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1. Introduction
E. Hewitt and H. Zuckerman have shown how to define convolution

multiplication in a very general context [7]. In particular, using their
multiplication it is possible to make the conjugate space of the complex
Banach space of all bounded complex-valued functions defined on a semigroup
into a Banach algebra. This algebra has been studied previously by M. 1Vf.
Day [2] in case the semigroup is left amenable. This algebra, however, seems
ill-suited to the study of harmonic analysis due both to its size and to the lack
of available analytical machinery.
We propose to continue the study of "harmonic analysis" in the context of

left amenable groups but with two inovations. Firstly, we utilize the Stone-
Cech compactification of the discrete semigroup to place our study in the
context of regular Borel measures on a compact Hausdorff space, cf. [3].
Secondly, we restrict our attention to the L. space of the measure "associa,ted"

with a left invariant mean. We show that this is also a Banach algebra under
convolution multiplication and this is the generalized group algebra referred
to in the title. One of our interests in this group algebra results ,from its
connection with several questions we raised in [3]. The relation of our work
with these questions is discussed in 5.
Our utilization of the Stone-(ech compactification is given in 2 along with

other preliminaries. In 3 the convolution multiplication is defined and some
properties of it are derived. The generalized group algebra is defined in 4
and some of its structure (including the determination of its Jacobson radical)
is derived in 5. We conclude with some remarks in 6.

2. Preliminaries
Let 2 be semigroup. We shll denote by (2) the complex Bnch

space of bounded complex-valued functions on 2; in which

]lfl] sup {If()] e :}.

An element L of (2)* (the coniugate space of (2;)) is sai,d to be a left
invariant mean on Z if (1) JILl[ 1; (2) Lf >_ 0 forf _> 0; and (3) L(f) L.f
for each e 2, where (f)(r) f(a’r) for r e 2;. Not every semigroup
possesses a left invariant mean; a semigroup that does is said to be left amena-
ble. An abelian semigroup is always left amenable. For this result and
further information on left invariant means see [6, 17].
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Let 2 be a semigroup. We shall denote by 2 the Stone-Cech compactifica-
tion of the discrete space 2:. The complex Banach space (2:) of complex-
valued continuous functions on f2 (with the supremum norm) is isometrically
isomorphic to (2:). If r is the inclusion map of 2 into/2:, then the induced
map r, from (2:) to !(Z) (for f(f2:) and Z we have
(r,f)() f(’a)) is an onto, isometrical isomorphism [4, 10.2 and 10.3].
Using the representation theorem of F. Riesz, we can identify (Z)*

(conjugate space) with the space of finite complex-valued regular Borel
measures on 2:, which we will denote by M(2). Further, let r* be the,
adjoint map of r,, that is, r is the map defined from (Z)* to (Z)* such
that for L e (2:)* and f e (2) we have (*L)f L(r,f). Then r* is
an onto, isometrical isomorphism because r, is. Composing r, and the
identification of (2)* and M(/2) we obtain the (canonical) isometrical
isomorphism from !(2:)* onto M(2). Let us denote this composite map
by ). We can define more succinctly as follows" for L e !(Z)*, eL is the
unique measure # e M(2:) such that fax f dg L(r,f) for every f e (2).
Each of the spaces !(2)* and M(2) also possesses a natural partial

ordering with respect to which the "subspace of real-valued elements" forms
a vector lattice. For real-valued functionals L and M in !(2)*, we define
L >_ M if Lf >_ Mf for every positive f e !(2:), while for real-valued measures
g and v in M(2) we define g >_ v if g(E)

_
v(E) for every Bore1 subset of

fZ. With respect to these orderings, the map is an order isomorphism.
There is a natural analogue of "absolute value" in each of !(2)* and

M(2:); that is also preserved by . For M e !(2:)* and 0

_
f e !(2:), we

define IM] at f as follows"

[Mi(f) sup {IMgl lgl <_f}.

We will also denote the absolute valu6 of a measure g by ]gl. One obvious
fact which we shall need is that for each L e (2)* and v M(2;), the
following identities hold: Ill/Ill JILl] and

Corresponding to the semigroup {T’, a 2} of left translation operators on
E(T’, 7 av), there is the semigroup {T a E} of homeomorphisms of
2:, where each T is the unique extension of T, [4, 0.12 and 6.5]. Let U,
denote the automorphism of (2) induced by T,, that is, for f (f2:) we
have

Uf)x f(T x)

for each x e/2. Finally, let V denote the automorphism of M(2) induced
by U, for e M(2:) we have that Vo # is the unique measure in M(2:)
such that

ff d(V) f (Uf) d

for each f e (2:). For any measure e M(f2) a straight forward argu-
ment will show that -1 is a left invariant mean on 2: if and only if g is a
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probability measure (positive measure of mass one) that is invariant relative
to the semigroup of automorphisms {V a e 2:}. We shall refer to
such a measure as a left invariant measure relative to 2.

