GENERALIZED GROUP ALGEBRAS

BY
R. G. Doucras!

1. Introduction

E. Hewitt and H. Zuckerman have shown how to define convolution
multiplication in a very general context [7]. In particular, using their
multiplication it is possible to make the conjugate space of the complex
Banach space of all bounded complex-valued functions defined on a semigroup
into a Banach algebra. This algebra has been studied previously by M. M.
Day [2] in case the semigroup is left amenable. This algebra, however, seems
ill-suited to the study of harmonic analysis due both to its size and to the lack
of available analytical machinery.

We propose to continue the study of ‘“harmonic analysis” in the context of
left amenable groups but with two inovations. Firstly, we utilize the Stone-
Cech compactification of the discrete semigroup to place our study in the
context of regular Borel measures on a compact Hausdorff space, cf. [3].
Secondly, we restrict our attention to the L, space of the measure ‘“associated”
with a left invariant mean. We show that this is also a Banach algebra under
convolution multiplication and this is the generalized group algebra referred
to in the title. One of our interests in this group algebra results from its
connection with several questions we raised in [3]. The relation of our work
with these questions is discussed in §5.

Our utilization of the Stone-Cech compactification is given in §2 along with
other preliminaries. In §3 the convolution multiplication is defined and some
properties of it are derived. The generalized group algebra is defined in §4
and some of its structure (including the determination of its Jacobson radical)
is derived in §5. We conclude with some remarks in §6.

2. Preliminaries

Let = be a semigroup. We shall denote by B(Z) the complex Banach
space of bounded complex-valued functions on = in which

Ifll = sup {|f(c)] | o € Z}.

An element L of B(Z)* (the conjugate space of B(Z)) is said to be a left
invariant mean on 2 if (1) |L|| = 1; (2) Lf > Oforf = 0; and (3) L(.f) = Lf
for each oeZ, where (of)(7) = f(or) for 7e¢Z. Not every semigroup
possesses a left invariant mean; a semigroup that does is said to be left amena-
ble. An abelian semigroup is always left amenable. For this result and
further information on left invariant means see [6, §17].
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Let = be a semigroup. We shall denote by 8= the Stone-Cech compactifica-
tion of the discrete space =. The complex Banach space €(8Z) of complex-
valued continuous functions on B2 (with the supremum norm) is isometrically
isomorphic to B(=). If 7 is the inclusion map of = into BZ, then the induced
map =y from €(BZ) to B(Z) (for feC(BZ) and oeZ we have
(w%f)(¢) = f(wg)) is an onto, isometrical isomorphism [4, 10.2 and 10.3].

Using the representation theorem of F. Riesz, we can identify €(8Z)*
(conjugate space) with the space of finite complex-valued regular Borel
measures on B2, which we will denote by M(8Z). Further, let =* be the
adjoint map of 74, that is, =" is the map defined from B(Z)* to €(8Z)™ such
that for L e B(Z)* and f e C(8Z) we have (#*L)f = L(wxf). Then =* is
an onto, isometrical isomorphism because s is. Composing s and the
identification of €(8Z)* and M(BZ) we obtain the (canonical) isometrical
isomorphism from B(Z)* onto M(8Z). Let us denote this composite map
by ® We can define ® more succinctly as follows: for L ¢ B(2)*, ®L is the
unique measure u ¢ M(BZ) such that gz fdu = L(wsf) for every f e €(8Z).

Each of the spaces B(Z)* and M(BZ) also possesses a natural partial
ordering with respect to which the “subspace of real-valued elements” forms
a vector lattice. For real-valued functionals L and M in B(Z)*, we define
L > M if Lf > Mf for every positive f ¢ B(Z), while for real-valued measures
pand v in M(BZ) we define u > v if u(E) > v(E) for every Borel subset of
B=. With respect to these orderings, the map & is an order isomorphism.

