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BY
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In [1] we introduced a C* algebra of singular integral operators (a is a
subset of the bounded operators on L(R) and we extended the z-symbol
of CalderSn and Zygmund to a homomorphism z of a onto the bounded
continuous functions on R X S"-. Two types of .primitive operators are
basic in the composition of a. They are the multiplication operators and
operators whose Fourier transforms are multiplication operators. In this
note, we give the conditions for such operators to belong to (. We use the
notation introduced in [1]. Note that we freely confuse multiplication by
f with f.
THEOREM 1. Let f e L R Then

(1) f e ( if and only if f is continuous;

(2) Iffeathenz(f)(x, ) f(x) forxeR, eS-.
THEOREM 2. Let g e L(Sn-) and let T be the bounded operator on L(R)

defined by FTf(x) g(x/ll xll)Ff(x) where f is the Fourier transform and
x x for x (x, x,). Then

(1) T e ( if and only if g is continuous;

(2) if T e ( then (T)(x, ) g(x) for z e R, e S’-.
Theorem 1 implies immediately that multiplication by f belongs to the

subspace of A ( is the set of B-singular integral operators) if and only if

f e B(R) (the set of infinitely differentiable, bounded functions, all of whose
derivatives are bounded). Since the operators of leave invariant the
Sobolev spaces H the following theorem is interesting. (H is the set of
tempered distributions T on R whose Fourier transform T comes from
a function for which lITIl f Ti( 1 + Jl)/ < .)

THEOREM 3. Let f e L(R’). Then each H (l a non-negative integer) is
invariant under multiplication by f if and only if f e B(Rn).

1. The kernel of cr

Recall from [1] that a -- BC[R X S-], that is a C* algebra homomor-
phism of ( onto BC[R X S-], with kernel

(1.1) o [T T is a bounded operator on L(R), such that bT and T
are compact for every e C(R)].
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We are interested in the relationship between K1 and two classes of
Loperators; the first are multiplication operators; (Rn) and the second

are operators of the form F-14,F where F is the Fourier transform.
For the multiplication operators we have the following well known fact.

LEMMA 1. L(Rn) 3{loc (0).

Proof. It is sufficient to show that L (R) 3{ (0). Let f L (Rn) 3{

and assume f # 0. Then there is a set E c R" of positive Lebesgue measure,
and an e > 0, such that fl > e on E. Then fie is a compact, invertible
operator on the infinite-dimensional Hilbert space, L2(E). This is impossible,
QED.

In the case of the second class of operators, the situation is not as simple.
For instance if T is convolution by any C(R) function , then T is in this
class and also in 3{1. For if e C(R") we have

and

(T)f(x) f b(x)(x y)f(y) dy

(Tb)f(x) J (x y)b(y)f(y) dy.

Both T and T are integral operators whose kernels are in C(R ) Rn)
and hence are compact operators. In addition T F-I(F)F.
However we are really interested in F-IgF where g is a homogeneous func-

tion of degree zero.
L S-1) -Let g e the bounded mesurble functions on S measurabil-

ity with respect to the usual mesure v on Sn-l, defined sy by using spher-
ical coordinates. Then g extends to function in L(Rn) vi the formul
g(x) g(x/]] x]). The extended function is clled bounded homogene-
ous function of degree zero.

In the following we use f f for the Lebesgue integral on R", nd f [0 for
the L (R) norm of f.
LEMMA 2. Let g be a bounded homogeneous function of degree zero. Suppose

the operator F-gF e o; then g O.

Proof. Suppose g # O. Let

P [ [g() ]g]]/2 > 0]

101; .(P) > 0.
RLetE 1 Ilx l 2andx/ xl P]andletE 

[kk x e E] where k 1, 2 .... If denotes the Lebesgue measure on Rn,
then it is easily shown by using spherical coordinates that

u(E ) ,(P)(2"

Let c u(P)(2 1) > 0. If 9 is the characteristic function of E and
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hk (1//ckn/2)gk then hk II0 1 and since support (h)
we have that h --, 0 weakly as 1 -- . Note also that h(x) ]-n/2hl(x/]).
We now show that for some m >_ 0,

f hk >_ 1/2 every(1.2) [-1F for
xRn: Ixl <m]

F hk)(x) ]n/2(F-lhl)(x) so thatFor -
f. F-lhk k’ f.4 [(F-lhl) T [2

Rowhere Am lye Y -< m] and T(x) kx for x e

variables theorem, we have that
By the change of

for large m, since F-lhl l0 hi II0 1. This proves (1.2).
There is a e C(Rn) such that b 1 on Am with m large enough for (1.2)

to hold. Let

h h(x)/g(x) ifxeE
(1.3)

0 if x E.

