FURTHER REMARKS ON NONLINEAR FUNCTIONAL EQUATIONS

BY
FeLix E. BROWDER

Introduction

In three preceding papers under a similar title, [5], [6], [7], the writer has
studied mappings T from a reflexive complex Banach space X to its dual
X* which we shall call complex-monotone. If (w, u) is the sesquilinear pairing
between w in X* and u in X, we shall call T complex-monotone if it satisfies the
two conditions:

(I) For each positive integer N, there exists a continuous, strictly increasing
real function cy on R with cy(0) = 0 such that

(1) [ (Tu — Tv,u —v)| > cex(|u— o)

forallwand v with |u| < N, ||v| < N.
(II) There exists a real function ¢ on R* with ¢(r) — + © as r — + o
such that for all u,

(2) | (Tw, w) | 2 el w|D] -

It is the object of the present paper to sharpen and extend these results in
several significant respects.

In the first place, in [5], [6], and [7], we discussed operators of two types,
either T = Ty + Cor T = L + Ty + C, where Ty is a nonlinear operator
continuous from the strong topology of X to the weak topology of X*, (demi-
continuous), C is a nonlinear completely continuous operator from X to
X* and L is a closed densely defined linear operator from X to X™ such that
L* is the closure of its restriction to D(L) n D(L*). As compared with the
best results in the theory of monotone operators from X to X where com-
parable assumptions are made on Re (Tu — Tv, v — v) and Re (Tu, w),
(cf. [9]), these classes of operators seem too narrow in at least two respects.
The continuity requirement on 7T’y ought to be reduced to the assumption that
T, is continuous from finite-dimensional subspaces of X to the weak topology
of X*. In addition, the perturbing completely continuous operator C' should
be allowed to intertwine itself with T’ in a suitable sense rather than be merely
an additional summand.

In Section 1, we carry through this weakening of requirements to obtain
the following results:

TaEOREM 1. Let T be a nonlinear complex-monotone mapping of the reflexive
complex Banach space X into its dual space X*. Suppose that T is continuous
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from finite-dimensional subspaces of X to the weak topology of X*. Then T
is a one-to-one mapping of X onto X* with a continuous inverse from X* to X,

TrrEorEM 2. Let T be a nonlinear mapping of the dense linear subset D(T)
of X into X™ such that T = L + T, , where L is a closed densely defined linear
operator from X to X* such that L* is the closure of its restriction to
D(L) n D(L*), Ty is continuous from finite-dimensional subspaces of X to the
weak topology of X™* and maps bounded sets of X into bounded sets of X*.  Sup-
pose that T is complex-monotone on D(T). Then T is a one-to-one mapping
of D(T) onto X* and has an snwerse T~ mapping X ™ continuously into X.

TarorEM 3. Let T be a mapping of the reflexive space X into X¥,
(dim X > 2) where T(u) = S(u, w) for a mapping S of X X X into X™* for
whach:

(a) For fixed v in X, S(-, v) satisfies condition (1) with function cy in-
dependent of v for ||v|| < N.

(b) For fized w in X, S(u, -) is completely continuous from X to X™* (i.e.
continuous on bounded subsets of X from the weak topology of X to the strong
topology of X™) uniformly for u on bounded subsets of X.

(¢) T is demicontinuous and satisfies condition (II).

Then T maps X onto X ™.

TureoreEM 4. Let T be a mapping of the dense linear subset D(T') of X into
X*, where X is a reflexive complex Banach space of dimension >2. Suppose
that T = Ty + L, where:

(a) L is a densely defined closed linear operator from X to X* such that
L* is the closure of its restriction to D(L) n D(L™).

(b) For each u in X, To(u) = S(u, u), where S is @ mapping of X X X
into X such that for fixed v in X, S(v, -) s completely continuous from X to
X* uniformly for v on bounded subsets of X. T, is demicontinuous and maps
bounded subsets of X into bounded subsets of X*.

(¢) There exists a continuous strictly increasing function cy on R* for each
N > 0 such that for all w and v in D(T) with || u ||, ||v || £ N,

| (Lu — Lv + S(u,v) — S8(v,0),u —v) | = ex(|luw — v |]).

(d) T satisfies condition (1) for all w in D(T).
Then T maps D(T) onto X*.

