THE PRIMITIVE OPERATORS OF AN ALGEBRA OF SINGULAR INTEGRAL OPERATORS

BY S. M. Newberger

In [1] we introduced a C^* algebra \mathfrak{A} of singular integral operators (\mathfrak{A} is a subset of the bounded operators on $L^2(R^n)$) and we extended the σ -symbol of Calderón and Zygmund to a homomorphism σ of \mathfrak{A} onto the bounded continuous functions on $R^n \times S^{n-1}$. Two types of primitive operators are basic in the composition of \mathfrak{A} . They are the multiplication operators and operators whose Fourier transforms are multiplication operators. In this note, we give the conditions for such operators to belong to \mathfrak{A} . We use the notation introduced in [1]. Note that we freely confuse multiplication by f with f.

Theorem 1. Let $f \in L^{\infty}(\mathbb{R}^n)$. Then

- (1) $f \in \mathbb{C}$ if and only if f is continuous;
- (2) If $f \in \mathfrak{A}$ then $\sigma(f)(x, \xi) = f(x)$ for $x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{n-1}$.

THEOREM 2. Let $g \in L^{\infty}(S^{n-1})$ and let T be the bounded operator on $L^2(R^n)$ defined by FTf(x) = g(x/||x||)Ff(x) where F is the Fourier transform and $||x||^2 = \sum_{i=1}^n x_i^2$ for $x = (x_1, \dots, x_n)$. Then

- (1) $T \in \mathfrak{A}$ if and only if g is continuous;
- (2) if $T \in \mathfrak{A}$ then $\sigma(T)(x, \xi) = g(x)$ for $x \in \mathbb{R}^n$, $\xi \in \mathbb{S}^{n-1}$.

Theorem 1 implies immediately that multiplication by f belongs to the subspace $\mathfrak C$ of A ($\mathfrak C$ is the set of B^{∞} -singular integral operators) if and only if $f \in B^{\infty}(R^n)$ (the set of infinitely differentiable, bounded functions, all of whose derivatives are bounded). Since the operators of $\mathfrak C$ leave invariant the Sobolev spaces H_k the following theorem is interesting. (H_k is the set of tempered distributions T on R^n whose Fourier transform T^{Λ} comes from a function for which $\|T\|_k^2 = \int \|T^{\Lambda}\|^2 (1 + \|\cdot\|^2)^{k/2} < \infty$.)

THEOREM 3. Let $f \in L^{\infty}(\mathbb{R}^n)$. Then each H_k (k a non-negative integer) is invariant under multiplication by f if and only if $f \in B^{\infty}(\mathbb{R}^n)$.

1. The kernel of σ

Recall from [1] that $\sigma: \mathfrak{A} \to BC[\mathbb{R}^n \times S^{n-1}]$, that σ is a \mathbb{C}^* algebra homomorphism of \mathfrak{A} onto $BC[\mathbb{R}^n \times S^{n-1}]$, with kernel

(1.1) $\mathfrak{K}^{loc} = [T : T \text{ is a bounded operator on } L^2(\mathbb{R}^n), \text{ such that } \psi T \text{ and } T\psi \text{ are compact for every } \psi \in C_0^{\infty}(\mathbb{R}^n)].$

Received July 9, 1965.

We are interested in the relationship between K^{loc} and two classes of operators; the first are multiplication operators; $\phi \in L^{\infty}(\mathbb{R}^n)$, and the second are operators of the form $F^{-1}\phi F$ where F is the Fourier transform.

For the multiplication operators we have the following well known fact.

Lemma 1.
$$L^{\infty}(\mathbb{R}^n) \cap \mathfrak{K}^{\text{loc}} = (0)$$
.

Proof. It is sufficient to show that $L^{\infty}(R^n) \cap \mathfrak{X} = (0)$. Let $f \in L^{\infty}(R^n) \cap \mathfrak{X}$ and assume $f \neq 0$. Then there is a set $E \subset R^n$ of positive Lebesgue measure, and an $\varepsilon > 0$, such that $|f| > \varepsilon$ on E. Then f | E is a compact, invertible operator on the infinite-dimensional Hilbert space, $L^2(E)$. This is impossible, QED.

