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Introduction

In three preceding papers under a similar title, [5], [6], [7], the writer has
studied mappings T from a reflexive complex Banach space X to its dual
X* which we shall call complex-monotone. If (w, u) is the sesquilinear pairing
between w in X* and u in X, we shall call T complex-monotone if it satisfies the
two conditions"

(I) For each positive integer N, there exists a continuous, strictly increasing
real function cv on R with c(O) 0 such that

(1) I(Tu- Tv, u- v) >_ c(ll u- v I])

for alluandvwith]Jull --< N, JlvlJ - N.
(II) There exists a real function c on R with c(r) -- as r ---> -such that for all u,

(2) Tu, u) >- c( II)ll u II,
It is the object of the present paper to sharpen nd extend these results in

several significant respects.
In the first place, in [5], [6], and [7], we discussed operators of two types,

either T To -t- C or T L -k To -k C, where To is a nonlinear operator
continuous from the strong topology of X to the weak topology of X*, (demi-
continuous), C is nonlinear completely continuous operator from X to
X*, and L is a closed densely defined linear operator from X to X* such that
L* is the closure of its restriction to D(L) D(L*). As compared with the
best results in the theory of monotone operators from X to X* where com-
parable assumptions are made on Re (Tu Tv, u v) and Re (Tu, u),
(cf. [9]), these classes of operators seem too narrow in at least two respects.
The continuity requirement on To ought to be reduced to the assumption that
To is continuous from finite-dimensional subspaces of X to the weak topology
of X*. In addition, the perturbing completely continuous operator C should
be allowed to intertwine itself with To in a suitable sense rather than be merely
an additional summand.
In Section 1, we carry through this weakening of requirements to obtain

the following results:

TH]OnEM 1. Let T be a nonlinear complex-monotone mapping of the reflexive
complex Banach space X into its dual space X*. Suppose that T is continuous
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from finite-dimensional subspaces of X to the wea topology of X*. Then T
is a one-to-one mapping of X onto X* with a continuous inverse from X* to X.
THEOREM 2. Let T be a nonlinear mapping of the dense linear subset D( T)

of X into X* such that T L + To, where L is a closed densely defined linear
operator from X to X* such that L* is the closure of its restriction to
D (L) n D(L*), To is continuous from finite-dimensional subspaces of X to the
weak topology of X* and maps bounded sets of X into bounded sets of X*. Sup-
pose that T is complex-monotone on D(T). Then T is a one-to-one mapping
of D T) onto X* and has an inverse T-1 mapping X* continuously into X.

THEOREM 3. Let T be a mapping of the reflexive space X into X*,
(dim X >_ 2) where T(u) S (u, u) for a mapping S of X X X into X* for
which:
() For fixed v in X, S(., v) satisfies condition (I) with function cN in-

dependent of v for v N.
(b) For fixed u in X, S(u, is completely continuous from X to X* (i.e.

continuous on bounded subsets of X from the weak topology of X to the strong
topology of X*) uniformly for u on bounded subsets of X.

(c) T is demicontinuous and satisfies condition (II).
Then T maps X onto X*.
TIEOnEM 4. Let T be a mapping of the dense linear subset D( T) of X into

X*, where X is a reflexive complex Banach space of dimension >_2. Suppose
that T To -- L, where:
() L is a densely de]ined closed linear operator from X to X* such that

L* is the closure of its restriction to D (L) D (L*).
(b) For each u in X, To(u) S(u, u), where S is a mapping of X X X

into X* such that for fixed v in X, S(v, is completely continuous from X to
X* uniformly for v on bounded subsets of X. To is demicontinuous and maps
bounded subsets of X into bounded subsets of X*.

