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O. Introduction

In [3], we studied integro-differential operators and semi-groups connected
with the stable densities of order a, 0 < a < 2 in R (n >_ 2). Givena
bounded domain E, we considered the operator

(0.1) A. u(P) / f u(Q) IPQ 12-- dQ

and associated with it a Dirichlet space D. which was obtained by completing
the pre-Hilbert space of infinitely differentiable functions with compact sup-
port contained in E using the inner product

(0.2) (u, v) fE vA u.

Following a valuable suggestion of Beurling we used the theory of Dirichlet
spaces (cf., [1] and [2]) to study (i) potentials, i.e. solutions inD. of -A. u f
for given f and (ii) positive contraction semi-groups generated by A. in D.
and other spaces. These semi-groups were associated with the absorbing
barrier a-processes on E. Many of the results in that note were known, but
the theory of Dirichlet spaces provided a method of unexpected simplicity in
deriving them.

This paper is a sequel to that study, and the method of Dirichlet spaces is
now used to derive some new results. We consider the compact region E ix
R (n >_ 2) and determine extensions of A. which give rise to Dirichlet spaces
containing D. as a subspace. We start by considering the set C2() of
functions on/ which can be extended so as to be twice continuously differ-
entiable on some open set containing/. We then define an operator B. on
C(/) in two parts" i P e E

+
and ff P e OE

B.u(P) f.(0.4)

u(Q’ ),(P, Q’ dSe,

[u(Q) u(P)],(Q, P) dQ

2 J0fE [u(Q) u(P)]b(P, Q) dSs, a(P)u(P).+
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The functions , a and b are all >_0 and b is symmetric in P and Q; the precise
conditions are given in Section 1. We then define an inner product

(0.5)
(v, u). f vB.u fo vB.u

f_ vB. u d,

where is Lebesgue measure in E plus the singular measure of uniform density
one concentrated on OE, the boundary of E. We show that (0.5) reduces to
the symmetric expression (2.7) when u and v are in C2(/). The completion,
D,, of this pre-Hilbert space is shown to be a Dirichlet space with underlying
set E and the measure described above. The method of Dirichlet spaces
gives a simple means of deriving the basic properties of B, and of constructing
the positive contraction semi-groups generated by B, in the spaces L(/),
L(/) and B(/)mthe space of essentially bounded functions on / with
respect to the measure .

In Section 3 we study potentials, i.e. solutions of -B, u f given suitable
f. If, for example, f B(E), then a solution us exists in the sense that there
is a unique us e D, with (us, v) f- vf d for all v e D,. If the Laplacian
/ in (0.3) is a distribution derivative on the open set E, then -B, us(P)
f(P) for P e E in the sense of distributions. The sense in which (0.4) exists
at the boundary when the differentiability of us is not known is discussed
and (3.52) gives a generalized interpretation of B, at the boundary. This
is analogous to interpreting the normal derivative in some generalized
sense in the case of differential operators. The need for a generalized inter-
pretation arises only when a >_ 1, because then (P, Q) is not integrable over
E X OE. When a 1 this is not the case, and the integral will exist for any
bounded u at least ,n.e. on OE.
The potential equation includes analogues to some classical boundary value

problems" namely, if we give a function f which vanishes on OE, the potential
us satisfies -B, us f in E and (0.4) vanishes on OE, at least in some gen-
eralized sense. The latter condition is analogous to the classical boundary
condition on an elliptic differential operator that a linear combination of the
function and its normal derivative vanish on OE. We do notspeak of bound-
ary conditions here, however, for they are included in the Very definition of
B, at the boundary.
We consider also in Section 3 the analogue to the Dirichlet problem for the

operator (0.3). We show that given e C(OE), there exists a function f
which vanishes in E and whose potential us coincides with on OE. Hence
-B, us 0 on E and us has prescribed boundary values on OE.
For each suitable choice of , a, and b in (0.3) and (0.4) we get an operator

B, which generates positive contraction semi-groups {Tt >_ 0} continuous
for >_ 0 and leading to stochastic processes. These processes are interrelated
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in the same way as the diffusion processes connected with the generalized
differential operators of [4] with different definitions of the operators at the
boundary. We do not attempt, however, to give a probabilistic discussion of
these processes here.

In Section 1 we collect the calculations needed in the sequel; Section 2 is
devoted to the construction of the Dirichlet spaces associated with B, in
Section 3 we study solutions of -B, u f, and finally in Section 4 we discuss
the positive contraction semi-groups generated by B, in several spaces.

It is to be noted that in Section 3 we have not treated the cases a > 1 and
a 1 separately, even though the proofs often simplify considerably when
a 1; in fact, some proofs are even unnecessary in this case. But this dis-
tinction at each step would clutter the exposition to such an extent that we
have treated the two cases together whenever possible.