In the case of the second class of operators, the situation is not as simple. For instance if T is convolution by any $C_0^{\infty}(\mathbb{R}^n)$ function ϕ , then T is in this class and also in \mathcal{K}^{loc} . For if $\psi \in C_0^{\infty}(\mathbb{R}^n)$ we have

$$(\psi T)f(x) = \int \psi(x)\phi(x-y)f(y) \ dy$$

and

$$(T\psi)f(x) = \int \phi(x-y)\psi(y)f(y) dy.$$

Both ψT and $T\psi$ are integral operators whose kernels are in $C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ and hence are compact operators. In addition $T = F^{-1}(F\phi)F$.

However we are really interested in $F^{-1}gF$ where g is a homogeneous function of degree zero.

Let $g \in L^{\infty}(S^{n-1})$, the bounded measurable functions on S^{n-1} , measurability with respect to the usual measure ν on S^{n-1} , defined say by using spherical coordinates. Then g extends to a function in $L^{\infty}(R^n)$ via the formula g(x) = g(x/||x||). The extended function is called a bounded homogeneous function of degree zero.

In the following we use $\int f$ for the Lebesgue integral on \mathbb{R}^n , and $||f||_0$ for the $L^2(\mathbb{R}^n)$ norm of f.

Lemma 2. Let g be a bounded homogeneous function of degree zero. Suppose the operator $F^{-1}gF \in \mathcal{K}^{loc}$; then g = 0.

Proof. Suppose $g \neq 0$. Let

$$P = [\xi \, \epsilon \, S^{n-1} : |g(\xi)| \ge \|g\|_{\infty}/2 > 0]$$

where $||g||_{\infty} = \sup_{S^{n-1}} |g|$; then $\nu(P) > 0$.

Let $E = [x \epsilon R^n : 1 \le ||x|| \le 2 \text{ and } x/||x|| \epsilon P]$ and let $E_k = kE = [kk : x \epsilon E]$ where $k = 1, 2 \cdots$. If μ denotes the Lebesgue measure on R^n , then it is easily shown by using spherical coordinates that

$$\mu(E_k) = \nu(P)(2^n - 1)k^n.$$

Let $c = \nu(P)(2^n - 1) > 0$. If g_k is the characteristic function of E_k and

 $h_k = (1/\sqrt{ck^{n/2}})g_k$ then $||h_k||_0 = 1$ and since support $(h_k) \subset [x \in R^n : ||x|| \ge k]$, we have that $h_k \to 0$ weakly as $k \to \infty$. Note also that $h_k(x) = k^{-n/2}h_1(x/k)$. We now show that for some $m \ge 0$,

For $(F^{-1}h_k)(x) = k^{n/2}(F^{-1}h_1)(kx)$ so that

$$\int_{A_m} |F^{-1}h_k|^2 = k^n \int_{A_m} |(F^{-1}h_1) \circ T_k|^2$$

where $A_m = [y \in \mathbb{R}^n : ||y|| \le m]$ and $T_k(x) = kx$ for $x \in \mathbb{R}^n$. By the change of variables theorem, we have that

$$\int_{A_m} |F^{-1}h_k|^2 = \int_{kA_m} |F^{-1}h_1|^2 \ge \int_{A_m} |F^{-1}h_1|^2 \ge \frac{1}{2}$$

for large m, since $||F^{-1}h_1||_0 = ||h_1||_0 = 1$. This proves (1.2).

There is a $\psi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\psi = 1$ on A_m with m large enough for (1.2) to hold. Let

(1.3)
$$h'_k = h(x)/g(x) \quad \text{if } x \in E_k$$
$$= 0 \quad \text{if } x \notin E_k.$$

Then $||h'_k||_0 \le (2/||g||_{\infty})||h_k||_0 = 2/||g||_{\infty}$ so that $h'_k \to 0$ weakly. If $f_k = F^{-1}h'_k$ then $f_k \to 0$ weakly also. But

$$\|\psi F^{-1}gFf_k\|_0^2 \ge \frac{1}{2}$$
 by (1.2).

Therefore $\psi F^{-1}gFf_k$ does not converge to zero in the norm so that $\psi F^{-1}gF$ is not compact. This means that $F^{-1}gF \in \mathcal{K}^{\text{loc}}$, QED.

2. Proofs of theorems

Proof of Theorem 1. Let $f \in L^{\infty}(\mathbb{R}^n)$. We first note that if f is continuous, then $f \in \mathfrak{A}$ and (2) holds. This follows for $f \in B^{\infty}(\mathbb{R}^n)$ from the definition of σ in [1]. For $f \in UC(\mathbb{R}^n)$ (i.e. the uniformly continuous functions) the assertion is obtained by using uniform convergence and Lemma 10 of [1]. Finally, if f is continuous, and $\psi \in C_0^{\infty}(\mathbb{R}^n)$, then $\psi f \in UC(\mathbb{R}^n)$ so that $f \in \mathfrak{A}$ by the definition of \mathfrak{A} . If $\psi(x) = 1$ then also by definition, $\sigma(f)(x, \xi) = f(x)$; hence (2) holds.

