WEAK MINIMAL GENERATING SET REDUCTION THEOREMS FOR
ASSOCIATIVE AND LIE ALGEBRAS

BY
JameEs W. Bonp

It is often difficult to obtain results for Lie algebras over arbitrary fields be-
cause the study of Lie algebras over fields of characteristic two and threc as
well as finite fields usually poses special problems. An attempt was made to
develope methods using minimal generators which would be as independent
as possible of the nature of the ground field. This led to the author’s thesis'
from which the present paper has been prepared.

Our theorems on Lie algebras essentially use the Jacobi identity only to
show that certain subalgebras of Lie algebras are ideals. Hence these results
for Lie algebras do not depend on the ground field. This fact also explains
why analogous theorems hold for associative algebras. Several propositions
determining the structure of certain quotient Lie algebras required a slightly
more explicit use of the Jacobi identity. These results were not obtained for
fields of characteristic two.

To derive the results of this paper only certain properties of minimal
generating sets were used. We single these out by the following definition.
A set S of elements of an algebra A weak minimally generates 4, abbreviated
S wam.g. 4, if

(1) 8 generates 4 as an algebra
(2) 8 consists of linearly independent elements of A
(3) No proper subspace of the vector space spanned by S generates A.

It is now possible to summarize the main results we obtain. Suppose S
wa.g. A and T is a non-empty subset of S. Let B be the subalgebra gen-
erated by 8 — T and C the vector space spanned by 7. Now, assume A is
the direct sum as vector spaces of B and C and denote the projection of A
onto C with respect to this decomposition by . Then C' becomes an algebra
with multiplication * defined by ¢ * ¢’ = P(cc’) for all ¢, ¢’ € C. The strue-
ture of C with this multiplication is determined. Next for each ¢ e C,
P(be) = By(b)cand P(cb) = B,(b)c,b e B, where B, and 8, are linear functionals
from B into F. If A is either an associative or Lie algebra with dim C = 2
then the kernel 8; n kernel 8, is an ideal in A. In a slightly different direction,
if B is an ideal in A and the base field is infinite then 4 is the direct sum
as vector spaces of the subalgebra generated by all products of elements of B
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and the vector space spanned by S. The paper concludes with a short ap-
pendix on weak minimal generating sets.

Let V be a vector space, not necessarily finite-dimensional, over a field F.
Suppose (a, b) — ab is a map from V X V into V. For each a e V define R,
and L, by R4(b) = ba and L.(b) = ab,beV. If R, and L, for each aeV
are linear transformations we say A is an algebra over F' with multiplication
denoted by ab. If it is not necessary to name the ground field F we will
simply say A is an algebra.

Suppose A4 is an algebra having a decomposition 4 =B 4 C, where B is a
subalgebra of 4 and C a vector subspace of A, and where -+ denotes the direct
sum of B and C as vector spaces. Let P be the projection of A onto C de-
termined by this decomposition. Let (C, *) denote the vector space C with
multiplication * defined by

c1 % ¢a = P(cice) for ¢1, co e C.

If we let R and Lg denote right and left multiplication respectively in (C, )
then R = PoRg and Ly = PoLg. Therefore (C,%) is an algebra. Ob-
serve if A is a square nil algebra, i.e. a® = 0 for all a e A, then (C, *) is also a
square nil algebra. It does not follow if A is associative then (C, *) is asso-
ciative or if A is a Lie algebra then (C, %) is a Lie algebra.

For any set S of elements of an algebra A4 let V(S) denote the minimal vector
subspace of A containing S and (S) the minimal subalgebra of A containing S.
Suppose A = (S — T) + V(7T) where Swm.g. A and ® # T C §. That this
sum must be direct (as vector spaces) follows immediately from the definition
of S w.m.g. A when we observe (W u (8 — T)) = A, where W is any vector
space complement of (S — 7)) n V(1) in V(T).

Next, observe A = V(8), S wm.g. 4, if and only if (a, b) = V(a, b) for
all @, b e A. Necessity is clear, while sufficiency would follow if

<a1; "'yaﬂ>=V(a1"”7aﬂ)

fora;, -+, a, € A, n an arbitrary positive integer. However, it is immediate
that the set {m e A | m a product of elements of A not contained in the vector
space spanned by these elements} has no element involving a least number of
factors. Then A = (S — T) + V(T), where S wm.g. A and ® = T C S,
implies 7' wam.g. (V(T), *). Fors, te V(T) implies ste V(s, t) + (S — T)
so that s x e V (s, t).