1. Preliminary formulas
In this section we shall establish some formulas needed in the sequel.
We have a bounded domain E in R (n >_ 2). We assume that its boundary

is regular enough that we can apply the divergence theorem, that is, E is a
Greenian domain; in particular, we can define the surface area measure and
speak about the unit outer normal n which exists at almost all points of the
boundary OE. For example, any domain bounded by a finite number of
regular surfaces would serve our purposes. In the remainder of this section
u and v will denote arbitrary functions which are twice continuously differ-
entiable in some open set containing/, that is, u and v are elements of C(/).
The parameter a always satisfies 0 < a < 2.
We simply collect here the formulas we shall need without an attempt in

this section to interpret their significance.

FoaMu A.

f u(Q),PQ f [u(Q)] PQ -’-" dQ

foe u(Q)0/0n PQ

where n is the outer unit normal at Q and dS denotes surface area measure
on OE. Here/ and div are taken as distribution derivatives on the open set E.

Proof. Let Ie denote the indicator of E. We know from the theory of
distributions that if O/Oxi is the partial derivative with respect to x, as a
distribution derivative on Rn, then

(1.1) O/Oxi(ule ,r-’-") [O/Ox,(ule)] ,r2-’-".

But

(1.2) O/Ox(ule) IeOu/Ox u cos aiis,
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where cos ai is the i-th component of the outer unit normal, and s is a singular
measure of uniform density one concentrated on the surface S OE. Thus,
as a distribution on the open set E

(1.3)
u(Q) PQ --" dQ fE {u(Q)} PQ 12-’- dQ

u(Q)n PQ 2-n-" dS.

The final result follows from taking the divergence of both sides of (1.3).

FORMOLA B.

--fE v(P) dive {u(Q)} PQI2-n- dQ dP

v(P)ne fE u(Q) PQ -’-" dQ dS,

[V,v(P).Vu(Q)] PQ -’-" dP dQ,

where the subscripts on the operators and div indicate the variable with
respect to which the differentiation is performed.

Proof. This formula is an application of the identity,

(1.4) fE v div w f0E v(w.n)- f v.w,

where n is the outer umt normal.

FORMULA C.

[7, v(P)., u(Q)] PQ ]-’-" dP dQ

e{[u(Q) u(P)][v(Q) v(P)]}.e PQ -’-" dP dQ

Proof For simplicity we denote the expression on the left by (v, u).
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Then

(1.5) fE

Here we have applied the identity

(1.6) fV= fOE ()n- IE
to the inner integral in the middle term of (1.5). Since (u, v) (I)(v, u),
we have (I)(v, u) 1/2{(v, u) + (u, v)}; this gives the result ff we use in
addition the fact that

(1.7) V PQ [2--n--, V. PQ [2--n--,.
FOnMUL D.

where

(1.8)

Ve{[u(P) u(Q)][v(P) v(Q)]}. Ve PQ 12-’- dP dQ

f fo [u(P) u(Q)][v(P) v(Q)]O/on, PQ 12-- dS dq

co f. f. I<P) (Q)II,(P) ,(Q)IIPQ -’- P Q.

C. a(n + 2).

Proof. This is an application of (1.4) with v replaced by

[u(P) u(Q)][v(P) v(Q)]

as a function of P for fixed Q, and w replaced by V p PQ [2-,-. The vector
function w in this case has a singularity at P Q, but the formula is still
valid since u and v are continuously differentiable in E. This can be verified
by cutting out a sphere of radius r and center Q. The formula is valid in E
minus the sphere and the result follows on letting r -- 0.

:FORMULA E.

ne[u(Q) u(P)] PQ -’-" dSo,} dP
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n[v(Q) v(P)] PQ [2-- dSt dP

(ne.n)[u(P) u(Q)][v(P) v(Q)] PQ -’- dS, dSo.

[u(P) u(Q)][v(P) v(Q)]O/on PQ [-’- dSo. alP.

Proof. The left side can be written:

In the inner integral we use (1.6). Again the singularities do not cuse
trouble here because of the differentibility properties of u nd v. In addition
to (1.6) we lso mke use of (1.7).
Now combining (C), (D), nd (E) we get

FORMULA F.

+F

The left side of (F) is the second member of the right side of (B). We
now derive another form for the first term on the right of (B).
FORMULA G.

-v(P)n" {f ( u) PQ ’-- dQ} dS

Proof. We hve

f [u(Q) u(P)] v ]PQ dQ.
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Now multiply each side by -npv(P) (in the sense of the inner product) and
integrate over OE using (1.7) plus the fact that

--fE v(P)np. <fo [u(Q) u(P)] PQ ,2-’-"n dS} dSp

Combining (B), (F), and (G)

FORMULA H.