In Section 2, we give the following analogue of a theorem for monotone
operators established by the writer [8] and T. Kato [10]:

TueoreM 5. Let T be a mapping from the reflexive complex Banach space X
to its dual X*. Suppose that T is continuous from finite-dimensional subspaces
of X to the weak topology of X™* and that there exists a demicontinuous mapping
U of X into X™ (i.e. continuous from the strong topology of X to the weak topology
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of X*) such that T + U s complex-monotone and T + U is locally bounded
(%.e. maps some neighborhood of each point into a bounded set).
Then T is demicontinuous from X to X *.

A related partial result in Hilbert space is given in Theorem 2 of Petryshyn
[14].

In Section 3, we discuss the computability of the solution % of the equation
Tu = w under the hypotheses of Theorems 1 and 2 in separable spaces X,
obtaining stronger forms for convergence results of [14] in the more general
context of Banach spaces. (Sequential approximations to such solutions
in Hilbert space were discussed in detail by Zarantonello in [15] for the case
of operators 7' satisfying one-sided Lipschitz conditions.)

In Section 4, we discuss an interesting application in Hilbert space of the
writer’s result in [6] given by Petryshyn in [14] to yield a nonlinear generaliza-
tion of the theory of the Friedrichs extension. We reformulate and reprove
Petryshyn’s result and give an analogous result for Banach spaces X.

The writer is indebted to W. Petryshyn for having made a preliminary draft
of [14] available to him.

Section 1

We proceed to the proofs of Theorems 1 through 4 as stated in the introduc-
tion.

Proof of Theorem 1. Let A be the directed set of finite-dimensional sub-
spaces of X ordered by inclusion. For each F in A, let jr be the injection
map of F into X, 73 the dual projection map of X™* onto F*. We set

Ty = jroTojp: F— F*

The hypothesis that T is continuous from finite-dimensional subspaces of X
to the weak topology of X™ implies that each Ty is continuous. Moreover
foru and v in F,

(Tru,w) = (Tu, w)
and
(Truw— Trv,u —v) = (Tu — To,u — v).

Hence T'r satisfies the hypotheses of Theorem 1 with X replaced by F. Since
Ty is continuous, we may apply Theorem 1 of [5] to obtain the fact that
T maps F one-to-one onto F*.

To prove Theorem 1, it suffices to show that 0 lies in B(T), the range of T,
since for every w in X, the mapping T'w u = Tu — w will satisfy the hypotheses
of Theorem 1 if T does.

Let ur be the unique solution in F of the equation T ur = 0. We know
that

0= (Teur,ur) = (Tur,ur) = c(|| ur )| ue .
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Since ¢(r) — + ® as r — -+ o, there exists a constant M > 0 independent
of F in A such that || ur || < M for all F in A.

Since X is reflexive by hypothesis, the closed ball of radius M about the
origin in X is weakly compact. Hence there exists uo in X such that for
every Fy in A, uo lies in the weak closure of the set

Ve, = Upocr {ur}.
Let F, Fy be elements of A with ¥ < F;. Then
cu(|| ury, — url]) < | (Tur, — Tur, ur, — ur) |-
On the other hand,
(Tup, — Tup, up, — ur) = (Tup, , Up, — ur) — (Tur, ur,) + (Tur, ur),

while
(Tul"'l y Ur, — uF’) = (TFI UF, , Ury — uF) = 07
(T’LLF, uF) = (Tpup, UF) = Q.
Hence
cu(l| ur — wr, |) < | (Tur , ur,) |-

Let gu(r) be the continuous strictly increasing function which is the inverse
of ¢u(r). (We may assume without loss of generality that cy(r) — + =
as r — -+ o« and that cy(r) —» — © as r — — ©.) Then

” Upy, — Ur ” < qM(l (TuF7 ul’"l) D
Let f(v) be defined for » in X as

F@) = llv = ur | = qu(| (Tup , 0) |-

Then f is weakly lower semi-continuous in ». We know by the preceding
argument that f(») < 0 for v in V. Hence f(v) < 0 on the weak closure
of Vr, and in particular f(uo) < 0. Thus

o — ur || < qu(] (Tur, uo) ).