There is a natural analogue of “absolute value” in each of B(Z)* and
M(BZ); that is also preserved by ®. For M ¢ B(Z)* and 0 < f e B(Z), we
define |M| at f as follows:

[M|(f) = sup {|Mg| | lg| < f}.

We will also denote the absolute valué of a measure p by |u|. One obvious
fact which we shall need is that for each L ¢ B(Z)* and » e M(8Z), the
following identities hold: |||L||| = ||L|| and |||2||| = |||

Corresponding to the semigroup {7T'; | ¢ ¢ Z} of left translation operators on
(T, v = or), there is the semigroup {T,|c ¢ Z} of homeomorphisms of
B2, where each T, is the unique extension of T, [4, 0.12 and 6.5]. Let U,
denote the automorphism of €(8Z) induced by T, , that is, for f ¢ €(8Z) we
have

(Us )z = f(Ts )

for each x e 3Z. Finally, let V, denote the automorphism of M(BZ) induced
by U, ; for u e M(8Z) we have that V, u is the unique measure in M(8Z)
such that

[ra0m = [ . a

for each f e €(8Z). For any measure u e M(B8Z) a straight forward argu-
ment will show that ® ' is a left invariant mean on 2 if and only if u is a
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probability measure (positive measure of mass one) that is invariant relative
to the semigroup of automorphisms U = {V,|o eZ}. We shall refer to
such a measure as a left invariant measure relative to 2.

Let 9 denote the set of all left invariant measures/Z; then 9 is a w*-com-
pact convex subset of M(B8Z) and thus it follows from the Krein-Mil’'man
Theorem that g is the w*-closed convex hull of its extreme points. An ex-
treme point of 9 will be referred to as an (elementary) left invariant meas-
ure/=.

3. Convolution algebras

Let 2 be a semigroup. It is possible to define a convolution multiplication
on B(Z)* with respect to which it is a Banach algebra. This definition of
convolution is due originally to Hewitt and Zuckerman [7] in a slightly more
general context, but seems to have been studied first in the context of left
amenable semigroups by Day [2]. The definition of Day was a specialization
of Aren’s definition of multiplication in the second conjugate of a Banach
algebra [1].

Derinrrion 3.1. Let L and M be functionals in B(2)*. For feB(Z),
let M of denote the function in B(Z) defined such that (M of)e = M(f)
for each o ¢2. The convolution of L and M, written L % M, is then that
functional in B(Z)* for which (L * M)f = L(M o f) for every f ¢ B(Z).

LemMa 3.2. If L and M are functionals in B(Z)*, then
|L| % |M| > |L = M]|.
If further L > 0 and M > 0, then L * M > 0 and ||L| - |M|| = |L * M].
Proof. Suppose L, M ¢ B8(Z)* and 0 < f ¢ B(Z). Then
|L * M|(f) = sup {|(L*M)(g)]]|lg| <}
=sup {|L(M 9)||lg| £ f}
< sup {[L|(IM o g]) | lg| < f}
< sup {[L|(|M] e lg]) | lg] <}
< LMo f) = (|L| * |M])f

and thus |L * M| < |L| * |M].

If L>0and M >0, then L*xM = |L|  |[M| > |L*M| >0 and thus
L % M assumes its norm at the constant function 1. The proof is completed
with the following computation:

IL*M|| = (L*»M)1 =L(Me1) = L(|M]| - 1) = ||L]| | M]|.

Prorosition 3.3. The space B(Z)* is a Banach algebra under convolution
mulivplication.
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Proof. From [6, §19] it follows that B(Z)* is an algebra. For the norm
inequality, let us suppose that L, M ¢« B(Z)*; then the preceding lemma shows
that

L * M| = L = M| < [IIL] * |M]]| = |[L]| * ||M]],
and thus B(2)* is a Banach algebra.