(c) There exists a continuous strictly increasing function cN on R for each
N > 0 such that for all u and v in D(T) with u II, v ][

_
N,

(Lu Lv + S(u, v) S(v, v), u v) > cv(ll u v

d T satisfies condition II for all u in D T
Then T maps D(T) onto X*.
In Section 2, we give the following nalogue of a theorem for monotone

operators established by the writer [8] and T. Kto [10]:

THEOREM 5. Let T be a mapping from the reflexive complex Banach space X
to its dual X*. Suppose that T is continuous from finite-dimensional subspaces
of X to the weatc topology of X* and that there exists a demicontinuous mapping
U of X into X* (i.e. continuous from the strong topology of X to the weak topology



FURTHER REMARKS ON NONLINEAR FUNCTIONAL EQUATIONS 277

of X*) such that T -- U is complex-monotone and T -- U is locally bounded
(i.e. maps some neighborhood of each point into a bounded set).
Then T is demicontinuous from X to X*.
A related partial result in Hilbert space is given in Theorem 2 of Petryshyn

[14].
In Section 3, we discuss the computability of the solution u of the equation

Tu w under the hypotheses of Theorems 1 and 2 in separable spaces X,
obtaining stronger forms for convergence results of [14] in the more general
context of Banach spaces. (Sequential approximations to such solutions
in Hilbert space were discussed in detail by Zarantonello in [15] for the case
of operators T satisfying one-sided Lipschitz conditions.)
In Section 4, we discuss an interesting application in Hilbert space of the

writer’s result in [6] given by Petryshyn in [14] to yield a nonlinear generaliza-
tion of the theory of the Friedrichs extension. We reformulate and reprove
Petryshyn’s result and give an analogous result for Banach spaces X.
The writer is indebted to W. Petryshyn for having made a preliminary draft

of [14] available to him.

Section

We proceed to the proofs of Theorems 1 through 4 as stated in the introduc-
tion.

Proof of Theorem 1. Let A be the directed set of finite-dimensional sub-
spaces of X ordered by inclusion. For each F in A, let jF be the iniection
map of F into X, j* the dual projection map of X* onto F*. We set

T =3oTojF F--

The hypothesis that T is continuous from finite-dimensional subspaces of X
to the weak topology of X* implies that each T is continuous. Moreover
for u and v in F,

T u, u) Tu, u)
and

(Tu- Tv, u- v) (Tu- Tv, u- v).

Hence T satisfies the hypotheses of Theorem 1 with X replaced by F. Since
T is continuous, we may apply Theorem 1 of [5] to obtain the fact that
Tr maps F one-to-one onto F*.
To prove Theorem 1, it suffices to show that 0 lies in R(T), the range of T,

since for every w in X*, the mapping T u Tu w will satisfy the hypotheses
of Theorem 1 if T does.

Let u be the unique solution in F of the equation Tu 0. We know
that

0 (Tu, u) (Tu, u)

_
c(ll u II)11 u
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Since c(r) ---+ + as r -- + , there exists a constant M > 0 independent
of F in A such that uF - M for all F in A.

Since X is reflexive by hypothesis, the closed ball of radius M about the
origin in X is weakly compact. Hence there exists u0 in X such that for
every F0 in A, u0 lies in the weak closure of the set

V,o U,o=, {u,}.

Let F, F1 be elements of A with F F1. Then

c(ll u u ll) < (Tu Tu, u u) [.
On the other hand,

(TuF, Tuv, uv, uv) (TUF1, U U,) (Tu, uy,) -t- (Tuv, u),

while
(Tu. UF1 UF) (Tv uv u, uF) O,

Tu u) T uv uF) O.
Hence

Let q(r) be the continuous strictly increasing function which is the inverse
of c(r). (We may assume without loss of generality that c(r) --asr +andthatc(r) - asr-- .) Then

F F qM([ (Tv, UF1)

Let f(v) be defined for v in X as

f(v) v uv qM([ (T,y v)[.
Then f is wekly lower semi-continuous in v. We know by the preceding
argument that f(v) 0 for v in Vv. Hence f(v) 0 on the weak closure
of Vv, and in particular f(uo) O. Thus

Suppose now that F is n element of A which contains u0. Then

Tuv Uo) Tv uv Uo) O,
and hence

u no aM(O) O,
i.e. uv u0 for such F.

