SECOND AND THIRD TERM APPROXIMATIONS OF
SIEVE-GENERATED SEQUENCES'

BY
M. C. WunpeRrLicH AND W. E. Bricas

We will consider sequences of natural numbers generated by the sieve
process described in an earlier paper [2] by Wunderlich. In that paper, a
criterion was presented which characterized the sieve generated sequences
{ax} for which a, ~ n log n. The purpose of this paper is to investigate the
nature of @, — n log n for sequences which satisfy the above mentioned eri-
terion. It was hoped that the authors could construct a sequence {a,} for
which

an — nlogn~ p, — nlogn ~ nloglogn

where p, is the n-th prime. It is shown that this cannot be achieved by a
sieve of this type but the methods employed do suggest a modification of the
sieve process which may generate such a prime-like sequence.
For the sake of completeness, the sieve method and the related functions
will be defined.
A= {a} = Npp A®

where the A® = {a{®, &{?, - -} are sequences of natural numbers defined
inductively as follows. A® = {2, 3,4, ---}, and A*™ is obtained from A® as
follows: For each integer ¢ > 0, choose one element

agk) € {al(c,-cl-)tak-l—l y T al(clc!-)tak+ak}
where a;, = ay”. Delete these of® from A® to form A*™. The following
functions will be used:

(a) Ra(x) is the number of elements in A not exceeding .
(b) on = [It= (1 = 1/a).

(¢) f(z) = Ru(z) — Rpn(x).

(d) U(n) is the number of k for which fi(a,) = 1.

(e) t(n) is the largest k for which fi(a,) > 2.

(f) d(n) =n/(n+ Un)).

The following two lemmas from [2] will be used in this paper.

LemMA 1.1, Ifx < au, Royi(2) = Ru(x). Ifx > 0n,
Roi(z) = on Ri(z) + 2 I ({W} + k _ €k>
k=1 Qg T g
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where &, is either 0 or 1, and {x} refers to the fractional part of x.
Lemma 1.4.  There exists a constant cy such that t{n) < ¢z n/log n.

We will begin by considering those a, for which a, ~ n log n. Letting
T = a, + 1in [2, Lemma 1.1], we obtain

(1) ontn =n — E.(a, + 1).

We now proceed to estimate E,(a, + 1)

Lemma 1. E.(a. + 1) = —Il(n) + O(" log log n)
log n

Proof. Let c; be the constant obtained in [2, Lemma 1.4], and let
E(k,n) = 2‘<ka(“" +1) - k} + ko ek).
o \\

ax ay,

We split up E.(a, + 1) as follows:
En(an + 1) = 2% E(k, n)

(2) + 2ssmspan=1 Bk, 1)+ Dissm sp@n=o Bk, n)
=84+ 8+8;

where s, = [c2n/log n).
We first observe that since for all n and k, E(k, n) is bounded, it follows that

(3) S1 = O(n/log n).

Since fr(@.) = 1for all k in the range of the second summation, we have that

futaw) = [ Bl D) = ’“] bt

ay

If & = 1, then (Ri(an + 1) — k)/ax < 1 so that
(4) B(k,n) = 2 (R—a_k(“" +h_ 1).
Ok ag

If & = 0,then 1 < (Ri(an + 1) — k)/ax < 20r
{Rkwn +1) — k} _ R+ 1) -k _

(473 ay

1.

Hence (4) is true in either event. For k in this range one uses the method in
(23) of [1] to obtain

1> 51 __cloglogn
ok log n

for some constant ¢. Hence we can now write
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S, = (1 +0 <Iog log n)) D ks s(n)futan=1 <Iik£‘%j‘_1> _ 1)

log n &

B log log n on) _ (_n ))
= <1 + 0 <—10-g7L—>>(Zk>s(n),fk(an)=1 P Z(?’I/) +0 10g'n

since the number of terms in this summation is I(n) + O(n/log n) and since
Ri(a, + 1) = O(n). Multiplying and using the fact that a, ~ n log n, we

obtain
_ n log log n)) < = n >
( Un) + 0 ( log n +0 k;s” k log k

— i) + 0<n log log n>
log n ’

S,

(5)

Finally, for k in the range of the third summation,

fulan) = [Rk(“" 0= ’“] +e=0

(Re(an + 1) — k)/a < 1.