The convolution algebra B(Z)* was studied by Day in [2] with particular
emphasis on the case in which Z is left amenable. Among other things, Day
established that the assumption that 2 is abelian does not always imply that
B(2)* is commutative. More specifically, he showed that the only abelian
groups for which B(2)* is commutative are the finite ones. We now state a
lemma due to Day [2, Thm. 1, p. 530] and offer a proof for completeness.

LemMma 3.4. If L is a left invariant mean on = and M is an arbitrary func-
tional in B(Z)*, then M L = M1 - L.

Proof. For each function f ¢ B(Z), we have
(M *L)f = M(Lof) =M(L())

= M(Lf-1) = M1-Lf
and thus M L = M1-L.

The study of B(Z)* is complicated mainly for two reasons. Firstly, there
is the fact that most of the analytical tools used in studying the more classical
convolution algebras seem not to be available (e.g., the Fubini Theorem),
and secondly, there is the sheer size of B(Z)* (e.g., the assumption that
B(Z)™ is separable implies that = is finite). We propose to overcome these
difficulties as follows: we will restrict our attention to a “subalgebra” of B(Z)¥,
and then study this object as the corresponding Banach algebra of measures
in M(B8Z). Toward this end we need to transfer the convolution multi-
plication from B(Z)* to M(8Z).

ProrosiTioN 3.5. For £ and v in M(BZ), we define
Exy = B (£) %D ().
The following propositions follow immediately from 3.2-3.4.

ProrosiTion 3.6. M(BZ) 4s a Banach algebra under comvolution mulii-
plication.

Let M*(8Z) denote the set of positive measures in M(8Z).
ProposITION 3.7. If& v e MT(8Z), then £ % v e MT(BZ) and
(& %»)(B2) = £(BZ)-»(B2).
ProposiTioN 3.8. If v is a left invariant measure/Z and & e M(BZ), then
Exvy = E(BZ).
While the convolution multiplication on M(8Z) is well defined, we might
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hope to be able to give a more direct definition of it. That is the purpose of
the following proposition.

ProrositioN 3.9. If & v e M(BZ) and E s an open and closed subset of
BZ, then '

(6 x0)(B) = [ DB d

Remark 3.10. If BZ were an arbitrary compact Hausdorff space, Proposi-
tion 3.9 would be of little value in determining the convolution multiplication
on M(8Z). The open and closed subsets of 82 (being the Stone-Cech com-
pactification of a discrete space), however, form a basis for the topology of
BZ, and thus a regular Borel measure is completely determined by its values
on these sets. Thus the formula given in Proposition 3.9 does provide an
alternative definition of convolution multiplication.

Proof of Proposition 3.9. Since E is an open and closed subset of 3%, the
characteristic function Cx of E is a continuous function in €(8Z) and
7% Cr e B(Z). Further, if M = & '(v) and K = & '(¢), we have

(M omsxCx)o = M[,(7%Cg)] = Mlr«(U, Cg)] = »(T,'E)
and thus

x0)(B) = [ Cadesv) = (K «20)(raCa)
= K(M o miCy) = KW(TE)] = [ wB(T2'B) &
Bz

4, Group algebras

Let Z be a fixed left amenable semigroup and L be a left invariant mean on
Z. We shall continue to use the terminology and notation of §§2 and 3.

Let u = ®L ¢ M(BZ); we will show first that the subspace A1(u) of measures
absolutely continuous with respect to u is a left ideal in M(B8Z).

TueoreM 4.1. Ai(u) 18 a closed left ideal in M(BZ).

Proof. It is well known that A;(p) is a closed subspace of M(BZ), which
can be identified with & (u) using the Radon-Nikodym Theorem. Moreover,
to show that A;(u) is a left ideal in M(BZ), it is clearly sufficient to prove that
for £ e M*(8Z) and 0 < » < p, it follows that &% »eA;(u). This is so
because linear combinations of positive measures give all of M(8Z), while
linear combinations of positive measures dominated by p are dense in A;(p).
(Equivalently, the bounded measurable functions are dense in 2(u).)