Finally, for any v in X, let F be an element of A which contains both u0 and
v. Then

(,Tuo, v) T Uo, v) (T u, v) O,

so that (Tu0, v) 0 for all v in X. Hence Tuo 0, Q.E.D.

Proof of Theorem 2. In this case, we let A be the directed set of finite-
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dimensional subspaces of D(T) D(L) ordered by inclusion. As in the
proof of Theorem 1, we let jF be the inclusion map of F into X, j* the dual
projection map of X* onto F*, and

T, j**, Tj F-- F*
which is well defined for F inA since F D(T).

Since To is continuous from finite-dimensional subspaces of X to the weak
topology of X* and since every linear map L is always continuous on finite-
dimensional subspaces of D(L), T. is continuous from F to F* for every F in
A. Moreover, it satisfies conditions (I) and (II) by the same argument as in
the preceding proof. Hence T maps F one-to-one onto F*.

It suffices as in the proof of Theorem 1 to prove that there exists u0 in
D(T) such that Tuo 0. For each F in A, there exists a unique uF
such that TF uy 0. As before, there exists a constant M > 0 independent
of F such that

u -< i
for all F in A. Hence by the weak compactness of closed balls in X, there
exists u0 in X such that for each F0 in A, u0 lies in the weak closure of the set

We shall show first that u0 lies in D(T) D(L). Let v be an arbitrary
element of D(L) n D(L*) D(L) n D(L*), and let F be an element of A
which contains v.
Then

0 (T,u,, v) (Tu,, v) (Lug,, v) + (Tou,, v).

Since v D(L*),
(Lug, v) (u, L’v).

Since uF -< M while To maps bounded sets of X into bounded sets in X*,
there exists a constant M1 independent of F in A such that for all F in A,

Hence
I(T0u, v) _< MI[I v

(u,L*v) -< Mi[v[I.
Let F0 be an element of A containing v. For u in V0, it follows by the

preceding argument that

(u, L’v)]1- M]] v <- O.

Since the term on the left of the inequality is weakly continuous in u, it follows
that the inequality persists on the weak closure of V0, and, in particular,
that

(Uo, L’v) < MI] v]l
for all v in D(L) n D(L*). Since L* is the closure of its restriction to
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D(L) n D(L*), it follows that

[(u0, L*v) <_ il]] v If, v e D(i*),
i.e. Uo e D(L**) D(L) D(T), (since L being closed implies that L** L).

Let F and F1 be two elements of A with F F1. Then as in the proof of
Theorem 1, we have

u u _< qM(I (TuF, uF,) [)
and

uo uyl <_ qM(I (Tu Uo)

Since u0 has been shown to lie in D(T), there exists an element F of A which
contains u0. For such F,

Tu Uo) Ty u uo) 0

and it follows that u u0 0, i.e. u u0. Finally, for an arbitrary v
in D(T), let F be an element of A which contains both u0 and v. Then

Tuo v) T uo v) Tu v) O.

Since D(T) is a dense linear subset of X while Tuo annihilates every v in
D(T), it follows that Tuo 0, Q.E.D.

Proof of Theorem 3. It suffices as before to show that 0 e R(T). We
now let A be the directed set of finite-dimensional subspaces F of X of dimen-
sion 2. Letjy, j, and T jTj’F+F*beasbefore. Then T
maps F continuously into F*, and for each u in F,

where c(r) as r . Since F is of dimension 2, we may apply
Theorem 1 of [6] to obtain the existence of at least one element u of F which
is mapped by T onto 0. For such uy, we have as before u M, where
M is a constant independent of F in A.
By the reflexivity of X, there exists an element u0 which lies in the weak

closure of the set
Vo Uo=, {u}

for every F0 in A. Let F nd F be two elements of A with F c F. Then

c(ll u. u II) (Z(u. u) Z(u.. u.). u. u.)l

while,

(S(u, u) S(u, u), u, u)

(Tu, Tu, u, u) + (S(u,, u,) S(u, u), u, u,).