Let GF(p™) denote the Galois field of p™ elements. As usual let V* denote
the dual space of a vector space V. We now state the first theorem which
completely determines the structure of (V(T'), *).

TuworeEm 1° Let A be a vector space V with a basis S over a field
2 G. Leger has proved in his paper, 4 particular class of Lie algebras, Proc. Amer.

Math. Soc., vol. 16 (1965), pp. 293-296, a theorem which contains this theorem for Lie
algebras as a special case.
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F, F = GF(2). Then A is an algebra over F with S w.m.g. A if and only if
mulliplication s specified by
(1) ab = a(b)a + (e(a) — a(a))b, for all a, b e A, where e, e A™.

Proof. 1If (1) holds
R, = a(a)l 4+ ale — o) and L, = aa + (e(a) — ala))l,

where I denotes the identity transformation of A onto A. Clearly R, and L,
are linear transformations and {(a,b) = V(a, b) so that 4 is an algebra weak
minimally generated by S.

Suppose S w.am.g. A. We wish to determine ¢, a e A* such that (1) holds.
Since S w.m.g. 4, (a) = V(a) and {a, b) = V(a, b) for all @, be A. Then
o’ = e(a)a for all ae A, where a — ¢(a) is a map of A into F. Observe

e(Aa)(Na) = A’ = Na® = Ne(a)a

mplies e( @) = Ae(a), NeF,aeAd. Ifdim A = 1, e A¥ o = 0, and we
are done. If not, consider linearly independent elements a, be A. Let

S(a,b) = (a+b)"— d —b" = ab + ba.
Then S(\a, b) — AMS(a, b) = 0, Ne F. Written in terms of ¢ this becomes
eNa 4+ b)(Na + b) — e(Na)(Na) — e(b)b
— Me(a +b)(a+b) — e(a)a — e(b)b) = 0.

Then
(2) Me(ha + b) — Ne(a) — e(a +b) + e(a)] =0
(3) e(ha 4+ b) — &(b) — Ne(a+b) + Ne(b) =0

since @ and b are linearly independent. Suppose N 5 0; cancel X in (2) and
subtract (2) from (3) obtaining

(N —1)(e(a +b) — ¢(a) — &(b)) = 0.

Since F = GF(2), e(a + b) = &(a) + &(b).
Since {(a, b) = V(a, b) we may write

ab = a(b, a)a + B(a, b)b,

where «, 8 are maps from A X A into F. Suppose a and b are linearly in-
dependent elements of A. Consider

a(b, a)a + B(a,b)b + ala,b)b + B(b,a)a = ab +ba = (a +b)* — " — b°
= ¢(a+ b)(a+b) — e(a)a — &(b)b = e(b)a + e(a)bd.
B(a, b) + a(a, b) = &(a) and we may now write

(4) ab = a(b, a)a + (e(a) — ala, b))b.
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We next show a(b, a) depends only on the first variable. Trom the coefficient
of @ in the identity (¢ + b)b = ab + b* we conclude

a(b, a + b) = a(b, a),

while if there exist a, b, ¢ linearly independent elements of A from the co-
efficients of @ and ¢ in (a + ¢)b = ab + ¢b we conclude

alb,a + ¢) = a(b,a) and a(b,a + ¢) = a(b, c).

We remark a(b, b) = a(b, a) is an allowable definition since (4) still reduces
to b® = e(b)b. Therefore « is independent of the second variable and we may
set a(b) = a(b, a). Then (4) becomes

ab = a(b)a + (e(a) — ala))b
for all a, b e A. Rewriting the above equation
R, = aa 4+ (e(a) — a(a))]
we conclude b — a(b)a is linear and hence a(b) is linear.
Cororrary 1.1. If a square nil algebra A has a decomposition
L=(8S~T)+4 V(T),
&= TcCS,Swm.g. A, then (V(T), %) is a Lie algebra.
Proof. P(¢") = 0 implies ¢c* ¢ = 0. Then
cxd = ald)e —a(e)d, ¢ deV(T),ae V(T)¥
implies
(cxd) xe = a(d)a(e)c — alc)ale) d, ¢, d,eeV(T),

from which it follows (V(1'), *) satisfies the Jacobi identity.

