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In their famous memoir "Partitio Numerorum III" [5 Hardy and Little-
wood formulated several conjectures about the asymptotic distribution of
primes of various special forms. One of them was"

CONJECTURE K. If c is any fixed integer other than a cube, then there are
infinitely many primes of the form m -- c. The number P(N) of such primes
up to N is given asymptotically by

N 2(1) P(g) log 1 (-c)

where p runs through primes 1 (mod 3) with p c, and c) is 1 or 1/2
according as -c is or is not a cubic residue mod p).

The problem of computing, for a particular c, the constant given by the
product on the right of (1), and similar problems for more general conjectures,
hve engaged the attention of several mathematicians [1], [2], [3], [12]. A
more general conjecture made by Bateman and Horn ([1]; see also [3]) was
the following:

HYPOTHESIS H. Let f(x), f(x) be distinct polynomials in one variable
with integral coecients and with highest coecients positive, of degrees h h
respectively. Suppose that each of these polynomials is irreducible over the
ratial field and that there is no prime which divides f(n f(n for all n.
Let Q(N) denote the number of positive integers n up to N for which
f(n), f(n) are all primes. Then

() () (h h)-c( ...,) (og )- ,
where

(3) C(f f) II {(1 p-1)-k(1 p-co(p) }.

Here the product is over all primes and co(p) denotes the number of solutions of
the congruence

fi(x) fk(x) -- 0 (mod p).

This hypothesis implies Conjectures B, D, E, F, K, P of Hardy and Little-
wood (el. [11]).
Bateman and Horn showed that the convergence of the product (3) follows

easily from the Prime Ideal Theorem. A similar deduction had been made
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earlier, for/ 1, by Nagell [8] and Rademacher [9]; see also Ricci [10]. How-
ever, since the product is not absolutely convergent, there is difficulty in esti-
mating the error introduced when it is computed from a finite number of
factors.
Bateman and Horn returned to the subiect in [2]; they expressed

C(fl, fk) in terms of an absolutely convergent product in the case when
each of the polynomials f has the property that a zero of it generates a normal
algebraic number field with an abelian Galois group. The question was raised
of determining C(fl, fk) in more general cases, and in particular in the
case/c 1, fl x q- c of Conjecture K.
In the present paper we express C(f, f) in terms of absolutely con-

vergent products for arbitrary polynomials, and show how to evaluate the
constant of Conjecture K when c 2 or 3. No essentially new idea is re-
quired. We prove"

THEOREM. Let f(x), f(x) be polynomials which satisfy the conditions

of Hypothesis H. Let f x f x f x and let f x have r real zeros
and r2 pairs of conjugate complex zeros and have discriminant D. Let K be the

field generated by a zero off let D be its discriminant, H its class-number, R its
regulator, and let w be the number of roots of unity contained in K Then

C(fl f) 2--rl--rr-r D
= WH R "(D)

(4)
X IIp# (1 p-(p) (1 p-)-o,(p) l,#z IIJ>= (1 p-j)-o,j().

Here o (p) denotes the number of irreducible factors off(x) mod p that are of
degree j, so that o,(p) o(p), and

(5) (D) IIl (1 p-co(p)) II= I>_ (1 p-)-,(),

where w,(p) denotes the number of distinct prime ideal factors of p in K that
are of degree j.

We observe that the assumptions about the f imply that these polynomials
ure MgebruicMly coprime, so that D 0. We observe further that since

(1 p-w(p))(1 p-)-o() 1 w(p)(w(p) 1)p- + O(p-),

the infinite products occurring in (4) are absolutely convergent.

Proof. By the infinite product for the Dedekind -function, we have

(6)

If p D, it follows from Dedekind’s theorem on the connection between prime
ideals and the factorization of a polynomial rood p, together with the fact that
the f(x) are coprime rood p, that

E= ,.y(P) y(P),
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and in particular that

Z:-- ,,(p) (p) (p).