If £ and » have the properties stated above, then u — » > 0 and thus
§%(u—v) >0 by Proposition 3.7 or £#pu>Exv > 0. The identity
£ %y = £(BZ)-» obtained from Proposition 3.8 implies

EBZ)u=>Exv 20,
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Hence, if E is a Borel set of 82 for which u(E) = 0, then
0< (£x»)(E) < EBZ)u(E) =0
or (¢+v)(E) = 0. Therefore £ * v ¢ Ay(u) and the proof is complete.
COROLLARY 4.2. Ay(p) s @ closed subalgebra of M(BZ).
Remark 4.3. If we define
Ao(p) = {r e M(BZ) | || £ Nu for some N > 0}

and set |v||lo = inf {N | [v| £ Ny}, then A,(u) is easily seen to be a complex
Banach space and the preceding proof can be used, almost without change,
to show that A,(p) is a Banach algebra under convolution multiplication.

We now turn our attention to As(u), the object we wish to study. We
choose to study As(u) and not A;(u), because in addition to being a Banach
algebra it has a Hilbert space structure, with respect to which ‘“translations
are unitary operators”.

DErFINITION 4.4, Ay(p) = {r e M(BZ) |v = [fdu for fe %(u)} and
l#lla = [Ifllz -

We must first provide an alternate characterization of As(p). This char-
acterization will be used only to show that Ax(u) is a Banach algebra.

Let & denote a finite partition of B2 into open and closed subsets, that is,
8 = {E}i=s with each E; an open and closed subset of BZ such that
B2 = Ui E;and E,nE; = @ for ¢ # j. Let A denote the set of all such
partitions. For » e M(BZ) and 6 € A, set

A(9,8) = 2 (B[ | w(Es),
where a/0 is taken to be 0 if @ = 0 and « if a 5 0.

Lemma 4.5. The measure v e Ao(p) if and only if supsea A(»,8) < oo,
Moreover, if v e Aa(p), then

7]z = sup (4(»,8) /5 ¢ A).
Proof. 1If f e A2(x) and dv = fdu, then for {E}i—1 = 8 € A, we have

46,0 =5 [ sau) yum < T [ (5P = 1518

and hence ||7||5 > sup {A(», ) |8 € A}.

Suppose v e M(BZ) is not absolutely continious relative to u. Then there
exists a Borel subset F of BZ so that u(F) = 0 and |[»(F)| = € > 0. Since
w and » are regular Borel measures there exists for each integer n an open set
0, containing F for which u(0,) < &/n and |»(0,)| > ¢/2. Further, be-
cause the topology of B2 is generated by the open and closed subsets of 82,
there exists for each integer n an open and closed subset U, contained in O,
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for which w(U,) < é&/n and |v(U,)| > e/3. Using the partition
6, = {U,, B2 — U,} we find that

W) 2 [ v(U) [/u(U, =
AG,0) 2 WU /w0 2 S0 =
and thus that sup {4(»,8) |d e A} = o,
Hence, if we assume for » e M(8Z) that
sup {4 (#,8) |8 e A} < M,

it follows from the Radon-Nikodym Theorem that there exists f e (u) so
that dv = fdu. It remains to prove that f e %(u) and [f|z < M. To do
this it is sufficient to show that for each finite partition {Fi}i= of BZ into
Borel sets and each ¢ > 0 there exists {E} ;=1 = 8 € A so that

2 it (B w(Fs) S {20 [v(B)/u(ED} + e

That this is sufficient follows from the fact that for K positive so that
Joz |fI* du > K, there exists a partition {F}i-; of 82 into Borel sets so that

Dt W(F)f/u(Fs) > K.

Let {F}i- be a finite partition of BZ into Borel sets and ¢ > 0. Using a
two-step approximation of the F,;,7=2,3,---n, first by open sets
0;DF;,i=2,---n and second by open and closed subsets U; C O;,
1 =2, --- n, we can make the quantities

(U — w(F)| and | (U] — p(F)[| for i=1,2--n

sufficiently small enough to imply that
1 (F) P /u(Fi) < {220 1 (Un) [ /u(U)} + e

Since this is a standard &8 argument, we will content ourselves with the
sketch of the argument just given and thus the Lemma is proved.