Suppose now that F is an element of A which contains wy. Then

(T’LLF 5 UQ) = (Tpup y uo) = 0,
and hence
lur — uo || < qu(0) = 0,
i.e. ur = uo for such F.
Finally, for any v in X, let F be an element of A which contains both u, and
v. Then
('Tuﬂ ) 2)) = (TFuO ) 7)) = (TF'uF ) U) =0,

so that (Tuo, v) = Oforallvin X. Hence Tuy = 0, Q.E.D.
Proof of Theorem 2. In this case, we let A be the directed set of finite-
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dimensional subspaces of D(T) = D(L) ordered by inclusion. As in the
proof of Theorem 1, we let j» be the inclusion map of F into X, j» the dual
projection map of X™* onto F*, and

Tr = j3 Tjy: F — F*

which is well defined for F in A since F < D(T).

Since T is continuous from finite-dimensional subspaces of X to the weak
topology of X* and since every linear map L is always continuous on finite-
dimensional subspaces of D (L), T is continuous from F to F* for every F in
A. Moreover, it satisfies conditions (I) and (II) by the same argument as in
the preceding proof. Hence T'» maps F one-to-one onto F*.

It suffices as in the proof of Theorem 1 to prove that there exists u, in
D(T) such that Tuy = 0. For each F in A, there exists a unique ureF
such that Trur = 0. As before, there exists a constant M > 0 independent
of F such that

[urll < M

for all F in A. Hence by the weak compactness of closed balls in X, there
exists 4o in X such that for each Fyin A, u, lies in the weak closure of the set

Vi, = Ul"ocl" {ur}.

We shall show first that w, lies in D(7') = D(L). Let v be an arbitrary
element of D(L) n D(L*) = D(L) n D(L*), and let F be an element of A
which contains v.

Then
0= (Trur,v) = (Tur,v) = Lur,v) + (Tour,v).

Since v e D(L¥),

(Lug ,v) = (ur, L*).
Since || ur | < M while T, maps bounded sets of X into bounded sets in X*,
there exists a constant My independent of F in A such that for all F in A,

| (Tour,v) | < My w].
Hence
| (ur, L™) | < M| v ||.

Let Fy be an element of A containing ». For w in Vg, , it follows by the
preceding argument that

| (u, L*) | = Mal| v || < 0.

Since the term on the left of the inequality is weakly continuous in u, it follows
that the inequality persists on the weak closure of Vg, , and, in particular,
that

| (wo, L) | < Myl o |

for all v in D(L) n D(L*). Since L* is the closure of its restriction to
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D(L) n D(LY¥), it follows that
| (o, L*) | < My v |, veD(LY),

i.e.upe D(L*) = D(L) = D(T), (since L being closed implies that L** = L).
Let F and F, be two elements of A with F < F;. Then as in the proof of
Theorem 1, we have

” Ur — Ur, “ < QM(I (TuF: ul":) |)
and

| wo — wur, || < qu(| (Tur, uo) |).

Since uo has been shown to lie in D(7T'), there exists an element F of A which
contains uo . For such F,

(Tur,u) = (Trur, ) =0

and it follows that | ur — uo || = 0, i.e. ur = uo . Finally, for an arbitrary »
in D(T), let F be an element of A which contains both u, and ». Then

(Tuo,v) = (Trpuo,v) = (Trur,v) = 0.

Since D(T) is a dense linear subset of X while Tw, annihilates every v in
D(T), it follows that Tu, = 0, Q.E.D.

Proof of Theorem 3. It suffices as before to show that 0e R(T). We
now let A be the directed set of finite-dimensional subspaces F of X of dimen-
sion >2. Let jr, jr, and Ty = jr Tjr: F — F* be as before. Then T
maps F continuously into ¥, and for each « in F,

| (Tru,w) | =] (Tu,u) | 2 e(flwD] ]

where ¢(r) — + » asr — -+ ». Since F is of dimension >2, we may apply
Theorem 1 of [6] to obtain the existence of at least one element ur of F which
is mapped by T'r onto 0. For such ur, we have as before || ur | < M, where
M is a constant independent of F in A.
By the reflexivity of X, there exists an element w, which lies in the weak
closure of the set
VF‘o = UFoCFéA {ul’}

for every Foin A. Let F and Fy be two elements of A with ¥ < F;. Then
eu(l| ur, — url]) < [ (Sur,, ur,) — S(ur, ur), ur, — ur) |
while,
(S(ury » ur) — S(Up , Ur,), Ur, — Ur)
= (Tur, — Tur, ur, — ur) + (S(ur, ur,) — S(ur, ur), ur, — Ur).
For the first summand on the right, we have as before

(Tupl bl Tup,upl - uy) = -—(Tuy,up,).
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Hence, if as in the proof of Theorem 1, g5 (r) is the inverse function of cx(r),
we have

[l ur, — we |l < qul| (Tur, up,) | + | (SCur ur,) — S(ur, ur), ur, — wr)l).
Let g be the function on X given by

g() = [[v — ur || — qu(| (Tu, v) | + | (S(ur,v) —S(ur, ur), v — ur) |).