,[ ,f [u(P) u(Q)][v(P) v(Q)]O/Ono PQ !’-"-" dS, dP

In what follows we use the notation:

(1.9)
re(P, Q) -o/on] PQ -’-"

(n + a 2)(P--n)/] PQ

where P- denotes the vector from P to Q. Note that

(1.10) f re(P, Q) dSq re(P),

where re(P) was the function appearing in [3, formula (3.2) ].
Let (P, Q) be a function measurable on E X OE with respect to the product

of Lebesgue measure on E and the surface are measure on OE; further suppose

(1.11) t(P) m(P) foe ’(P’ Q) dS >_ 0; t L(E),

(1.13) (P, Q) _> c > 0

for some positive constant c. As we have remarked in [3], if a < 1, then
m.L(E); thus (1.13) and (1.11) imply (1.12) in that case, since E is a
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bounded domain. If E is convex, an example is provided by u 0,
v(P, Q) m(P, 0).
We shall consider an operator B, for each fixed (0 < a < 2) defined at

least on our basic set C2(/) and given by

u f u(Q) PQ -’- dQ + fo u(Q)v(P, Q) dSQ.1.14) B.

In fact, for u e C(/), this reduces to

B,u(P) div f [ u(Q)] PQ 12-n-" dQ + fo u(Q)(P, Q) dSQ

f [A u(Q)]IPQ -n- dQ(1.14a)

,,f Ou/On [PQ 12-’-’ dS, .of u(Q)(P, Q) dS,,+
where

(1.15) (P, Q) m(P, Q) v(P, Q).

Note that the function on the right of (1.14a) is in L(E); see the proof of
Lemma 3.2 for the details of the verification.
We then have

FORMULA I.

f. vBa u f0 v(Q) J [u(P) u(Q)]v(P, Q) dP

fo f [u(P) u(Q)][v(P) v(Q)]v(P, Q) dP dS

+--ff
+ L u(P)v(P).(P) dP,

where (P) is defined in (1.11).
Proof. Using the definition of B. along with the formula (I-I) and (1.15),

we get

vBu v air [PQ 12-n- dQ

+
We sketched preliminary version for a < 1 of this speeiM ese in Une application

des espaces de Dirichlet, Faeult6 des Sciences de Pris, S6m. Potentiel, 1961/62,
Fseicule 1.
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But

f v(P) dP fo, u(Q),(P, Q)dSo.

-f_ _f [u(P) u(Q)][v(p) v(Q)](p, Q) dR dSo.

-t-- j u(P)v(P)(P) dP

foe v(P)dSo f [u(P) u(Q)](p, Q)dP,

which gives the result.

2. The integro-differential operators and associated
Dirichlet spaces

We introduce the measure which is the Lebesgue measure in E plus the
singular measure of uniform density one concentrated on the surface OE.
Hence if u is continuous on E

(2.1) f u d u(Q) dQ q-- fo. u(Q) dS,.

As in Section 1, we shall consider the class C2(/) of restrictions to/ of
functions which are twice continuously differentiable in some open set con-
taining/. We define an operator B, on C (/) as follows" for P E, B, u(P)
is defined by (1..14) and for Q OE

B,u(Q) f [u(P) u(Q)],(P, Q) dR
(2.2)

2 Jo [u(P) u(Q)]b(P, Q) a(Q)u(Q),

where a and b are measurable functions on OE and OE X OE respectively and
further satisfy

(2.3) a(Q) >_ O,

(2.4) aeL(OE),

We also assume that either

(2.5) a(Q) > d > 0

for some constant d and Q OE, or

(2.6) (P) > ]c > 0

b(P, Q) >_ O, b(P, Q) b(Q, P);

PQIb(P, Q) eL(OE OE).

for some constant ]c and P e E.
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We shall discuss later the case where neither (2.5) nor (2.6) is satisfied. It
is to be noted that under any circumstances t(P) _> 0.
With this definition of B,, it then follows from formula (I) of Section 1

that

f_ vBou u(Q)v(Q)a(Q) dS,

+ I (e) Q)

(2.7) + Ji f [u(P) u(Q)][v(P) v(Q)](P, Q)dP dS

-t- -- J J [u(P)- u(Q)][v(P)

f u(P)v(P)t(P) dR+
(u, v).,

v(Q)] PQ ]-n-a dP dQ

where t is defined in (1.11). To get the second term on the right, we note
that the symmetry of b implies

(2.8) P P

dSo.