E(k,n) = (1 + o(1)) (Rk(a2k+ 1)) _0m)

(477

so that

Hence

One easily proves that

_ nloglogn)
(6) S3 = O(W .

Combining (3), (5), and (6) completes the proof of the lemma.

LEMMA 2.
an = (n/d(n)) 2 i= d(k)/k + O(n(log log n)®).

Proof. TUsing (1) and Lemma 1, we obtain

7 tn = n + I(n) + o(&%@ﬁ)

lon n
(7)
- O(nloglogn)
d(n) log n )
Hence
1 dk) log log k)
O'kak_ k +0<k10gk ’

Now summing this from 2 to » and using the fact that
Di=el/avor = Dimal/op — Vopy = 1/on — %

we obtain
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1 < (d(k) log log k 1
) ;;_10;2<T+0<klogk>>+§

= Zn: q—sck—) + Ol[(log log n)".

k=2

The proof of the lemma is completed by multiplying (7) by (8) and using
the fact that 3 < d(n) < 1.

LemMa 3. Supposed(k) = (1 + 8(k))-dwherey < d < landd(k) = o(1).
Then

an = nlogn + [1 + o(1)n 2 i 8(k)/k
— 1+ o(1)Iné(n) log n 4+ O(n(log log n)?).
Proof. TFirst observe that
n/d(n) = (n/d)(1 — (1 + o(1))d(n)).
Hence from Lemma 2,
an = (n/d)(1 — (1 + 0(1))d(n))
(k= d/k + 2k ds(k)/k + O(n(log log n)*))
=nlogn + (1 + o(1))n2iwd(k)/k — (1 + o(1))n log n &(n)
+ O(n(log log n)?).

We are now going to apply this lemma to a number of specific sequences.
To do this, we will suppose that 7, = &k — n where a™ is the smallest element
eliminated from A™ to form A®™. We will further stipulate that r/k
is asymptotic to a constant, and 7, is non-decreasing. We first of all need a
lemma connecting r, with 8(k).

Lemma 4. If r, = n-r(1 4+ p(n)) where r is a positive constant and
p(n) = o(1), then
r
= . k
8(n) FEDCTY (1 + o(1))p(k)

+ Ol p(k + 1) — p(k) | + p*(k + 1) + p’(k) + 1/log n],
where k is defined by
(9) mt+k<n<rat+k+ 1.
Proof. Using (9) and the fact that r, = k-7(1 4+ p(k)) we obtain
E((r + 1)/n) =1 — (r/(r + 1))p(k)
+ Ollp(k + 1) — p(k) | + p'(k + 1) + p'(k) + 1/nl.

Since t(n) < cem/log n, we have
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k = 1U(n) + O(n/logn)
and so
i(n) = (n/(r+ 1)1 = (v/(r 4+ 1))p(k) + O(| p(k + 1) — (k) |
+ o°(k + 1) + p°(k)] + O(n/logn).

Now using the fact that d(n) = n/(n + l(n)) a routine calculation completes
the proof of the lemma.

TurorEM 1. If rp = k-r(1 + p(k)) where p(k) = 0(10%0{:% ’“), then

an — nlogn = O(n(log log n)?).
Proof. Since the k in Lemma 4 is asymptotic to n/(r + 1), Lemma 4

yields
. (log log Ic>
a(lc)_o(log,c .

Hence

5~ 8(k = log log k
zg 53-(Ic—) =0 (,fi:; (I)cglo(;gk ) = O(log log k)

The theorem then follows from Lemma 3.

TuroreEMm 2. If r, = kr(1 4+ p(k)) where r is a positive constant and
p(k) = o(1) and furthermore has the property that p(k-a-(1 4+ o(1)) ~ p(k)
where a s a constant, then

- nr =~ p(k)
%—nMn+u+dm0+D@+m§k
— (14 o(1)) I8y 4 O(n(log log n)?)