Let denote the set of all left invariant measures/2; then is a w*-com-
pact convex subset of M(2) and thus it follows from the Kren-Mil’man
Theorem that is the w*-closed convex hull of its extreme points. An ex-
treme point of will be referred to as an (elementary) left invariant meas-
ure/2.

3. Convolution algebras
Let 2: be a semigroup. It is possible to define a convolution multiplication

on (2)* with respect to which it is a Banach algebra. This definition of
convolution is due originally to Hewitt and Zuckerman [7] in a slightly more
general context, but seems to have been studied first in the context of left
amenable semigroups by Day [2]. The definition of Day was a specialization
of Aren’s definition of multiplication in the second conjugate of a Banach
algebra [1].

DEFINITION 3.1. Let L and M be functionals in !(2)*. For f
let M o f denote the function in (2) defined such that (M o f) M(f)
for each r e 2. The convolution of L and M, written L, M, is then that
functional in !(2)* for which (L M)f L(M of) for every f e !(2).

LEMMA 3.2. If L and M are functionals in 2()*, then

ILI , IMI >_ IL ,MI.
If further i >_ 0 and M >_ O, then L i >_ 0 and Iliil IIMII IlL

Proof. Suppose L, M e !(Z)* and 0

_
f e !(2:). Then

[L /[(f) sup {[(5 M)(g)i[[g

_
f}

sup {In(Mo g)[l[gl -f}
<_ sup {ILI(IM o gl) lgl <- f}
<_ sup {[LI(IMI o igl) Igi -< f}

_< ILI([MI o f) (ILl, IMI)f
and thus In M

_
ILJ,

If L_0 and M_0, then L,M= ILI,[M

_
[L,M >_0 and thus

L M assumes its norm at the constant function 1. The proof is completed
with the following computation"

IlL M]] (L ,M)I L(M o 1) L(IIMI[. 1) llLJ[

PROeOSITION 3.3. The space !(Z)* is a Banach algebra under convolution
multiplication.
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Proof. From [6, 19] it follows that !(2:)* is an algebra. For the norm
inequality, let us suppose that L, M e !(2)*; then the preceding lemma shows
that

and thus !( 2)* is a Banach algebra.
The convolution algebra f(2)* was studied by Day in [2] with particular

emphasis on the case in which 2 is left amenable. Among other things, Day
established that the assumption that 2 is abelian does not always imply that
!(Z)* is commutative. More specifically, he showed that the only abelian
groups for which !(2)* is commutative are the finite ones. We now state a
lemma due to Day [2, Thin. 1, p. 530] and offer a proof for completeness.

LEMMA 3.4. If L is a left invariant mean on and M is an arbitrary func-
tional in ! *, then M L M1 L.

Proof. For each function f e !(2), we have

(M L)f M(L of) M(L(f))

M(Lf.1) M1.Lf
and thus M L M1. L.
The study of !(2)* is complicated mainly for two reasons. Firstly, there

is the fact that most of the analytical tools used in studying the more classical
convolution algebras seem not to be available (e.g., the Fubini Theorem),
and secondly, there is the sheer size of !(2)* (e.g., the assumption that
!(2)* is separable implies that 2 is finite). We propose to overcome these
difficulties as follows" we will restrict our attention to a "subalgebra" of !(2)*,
and then study this object as the corresponding Banach algebra of measures
in M(2). Toward this end we need to transfer the convolution multi-
plication from !(2)* to lYI (2).

PROPOSITION 3.5. For and in I( we define

* P (I)[(I)-l() ,(I)-l(y)],
The following propositions follow immediately from 3.2-3.4.

PROPOSITION 3.6. M(2) is a Banach algebra under convolution multi-
plication.

Let lYI+(2) denote the set of positive measures in M(f2).
t)RO’OSITION 3.7. If , ’ M

+( then M+( and

( )() (z).(z).

PROPOSITION 3.8. If , is a left invariant measure/Z and lYI(2), then

While the convolution multiplication on M(f2) is well defmed, we might
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hope to be able to give a more direct definition of it.
the following proposition.

That is the purpose of

PROPOSITION 3.9., then
If , v e M(2) and E is an open and closed subset of

( , v) (E) f
Remark 3.10. If 2 were an arbitrary compact Hausdorff space, Proposi-

tion 3.9 would be of little value in determining the convolution multiplication
on lYI(2). The open and closed subsets of 2 (being the Stone@ech com-
pactificatio of a discrete space), however, form a basis for the topology of
2, and thus a regular Borel measure is completely determined by its values
on these sets. Thus the formula given in Proposition 3.9 does provide an
alternative definition of convolution multiplication.