We remark for a Lie algebra L = V(8), of dimension m, S w.m.g. L,
m > 2, there are precisely two non-isomorphic algebras corresponding to
a=0anda s 0. Thisfollowsimmediately once we observe that the codimen-
sion of the kernel of o in L is either zero or one.

ProrosiTioNn 1. Suppose an algebra A over a field F has a decomposition
A=8—-T)y+V(T),®=TcCS,Swm.g A. Denote the projection map
of A onto V(T) by P. Then

P(st) = Bu(s)t and P(ts) = B(s)l,s¢ (S — T),teV(T),B:,B, (S — T)*

Proof. We prove only P(st) = Bi(s)t, Bre (S — T)* the proof of
P(is) = B.(s)t being similar.

We have P(st) e(S — T,t N V(T) = V(t) since S wm.g. A. Therefore
for each te V(t) we have P(st) = Bi(s)t where 8; is a map from (S — T)
into F. Define the linear functional 8, from V(T) into F by 8,(\) = ),
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NeF. Then 8, = §,0 P o R, and therefore 8, ¢ (S — Y. We now show 8,
is independent of ¢ Observe Ba(s)(N) = P(s(N)) = AP(st) = NB(s)t
implies Br; = B forall A = 0, N e F. While 84.(s)(t +v) = P(s(t +v)) =
P(st) + P(sv) = Bus)t + B.(s)v implies B:(s) = B.(s) for ¢t and v linearly
independent elements of V(T).

Suppose an algebra A has a decomposition A = B 4+ C, where B is a sub-
algebra of A and C a vector subspace of A. Let P denote the projection of A
onto C' and suppose P(bc) = Bi(b)c and P(cb) = B.(b)C, beB, ceC, By,
B, ¢ B*. Denote the kernel of 8; by K, of 8, by K, , and set K = K;n K, .

TurorREM 2. If A is a Lie algebra then B> C K and if diim C > 2, K is an
wdeal in A.

Proof. Let 8 = B;. Since L is square nil 8; = —@,, kernel 8 = K; =
K,= K. Forb, b eB,ceC

BB )e = P((bb')c)
= P(b(b'c)) — P(b'(bc)) (by the Jacobi identity)
= P(bP(b'c)) — P(b'P(bc)) (since B is a subalgebra)
= B(b)B(Y)e — B(b)B(b)c = 0.
Therefore B> € K. Hence KB < K and it would suffice to show KC < K
to conclude K is an ideal in A. Assume dim C' > 2. Given c e C there exists
¢’ € C such that ¢ and ¢’ are linearly independent. ¥orb e K, bce B and bc’ ¢ B
so that we may write 8(bc) and B(bc’). Then
0 = B(b)(ec’) = P(b(cc’))
P((bc)e’) — P((bc)e)
B(be)c’ — B(bc)e.

Therefore 8(bc) = 0, hence bc ¢ K, completing the proof.
It is easy now to determine the factor algebra structure when B is not an
ideal.

Il

Prorosition 2. Suppose a Lie algebra L over a field F, characteristic of F # 2,
contains an element a such that ab = b + a(b)a for allbe L. Then o e L™ and
cd = a(d)e — a(c) d for all ¢, d e L, where a(a) = —1.

Proof. Tt is clear that o e L™ with a(a) = —1. Let D be any vector space
complement of V(a) in I.. We have ¢d = ¢ + B(cd)a, for some B(cd) € F,
eeD, for c,d e D. Then

e+ ale)a = a(ed) = (ac)d — (ad)c
= 2(e + B(cd)a) + a(c)(d + a(d)a) — a(d)(c + a(c)a).

By linear independence
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(1) e—a(de+ a(c)d =0
(2) ale) + 28(cd) = 0.

Because « is linear (1) implies a(e) = 0, hence (2) implies 8(cd) = 0.