Then h5 Iio _< (2/[I g I1)11 h I1o 2/Ig II so that h’ --+ 0 weakly.
f F hk then fk --. 0 weakly also. But

If

[F-gFf i1o by (1.2).

Therefore F-lgFf does not converge to zero in the norm so that /F-lgF
is not compact. This means that F-gF oo, QED.

2. Proofs of theorems

Proof of Theorem 1. Let f e L(Rn). We first note that if f is continuous,
then f e ( and (2) holds. This follows for f e B(R") from the definition of
in [1]. For f e UC(R) (i.e. the uniformly continuous functions) the asser-

tion is 5btained by using uniform convergence and Lemma 10 of [1]. Finally,
if f is continuous, and h e C (R"), then /f UC(R) so that f a by the
definition of a. If (x) 1 then also by definition, z(f)(x, ) f(x); hence
(2) holds.
To complete the proof, we must show that f e ( implies that f is continuous

(i.e. that there is a continuous function agreeing with f almost everywhere).
We first show that if , e S-1 and x e R then z(f)(x, 1) z(f)(x, ).

Let m and tim be the C(R) functions and real numbers of Theo-
rem 2 of [1]. Let Cm" m(" x)t(’-’> for j 1, 2. We have
mllo m [Io 1. Therefore
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q(f)(X, 1) q(f)(X, 2)

(c(f)(x, ) q(f)(x, 52) )b,l

<--11 (((f) (x, ) f)b, + (f q(f) (x, e)) ]0.
But from the definition of s it follows that [ ], so that

Now by Theorem 2 of [1] both terms of the sum tend to zero s m which
means that

(f) (x, ) (f)(x, ).

Let h(x) z(f)(x, ). Then h is well defined; it is a bounded continuous
function onR. Bythe first part of the proof, z(h)(x, ) h(x) a(f)(x, ).
Therefore f h e kernel o; hence f h by Lemma 1, QED.

Proof of Theorem 2. We note that if g is continuous, then T a nd (2)
B(Sn-1holds. This follows for g e from the definition of z and for g e C(S-)

by the Stone-Weierstrass theorem.
To complete the proof, we must show that T e a implies that g is continuous

(i.e.--that there is continuous function agreeing with g almost everhere
R" S-,on Sn-) We first show that if x, x: e and e then a(T)(x, )

(T) (x:, ).
With and 8 as in the proof of Theorem 1, this time let

(. x)e<.-.>
forj 1,2. Note that ] ] landFI Fl. Now
using also the fct F is un isometry of L(R) the proof proceeds exactly as in
Theorem 1 with T replacing f. Having shown z(T) is independent of x,
we define h() z(T)(x, ) as before; it is u continuous function on S-.
Let FSf(y) h(y/[ y I)Ff(y); then S a and z(S) z(T). Therefore
S T o; hence g h by Lemma 2.

BProof of Theorem 3. () Suppose f e (R") (bounded functions in
C(R) whose derivatives are in L(R)). Then by the Leibniz rule for
distributions, we have that if g e H and al ls then

D,(fe) .C(D)(D,_ ).

Here differentiation is in the sense of Schwartz and C is a constant for each
L L: LB. Since Ds(f) (R) and D,_s g e (R’), we have that D,(fg) e (Rn).

Therefore fg H. This proves the "if" part of the assertion.
(b) We will show that if multiplication by f maps H into H for a

Bsequence k (k is u non-negative integer) then f e (R")
For uny compact set G, there is a e C(R") such that 1 on G. Then

Bsince H c B (R") we have f (R") which shows that f e C (R)
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We will first complete the proof under the additional assumption that mul-
tiplication by f is a bounded operator on each of the Hilbert Spaces Hk..

RLet0eC0; lon[x ][x[I -< 1] Then ifx0R, [](. x0) IIk
[[ because F((. x0)) e(’’)(F). Therefore, by Sobolev’s lemma,

we have for a < k n/2 that

sup D,(f(O(. x0))) C(k)f((. Xo)) C’(k)[] .
But this means thatD.f(x) C’(k) if x x0 1 where

Bdoes not depend on x0. Since x0 is arbitrary, this shows that f e (R)
We will now remove the added assumption. Let (x) (x/m). We

wish to show that if s k, then for any g e H,, fg converges to fg in the
BH, norm as m Then since f e (R") it is easily seen from the

method of part (a) that multiplication by f is a bounded operator from H
into H,. Therefore, by the uniform boundedness theorem, multiplication by
f is also a bounded operator from H, into

It is sufficient to show that if ]a s and g e H, then

LFor this let e > 0. SincefgeH we have D(fg) e (R) for [ g s.
Therefore there is a number N such that f [Dfg [: < e for ]] g s where
E [x e x]] N] Thenifm N,

But D (1/m)(D ) so that D( 1)! sup. [D .
Therefore, if m N, D,( 1)fg Me, where M is independent of e,
QED.
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