Let us now consider the set C(/) of restrictions to / of functions con-
tinuously differentiable on some open set containing . For the class C(),
the right side of (2.7) is well defined and using (u, v) as inner product, we
make C() into a pre-Hilbert space. Our aim is now to show that the
completion D of this space is a Dirichlet spce. To this end, we now show
that the three postulates for a Dirichlet space are satisfied.

(i) f lu] d _< A [lull,,

where A is a constant and u ll (u, u),.
Proof. Case l. a(Q > d > O. First, we have

(2.9)

where S(E)

d-/ S(E) }12

fodSo. Now

(2.10) f ]u(P) dP

_
f u(P) u(Q) dP + lu(Q) V(E),
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where V(E) is the n-dimensional volume of E and Q is an arbitrary point on
OE. Applying Schwarz’s inequality to the right side of (2.10) we get

(.11) f.lu(P) dP <_ IV(E)]1/2 [u(P) u(Q)] d --t-- lu(Q)]V(E).

Now integrate over OE to obtain

S(E) fE lu(P) dP

<_ IV(E)]1/’ [u(P) u(Q) d

(2.12) + V(E) foe [u(Q) dS

+ V(E) Io u(Q)[dS.

Now using (1.13) and (2.9) we get

V(E) foe_
const. u

t(P) > /c > 0. The argument is similar to that in Case 1.Case 2.
have first

(2.13)

Now let P be any point in E. We have

fo Jo u(Q) u(P) ldS + u(P)S(E)u(Q)]dS

(2.14)

+ lu(P) lS(S).
Now integrate over E to obtain

+ S(E) f [u(P) ldP

We
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<- IS(E)V(E)] T fo lu(Q) u(P) dS dP

+ S(E) f,lu(P) ldP.

Now using (2.13) and (1.13) we get the result again in this case.

(ii) C n D. is dense in C and in D..
Here C denotes the functions continuous on/. The statement is a direct
consequence of the definition of D. as the completion of C1(/) in the norm

(iii) If T is a normalized contraction, then u D. implies Tu D. and

Proof. If Tu e D. then clearly Tu If. <- u II., since

Tzl Tz. - zl- z2

for any normalized contraction. The only problem is in checking that u e D.
implies Tu e D..2 We prove this in three steps.

Step 1. If : a constant M such that ]u(P) u(Q) <_ M IPQ] for
all P and Q in E, then u

Proof. This condition certainly assures that (u, u). < . One has only
to check that u can be approximated in the norm by functions in the pre-
Hilbert space. To achieve this, we can first extend u to a function on R
satisfying the same Lipschitz condition as u for all P and Q in R. Then
take fs to be an infinitely differentiable function with support Bs, the open
ball of radius 1In and center at the origin, and satisfying fn fs 1. The
function 3s* us satisfies the same uniform Lipschitz condition as % and
is infinitely differentiable on Rs. Furthermore us - u uniformly on / as
n --* . By dominated convergence it is easily seen that

(u, u). - (u, u). and also u ]1. - (u, u)..

But this implies that u us I]- -- 0. Since the restriction of us to/ is in
D., the result is proven.

Step 2. If u satisfies the condition in Step 1, then

Proof. Clearly lu(P) u(Q) -< M]PQ[ implies

Tu(P) Tu(Q) <_ M[PQ I,

Tu D. and

so the assertion follows directly from Step 1.

It is not clear that all functions u for which the expression (u, u). of (2.7) is finite
are in D.. It may be that D. is only a subspace of this larger space.
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CStep 3. If u-+ uinthe norm olD, and ue (/), then for any nor-
malized contraciion T, l a subsequence {um} of {Un} such that Tu,k ---+ Tu
in the norm of D,.

Proof. Case 1. a(Q) > d > 0. If Un --’-> U in the norm of D,, then on
the boundary OE of E, un -+ u in the L sense with respect to the measure
a(Q) dSQ. Thus we have a subsequence {n} such that Unk} converges point-
wise a.e. (dSQ) on OE. But un -+ u in the norm of D, also implies that
u(P) u(Q) converges in the L sense on E X OE with respect to the

measure ,(P, Q) dP dSe. Since (P, Q) > c > 0, there exists a subsequence
{ml} of {n} such that {u(P) u(Q)} converges pointwise a.e. (dP X dSe)
on E >( OE. Combining these two statements, we conclude that u} con-
verges a.e. (dP) on E and a.e. (dS<) on OE.
Now Tu,k Tu <-- u, u so Tu ---+ Tu pointwise wherever uk -+ u

pointwise. Since

we have (Tu, TUn Tu),, --+ O. (Here we use the fact that on any space X
which is the union of a countable family of sets of finite measure, the measure
being denoted by ,, if a sequence {fl in L(X) with f 112

_
M for all n

converges pointwise to 0 /-a.e., then g L(X) implies fx gf d, --> 0.)
By dominated convergence, we have also Tu, I, --> Tu ll,. The last

two statements combined prove that Tu, -+ Tu in the norm of D,. Since
Cu (/), Step 2 implies that Tun is in D, thus Tu is also in D,.

