sets, U, F such that e,, o) O.

Proof. Using the result of Hunt on analytic sets [5, Theorem 3, p. 188]
(i) follows by an argument similar to that used in proving (i) of the theorem.
From [5, Theorem 3, p. 188] there is a sequence of open sets U c I’,
U F, such that T,(rVm(w), w) 0 with probability one. Hence

f T,,(r(w), w)Po,(dw) ev,($o) $ O,

Q.E.D.

THEOREM 7.4. Let r(w) be a O-Markov time. Then
4-T0,o(S, w) T0,o(, w) + T,()(s, w

ft r(w) <_ s except for a set of paths of Po.-probability zero where w (t)
w(t -4- r) for > O.

Proof. Let w(s) w(s, w, 0, 0). Consider the K random walk and
the corresponding jump times {s, ..., s’}. Then either (i) r s for

84-1some a, or (ii) r e (s, for some a. Hence

(7.1) ’ T’ w+)l[ < 2-To,o(s, w) ’[T0,0(r(w) w) -4- ,()(s,

for K’ > K except for a set of P0,o-probability zero because of the strict
Markov property. The theorem follows by passing to the limit in equation
(7.1).
We will now show that Ts0,0 (s, w) is a strictly increasing function of s for

almost every path w. Let

r(w) sup {s" To.o(S, w) 0}

for paths such that x(0) 0.

THEOREM 7.5. W r(W) > t, W(0) 0} e F’ot, that is, r(w) is a O-Markov
time.

Proof. {w’r(w) > t} {w" T0,0(t, w) 0} which belongs to F’ot by
Lemma 7.2, Q.E.D.

If D e e, D I’n, and w(0) e D, let ’(w) T0,(r’(w), w).
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THEOREM 7.6. Po,(D O) is an upper semi-continuous function of e D.

Proof. Let m --* o with m} and o in D. Let am =- Po,(D 0). Then
it suffices to show that if am a then ao >_ a. Note that

Po,o( O) lim Po,o( ).

Given 8 > O, e > 0 we may choose Dx D, D , such that

Po,o( /2) < .
Then

Po,o( ) Po,o(( /2) e.

ChooseN such that a a < e and e D for m N.. Then if m N,
D DPo,o( ) Po,o(r r 0) .

Therefore
Po,o( a) Po,( o) 2

for m sufficiently large, say m N N, since property iv of the hitting
" " 0) is a continuous function of .probabilities implies that Po,( r

Hence
Po,o( ) Po,( 0) 2 a- 2 a- 3.

Therefore, Po,o( 5) a and Po,o(" 0) a and the proof is com-
pleted.

COROARY. Po,( 0) is a subharmonic function of e D.

Proof. Po,( O) fov ho(, d)Po,,( 0) if D e a and D D,
Q.E.D.

THEOREM 7.7. If D o D e , D r hen

Po,o( e o) Po,o( o).

Proof. Since Po,( 0) is an upper semi-continuous function there is a
neighborhood of o, No e , such that

Po,( o) Po,o( o) + a-

for e No. But then if D c No,

" " f O)Po.o( O) ho.(o, d)Po.,(e Po.o(eO O) +
Dm

and the theorem is proved.

Coao 1. If Po,o " O) > O, then

Po,o Z)’ O) 1 as m ---->
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Hence

Po,to[X(r e dr, )" 0]Po,.()
Dm

_< Po,to()m 0)(Po,to() 0) + e).

Po,to(/om 0) >_ Po,to() 0)[Po,to(" 0) + e]-
and the result follows immediately.

COROLLARY 2. If Po,to ) O) > O, then

P0,to(D(K’t) 0 for some KeZ+) 1.

Proof. This result follows immediately by application of the Borel-Cantelli
lemma.

THEOREM 7.8. T0,to(S, w) is a strictly increasing function of s for almost
every w.

Proof. Since the open sets of [0, 1] have a countable base, it suffices to show
that if D e , D c F, P0,t(" 0) 0. Assume that there is some D
and a 0 D such that P0,t0(" 0) a > 0. We will deduce a contradiction
from this hypothesis and thus prove the result. Let

p /)D* { eD, 0,( 0) P0,to(D 0) < a/2}

Because P0,t(" 0) is a subharmonic function of , D* is a fine neighborhood
of 0 Moreover, D* e S by a result of Saks [13]. If e D*, P0,t(" 0) > 0.
We will now show that r(w) >_ rD*(w) for almost every w by demonstrating

that otherwise we obtain a contradiction. Assume .that r(w) < r’*(w)
on a set B of positive probability. On B, except for a set of paths of P0,t0-
probability zero, there is a t(w) > r(w) such that T,,(,)(t(w), w) 0 by
Corollary 2 of Theorem 7.7. But then by Theorem 7.4, To,to(t(w), w) 0
contradicting the definition of r(w).
But then T0,t0 (’*(w), w) 0 with P0,0-probability one so that by the

corollary to Theorem 7.3 there is a sequence {U} of open sets U, D*
such that ev(o) 0 as m --. . But this is a contradiction of the fine
neighborhood condition and so the theorem is proved.