To prove that A;(u) is a Banach algebra, we need to assume that the semi-
group is actually a group. Whether or not this is necessary, we do not know.
As a mnemonic device, we shall let G denote the group, while continuing to
use u to denote a left invariant measure relative to it.

THEOREM 4.6. As(n) s a left ideal in M(BG). Moreover for £ e M(BG)
and v € As(u), the norm inequality ||£ % »|jz < ||£] - |||z s obtained.

Proof. Suppose £eM(BG), v eAy(u) and 6 = {Ejiz1eA. Then from
Proposition 3.9 it follows that

A #0),8) = 1+ (B P/u(ED

n
-2
=1

fﬂ (T B de| / w(E)
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and using the Cauchy-Schwarz inequality that

Ao 0) < 2 el [ 1B BT dl /(B
< B 0el [ wH T E /u(E) dll
< el [, 7 {35 B prucrm0 ) alel

< el [ awlv I3 dlgl < NelPlol
s
Hence it follows from Lemma 4.5 that & * » e A2(u) and

16 * vlle < &[] 7]z -
COROLLARY 4.7. A:() 1s a Banach algebra.

Proof. Because p is a probability measure, we have for £eAs(u), that
lI€l < |l&ll.  Thus for £ and » in As(u), the norm inequality

1€ * vl < [IE]] lIwlle < [1E]l2 7]l
is obtained and As(u) is seen to be a Banach algebra.

Remark 4.8. The norm inequality obtained in Theorem 4.6 further shows
that the left regular representation of M(BZ) on Ax(p) is norm-decreasing.
It will not in general be an isomorphism because M(B8Z) is known to be not
semi-simple in many interesting cases [5].

Remark 4.9. If Definition 4.4 is changed in the obvious way to yield a
definition of A,(u) for 1 < p < o, then a slight change in the previous
proof will yield that A,(r) is also a Banach algebra.

5. The radical of A:(p).

Let G be an abelian group® and u be a fixed invariant measure. Further,
let T denote the abstract character group of G. Each x e T' is a bounded
complex-valued function defined on G and thus x ¢ B(G). Let v, denote the
measure in M(8G) defined dvy = % (x) du and set X = {v, | x eT}. It is
easy to verify that X is a subset of A2(x) and only a bit harder to show that X
is an orthonormal subset of Ax(u), cf. [3]. When u is not an elementary
invariant measure, it is shown in [3] that X is not a complete orthonormal
subset of A2(p). Whether or not X is complete when u is elementary is not
known. Our immediate interest in A;(u) is directed toward the resolution of
this question. Although some of our results are slightly more general, we
shall assume from now on that u is an elementary invariant measure/G.

2 We use additive notation for the group operation in G.
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Let M denote the subspace of Ax(u) spanned by X and N = IN*.

LemmA 5.1. The subspace N s a two-sided ideal in A:(p) that contains the
Jacobson radical of Aa(u).

Proof. We shall prove this by showing that the characters of G can be used
to define complex homomorphisms on Ax(x) just as in the case of a locally
compact abelian group.

For x ¢ T, we define the functional ¢, at » ¢ Ao(p) as follows:
Yx(v) = (v, )

_ _ dv dyy~
‘px(V) - <V’ VX) - sa dﬂ dll: d

= jp‘a r;l(x“') dv = [‘I’—I(V)](X~)7

or equivalently

where ~ denotes complex conjugation. That ¢, is multiplicative follows
easily: for £ and » in As(p), we have

Yr(Ev) = [B7(E) »®(»](x7)
=&(5)@(») o x7
=& (£) (X)) (r) (X)) = Ya(E)¥x(»)

because ®(») o x~ = [ (») (x™)]x~. Thus the subspace of A;(u) orthog-
onal to v, is a maximal ideal. Hence the intersection of these subspaces,
N, is a two-sided ideal that contains the Jacobson radical and the lemma is
proved.

