THE PRIMITIVE OPERATORS OF AN ALGEBRA OF
SINGULAR INTEGRAL OPERATORS

BY
S. M. NEWBERGER

In [1] we introduced a C* algebra @ of singular integral operators (@ is a
subset of the bounded operators on L*(R")) and we extended the s-symbol
of Calderén and Zygmund to a homomorphism ¢ of @ onto the bounded
continuous functions on R* X 8"'. Two types of primitive operators are
basic in the composition of @& They are the multiplication operators and
operators whose Fourier transforms are multiplication operators. In this
note, we give the conditions for such operators to belong to @. We use the
notation introduced in [1]. Note that we freely confuse multiplication by
S with f.

TreoreM 1. Let fe L°(R"). Then

(1) fe@ if and only if f is continuous;

(2) Iffeqtheno(f)(x, &) = f(x) forzeR", £eS" .

THEOREM 2. Let g e L”(S"™") and let T be the bounded operator on L*(R")
defined by FTf(z) = g(z/| z||)Ff(x) where F is the Fourier transform and
lal? = Xraalfora = (@1, -+ x2). Then

(1) T e@ if and only if g is continuous;

(2) if TeQ then o(T)(x, &) = g(x) forx e R", £ S" .

Theorem 1 implies immediately that multiplication by f belongs to the
subspace C of A (€ is the set of B”-singular integral operators) if and only if
feB”(R") (the set of infinitely differentiable, bounded functions, all of whose
derivatives are bounded). Since the operators of € leave invariant the
Sobolev spaces Hj the following theorem is interesting. (H is the set of
tempered distributions 7 on R" whose Fourier transform T* comes from
a function for which | T |i = [ |T* (1 + || |)** < ».)

TueoreEM 3. Let fe L°(R"). Then each H; (k a non-negative integer) is
invariant under multiplication by f if and only if f e B*(R").
1. The kernel of ¢
Recall from [1] that ¢ : @ — BC[R" X 8", that o is a C* algebra homomor-
phism of @ onto BC[R" X S"7'], with kernel
(1.1) %' = [T : T is a bounded operator on L*(R"), such that ¢ T and Ty
are compact for every y ¢ Cs (R")].
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We are interested in the relationship between K¢ and two classes of
operators; the first are multiplication operators; ¢ ¢ L°(R"), and the second
are operators of the form F'¢F where F is the Fourier transform.

For the multiplication operators we have the following well known fact.

Lemma 1. L7(R") N Kl = (0).

Proof. It is sufficient to show that L*(R")N K = (0). Letfe L*(R")N%
and assume f > 0. Then there is a set £ C R" of positive Lebesgue measure,
and an ¢ > 0, such that |f| > e on E. Then f| E is a compact, invertible
operator on the infinite-dimensional Hilbert space, L*(E). This is impossible,
QED.

In the case of the second class of operators, the situation is not as simple.
For instance if 7' is convolution by any Cg(R") function ¢, then T is in this
class and also in K. For if ¢ € C5 (R") we have

WD) = [ vt — ) dy

and
(T9)f(@) = [ ole = YU ) dy.

Both ¢T and Ty are integral operators whose kernels are in Cy(R" X R")
and hence are compact operators. In addition 7 = F'(F¢)F.

However we are really interested in F'gF where g is a homogeneous func-
tion of degree zero.

Let g e L°(8"™"), the bounded measurable functions on S"*, measurabil-
ity with respect to the usual measure » on S" ™", defined say by using spher-
ical coordinates. Then g extends to a function in L*(R") via the formula
g(z) = g(z/|| = ||). The extended function is called a bounded homogene-
ous function of degree zero.

In the following we use [ f for the Lebesgue integral on R", and || f [|o for
the L*(R"™) norm of f.

LeEMMA 2. Let g be a bounded homogeneous function of degree zero. Suppose
the operator F'gF e %1°°; then g = 0.

Proof. Suppose g #= 0. Let

=[teS 7 |g(®) | = [lglle/2 > 0]

where || g ||« = supg«—1 | g |; then »(P) > 0.

let E = [zeR":1 < ||z|| < 2 and z/| x| eP] and let B, = kE =
[kk : x e E] where k = 1,2 --- . If u denotes the Lebesgue measure on R”,
then it is easily shown by using spherical coordinates that

p(Er) = »(P)(2" — )K",
Let ¢ = »(P)(2" — 1) > 0. If gi is the characteristic function of E; and
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by = (1/+/ck™*)gx then || hy ||lo = 1 and since support (b)) C [z e R™ : || 2 || > k],
we have that i, — 0 weakly ask — «. Note also that h(x) = k™’ hy(z/k).
We now show that for some m > 0,

(1.2) f | F 7' P > & for every k.
[zeR™: | |2| | <m]
For (F'h)(z) = k"*(F 'h)(kx) so that
[ g =w [ jmyenp
Am Am

where A, = [yeR" ¢ || y || < m]and Tx(z) = kx forz e R". By the change of
variables theorem, we have that

[vrmmee=[ (et [ mmEz s

for large m, since | F"hy |jo = || k1 |jo = 1. This proves (1.2).
There is a ¢ € Cg (R") such that ¢ = 1 on A, with m large enough for (1.2)
to hold. Let

he = h(z)/g(x) if ¢ By
=0 1fx¢E’k

(1.3)

Then || 2 llo < (2/Il g )l ki llo = 2/l g |l so that hx — O weakly. If
fo = F s then fe — 0 weakly also. But

| WF'gFfe |lo > % by (1.2).

Therefore YF 'gFf, does not converge to zero in the norm so that yF 'gF
is not compact. This means that F'gF ¢ &'c, QED.

