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BY
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We will consider sequences of naturM numbers generated by the sieve
process described in an earlier paper [2] by Wunderlich. In h pper,
criterion ws presented which characterized he sieve generated sequences
{} for which log . The purpose of his pper is o investigate he
n,ure of log for sequences which s*isfy he bove men,ioned cri-
terion. IC ws hoped ,h he uhors could cons,ruc sequence {} for
which - logp- logloglog

where p is he -h prime. I is shown h ,his enno be chieved by
sieve of his ype bu, ,he mehods employed do sugges modification of he
sieve process which my generate such prime-like sequence.
For he ske of comple,eness, he sieve mehod nd he related functions

will be defined.
A {a} A

where the A () {a), a), ure sequences of natural numbers defined
inductively s follows. A () 2, 3, 4, }, and A(+) is obtained from A() as
follows" For each integer 0, choose one element

ak) (k) (k) (k+l)where a Delete these a from A to form A The following
functions will be used"

(a) R(x) is the number of elements in A() not exceeding x.
(b)
(c) (x) R (x)
(d) l(n) is the number of for which f(a) 1.
(e) t(n) is the largest for which f(a) 2.
(f) d(n) n/(n + l(n)).

The following two lemmas from [2] will be used iu this paper.

LEMMAI.1. U X < a R+(x) R(x). U x a
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SIEVE-GENERATED SEQUENCES 695

where k is either 0 or 1, and {x} refers to lhe fractional part of x.
LEMMA 1.4. There exists a constant c2 such that t( n < c n/log n.

We will begin by considering those an for which a n log n. Letting
x a - 1 in [2, Lemm 1.1], we obtain

(1) a n- E(a + 1).

We now proceed to estimate E(a 1)

En( an 1) l( n O(nlglgn)LEMMA 1
log n

Proof. Let c be the constant obtained in [2, Lemm 1.4], nd let

E(, n) (R(a + l + k )k
We split up En(a + 1) as follows"

E(a + 1) ;5 E(k, n)

(2) + >.(),(a)= E(, n) + >(),()o E(], n)

where s. [c n/log hi.
We first observe that since for all n and k, E(k, n) is bounded, it follows that

(3) S O(n/log u).

Sincef(a) I for all k in the range of the second summution, we have that

f(a,) R(a, + + e 1.

If 1, then (R(a + 1) k)/a < 1 so that

(4) E(, n) (R(a,a 1)_ 1).
Ifs= 0, thenl (R(a+ 1)- k)/a<2or

{R(a" + l) k} R(aE W1) k-
a

Hence (4) is true in either event. For k in this range one uses the method in
(23) of [1] to obtain

c log log nl>a>l
log n

for some constant c. Hence we can now write
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((loglogn)) (Rk(a 1) )S. 1 + 0
\ -o-- ’>()’s(a)=l

ak
1

1 + 0 , k>s(n)’fk(an)=l
a

l(n) + 0
log n

since the number of terms in this summation is l(n) + O(n/log n) and since
R(a 1) O(n). Multiplying and using the fct that a n log n, we
obtain

log n =, k log
(5)

o lo .)log n

FinMly, for k in the range of the third summation,

f(a) R(a +l)a --+e=O
so that

Hence

(R(a, -- 1) k)/a < 1.

(R(a -t- 1)) O(n)E(lc, n) (1 + o(1))
\ ak

One easily proves that

(6) $3: O(nlglgn)log n

Combining (3), (5), and (6) completes the proof of the lemma.

LEMMA 2.
am (hid(n)) =2 d(l)/lc + 0(n(log log n)).

Proof. Using (1) and Lemma 1, we obtain

a,a,--n l(n) o(nlglgn
\ /lonn

(7)

d(n) + 0
log n

Hence
1 d(k)

_
0 (log log k

k ak k \ - ]"
Now summing this from 2 to n and using the fact that

we obtain



SIEVE-GENERATED SEQUENCES 697

1 d__) _]_ 0
k=2O’n

(s)
d(/) 2].-V- + o[( og n)

k-2

The proof of the lemma is completed by multiplying (7) by (8) and using
the fact that 1/2 _< d(n) _< 1.

LEMMA 3. Suppose d( k 1 + 5( l ). d where 1/2-

_
d

_
1 and 5( l o( ).

Then

an n log n + [1 + o(1)]n_,k=25(lc)/k
[1 -t- o(1)]nti(n) log n + 0(n(log log n)).

Proof. First observe that

n/d(n) (n/d)(1 (1 + o(1))(n)).

Hence from Lemma 2,

an (n/d)(1- (1 + o(1))ti(n))

+ + o( ( og

n log n + (1 + o(1))nk25(k)// (1 + o(1))n log n ti(n)

+ 0(n(log log n)).
We are now going to apply this lemma to a number of specific sequences.

(n)To do this, we will suppose that r ] n where ak is the smallest element
eliminated from A (n) to form A(+1). We will further stipulate that
is asymptotic to a constant, and r is non-decreasing. We first of all need
lemma connecting r1 with i(k).

LEMMA 4. If rn n.r(1 -- p(n) where r is a positive constant and
p n o(1), then

i(n)
r (1 + o(1))p(k)

(r -- 1) (r -- 2)-- 0[] p(/ - 1) P(/) -- P(/ -- 1) -- p2(/)

_
1/log n],

where ] is defined by

(9) r -- ]c

_
n < rk+ -- ] -- 1.