LemMMA 5.2. Suppose v eAy(u) and feB(G) such that Vv = f(a)v for
each o e G. Then f ¢ T and there exists a complex number ¢ such that v = ¢ vy.. ,

Proof. Since V, u = ufor g €@, itfollows that V, acts on A;(u) as a unitary
operator and thus |f(¢)| = 1 for o e G. Further, the identity V.V, = V(4n
for ¢ and r in G implies that f(¢)f(7) = f(¢ + 7) and hence that f is a char-
acter on G or that fe T

Let £ be the measure defined d¢ = n% (f) dv. Since

veds(u) and 7% (f) € C(8G),
it follows that £ e As(u). Moreover, for o ¢ G and g ¢ C(8G) we have

[ oav.d = [ W) ar = 50~ [ Udgra 01 av

— (o)~ fﬂ ) dlV] = fﬂ () iy = fﬁ g
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and thus £ is invariant relative to the group 0. Now, if

E= (b — &)+ il — &)

is a Jordan decomposition of £, then each of the measures &1, &, &, and & is
a nonnegative measure that is invariant relative to U and absolutely con-
tinuous with respect to u. If some &; is not a multiple of u, then for some
A > 0, the measure

H(w— M) + o — Mil}

is a positive measure that is not a multiple of u and yet is invariant relative
to U and dominated by u. But then p would not be an extreme point of
g which is a contradiction. Thus there exists a complex number ¢ so that
¢ = cu and then

cdvy. = crw' (fY) du = 7% (f7) dt = 7% (f 7w (f) dv =dv or v =cev..

Lemma 5.3. The subspace IN is a two-sided ideal in Ax(u) which annihilates
N and is contained in the center of As(u).

Proof. We prove this by verifying the following formula for the product
of £ eAx(p) and vy € X:

Exvy = vy xE = Yy (E)vy = (& vivx .

If E is an open and closed subset of 8@, then from Proposition 3.9 it follows
that

(& % v (B) = fﬂ (T D) d = n(E) fﬁ w0) de

= Y (H)n(B),

since

vx(T:lE) = ’/I;G U,Cg dvx = j;g Cs d[Van] = X(U)~VX(E)0

Thus we have shown that & * v, = ¢, (£)v, .
Secondly, we prove that », * £ is a multiple of », by showing that

Vo(vx %) = x(p)"(vy *£)

for p e G. Assume again that E is an open and closed subset of 8G; using
Proposition 3.9 we find that

[Vo(oe * UE) = (vy * £)(T,"E)

= f T;I[E(T(ﬁp)E)] de
[:fed

- f e T E( T )] di
BG
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x(o)™ [ U3 e (7B}

x(o)™ [ (T B doy

x(p)~(vy * £)(E)

and thus that V,(vy * £) = x(p)~(rx * £).
Using the previous lemma we have that », * £ = cv, for some ¢. The
proof is completed by the application of ¢, as follows:

¢ = Pxlevy) = Yx(rx %) = Yy (Exvy) = Yy(vy) = 1.
Thus,

cC=vyxf =y, =Expy
for £ e As(1) and v, € X and the lemma follows.

LemMa 5.4. Let A be a closed translation invariant subalgebra of As(p)
containing M and let ¥ be a continuous homorphism from U to the complex num-
bers. Then there exisis x € T so that ¢ = ¢ | U.