Since || v — ur || is weakly lower semi-continuous in v, ¢ is continuous, and
the argument of ¢ in the definition of ¢ is weakly continuous on bounded
subsets of v by hypothesis (b) of Theorem 3, it follows that g(v) is weakly
lower semi-continuous in » on bounded subsets of X. Since g(v) < 0on Vp,
it follows that g(u) < 0, i.e.

luo — ur |l <qu(] (Tur, uo) | + | (S(ur, uo) — S(ur, ur), uo — ur) |).

Let F be an element of A which contains uy. Then (Tur, w) = 0. Since
| ur || £ M, there exists a weak neighborhood V of u, in X such that for
all win V and all F in A, we have

| SCur, ) — S(ur,v) || < e

for a prescribed ¢ > 0. We may find F; in A which contains F and such that
ur, € V. Hence

luo — ur, | < gu(Me) >0 ase— 0.

Hence u, lies in the strong closure of the set V. Since T is demicontinuous,
Tu, lies in the weak closure of the set T'(Vy) for each F in A which contains
uo . However, (Tur, v) — 0 on A for each » in X. Hence the intersection
over F in A of the weak closures of T'(Vr) consists only of the single element
0. Hence Tup = 0, Q.E.D.

Proof of Theorem 4. We take A to be the directed set of finite-dimensional
subspaces of D(T') of dimension >2. We obtain u, as in the proof of Theorem
3 and show that it lies in D(T') as in the proof of Theorem 2. By the same
argument as in the proof of Theorem 3, we then show that for every F in
A which contains uo and for each £ > 0, there exists F; in A with F C F; such
that || uo — ur, || < & Since Ty is demicontinuous, this implies that for
each » in X and each ¢ > 0, we may obtain F, as above so that

[ (Tour, — Touo,v) | < ellv].

Now let v be any element of D(L) n D(L*), where by the hypothesis on
L,D(L) n D(L*) is dense in X. Sincev ¢ D(L), (Tur,v) — 0onA. Hence

(ur, L) + (Tour,v) =0
onA. For F, as above, we have

| (uFI ,L*U) + (TOuF1 7”) - (uO)L*v) - (To’b&o,?)) | <é&,
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where & can be made arbitrarily small by suitable choice of F;. Hence
(Tuo , U) =0
for all v in D(L) n D(L™), and since this latter set is dense, Tuo = 0, Q.E.D.

Section 2

In the present section, we give the simple proof of Theorem 5, as stated in
the introduction.

Proof of Theorem 5. Since T = (T + U) — U, and U is assumed to be
demicontinuous, it suffices to prove that 7' + U is demicontinuous, i.e.
to replace T' by T' + U. Hence we may assume without loss of generality
that 7T satisfies conditions (I) and (II) of the introduction and is locally
bounded. By Theorem 1, we know that 7' is a one-to-one mapping of X
onto X*.

Let ur, — u strongly in X. Since {Tw;} is a bounded sequence by the local
boundedness assumption and since X* is reflexive, to prove that Tu; — Tu
weakly in X ¥, it suffices to show that if T, converges to w in X*, then w = Tu.
Since T is onto, there exists » in X such that Tv = w. Let M be an upper
bound for || u || and || v ||. Then

eu(lov —w ) <[ (Tv — Tur, v — w) |.

Since Tur — w = Tv weakly in X™* while v — u, — v — u strongly in X,
we know that
(Tv — Tur,v — ux) — (0,v —u) = 0.
Hence
v — wl —0,

ie,u = v. Finally Tu = w, QE.D.

The proof of Theorem 5 can obviously be combined with Theorem 2 to
yield conclusions on the demicontinuity of 7' in that theorem on D(T"). More
generally, an examination of the argument yields the following conclusion:

TarorEM 6. Let T be a mapping defined on a subset D(T) of X and satisfy-
ing condition (1) of the introduction on D(T). Suppose that T maps onto X.
Then T s demicontinuous on D(T).