Hence

where Az)(s) denotes the product on the right of (6) extended over primes
which divide D. The last expression is

(1 p-)(P) (1 p-’) ’(P)A)(s) II (1 p-)-k(1 o(p)p-)
(1 -) .>II

It is known [7, Theorem 123] that

lim
f(s) . wi [Di 11/2

= fi(s)
2-"--

= H R
Since

II (1 p-1)-(1 o(p)p-)

is known to converge, we can make s -, 1 and apply Abel’s theorem.
gives

(1 p-1)(p)A,(1) II (1 p-)-(1 o(p)p-1)
(1 -:-i) .>_2II (1 p-);()

pXD

2--rl--r2rr-r’ I W [D 11/2
i-- H R B,

Hence

C(f, ,f) II (1 p-1)-(1 oo(p)p-)BAv(1)-

This

X II (1 o(p)p-1) _i(p)

D (1 p--1)(p) 5>_2II(1 P-i)

and on inserting the value of A(1) we obtain

C(f, fk) B’y,(D) II (1 oo(p)p-1) 1-[ (1 p-i)-’(’)

where ,(D) is as defined in (5). This proves (4).

CoRonY 1. We have

(7)
C(x 4- 2) 3%/3 ( 3p-- 1) (1)-1

v log(/2-- 1)1II 1-
(p_ 1 II 1-

(X I-I 1- 1.29 ...,
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where I1 is over primes p representable as a - 27b, and I is over primes
p > 2 satisfying p --- 2 (mod 3), and ]Ia is over primes p -- 1 (rood 3) not
representable as a - 27b.

Proof. Here we have] 1, rl r2 1, K1 Q(/2),D1 D -108,
H1 1, R log (/2 1)I, wl 2 (see [4, p. 141]). In order to calculate
/(D) we factorize the principal ideals (2) and (3) in Q(/2) and get

whence

() (/2) ", (3) (/2+ 1)a,

,,(2) ,(3)
=0

when j= 1,
otherwise.

Since co(2) co(3) 1, this gives ,(D) 1. For p > 3, by the cubic
reciprocity law ([6, p. 67])

co(p) 3 if p a+ 27b,
1 if p---- 2(mod3),
0 otherwise;

co.(p) 1 if p--- 2(mod3),
0 otherwise;

coa(p) 1 if p-- l(mod3) and pa2-t-27b,
0 otherwise.

Substituting in (4), we obtain (7).
The three infinite products on the right of(7) have the approximate values

0.993, 1.06, 1.004, whence the numerical value of C.

COROLLARY 2. We have

9/3 II4(1 3P ia) (1)-1

IIC(x +/- 3)
2r log (/9 2) (p 1

(8)
X H6 1- 1.38...,

where I4 is over primes p such that 4p a + 243b, and H5 is over primes
p 2 (rood 3), and I6 is over primes p 1 (mod 3) with 4p not representable
as a - 243b2.

Proof. Here we havek 1, r r 1, K Q(/3),D1 D =-243,
U 1, R1 log (/9 2)[, wl 2 (see [4, p. 141]). Since (3) (/a)
and co(3) 1, we have ,(D) 1. For p 3, by the cubic reciprocity law
[6, p. 67],

co(p) 3 if 4p a-t-243b,
1 if p 2(mod3),
0 otherwise;
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(p) 1 if p--= 2(mod3),
0 otherwise;

(p) 1 if p-- l(mod3) and 4pa-t-243b,
0 otherwise.

This gives (8). The three infinite products on the right are approximately
0.997, 1.41, 1.004, whence the numerical value of C.
The numerical values found in Corollaries 1 and 2 agree with those found

empirically by Bateman and Horn from a finite product, and confirmed by
their count of the numbers of primes up to 14000. These values were 1.29
for x :t= 2 and 1.38 for x 3. They quote also an empirical value 2.88 for
C(x, (x x - 18)/6). This constant could also be calculated from (5);
but since the cubic field generated by a root of x x -t- 18 0 is not tabu-
lated in [4], the necessary computations would be rather long.
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