Observe for K # B the factor algebra L/K is weak minimally generated by a
basis, while for K = B it is necessary, of course, to suppose B = (S — T') and
C = V(T), where ® % T < S, S wm.g. L. The next example shows all the
possible factor algebras with a weak minimal generating set which is a basis
occur. Let W be a vector space over F with basis {a, b, ab, ¢, d}. Then the
following multiplication tables

| a b ab ¢ d | a b ab ¢ d
a 0 ab 0 0 O a 0O a 0 0 O
bl —ab 0 0 ¢ d bl —ab 0 0 0 O
ab 0 0O 0 00 ab 0 0O 0 0 0
¢ 0 —c 0 0 O c 0 0 0 0O
d 0 —d 0 0 0 d 0 0 0 0O
| a b ab c d
a 0 ab 0 —a 0
bl —ab 0 O —-b 0
ab 0 0 0 —2ab O
c a b 2ab 0 d
d 0 0 0 —d 0

turn W into Lie algebras weak minimally generated by {a, b, ¢, d} with
B = {(a,b). Inthe first table K = {(a, ab) 5 B, in the second and third tables
K = B with L/K abelian and non-abelian, respectively.

The following lemma essentially settles the associative algebra case.

Lumma.  Suppose A is an algebra over F. Then
(1) b(b'c) = (bb')ec, b, b’ € B, ce C implies K; an ideal in B.
(i1)  (eb)b" = ¢(bb"), b, b’ € B, c e C implies K, an ideal in B.
(iii) (be)e = bcee), be B, ce C implies K,C C K,
(iv) c¢(eb) = (cc)b, beB, ceC implies CK, C K,
(v) e(be’) = (eb)c, ¢, ' eC, beB, dim C > 2 implies KC < K, and
CK C K;.

Proof. (i) b(b’c) = (bb')c implies 8; is a homomorphism of B into F
and hence its kernel is an ideal of B.

(ii) Similarly 8, a homomorphism implies K, an ideal of B.

(iii) Tor beK,, bce B, so that we may write 8,(bc). Then Bi(bc)c =
P((bc)e) = P(b(ec)) = Bu(b)(cc) = 0.

\v)  Similarly b e K, implies 8,(¢b)c = B,(b)(cc) = 0.

(v) Tor beK, b’ e B and cbe B, so that we may write B.(bc’) and
Bi(cb). Then B.(bc')ec = P(e(be’)) = P((cb)c) = Bu(cb)d’. If ¢, ¢ are
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linearly independent we may conclude 3,(bc’) = 0 and 3,(cb) = 0. Therefore
KC c K, and CK C K; provided dim C > 2.

TaEOREM 3. If A is an associative algebra and dim C > 2 then K s an tdeal
of A.

Proof. From (i) and (ii) we conclude K is an ideal in B. It then suffices
to show KC K which follows from (iii) and (v) and CK C K which follows
from (iv) and (v).

The analysis of the structure of A/K where A is an associative algebra is
more involved than that of I./K where L is a Lie algebra. Indeed the analysis
is not quite complete, as we shall see. The following proposition and examples
settle the case when K = B under the natural assumption B = (S — T and
C=V(T),®2=TcCS,Swm.g A.

Prorosirion 3. Suppose a right or left alternalive algebra A is of the form
A = V(8), S wm.g. A;then ab = n(a)b or ba = y(a)b for allbe A, ne A™

Proof. By Theorem 1 we have

cd = a(d)e + (e(c) — a(e)) d

forallc,de A, a, e A*. Then (ed) d = c¢(dd) implies
(1) a(d)(e(c) — a(c)) =0
(2) (a(d))’ = e(d)a(d) for ¢, d linearly independent.

If ¢ = 0 then by (2) « = 0 and we are done.

Ifes#20,anda = 0, set ¢ = 9.

If e 2 0,a # 0let ¢(b) = 1 and K = kernel e&. Then A = V(b) + K.
Since e(K) = 0,a(K) = 0by (2), whileby (1), a(b) = &(b). Sete = a = 1.

The conclusion is symmetric in ¢ and b hence it would follow also from the
identity d(dc) = (dd)ec.

Let {a, b, ab, ¢, d} be a basis for a vector space W over . Then

_la b ab ¢ d ~la b ab ¢ d
al 0 ab 0 0 O al 0 ab 0 0 O
blab 0 0 0 O blab 0 0 0 O
b0 0 000 ™ 40 0 000
¢c;i 0 0 0 0 O ¢cla b ab ¢ d
d,0 0 0 0O di 0 0 0 00

determine associative multiplications on W, with B = (a, b) an ideal, and
L/B abelian, L/B prossessing a left identity, respectively; both algebras are
clearly w.m.g. by {a, b, ¢, d}.