Section 3

It is our purpose in the present section to present a simple result on the
computability of the solutions u of the equation Tw = w under hypotheses
like those of Theorem 1 in the case in which the Banach space X is separable.

TuaroreM 7. Let X be a reflexive, separable, complex Banach space, T o
mapping of X into its dual space X * which is continuous from finite-dimensional
subspaces of X to the weak topology of X*. Suppose that T maps bounded
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subsets of X into bounded subsets of X*. Suppose also that T is complex-
monotone. Let {¥;} be a dense linearly independent set of elements of X, w an
element of X*. For each integer j > 1, let F; be the subspace of X spanned
by {‘Ifl s Ty \I/J} Then:
(a) Foreachj > 1, there is a unique solution u; in F; of the system of equa-
lions
(Tuj’\I,k) = (w) \Ilk)’ 1<k < .7

(b) Asj— + oo, ||u; — uo| — 0, where uo is the unique solution of the
equatton Tuy = w in X.

(¢) If M = sup; || u;l, then M depends only upon || w || and the function
c(r) of condition (I1I), and

eu([l s — uo [)) < M| Tu; — w ||,

If T s also assumed to be continuous, then the right-hand side of the inequality
will converge to zero, as well as the left.

Proof of Theorem 7. 'Without loss of generality, we may assume that w = 0.
The system of equations in part (a) is precisely equivalent to the equation
Trju; = ﬁj w = 0, which we have already remarked to have a unique
solution in F; . Hence the conclusion of (a) follows.

TFor the proof of (b), we remark first that the existence and uniqueness of
the solution ue of T'uy = w is assured to us by Theorem 1. We next observe
that M = max {|| o ||, sup; || w; ||} depends only upon || w || and the function
¢(r) of condition (II) of the introduction which we hypothesize for 7.  Apply-
ing condition (I), we obtain

er(fluo — u ) < | (Tuo — Tuy, uo — u) |
= | (w— Tuj, uo) — (w — Tuj, u;) | = | (w — Tuy, uo)|

since (w — Tu;, u;) = 0. For every v in the dense union of the F,
(w— Tu;,v) = 0forj >k, where v e F, . Hence

(w — Tu;,v) —0
for a dense set of elements » in X. Since w — Twu; is uniformly bounded in
norm for all j because of || u; || < M and the assumption that 7' maps bounded

sets into bounded sets, it follows that Twu; — w converges weakly to zero.
Hence | (w — Tw;, uo) | > 0asj— . Thus

en(|| wo — ui [ — 0
and hence
| wo — u; || — 0, j— .

For the proof of (¢), we observe that

eu(|| o — ui ||) < | (w— Tuj,w) | < M|jw— Tu; ||, QE.D.
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Section 4

In his forthcoming paper [14], Petryshyn has given an interesting application
of the writer’s results in [5] and [6] to the study of extensions of nonlinear
operators satisfying generalized monotonicity conditions. It is the object
of the present Section to reformulate the problem treated by Petryshyn in
[14] and to establish results of the same type in a more general context.

Let H be a complex Hilbert space, 7' and K two linear operators with a
common dense domain D(T") in H and with range in H, with K closeable
and R(K) dense in H. Then T is said to be K-positive definite if there exist
positive constants a1 and ap such that

(Tu, Ku) 2 all w |, || Ku | < ao(Tu, Ku)

for all w in D(T). On D(T), we may define a Hermitian inner product
[u, v] by
[u: o] = (T’U/, KU)

since (T'u, Kv) = (Ku, Tv) by polarization. The first inequality above tells
us that the inner product [u, v] defines a pre-Hilbert space structure on D(T')
with a bounded injection J into H. Let H, be the completion of D(T') with
respect to the inner product [-, -]. Then J may be extended by continuity
to a bounded linear mapping of H, into H. Moreover, J is one-to-one and
identifies Ho with a linear subset of H. (Indeed, suppose {ux} is a sequence
from D(T) such that w, — u in H, while wz — 0 in H. Since || Kuy || is
uniformly bounded, we may assume that Ku; converges weakly to an element
w of H. Since the weak and strong closures of the graph of K coincide, it
follows that w = 0. Hence for every v in D(T), [ux, v] = (Kuz, Tv) — 0,
which implies that w = 0.)