Case 2. t(P) ]c O. In this caseUn-->uinD, impliesthatun--> u
in the L sense and we can choose a subsequence {uk} such that Un ---+ U a.e.
in E. By an argument similar to that in Case 1, we can then choose a subse-
quence {uk} converging a.e. with respect to Lebesgue measure in E and a.e.

(dS) on OE. The rest of the argument is then the same as in Case 1.
We have now verified that the completion of the differentiable functions

on E with inner product (u, v), given by the right side of (2.7) is a Dirichlet
space. The proof of (iii) would be simpler if one started with the larger pre-
Hilbert space of Lipschitz functions instead of C. In that case Steps 1 and 2
would be unnecessary, and in Step 3, C(/) would be replaced by the class
of Lipschitz functions.
We mention briefly the case in which neither (2.5) nor (2.6) is satisfied.

We can then replace -B, u by ),0u B, u with 0 any positive real number.
Then the right side of (2.7) will have replaced by t* + 0 ’ and a re-
placed by a + o a’. The conditions (2.5) and (2.6) are then both satis-
fied for t*’ and a’.
Note that the space D, considered in [3] is a subspace of D,. Namely,

if we consider the subspace of D, for which u(Q) 0 on OE we get D,.
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3. Potentials in D
We recall that if f B(E) there exists unique element u D such that

f. vf d (us, v),.(3.1)

This is true in ny Dirichlet spce nd u] is clled the potential of f. There
re other functions giving rise to potentials in D,, for example, if (2.5) holds
nd

(3.2) f f2a-1 dS

then there exists a unique u] e D satisfying (3.1) for all v e D if (2.6)
holds, it suffices to assume

(3.3) j f2t- dQ <

In all cases f >_ 0 implies us >_ 0.
Before going into additional properties of potentials we recall that

f Q dS <a(

(3.5) JE t(P) dP < .
It is to be noted that (3.5) is automatically satisfied if a < 1; it must be as-
sumed as hypothesis if a >_ 1.
The first question we ask is" under what conditions does f B(E), the

space of essentially bounded functions on/ with respect to the measure ,
imply that uf B(E) The simplest result in this direction is

THEOREM 3.1. If there exists a constant q such that

]f(P) q.a(P) onOE and ]f(P) q.(P) onE,

then u] exists and is in B(E) in fact
(3.6D uf II, q.

In particular, ff both (2.5) and (2.6) are satisfied and f B E) then

(3.7) u]], [min(k, d)]- f ,.
Proof. it is enough to prove the result when f 0. That u] exists fol-

lows from the fact that the function w 1 D, and is the potential of the
function u + aIo (I will always denote the indicator of the set A).
Hence,
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Here we have used the fct that in Dirichlet space vl has norm not ex-
ceeding that of v. Also f _< q implies that u <_ u, qua, q. The lst
statement is then an immediate consequence of what we have just proved.

In [3] potentials in D were expressed in terms of a Green’s function G
so that

f G,(P, Q)f(Q) dQ.(3.9)

The potentials u are also potentials in D,, but we must define f properly
on the boundary; in D, we assign u the value zero on OE. For Q e OE, we
huve

-f u(P)(P, Q) dR(3.10)

The function ] is integrble over OE; in fct, using (1.11),

(3.11)

Here

(3.11a) JoE v(P, Q) dSQ.

Thus u is the potential of the function which agrees with f on E and with ]
on OE. Note, however, that ] < 0 on OE, so that u is no longer the potential
of a positive function when considered in the larger space D,.
The following theorem expresses potentials in D, in terms of the kernel G,.

THEOREM 3.2. If f e B() and us e B(), then for P E

since

(3.13)

for Q e E and

(3.14)

Again we may suppose f >_ 0. The formula (3.12) is meaningful,

fo w(Q’)v(Q, Q’) dSQ, <_ u liB m(Q)

fEG,(P, Q)m(Q) dQ 1

almost everywhere in E.
Let g be an arbitrary element of C(E); we have

(3.15)
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using (3.1) and (3.12). Thus

Let the right side of (3.10) be denoted by w; then

(3.17’ +
Since

we conclude that

(3.19) fulg=fEwg.
Since g was arbitrary in C(E), we must have uf w

It is to be noted that (3.12) gives the decomposition of uf ilto a sum
u + u} with u in n. and u} in the orthogonal complement.