To complete the proof, we must show that $f \in \mathfrak{A}$ implies that f is continuous (i.e. that there is a continuous function agreeing with f almost everywhere). We first show that if ξ_1 , $\xi_2 \in S^{n-1}$ and $x \in R^n$ then $\sigma(f)(x, \xi_1) = \sigma(f)(x, \xi_2)$.

Let ϕ_m and δ_m be the $C_0^{\infty}(R^n)$ functions and real numbers of Theorem 2 of [1]. Let $\psi_{mj} = \phi_m(\cdot - x)\varepsilon^{i\langle \cdot - x, \delta_m \xi_j \rangle}$ for j = 1, 2. We have $\|\psi_{m1}\|_0 = \|\psi_{m2}\|_0 = 1$. Therefore

$$| \sigma(f)(x, \xi_1) - \sigma(f)(x, \xi_2) |$$

$$= || (\sigma(f)(x, \xi_1) - \sigma(f)(x, \xi_2)) \psi_{m1} ||_0$$

$$\leq || (\sigma(f)(x, \xi_1) - f) \psi_{m1} ||_0 + || (f - \sigma(f)(x, \xi_2)) \psi_{m1} ||_0.$$

But from the definition of ψ_{mj} it follows that $|\psi_{m1}| = |\psi_{m2}|$, so that

$$\| (f - \sigma(f)(x, \xi_2)) \psi_{m1} \|_0 = \| (f - \sigma(f)(x, \xi_2)) \psi_{m2} \|_0.$$

Now by Theorem 2 of [1] both terms of the sum tend to zero as $m \to \infty$ which means that

$$\sigma(f)(x, \xi_1) = \sigma(f)(x, \xi_2).$$

Let $h(x) = \sigma(f)(x, \xi)$. Then h is well defined; it is a bounded continuous function on \mathbb{R}^n . By the first part of the proof, $\sigma(h)(x, \xi) = h(x) = \sigma(f)(x, \xi)$. Therefore $f - h \epsilon$ kernel $\sigma = \mathcal{K}^{loc}$; hence f = h by Lemma 1, QED.

Proof of Theorem 2. We note that if g is continuous, then $T \in \mathfrak{A}$ and (2) holds. This follows for $g \in B^{\infty}(S^{n-1})$ from the definition of σ and for $g \in C(S^{n-1})$ by the Stone-Weierstrass theorem.

To complete the proof, we must show that $T \in \mathfrak{A}$ implies that g is continuous (i.e.—that there is a continuous function agreeing with g almost everywhere on S^{n-1}). We first show that if x_1 , $x_2 \in \mathbb{R}^n$ and $\xi \in S^{n-1}$, then $\sigma(T)(x_1, \xi) = \sigma(T)(x_2, \xi)$.

With ϕ_m and δ_m as in the proof of Theorem 1, this time let

$$\psi_{mj} = \phi_m(\cdot - x_j)e^{i\langle \cdot -x_j, \delta_m \xi \rangle}$$

for j=1,2. Note that $\|\psi_{m1}\| = \|\psi_{m2}\| = 1$ and $|F\psi_{m1}| = |F\psi_{m2}|$. Now using also the fact F is an isometry of $L^2(R^n)$ the proof proceeds exactly as in Theorem 1 with T replacing f. Having shown $\sigma(T)$ is independent of x, we define $h(\xi) = \sigma(T)(x, \xi)$ as before; it is a continuous function on S^{n-1} . Let $FSf(y) = h(y/\|y\|)Ff(y)$; then $S \in \mathfrak{A}$ and $\sigma(S) = \sigma(T)$. Therefore $S - T \in \mathfrak{R}^{loc}$; hence g = h by Lemma 2.