2. Proofs of theorems

Proof of Theorem 1. Let fe L”(R"). We first note that if f is continuous,
then f e @ and (2) holds. This follows for f e B*(R") from the definition of
o in[1]. For fe UC(R") (i.e. the uniformly continuous functions) the asser-
tion is obtained by using uniform convergence and Lemma 10 of [1]. Finally,
if f is continuous, and ¢ e Cy (R"), then yf e UC(R") so that f ¢ @ by the
definition of @. If ¢(x) = 1 then also by definition, ¢(f)(z, £) = f(x); hence
(2) holds.

To complete the proof, we must show that f e @ implies that f is continuous
(i.e. that there is a continuous function agreeing with f almost everywhere).
We first show that if &, £ ¢S and x e R" then o(f) (z, £&1) = o(f) (2, &).

Let ¢ and &8, be the C7(R") functions and real numbers of Theo-
rem 2 of [1]. Lebt ¢m; = om(- — 2)e ™) for j = 1, 2. We have
| ¥millo = || ¥ms o = 1. Therefore
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lo(f)(z, &) = o(f)(z, &) |
= || (e(f) (&, &) — o() (@, &) )¥m |lo

SN, &) — Dbl + | (F — o(f)(x, &)W¥m o
But from the definition of ¥, it follows that | ¥ | = | ¥ms |, so that

| (f = a(N)(x, &)W llo = || (f — o(f) (2, &))¥me o

Now by Theorem 2 of [1] both terms of the sum tend to zero as m — « which
means that

o() (=, &) = o(f)(z, &).

Let h(z) = o(f)(x, £). Then h is well defined; it is a bounded continuous
function on R*. By the first part of the proof, ¢(h) (z, £) = h(z) = o(f)(z, £).
Therefore f — h e kernel ¢ = K'°°; hence f = h by Lemma 1, QED.

Proof of Theorem 2. We note that if g is continuous, then 7 ¢ @ and (2)
holds. This follows for g e B*(8"™") from the definition of ¢ and for g ¢ C'(S"™)
by the Stone-Weierstrass theorem.

To complete the proof, we must show that 7' e @ implies that ¢ is continuous
(i.e.—that there is a continuous function agreeing with g almost everywhere
on 8*'). We first show that if z;, z2 ¢ R" and £ ¢ 8", then o(T) (21, £) =
a(T) (a2, £).

With ¢, and 8, as in the proof of Theorem 1, this time let

Uni = Gl — 35)e" 7m0

forj = 1,2. Note that || ¢mi || = || ¥me || = 1 and | Fs| = | F¥me|- Now
using also the fact F is an isometry of L’(R") the proof proceeds exactly as in
Theorem 1 with T replacing f. Having shown o(7T') is independent of z,
we define k(&) = o(T)(z, &) as before; it is a continuous function on 8"
Let FSf(y) = h(y/||y |)Ff(y); then Se@ and ¢(8) = o(T). Therefore
S — T eX!°; hence g = h by Lemma 2.

Proof of Theorem 3. (a) Suppose feB*(R") (bounded functions in
C”(R") whose derivatives are in L”(R")). Then by the Leibniz rule for
distributions, we have that if ge H; and |a| < k then

D.(fg) = 2 8<a Cs(Dpf)(Dasg).

Here differentiation is in the sense of Schwartz and Cj is a constant for each
8. Since Ds(f) e L°(R™) and D, g ¢ L’(R"), we have that D.(fg) e L*(R").
Therefore fg e H;, . This proves the “if”” part of the assertion.

(b) We will show that if multiplication by f maps H;; into Hy, for a
sequence k; —  (k; is a non-negative integer) then f ¢ B*(R").

For any compact set G, there is a ¢ ¢ Cg (R") such that ¢ = 1on G. Then
since N Hy; € B”(R") we have f§ e B°(R"), which shows that f e C*(R").
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We will first complete the proof under the additional assumption that mul-
tiplication by f is a bounded operator on each of the Hilbert Spaces H, .
Let¢eCo;0 = lonfzeR":||x| < 1]. Thenif zoeR", || (- — 20) [ly; =
| & llx; because F(¢(- — x)) = ¢ (Fg). Therefore, by Sobolev’s lemma,
we have for | a| < k; — n/2 that

supgs | Da(f(6(- — @))) | < Ck)|[ f(o(+ — @) Iy < C' (k)| & ;-

But this means that | Do f(2) | < C'(kj)|| ¢ |l&, if || ¢ — @0 || < 1 where C'(k;)
does not depend on xo . Since x, is arbitrary, this shows that f ¢ B*(R").

We will now remove the added assumption. Let ¢n(x) = ¢(x/m). We
wish to show that if s = k., then for any g ¢ H, , ¢ fg converges to fg in the
H, norm as m — . Then since ¢, fe¢B”(R"), it is easily seen from the
method of part (a) that multiplication by ¢, f is a bounded operator from H,
into H,. Therefore, by the uniform boundedness theorem, multiplication by
f is also a bounded operator from H, into H, .

It is sufficient to show that if |« | < s and g € H, then

| De(dmfg — fg) lo—0 as m— .

For this let ¢ > 0. Since fge H,, we have Dg(fg) e L*(R") for |8]| < s
Therefore there is a number N such that [g, | Dsfg |° < e for | 8| < s where
Ey=[xeR":|z| = N]. Thenifm > N,

[ 1 Dal(¢m — D)) = [ay | 26<a Co Ds(¢m — 1)Dus(fg) "

But Dsdn = (1/m"®)(Ds ¢)m 50 that | Ds(¢m — 1)| < supes| Ds ¢|.
Therefore, if m > N, || Do(én — 1)fg ||§ < Me, where M is independent of g,
QED.
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