Proof. Using (9) and the fact that r It.r(1 -- p(k)) we obtain

k((r + 1)/n) 1- (r/(r + 1))p(k)

--0[I p(]c -- 1) p(]c) -- p(k -- 1) - p(k) -- 1/n].

Since t(n) < c2 n/log n, we have
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k l(n) + 0(n/log n)
and so

l(n) (n/(r -t- 1))[1 (r/(r -t- 1))o(k) + 0(1 p(k -4- 1) o(/)

+ p2(/ + 1) + p2(k)] + O(n/log n).

Now using the fact that d(n) n/(n + l(n) a routine calculation completes
the proof of the lemma.

(log log k)THEOREM 1. If r k r(1 + p( k where p( k) 0
\ o - then

am n log n 0(n(log log n)2).
Since the k in Lemma 4 is asymptotic to n/(r + 1), Lemma 4

yields

Hence

log log/c)

0 ( log log/c
=1 ]-- k ]

0(log log k) 2.

The theorem then follows from Lemma 3.

THEOREM 2. /f r kr(1 + p(k)) where r is a positive constant and
p( k o(1) and furthermore has the property that p( t a. 1 + o(1) p( t
where a is a constant, then

nr p(k)
a n log n -4- [1 -4- o(1)]

(r + 1)(r -4- 2) =2 /

rn log n(1 + o(1))
(r + 1)(r + r)

p(n) + O(n(log log n)2)

Proof. For the k in Lemma 4,

p(k) o(n) and p(k + 1) p(k) o(o(k)).

Also, p2(k) + p2(k + 1) o(o(k)). Hence

(1)r (1 +o(1))o(k) +0 lognt(n)
(r A- 1)(r A-2)

Lemma 4 completes the proof of the theorem.
Theorem 2 can now be used to construct sieve-generated sequences

for which am n log n is asymptotic to any given function lying between n log n
and O(n(log log n)2). To demonstrate this, we will produce one for which

am n log n cn(log n)-"

for any given 1 > e > 0. To do this, we let

r /oil -4- (1- e)/(log
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nd pply Theorem 2"
This yields

n(1-e)a,= nlogn - [1 + o(1)]
k=2 k(log

[1 - o(1)] n log n(1 ) + 0(n(log log n)
6(log n)

n log n + [1 -t- o(1)]n(log n)1-/6
[1 - o(1)](1 )n(log n)1-/6 - 0(n(log log n) 2)

n log n - [1 -t- o(1)]en(log n)-/6.
An interesting sequence cn be produced letting

r (- (1- )/(og )).

In this cse, one cn pply Theorem 2 nd get

am n log n [1 -t- o(1)]en(log n)1-/6
In view of the fct that p n log n -t- 1 + o(1) )n log log n where p is the
n-th prime number, this yields sieve-generated sequence for which am < p
for n sufficiently large. This sequence for 1/2 was computed on the I.B.M.
709 computer t the University of Colordo and for n 73,594, am > p.
(am 1,239,993 and p 931,783).

If we consider a smaller class of sieve-generated sequences, we cn obtain
sharper estimates for am n log n. In this sieve, we eliminate those elements

() form 0,1 2,... to formA(’+l) The methodin A() of the form a+,+
described by Briggs in [1] will yield

THEOREM 3. (a) /f the sequence {rk} isnon-decreasing and r o(k//log
then

am n log n - (n/2) (log log n) ( log 2)n log log n + o(n log log n).

(b) /f c > 0, r 1, and rn [cn/log n] -t- 1, n > 1, then

an n log n - (n/2)(log log n)

(, log 2 c/2)n log log n z o(n log log n).

(c) If c > 0 and r, [cn] - 1, then

an n log n - (n/2) (log log n)

(/ + log (c + 2)/c + 1)n log log n - o(n log log

(d) /f 0 < c

_
1 and r [ca] + 1, then

am n log n + (n/2)(log log n) (c)n log log n + o(n log log n)

where b(z) F’ z )/F (z).
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One notices that all of the estimates of a n log n contain a term of the
form 0(n(log log n)2). For sequences generated by this sieve process, this
term cannot be eliminated for the second and third summation in (2) both
contain a term of the form Rk(a - 1)/ak and hence

E,(a, + 1)= R(a, + 1)_ l(n) + 0 (n log log n
>s(n) a \ logn /

n > cn (log log n)E
>() c/ log/ \ ]

Applying this to the proof of Lemma 2, one sees that the term 0(n(log log n))
cannot be replaced by o(n(log log n)). Thus, the asymptotic expression

p nlogn+ (1-t- O(1) )n log log n

for the n-th prime cannot be duplicated for sequences of this nature. There
is some evidence to support the conjecture that the following modification of
the sieve process could eliminate this objectionable term" Let g(n) be a number
theoretic function such that g(n) > n+. When obtaining A(+) from A()

(n)one does not sieve out any element of A) which is less than a+(). Ele-
(n)merits greater than a+() are sieved out in the usual manner. This sieve

method is quite similar in some respects to the sieve of Eratosthenes when
g(n) 1/2n log n.
The authors would like to thank the referee for clearing up certain dif-

ficulties in Lemma 4.
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