Proof of Proposition 3.9. Since E is an open and closed subset of/2:, the
characteristic function C of E is a continuous function in (/2:) and
v, C e !(2). Further, if M -1() and K -(), we have

(M o r, C)a M[(, C)] M[,(U C)] (T-E)
and thus

(,)(E) Cd(,) (g,M)(v,C)

K(M r,C) K[v(T-IE)] rT[v(T-jE)] d.

4. Group algebras
Let 2 be a fixed left amenable semigroup and L be a left invariant mean on

2. We shall continue to use the terminology and notation of 2 and 3.
Let # L e lYI(2) we will show first that the subspace AI() of measures

absolutely continuous with respect to is a left ideal in lYI (/2:).

THEOREM 4.1. hl(t) is a closed left ideal in lYI(Z).

Proof. It is well known that hl() is a closed subspace of M(t2), which
can be identified with 9(t) using the Radon-Nikodym Theorem. Moreover,
to show that A(t) is a left ideal in lYI(2), it is clearly sufficient to prove that
for e lYI+(t2) and 0

_
v

_
, it follows that , v e h(t). This is so

because linear combinations of positive measures give all of lYI(2), while
linear combinations of ’positive measures dominated by t are dense in h(t).
(Equivalently, the bounded measurable functions are dense in 9(t).)

If and have the properties stated above, then t- >_ 0 and thus
,(#-) >_0 by Proposition 3.7 or ,t>_,>_0. The identity

v (2). obtained from Proposition 3.8 implies

t(,o:z) >_. t , > o.
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Hence, if E is a Borel set of t2 for which (E) 0, then

0 <_ ( ,,)() <_ ()(E) 0

or ( v)(E) 0. Therefore v eAl(u) and the proof is complete.

CorollAry 4.2. A(g) is a closed subalgebra of M($Z).

Remarl 4.3. If we define

A(u) {e M(Z)[ [[ Nu for some N > 0}
and set [[u[. inf {N [[ Ng}, then A.(g) is easily seen to be a complex
Banach space and the preceding proof can be used, almost without change,
to show that A(u) is a Banach algebra under convolution multiplication.

We now turn our attention to A(u), the object we wish to study. We
choose to study A(u) and not A(u), because in addition to being a Banach
algebra it has a Hilbert space structure, with respect to which "translations
are unitary operators".

DEFINITION 4.4. A(u) { eM()[ ffdg for fe (g)} and

We must first provide an alternate characterization of A2(u). This char-
acterization will be used only to show that A(g) is a Banach algebra.

Let denote a finite partition of SZ into open and closed subsets, that is,
{E} with each E an open and closed subset of SZ such that

$Z UEandE, nE=forij. Let Adenote the set of all such
partitions. For e M($Z) and e A, set

A (v, ) [v(E)[ u(E),

where a/O is taken to be 0 if a 0 and if a # 0.

LEMMA 4.5. The measure v e A() if and only if sup,a A (v, ) <
Moreover, V v eA(u), then

lill sup {A (, ) / }.

Proof. If f e A(V) and dv f d, then for {E}L e A, we have

i=l i=1

and hence ][[] sup {A(v, ) [e
Suppose e ($Z) is not absolutely continious relative to g. Then there

exists a Borel subset F of flZ so that u(F) 0 and [(F)[ e > 0. Since
u and r are regular Borel measures there exists for each integer n an open set
0 containing F for which g(0n) < e/n and [r(0)[ > el2. Further, be-
cause the topology of SZ is generated by the open and closed subsets of
there exists for each integer n an open and closed subset U contained in
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for which (Un) </n and
n Vn Vn} we find that

IV(Un)I > /3. Using the partition

A (, tin) >_ (U) 12/(Un) >_

and thus that sup {A(, ) I e A} .
Hence, if we assume for e M(E) that

2/9 n
2/n2 9

sup {A(v, ti) [tie A}

_
M,

it follows from the Radon-Nikodym Theorem that there exists f e 1() so
that dv f du. It remains to prove that f e e(u) and [f] M. To do
this it is sufficient to show that for each finite partition {F} Lx of Z into
Borel sets and each e > 0 there exists {E} 6 e A so that

That this is sufficient follows from the fact that for K positive so that

fz [f] d# > K, there exists a partition {F} of Z into Borel sets so that

Let {F}% be a finite partition of flZ into Borel sets and > 0. Using a
two-step approximation of the F,i 2,3, n, first by open sets
O F,i 2,... n and second by open and closed subsets U 0,
i 2, n, we can make the quantities

I(U) -(F)] and (U)]- l(F)l for i= 1,2,...n

sufficiently smll enough to imply that

(F)/(F) g , U)[/( U)} + e.