For the first summnd on the right, we hve s before

Tu Tu u u) Tu u,).
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Hence, if as in the proof of Theorem 1, qM(r) is the inverse function of cM(r),
we hve

uFl uF <- q(] (Tu ul) -}- (S(u ,u) S(uF uF), u, u)).
Let g be the function on X given by

g(v) v u q-(I (Tu, v) + (S(uy, v) -S(u, uv), v uv) ]).
Since v uv is weakly lower semi-continuous in v, qu is continuous, and
the argument of qu in the definition of g is wekly continuous on bounded
subsets of v by hypothesis (b) of Theorem 3, it follows that g(v) is weakly
lower semi-continuous in v on bounded subsets of X. Since g(v) 0 on Vv,

it follows that g(uo) O, i.e.

uo u q( (Tu, Uo) + ((u, o) (u, ), o -u)[).
Let F be an element of A which contains u0. Then (Tu, Uo) O. Since
u M, there exists u weak neighborhood V of u0 in X such that for

all w in V and all F in A, we have

(u, u0) (u, )[ <
for a prescribed > 0. We may find F in A which contains F and such that
u e V. Hence

u0 Ul (M) 0 s 0.

Hence u0 lies in the strong closure of the set V. Since T is demicontinuous,
Tuo lies in the weak closure of the set T(V) for each F in A which contains
u0. However, (Tu, v) 0 on A for each v in X. Hence the intersection
over F in A of the weak closures of T(V) consists only of the single element
0. Hence Tuo 0, Q.E.D.

Proof of Theorem 4. We take A to be the directed set of finite-dimensional
subspaces of D(T) of dimension 2. We obtain u0 us in the proof of Theorem
3 and show that it lies in D(T) as in the proof of Theorem 2. By the same
argument as in the proof of Theorem 3, we then show that for every F in
A which contains u0 and for each > 0, there exists F in h with F F such
that u0 uy < . Since T0 is demicontinuous, this implies that for
each v in X and each > 0, we my obtain F as above so that

Now let v be ny element of D(L) n D(L*), where by the hypothesis on
L,D(L) nD(L*) isdenseinX. SinceveD(L), (Tu,v) OonA. Hence

(u, L’v) + (To u ) 0

on A. For F as above, we have

(u, L’v) + (To u, ) (u0, L’v) (To u0, v) < ,
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where sl can be made arbitrarily small by suitable choice of F1. Hence

(Tu0, v) 0

for all v in D (L) n D(L*), and since this latter set is dense, Tuo O, Q.E.D.

Section 2
In the present section, we give the simple proof of Theorem 5, as stated in

the introduction.

Proof of Theorem 5. SinceT (T + U) U, and U is assumed to be
demicontinuous, it suffices to prove that T + U is demicontinuous, i.e.
to replace T by T -t- U. Hence we may assume without loss of generality
that T satisfies conditions (I) and (II) of the introduction and is locally
bounded. By Theorem 1, we know that T is a one-to-one mapping of X
onto X*.

Let u -- u strongly in X. Since {Tu} is a bounded sequence by the local
boundedness assumption and since X* is reflexive, to prove that Tu ---> Tu
weakly in X*, it suffices to show that if Tu converges to w in X*, then w Tu.
Since T is onto, there exists v in X such that Tv w. Let M be an upper
bound for II u and v [I- Then

CM( V U[I) (Tv-- Tu v u [.
Since Tu -- w Tv weakly in X* while v u -- v u strongly in X,
we know that

Tv Tu, v u) --. (0, v u) O.
Hence

i.e., u v. Finally Tu w, Q.E.D.
The proof of Theorem 5 can obviously be combined with Theorem 2 to

yield conclusions on the demicontinuity of T in that theorem on D(T). More
generally, an examination of the argument yields the following conclusion"

THEOnE 6. Let T be a mapping defined on a subset D T) of X and satisfy-
ing condition (I) of the introduction on D( T). Suppose that T maps onto X.
Then T is demicontinuous on D(T).