Proof of Theorem 3. (a) Suppose $f \in B^{\infty}(\mathbb{R}^n)$ (bounded functions in $C^{\infty}(\mathbb{R}^n)$ whose derivatives are in $L^{\infty}(\mathbb{R}^n)$). Then by the Leibniz rule for distributions, we have that if $g \in H_k$ and $|\alpha| \leq k$ then

$$D_{\alpha}(fg) = \sum_{\beta \leq \alpha} C_{\beta}(D_{\beta}f)(D_{\alpha-\beta}g).$$

Here differentiation is in the sense of Schwartz and C_{β} is a constant for each β . Since $D_{\beta}(f) \in L^{\infty}(\mathbb{R}^n)$ and $D_{\alpha-\beta} g \in L^2(\mathbb{R}^n)$, we have that $D_{\alpha}(fg) \in L^2(\mathbb{R}^n)$. Therefore $fg \in H_k$. This proves the "if" part of the assertion.

(b) We will show that if multiplication by f maps H_{k_j} into H_{k_j} for a sequence $k_j \to \infty$ (k_j is a non-negative integer) then $f \in B^{\infty}(\mathbb{R}^n)$.

For any compact set G, there is a $\psi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\psi = 1$ on G. Then since $\bigcap H_{k_j} \subset B^{\infty}(\mathbb{R}^n)$ we have $f \psi \in B^{\infty}(\mathbb{R}^n)$, which shows that $f \in C^{\infty}(\mathbb{R}^n)$.

We will first complete the proof under the additional assumption that multiplication by f is a bounded operator on each of the Hilbert Spaces H_{k_j} . Let $\phi \in C_0^{\infty}$; $\phi = 1$ on $[x \in R^n : ||x|| \le 1]$. Then if $x_0 \in R^n$, $||\phi(\cdot - x_0)||_{k_j} = ||\phi||_{k_j}$ because $F(\phi(\cdot - x_0)) = e^{i\langle x_0, \cdot \rangle}(F\phi)$. Therefore, by Sobolev's lemma, we have for $|\alpha| < k_j - n/2$ that

$$\sup_{\mathbb{R}^n} \| D_{\alpha}(f(\phi(\cdot - x_0))) \| \le C(k_i) \| f(\phi(\cdot - x_0)) \|_{k_i} \le C'(k_i) \| \phi \|_{k_i}.$$

But this means that $|D_{\alpha}f(x)| \leq C'(k_j) ||\phi||_{k_j}$ if $||x-x_0|| \leq 1$ where $C'(k_j)$ does not depend on x_0 . Since x_0 is arbitrary, this shows that $f \in B^{\infty}(\mathbb{R}^n)$.

We will now remove the added assumption. Let $\phi_m(x) = \phi(x/m)$. We wish to show that if $s = k_i$, then for any $g \in H_s$, $\phi_m fg$ converges to fg in the H_s norm as $m \to \infty$. Then since $\phi_m f \in B^{\infty}(\mathbb{R}^n)$, it is easily seen from the method of part (a) that multiplication by $\phi_m f$ is a bounded operator from H_s into H_s . Therefore, by the uniform boundedness theorem, multiplication by f is also a bounded operator from H_s into H_s .

It is sufficient to show that if $|\alpha| \leq s$ and $g \in H_s$ then

$$||D_{\alpha}(\phi_m fg - fg)||_0 \to 0 \text{ as } m \to \infty.$$

For this let $\varepsilon > 0$. Since $fg \in H_s$, we have $D_{\beta}(fg) \in L^2(\mathbb{R}^n)$ for $|\beta| \leq s$. Therefore there is a number N such that $\int_{\mathbb{R}_N} |D_{\beta} fg|^2 < \varepsilon$ for $|\beta| \leq s$ where $E_N = [x \in \mathbb{R}^n : ||x|| \geq N]$. Then if $m \geq N$,

$$\int |D_{\alpha}((\phi_{m}-1)(fg))|^{2} = \int_{B_{N}} |\sum_{\beta < \alpha} C_{\beta} D_{\beta}(\phi_{m}-1) D_{\alpha-\beta}(fg)|^{2}.$$

But $D_{\beta} \phi_m = (1/m^{|\beta|})(D_{\beta} \phi)_m$ so that $|D_{\beta}(\phi_m - 1)| \leq \sup_{\mathbb{R}^n} |D_{\beta} \phi|$. Therefore, if $m \geq N$, $||D_{\alpha}(\phi_m - 1)fg||_0^2 \leq M\varepsilon$, where M is independent of ε , QED.

REFERENCE

 S. M. Newberger, The σ-symbol of the singular integral operators of Calderón and Zygmund, Illinois J. Math., vol. 9 (1965), pp. 428-443.

University of California Berkeley, California