Since this is u standard s- argument, we will content ourseNes with the
sketch of the argument just given and thus the Lemma is proved.
To prove that A() is a Banach algebra, we need to assume that the semi-

group is actuMly a group. Whether or not this is necessary, we do not know.
As u mnemonic device, we shall let G denote the group, while continuing to
use to denote a left invariant measure relative to it.

THEOREM 4.6. A:() is a left eal in M(G). Moreover for
and e A(), the norm inequality ] ]]]. is obtained.

Proof. Suppose eM(G), eA() and {E}% e A. Then from
Proposition 3.9 it follows that

A(( , ),) ( , )(E)
i=l
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and using the Cauchy-Schwarz inequality that

A( 9, ti) _< , 71[(T-IE)] 15 d l

Hence it follows from Lemma 4.5 that e A() and

COrOllAry 4.7. A() is a Banach algebra.

Proof. Because is probability measure, we hve for e A(), that
]l]] [l[. Thus for nd in A(), the norm inequality

is obtained and h:() is seen to be a Banach algebra.

Remar 4.8. The norm inequality obtained in Theorem 4.6 further shows
that the left regular representation of (#) on h() is norm-decreasing.
It will not in general be an isomorphism becuuse M(Z) is own to be not
se-simple in many interesting cases [5].

Remark 4.9. If Definition 4.4 is changed in the obvious way to yield a
definition of () for 1 < p < , then a slight change in the previous
proof will yield thut A() is also a Banach algebra.

5. The rodicol of h().
Let G be an abelian group and be a ed invariant measure. Further,

let F denote the abstract character group of G. Each x e F is a bounded
complex-wlued function deed on G nd thus x e (G). Let x denote the
measure in M(#G) defined dx 7*(x) d and set X {xlx e r}. It is
easy to verify that X is a subset of A() and only a bit harder to show that X
is an orthonormal subset of h(), cf. [3]. When is not an elementary
invariant measure, h is shown in [3] that X is not a complete orthonormal
subset of h(). Whether or not X is complete when is elementary is not
known. Our immediate interest in h() is directed toward the resolution of
this question. Although some of our resuhs are slightly more general, we
shall assume from now on that is an elementary invariant measure/G.

We use additive notation for the group operation in G.
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Let denote the subspace of A2(,) spanned by X and

LEMMA 5.1. The subspace is a two-sided ideal in A.(u) that contains the
Jacobson radical of &(/).

Proof. We shall prove this by showing that the characters of G can be used
to define complex homomorphisms on A2() just as in the case of a locally
compact abelian group.
For x e r, we define the functional $ at v e &(,) as follows:

or equivalently

bx (v) (, x fa dd dX-d d

where- denotes complex conjugation. That Cx is multiplicative follows
easily" for and v in &(), we have

-()[-(.) o

-()(x-)-’()(x-) x()()

because -(v) o x- [-(v)(x-)]x-. Thus the subspace of &() orthog-
on81 to vx is a maximal ideal. Hence the intersection of these subspaces,, is 8 two-sided ideal that contains the Jacobson radical and the lemma is
proved.

LMMa 5.2. Suppose &(U) and f (G) such that Vv f()v for
eh e G. Then f and there exists a complex number c ch that v c

Proof. Since V for e G, it follows that V, acts on &() as a unitary
operator and thus if(c)[ 1 for G. Further, the identity V,V,
for and r in G implies that I()I() I(o + ) and hence that I is a char-
acter on G or that f e F.

Let be the measure defined d via(f) dr. Since

a=(u) and 7’(I) (),

it follows that e h(). Moreover, for e G and g C(flG) we have

gd[V] Ug)7(f)dv=f()-o U[g7(f)]dv
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and thus is invariant relative to the group Xg. Now, if

is a Jordan decomposition of , then each of the measures 1, 2, , and 4 is
a nonnegative measure that is invarint relative to X) and absolutely con-
tinuous with respect to . If some is not a multiple of , then for some
}, > 0, the measure

is a positive measure that is not a multiple of and yet is inwriant relative
to X) and dominated by . But then would not be an extreme point of
which is a contradiction. Thus there exists a complex number c so that
c and then

c dvf... c-7l(f") dz 7(f") d 7rl(f")-(f) d d or v c.