Section 3
It is our purpose in the present section to present a simple result on the

computability of the solutions u of the equation Tu w under hypotheses
like those of Theorem 1 in the case in which the Banach space X is separable.

THEOREM 7. Let X be a reflexive, separable, complex Banach space, T a
mapping of X into its dual space X* which is continuous from finite-dimensional
subspaces of X to the weat topology of X*. Suppose that T maps bounded
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by

tions

subsets of X into bounded subsets of X*. Suppose also that T is complex-
monotone. Let Ik} be a dense linearly independent set of elements of X, w an
element of X*. For each integer j

_
1, let Fj be the subspace of X spanned

,j}. Then:
For each j

_
1, there is a unique solution uj in F of the system of equa-

(Tu %) (w, %), l<_k<_j.

(b) As j - - , us Uo -- O, where Uo is the unique solution of the
equation Tuo w in X.

(c) If M sups us I1, then M depends only upon w and the function
c(r) of condition (II), and

cM(]I u- u0 l]) <- MII Tus- w I.
If T is also assumed to be continuous, then the right-hand side of the inequality
will converge to zero, as well as the left.

Proof of Theorem 7. Without loss of generality, we may assume that w 0.
The system of equations in part (a) is precisely equivalent to the equation

.$T u. 2" w 0, which we have already remarked to have a unique
solution in F.. Hence the conclusion of (a) follows.
For the proof of (b), we remark first that the existence and uniqueness of

the solution u0 of Tuo w is assured to us by Theorem 1. We next observe
that i max {ll u0 II, sup. u-II} depends only upon w and the function
c(r) of condition (II) of the introduction which we hypothesize for T. Apply-
ing condition (I), we obtain

cM(llUo-- u

_
Tuo-- Tu,uo-- u’)[

(w Tus,uo) (w-- Tu,u) (w Tuj,uo)[

since (w Tu, u.) 0. For every v in the dense union of the Fk,
(w Tub,v) 0forj >_ lc, where v e Fk Hence

(w Tu v) -- 0

for a dense set of elements v in X. Since w Tui is uniformly bounded in
norm for all j because of u -< M and the assumption that T maps bounded
sets into bounded sets, it follows that Tui w converges weakly to zero.

Hencel (w Tui uo) --- O as j-- . Thus

 -(ll II- 0
and hence

For the proof of (c), we observe that

Q.E.D.
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Section 4

In his forthcoming paper [14], Petryshyn has given an interesting application
of the writer’s results in [5] and [6] to the study of extensions of nonlinear
operators satisfying generalized monotonicity conditions. It is the obiect
of the present Section to reformulate the problem treated by Petryshyn in
[14] and to establish results of the same type in a more general context.
Let H be a complex Hilbert space, T and K two linear operators with a

common dense domain D(T) in H and with range in H, with K closeable
and R(K) dense in H. Then T is said to be K-positive definite if there exist
positive constants al and a. such that

Tu, gu) >_ Ku <_ a.( Tu, Ku)

for all u in D(T). On D(T), we may define a Hermitian inner product
[u, v] by

[u, v] Tu, Kv)

since (Tu, Kv) (Ku, Tv) by polarization. The first inequality above tells
us that the inner product [u, v] defines a pre-Hilbert space structure on D(T)
with a bounded injection J into H. Let H0 be the completion of D(T) with
respect to the inner product [., ]. Then J may be extended by continuity
to a bounded linear mapping of H0 into H. Moreover, J is one-to-one and
identifies H0 with a linear subset of H. (Indeed, suppose {u} is sequence
from D(T) such that uk - u in H0 while uk --+ 0 in H. Since I1 Ku is
uniformly bounded, we may assume that Ku converges weakly to an element
w of H. Since the weak and strong closures of the graph of K coincide, it
follows that w 0. Hence for every v in D(T), [u, v] (Kuk, Tv) ---+ 0,
which implies that u 0.)
The second inequality Ku <_ a.(Tu, gu) implies that the mapping

u Ku of D(T) into H is bounded from the H0-norm to H and therefore can
be extended uniquely by continuity to a bounded linear mapping K0 of H0 into
H. Let Ko* be the adjoint mapping of H into H0. Since the range of K is
dense in H by hypothesis, K0* is one-to-one.