LEMMA 3.1. If B E), then the function b defined by

(3.20) fE G.(P, Q)(Q)m(Q) dQ b(P)

is bounded and continuous in E.
Proof. The kernel G.(P, Q) can be chosen so that for any bounded f the

function defined everywhere by (3.9) is in C(E), and furthermore (3.14) holds
everywhere in E. We shall postpone the proof of this statement until the
end of Section 4. From now on we assume that G. has been chosen in this
way. If e B(E), >_ O, put =IK. where IK. is the indicator of a com-
pact subset Kn of E. We also assume that as n -+ m, we have Kn E.
Now let G.m, and note that

ff G,(P,Q)m(Q)dQI(3.21) 0 _< (P) (P) < !1.

But the monotone convergence of the continuous functions G,,I,:,,m to 1 is
uniform on every compact subset of E by Dini’s theorem. Thus since
k e C(E), we conclude k e C(E).

COROLLARY 3.1. If f e B() and u, e B(), then u, e C(E).
--1Proof. This follows from Lemma 3.1, putting m (Q)g(Q) where

We shall take the usual liberty throughout this paper of referring to elements of
D. as functions rather than equivalence classes of functions.
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g( q vfE us( q’ )( q, Q/ dSQ,

By (3.13), e B(E).
Before stating the next lemma we introduce some notations. Let

(3.22) c(P’,Q’)--1/2f,(P,P’){fG.(P,Q)(Q,Q’)dQ}dP
for P’ and Q’ on OE, P’ Q’. We have

(3.23)

since G,(P, Q) _< const. PQ -n+"

(cf. [3 formula (4.31)]) and

(Q, Q’) < const. QQ’ 11-’-.
We also define

(3.24) d(P’) j u,,(P),(P, P’) dP

for P’ e 0E. The existence of u in D is assured by the condition

< <
We then have

(3.25) d(P’) dS., u,(P)v(P) dR < t(P) dR.

CLEMMA 3.2. Let V e () ;then is the potential in D, of afunction f L().
On OE, f is given by

f(P’) -2 ofE [v(Q’) v(P’)][c(P’, Q’) -4- b(P’, Q’)] dSp dSQ
(3.26)

4- v(P’) la(P’) -4- d(P’) }.

Proof. We know that v e D,. Also for P e E, cf. (1.14a),

(3.27) foe ov/on lPQ 12-n-" dS
f(p).

To see that f L(E) we write the first term as

0fE [v(Q’) v(P)]g(P, Q’) dS, + v(P)t(P).(3.28)
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Both m(P, Q) and (P, Q) satisfy (1.12). Thus since v C2() and t L(E)
the right side of (3.27) is in L(E). By direct computtion we find that
-B, coincides with (3.26) on OE. That f L(OE) follows from (3.23) and
the fa,ct that d L(OE).

COROLLARY 3.2. Suppose V e C2() and OrlOn 0 a.e. on OE. If, in
addition,

(3.29) f G.(P, Q) {foEv(Q’)(Q, Q’) dSQ,} dQ

then the function u defined by

(3.30) u(P) fE G,(P, Q)fo v(Q’)(Q, Q’) dSQ,} dQ

when P E and by u(P) (P) when P OE, is in D, and is the potential
of the function f equal to zero in E and to (3.26) on OE. Furthermore,

u l] -o.f. v2(P) {a(P) + d(P)} dSp

(3.31)

+ [’(P) v(Q)]:[c(P’ Q) -[- b(P, Q)] dSe dSo.

Proof. By Theorem 3.2 and Lemma 3.2

(3.32) v(P) u(P) + us(P),
with f given by (3.27). Since v e C(/) we have (Av),r:-n- C(/’) and so

u e D,. Thus u e D, and is the potential of the function described in the
statement of the corollary. Equation (3.31) simply states that

The result of Corollary 3.2 can be viewed as the solution to the "Dirichlet
Problem" for B,. That is, given v, the function u in (3.30) satisfies

(3.33) -B, u(P) 0 (Re E)

(in the sense of distributions) and u(P) v(P) for P e OE. The kernel

(3.34) Ks(P, Q’) f G,(P, Q)(Q, q’) dQ

defined on E OE plays the role of the Poisson kernel. The result will be
extended somewhat in the course of this section.

LEMMA 3.3. Suppose Poe OE is such that . an open neighborhood of Po on
OE where the surface is represented by the n equations xi f(ul u,_) with

f twice continuously differentiable and the Jacobians

Jk 10f/Oul (i k,j 1,..., n- 1)
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are not all 0 at Po Then a neighborhood N of Po can be chosen so that whenever
N’ and N" are neighborhoods of Po on OE such that ’ N’ N, there exists a
function satisfying the condition of Lemma 3.2 with 1 in N’, 0 on
C, and O

_ _
1 everywhere.