LEMMA 5.3. The subspace ) is a two-sided ideal in A2(t) which annihilates
and is contained in the center of A(t).

Proof. We prove this by verifying the following formula for the product
of / A(,u) and vx X"

If E is n open nd closed subset of G, then from Proposition 3.9 it follows
that

since

Thus we have shown that ’x x()x
Secondly, we prove that x * is a multiple of x by showing that

for p e G. Assume again that E is an open and closed subset of BG; using
Proposition 3.9 we find that

[Vp(vx )](E) (v

fa ’71[(T(+P)E)]

7[x" (T-+)E)] d
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x(p)~ f u ;[x.(TZ)] d,

x() f [(T:)]

x()( )()

nd thus that V(x * ) x(p)-(x * ).
Using the previous lemm we huve thut x * cx for some c. The

proof is completed by the ppliction of #x as follows"

c x(CVx) x(Vx * ) Cx( * vx) x(Vx) 1.
Thus,

c vx*= vx= *vx
for e A() and vx e X and the lemm follows.

LEMMA 5.4. Let be a closed translation invariant subalgebra of A()
containing and let be a continuous homorphism from to the complex num-
bers. Then there exists x e F so that

Proof. Since is a bounded linear functional on the Hilbert space
there exists eA() so that(v) (v,) for ve. For verso that
(v) 0 and r e G we define

f() (V )/().

Then for v and v in so that (v) 0 and (v) 0, we have

f,() (V,) [(V) ] [ (V)] (V) f()
() ()() (1)() ()

since (V v), v v, (V v). This last identity can be proved using
Proposition 3.9 as follows; for E an open and closed subset of G

[(Vv) v](E) a 7[v(TIE)] d(Vv)

f [vT, E)] dv

hus, he definigion of f is independeng of and we denote ghis funegion on
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G by f. Further, for v ?/so that k(v) # 0 and z G, we have

k(V-x ) -/(r-1)k()
nd since

then

After observing that () 0 implies (V) 0, we have that
V f(a-1) for a e G. Thus it follows from Lemma 5.2 that f e I’ and
that yr.. or kf~ [.
THEOREM 5.5. The algebra A2(t) @ Tt, where
(1) 92 is a two-sided ideal contained in the center of A2(t),
(2) 9 is the Jacobson radical of A(t),
(3) 92 annihilates , and
(4) is the set of topologically nilpotent elements of A().

Proof. Let e T and 9.I be the closed translation invariant subalgebra
generated by and 93. Then is commutative because 93 is contained in
the center of A(t) by Lemma 5.3 and translations of commute (see the
proof of the preceding lemma). Thus Lemma 5.4 applies and the Jacobson
radical of is seen to be f’l I. Now since 2I is commutative and is in
the radical of I, it follows that v is topologically nilpotent. Hence 9 is a
topologically nil two-sided ideal and is contained in the radical of A(u) [9,
pp. 56-57]. Using Lemma 5.1, we conclude that T is the radical and the
proof is complete.

Remark 5.6. If A2(t) were known to be commutative then Theorem 5.5
would follow directly from Lemma 5.4. Cf. [9, 2.3.6, p. 57].

The fact that Tt is the Jacobson radical of A.(U) follows immediately from
Lemmas 5.1 and 5.4. We use this less direct proof to also obtain (4).

6. Concluding remarks
As we stated in the preceding section we have been unable to determine for

any infinite abelian group G whether the subspace Tt is trivial or nontriviM.
In any case the orthogonal complement 3 of the radical of the generalized
group algebra A(t) of an elementary invariant measure t is isometrically
isomorphic to (, (), where 0 is the Bohr compactification of G and the
normalized Haar measure on 0 [10, 1.8].
We also do not know whether or not A(t) is commutative. In case

{0}, then it follows trivially that A2(t) is commutative. It is of course
not true, however, that Tt # {0} would imply that A(t) was not commutative.
In fact it seems quite possible that if
is trivial, that is, n * 0 for
We conclude with a result showing that if Tt # {0}, then it is infinite-
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dimensional. For e , let :(g) denote the closed translation invariant
subspace of A.(g) generated by ., Then :() is contained in .
THEOREM 6.1. If , , then (,) is infinite-dimensional.

Proof. The group X) {V ] e G} restricted to :() is a unitary repre-
sentation of G and hence if finite-dimensional is discretely decomposable.
Then since G is abelian it follows that () contains a one-dimensional sub-
space that is invariant with respect to [8, Thm. 6, 418-419]. If is a non-
zero element of this subspace, then Lemma 5.2 tells us that Cx for some
x e X. The element x is orthogonal to , however and so this is a con-
tradiction. Thus, :() is nfinite-dimensional.
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