(r+ D@+ 1

Proof. For the k in Lemma 4,

p(k) ~p(n) and |p(k + 1) — p(k) | = o(p(k)).
Also, p°(k) + p’(k 4+ 1) = o(p(k)). Hence
r 1

Ty (oWt +0 (L),
Lemma 4 completes the proof of the theorem.

Theorem 2 can now be used to construct sieve-generated sequences {a,}

for which a, — n logn is asymptotic to any given function lying between n log n
and O(n(log log n)*). To demonstrate this, we will produce one for which

8(n) =

an, — nlogn ~ en(logn)™*
for any given 1 > & > 0. To do this, we let
e = k{1 4+ (1 — &)/(log k)°}
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and apply Theorem 2:
This yields

nyd=e

=nlogn + [1 4 o(1)] 6 = Ic(log k)“

0+ o(l)]’ﬂ?ﬁ%ﬁﬁl-)———’ + 0(n(log log n)?)

=nlogn + [1 + o(1)n(log n)"%/6
— [1 4+ o111 — &)n(log ) /6 + 0(n(log log n)*)
= nlogn + [1 + o(1)]len(log n)"*/6.
An interesting sequence can be produced letting
= k(1 — (1 — &)/(log k)*).
In this case, one can apply Theorem 2 and get
an = nlogn — [1 + o(1)]en(log n)" /6

In view of the fact that p, = nlogn + (1 4+ o(1))n log log n where p, is the
n-th prime number, this yields a sieve-generated sequence for which a, < p»
for n sufficiently large. This sequence for ¢ = % was computed on the I.B.M.
709 computer at the University of Colorado and for n = 73,594, a, > p,. .
(a, = 1,239,993 and p, = 931,783).

If we consider a smaller class of sieve-generated sequences, we can obtain
sharper estimates for a, — n logn. In this sieve, we eliminate those elements
in A™ of the form as.ﬁ_),,,ern form = 0,1,2, --- to form A”™. The method
described by Briggs in 1] will yield

Tureorem 3. (a) If the sequence {ri} is non-decreasing and r, = o(k/logk),
then

an = nlogn + (n/2) (loglogn)® — (v + log 2)n loglogn + o(n log log n).
(b)Y If¢>0,r1=1,andr, = [en/logn] + 1,n > 1, then
an = nlogn + (n/2)(log log n)*
— (v + log 2 — ¢/2)n log log n + o(n log log n)-
(e¢) Ife> 0andr, = [cn] 4 1, then
a, = nlogn + (n/2)(log log n)’
— (v +log (¢ +2)/c + 1)nloglogn + o(n loglog n).
(d) If0 < c¢c< landr = [car] + 1, then
an = nlogn + (n/2)(log log n)* — ¥(c)n log log n + o(n log log n)
where Y(2) = —I"(2)/T(2).
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One notices that all of the estimates of a, — n log n contain a term of the
form O(n(log log n)?). TFor sequences generated by this sieve process, this
term cannot be eliminated for the second and third summation in (2) both
contain a term of the form Y Ri(a, + 1)/a; and hence

Bua, +1) = > Bleat D0y 0<n log log n)

E>5(n) ax log n

n log log n)
> LA 28 08 )
- kfs::n) ck log k > cn( log n

Applying this to the proof of Lemma 2, one sees that the term O(n(log logn)?)
cannot be replaced by o(n(log log n)*). Thus, the asymptotic expression

pn = nlogn + (1 + O(1))n log log n

for the n-th prime cannot be duplicated for sequences of this nature. There
is some evidence to support the conjecture that the following modification of
the sieve process could eliminate this objectionable term: Let g(n) be a number
theoretic function such that g(n) > n'™*. When obtaining A" from A™
one does not sieve out any element of A™ which is less than aﬁ,'.‘;.)g(n) . Ele-
ments greater than a(,ﬁr)g(n) are sieved out in the usual manner. This sieve
method is quite similar in some respects to the sieve of Eratosthenes when
g(n) ~ in’ log n.

The authors would like to thank the referee for clearing up certain dif-
ficulties in Lemma 4.
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