Proof. Let Po f(u, u,,_). Our hypothesis assures that for some
neighborhood U of (u u.-) nd some interval tl < ti the equations

(3.35) x x(ux, u_) + cos a(u, u_)

(i 1, ..., n) with cos a the i-th direction cosine of the outer normal,
defines one nd only one point in neighborhood of P0. Let S denote the
set of points

Xn)

with (u, u_) e U and It] < ti. Now let hr be a neighborhood of P0,
contained in S OE, and let N’ and N" be neighborhoods of P0 such that

’ N" N. If A and B are open subsets of R such that A n OE C2"
and B n OE N’, we can find a function 6 which is infinitely differentiable
onRn, O

_ _
1, O on A, and lonB.

To construct v, we let g be a function on R satisfying the conditions"
0 _< g

_
1, g is twice continuously differentiable vanishing for ]tl > i’ for

some i’ < ; also g 1 in some neighborhood of 0. Now define

(3.36) v(x’ x,,) (x x,,)g(t)

when (Xl,..’,x) eS, and

(3.37) (P) 0 (P e S).

Our ssumptions ssure that n is twice continuously differentible on Rn;
furthermore, 0n/0n $g’(0) 0 on OE, nd since grees with on OE, it
ssumes the desired wlues in N.

LEMMA 3.4. Suppose that Po is a point on OE satisfying the hypothesis of
Lemma 3.3. If there exists a constant M such that t(P, Q)

_
M, then for

each sufficiently small neighborhood N(Po) of Po on OE, the function u defined by

(3.38) (Q,Q’)dS,}dQ
satisfies -B, u 0 in E and

(3.39) lime. u(P) 1 (Qo e N(Po)

and whenever Qo 2(Po) satisfies the condition of Lemma 3.3,

(3.40) lime-o u(P) 0.

Proof. For sufficiently small N, we can construct an v as in Lemma 3.3
so that 1 on a neighborhood N’ N and 0 outside 2. We then



INTEGRO-DIFFERENTIAL OPERATORS. PART II 85

(3.43)

Proof.

(3.)

We have

have

v(P) f G,(P, Q) f v(Q’)(Q, Q’) dS, dQ
(3.41) (’o)_

u(P) + u.
But in a sufficiently small neighborhood S(Po) of Po in E, we have (P) I
by the construction in Lemma 3.3. Therefore P e S(Po) implies

0

_
1 --u(P)

_
u.

Our hypothesis implies that f
regular point in the sense of [3], Lemma 4.8. Hence by that Lemma,
lim u 0 as P -- Q0. This proves (3.39).

Similarly, if Qo e-(Po), then ! neighborhood S(Qo) in which 0.
Then (3.41) is replaced by

v(Q’)(Q, Q’)(3.42) 0

Since N’ is an arbitrary open neighborhood oN, we also have

0 >_u(P) +u
in S(Qo). Again, since u(P) -- 0 as P Qo and u(P) >_ O, we have (3.40).

IEMMA 3.5. Let the conditions of Lemma 3.4 hold and suppose that e B OE
is continuous at P0; then

lim-.o f G,(P, Q) {fo (Q’)v(Q, Q’) dS’} dQ (Po).

(3.45)

since

u(P)- (Po) (Po)u(P)

+fG,(P,Q){fo[(Q’)-(Po)lv(Q,Q’)dSo’}dQ,
(3.46) 1 G,(P, Q) v(Q, Q’) dS dQ + u,(P).

From eB(E) it follows thatlimu(P) 0 asP-P0. IfN(Po) is a
neighborhood of Po on OE in which (Q’) (P0) < , then

(3.47) f G,(P, Q){f,,(Q’)- (Po), v(Q, Q’) dS,) dQ < s,

and by Lemma 3.4 since e B(OE)
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(3.48) limeeo f G,(P, Q) {fo,_ g)(Q’) (Po) I(Q, Q’) dS’t dQ O.

This completes the proof.
Lemma 3.5 gives a slightly more general version of the Dirichlet problem

for B,. The function u defined by (3.44) satisfies -B u 0 in E and at
points P0 of the boundary which are regular in the sense of Lemma 3.4 as well
as points of continuity of , we have lim u(P) (P0) as P P0. Without
further assumptions on , however, it is not clear that u D,. On the other
hand, u is certainly bounded by II liB.