The second inequality || Ku ||® < ax(Tu, Ku) implies that the mapping
u — Ku of D(T) into H is bounded from the Hy-norm to H and therefore can
be extended uniquely by continuity to a bounded linear mapping K, of H, into
H. Let Kg be the adjoint mapping of H into H,. Since the range of K is
dense in H by hypothesis, K is one-to-one.

In [14], Petryshyn considers a nonlinear mapping P from D(T) into H
which satisfies the conditions:

[(Pu — Pv, K(u — v))| > as ]|u—v|]§;0, u, ve D(T),

(Pu, Kov) iscontinuousin % on H, foreach v in H,.

He shows the existence of an unique extension Py of P whose domain lies in
H, with range in H, whose range is all of H, and which also satisfies both of the
above conditions. This result may be obtained as a special case of the follow-
ing simple generalization:

TarorREM 8. Let X and Y be two complex Banach spaces, with X reflexive.
Let P be a (possibly) nonlinear operator with domain D(P) a dense subset of X
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and with range in Y*, K, a bounded linear operator from X to Y whose range is
dense in Y. Suppose that P and K, satisfy the following conditions:

(1) For each integer N > 0, there exists a continuous strictly increasing
Junction cy on R' with cy(0) = 0 such that for all w and v in D(P) with
[ull <N, |lv|| <N,

(4.1) [((Pu — Pv, Koyu — Kov)| > ex(||u —v]).

(2) There exists a real function ¢ on R* with ¢(r) — -+ o asr — + » such
that for all w in D(P),

(4.2) |(Pu, Kow)| 2 ([ w )] wll-

(8) Foreachvin X, (Pu, Kov) s continuous tn u on X.

Then there exists a unique extension Py of P mapping from its domain in X to
Y™ such that Py maps one-to-one onto Y™ and for each v in X, (Pou, Kov) scon-
tinuous in the X-norm for u running through D(P,). For this extension, (4.1)
and (4.2) hold with P replaced by Py .

Proof of Theorem 8. Since K, is a bounded linear map of X into ¥, Ky is a
bounded linear mapping of ¥™* into X*. The function v — K¢ Pu is demi-
continuous from X to X ™ since for each v in X,

(K Pu,v) = (Pu, Kov)

is continuous in the X-norm for % running through D(P). Since X is complete
in the strong topology and X™ is complete in the weak topology, the mapping
Kq P may be extended uniquely to a demicontinuous mapping @ from the
whole of X into X™.

For w in D(P), we have from (4.1)

(43) [(Qu— Qv,u —v)| = [(Pu— Pv, Ko(u — v)| 2 ex([fu— v )
and from (4.2),
(4.4) |(Qu, w)| = |(Pu, Kou)| = c(fu D] w |l

Extending @ by demicontinuity, we observe that both sides of the inequalities
(4.3) and (4.4) are continuous on the graph of @ in X, X Xo , where X, is X
in the strong topology and X is X* taken with the weak topology. Hence
(4.3) and (4.4) hold for all  and v in X.

Applying Theorem 1, above, or the corresponding results of [5], we see that
Q maps X onto X*. Let Dy = Q' (R(K3)). Since K, has a dense range in
Y, K¢ is an injective map of Y* into X™* and has an inverse (Ko )™* mapping
R(KY) onto Y*. We define P, by

D(Py) = Dy, Pou= (K;)'Qu, u e D(Py).
Since R(Q) = X* and R((Ks)™) = Y™, R(Po) must be all of Y*. Since
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Q is one-to-one and (Kj)™" is one-to-one, Py is one-to-one. Since
(Pou, Kov) = (K5 (K§)7'Qu, v) = (Qu, v)

(Pou, Kov) is continuous in u for fixed v by the demicontinuity of . Since
the last equation would be true for any P, satisfying the conditions of the
theorem, P, is uniquely determined by the conditions of the theorem. We
observe that (4.1) and (4.2) go over to Py by the demicontinuity of . To
complete the proof of Theorem 8, we need only show that Py is really an ex-

tension of P.
For w in D(P), however, Qu = Ky Pu does lie in R(K3). Hence u lies

in D(Py) and
Pou = (K3)7'Qu = (K§)'Kq Pu = Pu, QE.D.
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