In [14], Petryshyn considers a nonlinear mapping P from D(T) into H
which satisfies the conditions-

I(Pu By, K(u v))l > v II"o u, v eD(T),

(Pu, Kov) is continuous in u on H0 for each v in H0.

He shows the existence of an unique extension P0 of P whose domain lies in
H0 with range in H, whose rnge is all of H, and which also satisfies both of the
above conditions. This result may be obtained as a special case of the follow-
ing simple generalization"

THEOREM 8. Let X and Y be two complex Banach spaces, with X reflexive.
Let P be a (possibly) nonlinear operator with domain D P a dense subset of X
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and with range in Y*, Ko a bounded linear operator from X to Y whose range is
dense in Y. Suppose that P and Ko satisfy the following conditions:

(1) For each integer N > O, there exists a continuous strictly increasing
function cv on R with cv(O) 0 such that for all u and v in D(P) with
u <- N, v <- N,

(4.1) i(Pu- Pv, Kou- K0v)[_ c(ll u- v I[).
(2) There exists a real function c on R with c(r) ---> + as r -- + such

that for all u in D P),

l(Pu, Ko u) >_ c(ll u II)ll u II.
(3) For each v in X, Pu, Ko v) is continuous in u on X.
Then there exists a unique extension Po of P mapping from its domain in X to

Y* such that Po maps one-to-one onto Y* and for each v in X, (Po u, Ko v) is con-
tinuous in the X-norm for u running through D(Po). For this extension, (4.1)
and (4.2) hold with P replaced by Po

Proof of Theorem 8. Since K0 is a bounded linear map of X into Y, K is a
bounded linear mapping of Y* into X*. The function u ---+ K Pu is demi-
continuous from X to X* since for each v in X,

(K Pu, v) (Pu, Ko v)

is continuous in the X-norm for u running through D(P). Since X is complete
in the strong topology and X* is complete in the weak topology, the mapping
K P may be extended uniquely to a demicontinuous mapping Q from the
whole of X into X*.
For u in D(P), we have from (4.1)

(4.3) I(Qu- Qv, u v) I( Pu- Pv, Ko(u v) >_ cN(II u- v II)

and from (4.2),

l(Qu, u)i I(Pu, Ko u)] >_ c(I] u ]])l] u ]1.

Extending Q by demicontinuity, we observe that both sides of the inequalities
(4.3) and (4.4) are continuous on the graph of Q in X, X*, where X8 is X
in the strong topology and X* is X* taken with the weak topology. Hence
(4.3) and (4.4) hold for all u and v in X.
Applying Theorem 1, above, or the corresponding results of [5], we see that

Q maps X onto X*. Let Do Q-I(R(Ko.) ). Since K0 has a dense range in
Y, K is an injective map of Y* into X* and has an inverse (K)-1 mapping
R(K0*) onto Y*. We define P0 by

D(Po) Do, Po u (K -1Qu, u eD(Po).

Since R(Q) X* and R( (K)-1) Y*, R(Po) must be all of Y*. Since
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Q is one-to-one and (K)-I is one-to-one, P0 is one-to-one. Since

(P0 u, K0 v) (K0*(K --1Qu, v) (Qu, v)

(P0 u, K0 v) is continuous in u for fixed v by the demicontinuity of Q. Since
the last equation would be true for any P0 satisfying the conditions of the
theorem, P0 is uniquely determined by the conditions of the theorem. We
observe that (4.1) and (4.2) go over to P0 by the demicontinuity of Q. To
complete the proof of Theorem 8, we need only show that P0 is really an ex-
tension of P.
For u in D(P), however, Qu K Pu does lie in R(K). Hence u lies

in D (P0) and
Po u K: )-lQu K: )--1 $Ko Pu Pu, Q.E.D.
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