Finally, we discuss the sense in which B us exists at the boundary of E.
If us is not differentiable, it is not clear that the integrals in (2.2) will exist.
Suppose P0 is a point satisfying the conditions of Lemma 3.3. Let
S N(Po) be the intersection of an open ball of radius r and center P0
with OE and suppose r small enough that we can find a differentiable function

which is 1 on S,O outsideS+, for some e, with 0 _< _< 1 and
O/On 0 on OE. Let

(3.49) u;=fG,(P,Q){JI v;(Q’)(Q,Q’)dSe,}dQ.
when P E, and u(P) v(P) when P e OE. We have

(3.50)

Thus - vr (Q’) - us(Q)(Q, d dS,
r-I- e--S

and for each r > 0, we can write

r(PO)

This gives a generalized version of B, us on 0E.
The conditions under which potential uf e C(/) are not so easy to formu-

late for a >_ 1, but if < 1 we have

LEMMA 3.6. /f ( < 1 and (P, Q) <- M, suppose that the transformation
T, defined by

(3.53) T,u(Q) EI u(P)(P, Q) dR + 2 ol u(P)b(P, Q) dSe
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takes u e B(f_,) into T, u e C(OE) then if a e C(OE), we have

(3.54) f e C(OE), use C(E),

whenever all Po OE satisfy the condition of Lemma 3.3.

Proof. When a < 1, we have m eL(E) and also eL(E). Hence, the
integral in (3.53) is defined a.e. for Q e OE whenever u e B(/). We then
have for any f B(OE)

(3.55) u/(P) [T, us(P) - f(P)][T, 1 + a(P)]-
when P e OE a.e. Our further assumptions on T, assure that us is actually
continuous when restricted to OE. But then Lemma 3.1 and Lemma 3.5
imply that u/ C(E).

4. Semi-groups generated by B.
Let us recall (cf., [2, Lemma 3]) that if f is given in L(/) or in D,, then

for each k > 0, t a unique element S f minimizing the quadratic functional

Xllu]l + f lu fl d.(4.1) F(u)

Also, u S f is the only element in D, such that

(.2) (u, ). + f (u f) d 0

whenever v e L n D,. We then consider the operator Rx -Sj/x this
may be considered as an operator on any one of the spaces D,, L(/), or
B(E). In each case, Rx is the resolvent of a positive contraction semi-group
{T >_ 0/, strongly continuous for >_ 0, cf., [2, Section 3]. In addition,
(cf. [3, Corollary 5.1]) we can extend Rx to the space L(/) and the result
again holds in this space.
We can parallel the results of Section 3 from Lemma 3.2 on, replacing the

operator B, by B, I and D, by the Dirichlet space D, with norm

(11 u I1) u 11 + x f u d.(4.3

We can regard R f as the potential of f in D with respect to the new operator.
The kernel G,(P, Q) is replaced by the resolvent kernel G,(P, Q; h) which
satisfies

G,(P, Q; x) G,(P, Q) -x f G,(P, Q; x)a,(Q, Q)(4.)

and the function is replaced by the function - k. Thus (3.14)
becomes

f G.(P, Q; k)[m(Q) -t- ] dQ(4.5) 1.
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The kernel G.(P, Q; k) has the property that in D,, the transformation

(4.6) Rf(P) f, G,(P, Q; h)f(Q) dQ

is the resolvent transformation of the semi-groups in [3]. For Rx we have

R,f(P) G,(P, Q; x)f(Q) dQ
(4.7)

If 1 and the condition of Lemma 8.6 holds, then Rx maps
C(E) snoe
(4.8) R,f(P) [T. R,f(P) + f(P)][T. 1 + a(P) +
for P OE. In this case, the semi-group would operate in the subspace C(/)
of B (/).

Finally we note that it was shown in [3] that if G(P, Q) is defined so as
to satisfy [3, Formula (4.31)], then the function defined by (3.9) everywhere
is the continuous representative of the equivalence class u. We assume from
now on that G,(P, Q) has been so determined. A similar argument can be
carried out for G(P, Q; ). Then [3, Formula (4.31)] is replaced by
(4.9) G,(P, Q; ) K,(P, Q; x)

f. G.(Q, R; )[f.
for P, Q e E and

K,(P, T; h) TR [-’-"dT1 dR

(4.10) 0= K,(P, Q; ),)- I G,(Q, R; ) | K,(P, T; X)l TR ]-’-"dT[ dR

for P R E, Q e E, where K,(P, Q; ) is the Laplace transform of the
symmetric stable density function of order a on R. Thus

(4.11) fR. K,(P, Q; ) dQ 1

for all P e R. If G.(P, Q; ) is now chosen to satisfy (4.9) and (4.10) every-
where, then we have (4.5) holding everywhere, as is shown by integrating
(4.9) and (4.10) over R" with respect to P. In addition (4.4) holds for all
P and Q in E, so (3.14) actually holds everywhere for this determination of
G,(P, Q).
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