Proof. Since ¢ is a bounded linear functional on the Hilbert space ¥,
there exists £ ¢ 3 C As(u) so that ¢(v) = (v, £) for v €. For » ¢ A so that
Y(») # 0 and 7 ¢ G we define

(1) =¥V ) /(»).
Then for » and » in U so that ¢(»;) 0 and ¢(») 5 0, we have
fry = HT) Vo) 3] _ gl x (Vo)) (Vo)
. ¥(n) V()¢ (v2) ()Y (v2) Y(v2)

since (V,») *v2 = vy * (V,2,). This last identity can be proved using
Proposition 3.9 as follows; for E an open and closed subset of 3G

= f,,(7)

[(V, ) # wl(B) = fﬂ (15 E)] (V)
_ /,, U T B} dn
- fﬂ T eI )] dn

- fﬁ (Vo) (TE)] d

= [ * (V,)(E).

Thus, the definition of f, is independent of » and we denote this function on



320 R. G. DOUGLAS

G by f. Further, for » ¢ 2 so that ¢(») 5 0 and ¢ ¢ G, we have
Y(Vom1v) = f(a ) (»)

<V0—1 v, E) = <1’; V. E>’
then

0, Ved) = (Vo108 = y(Vom19) = f(a )W(») = (v, f(a 8.

After observing that ¢(») =0 implies ¢(V,») =0, we have that
V.t =f(c")¢ for ¢ eG. Thus it follows from Lemma 5.2 that feI' and
thaté = Ve ory = l[/f., | A.

TueorREM 5.5. The algebra Ao(p) = M @ N, where

(1) I s a two-sided ideal contained in the center of As(u),
(2) N is the Jacobson radical of Ax(u),

(3) M annihilates N, and

(4) N is the set of topologically nilpotent elements of As(u).

and since

Proof. Let veM and A be the closed translation invariant subalgebra
generated by » and . Then A is commutative because I is contained in
the center of A(x) by Lemma 5.3 and translations of » commute (see the
proof of the preceding lemma). Thus Lemma 5.4 applies and the Jacobson
radical of U is seen to be N N Y. Now since U is commutative and » is in
the radical of 9, it follows that » is topologically nilpotent. Hence N is a
topologically nil two-sided ideal and is contained in the radical of As(u) [9,
pp. 56-57]. Using Lemma 5.1, we conclude that 9 is the radical and the
proof is complete.

Remark 5.6. If Ay(u) were known to be commutative then Theorem 5.5
would follow directly from Lemma 5.4. Cf. [9, 2.3.6, p. 57].

The fact that N is the Jacobson radical of A,(u) follows immediately from
Lemmas 5.1 and 5.4. We use this less direct proof to also obtain (4).

6. Concluding remarks

As we stated in the preceding section we have been unable to determine for
any infinite abelian group G whether the subspace N is trivial or nontrivial.
In any case the orthogonal complement I of the radical of the generalized
group algebra Ax(u) of an elementary invariant measure p is isometrically
isomorphic to (&, G), where G is the Bohr compactification of G and g the
normalized Haar measure on G [10, §1.8].

We also do not know whether or not As(u) is commutative. In case
N = {0}, then it follows trivially that A;(x) is commutative. It is of course
not true, however, that 9% # {0} would imply that A;(u) was not commutative.
In fact it seems quite possible that if i 5 {0}, then the multiplication on N
is trivial, that is, n * £ = 0 for 5, £ ¢ N.

We conclude with a result showing that if R £ {0}, then it is infinite-
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dimensional. For » e, let T(r) denote the closed translation invariant
subspace of A;(u) generated by ». Then T(») is contained in N.

TaeoREM 6.1. If v € N, then T(v) s infinite-dimensional.

Proof. The group UV = {V, | ¢ € G} restricted to T(») is a unitary repre-
sentation of G and hence if finite-dimensional is discretely decomposable.
Then since @ is abelian it follows that $(») contains a one-dimensional sub-
space that is invariant with respect to U [8, Thm. 6, 418-419]. If £ is a non-
zero element of this subspace, then Lemma 5.2 tells us that £ = ¢v, for some
vy ¢ X. The element », is orthogonal to 9, however and so this is a con-
tradiction. Thus, £(») is infinite-dimensional.
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