8. The required diffusion
We will now show that if we reparameterize X with the natural time param-

eter the required diffusion (2(t), , Ft, P) is obtained.
Since we have shown that for almost every path, w, To,to(S, w) is a con-

tinuous, strictly increasing function of s, T0,t0 (s, w) has a continuous, strictly
increasing in,terse T0-0 (t, w).
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Let F be the smallest -subfield of F() containing all sets of the form

(s <i"n) n (w’4(s,w) eA), AeS, 0_ s_ t,
where if x(0) 0,

(t) =- x( -To,o(t, w)), <_ n(w) =- T0,0(1, w).

Let F - (J,=l F.
T0-0(t, w) is a 0-Marker time for the X process since

(w’To-,o(t, w) >_ s) (w’To,o(s, w)

_
t)

which belongs to F, by Lemma 7.2.
If we define Or[4(., w)] 4t(s, w) where 4(t + s, w) 4(s, w), s >_ 0,

then we obtain with P0,0-probability one
/

for s >_ t. Moreover by Theorem 7.4 it can be shown that O induces a field
homomorphism on F.
Hence (t) can be described by a set of stationary transition probabilities

Po(4(t) e A) =- Po,o(4(t -t- to) e A)

=- Po,o(x To-,o t, w e A ), A e S.

Up to subsets of a set of zero measure, namely, the set of paths having dis-
continuities, T0.to(s, w) induces a one to one measure preserving transforma-
tion, T*, of FI onto F,

T*(A) {4( To.to(s, w)) w eA}.

4(t, w) is a continuous function of except for a set of paths of P0-measure
zero.

TEOE 8.1 The process (4(t), n, F, P) is a stationary strict
Marker process.

Proof. It suffices to show that if r(w) is a 0-Marker time, that is,

then
{" (w) > t} F,

where F+ B B e F, B n (w r(w) < t) e F}, and y(w) is an F+ measur-
able function such that y(w) >_ r(w).

Let r’ (w) -1To.(r(w), w). We will now show that r’(w) is a 0-Marker
time for the process X.

(w" r’(w) < s, w(O) o) (J..(w" To,o(S, w) >_ r, r(w) < r).
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But (w T0,0 (s, w) >_ r, r(w) < r) is equal to the intersection of

(w" r(w) , r) e0r0,0-1(r)+ and (w" To,o(r, w) <_ s)

and therefore belongs to F]8. Hence (w r(w) < s) e F]8.
Moreover, T* maps F,+ onto F+ one to one up to subsets of a set of P0,0-

measure zero. Therefore Theorem 5.4 implies that

Po,olX(n’) r F;,+} P,,(,,)[x(,’) r} a.e.

which then yields the result.

THEOREM 8.2. For any set D A, D Fn o e D, A e B(0D),
(i) Po(2()) e A ho)(o A) and
(ii) E0(D) eD(0) where ) inf [t" 2(t) t D}.

Proof. Let D e *. Then because T0.0(s, w) is strictly increasing,
inf [t 2(t) D} T0.0(r(w), w), for paths for which x(0) o. Further-
more,

Po(2(/)) e A) ho)(o A)

by Lemma 5.2 and Eo(D) e.(0) by Theorem 7.2. Also, if D ca, then
Eo(") e(0) by Theorem 7.3.
Now say that there is a set D e A, D In, such that P.(2()) e. ).

ho)(., ). By adding D to e0 and proceeding as above we can construct a new
diffusion X* (2*(t), n*, F*, P*) such that P*. (2*() ho) (., ).
However the infinitesimal generator of X*, @*, is the same as the generator of., @. Since the infinitesimal generator uniquely determines the process
[12, Theorem A, p. 614] it follows that X X* and hence

p.(2()) e p*. (x*(.)) e ).

Hence the theorem is proved.
We have thus accomplished what we set out to do. That is, we have con-

structed a diffusion . (2(t), , Ft, P) up to the boundary of 1. with the
specified mean hitting times and hitting probabilities.
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