We now begin the analysis of the case codimg B = 1. Suppose we have
be = ¢ 4+ a(c)b for some eclement be A and all ce A. Trom (b*)c = b(bec)
we conclude a(b) = 0 and a(c) = 0 provided c is linearly independent of b.
Let D be a complement of V(b) in A and suppose ¢cb = $(¢)b 4 6(c)c for all
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ceD. Then (cb)b = ¢(b®) implies B(c)é(c) = 0 and &(c)’ = &(c). The
following proposition takes care of the subcase when §(¢) = 0 for all c.

Prorosrrion 4. Suppose in an associative algebra A there exists an element
b such that

be = ¢, cb = B(c)b, B(c)eF, forallce A,
then de = n(d)c, ne A*, n(b) = 1.

Proof. Let D be a complement of V(b) in A. The proposition would
follow from Proposition 3 if we could show ¢d ¢ V(ed) fore, d € D, for then
A would be weak minimally generated by a basis of A. Suppose
cd =¢e¢+ B(ed)b,eeD, B(c, d) e F. An easy calculation of (¢b)d = c(bd)
leads to 8(¢, d) = 0 and hence ¢d = B(¢) = d.

It is easy to give an example of an associative algebra having this factor
algebra structure.

The subcase remains when 6(¢) = 1. for some c¢. By considering
(¢ + d)b = ¢b + db for b, ¢, d linearly independent we see 8(c) = 1 for all
ceA. We now have be = ¢ and ¢b = ¢ for some fixed be A and all ce 4.
Under these conditions no information can be derived about the product cd
from the associative identities involving b so that an analogue of the last
proposition is impossible. We next attempt to derive additional information
by supposing B = (8§ — T)and C = V(T) where® == T'< S,Swm.g. B 4+ C
and A = (B + C)/K. In this situation we know in terms of A and a com-
plement D of V(b) in A by Theorem 1 that

ed = ale) d + (e(d) — a(d))e + n(c, d)b, a, eeD*,

n simply a mapping from D X D into F. If we suppose ¢, d are linearly
independent the coefficients of ¢ and d in the identity (cc) d = ¢(cd) imply

(¢, d) = a(c)(a(d) — e(d))

for ¢, d e D. (The identity given by the coefficient of b in this calculation
follows from the formula derived for n(¢c, d).) Observe 5(c, d) is a bilinear
functional from D X D into F. Furthermore, we must have 5(¢, d) # 0 for
some ¢, d e D, otherwise A would be weak minimally generated by a basis of
D u {b} contradicting Proposition 3. The author does not know whether such
an algebra A can occur as a factor algebra (B + C)/K.

Tfinally, when the codimp K is two, there is essentially one factor structure.
There exists b; e K, and ¢ K; and b, e K; and ¢ K, which may be assumed nor-
malized so that (when considered in the factor algebra with multiplication
understood to be the natural factor algebra multiplication)

bic = ¢+ a(c)b, + B(c)b, b,c = 8(c)d,,
bi = erby,  cby = v(c)bs
cb, = ¢ + n(c)by + £(c) b, b2 = e b,, er,e el
for all ¢ e D, a complement of V(b;, b,) in the factor algebra A/K.
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(1) b,b; = 0 follows from (iii) and (iv) of Lemma 2.

Next
c(bib,) = (cby)b, = v(¢)byb, implies by b, e V(by)
while
(bibr)e = by(brc) = 8(¢c)bib, implies by b, e V(b,),
hence
(2) bib, = 0.
Now from b; = by(b; ¢) we conclude
(3) & = 1
(4) a(c) =0
while from cb; = (cb,)b, we conclude
(5) & =1
(6) ECc) =0.

Finally, 0 = (b, b))¢c = bi(bic) = 8(c)b, + B(c)d, so that
(7) 8(c) + B(c) = 0, while

0= C(br bl) = (Cbr)bl = ’Y(C)bl -+ n(c)bl
so that

(8) ~(e) + n(c) = 0.

For ceDlet ¢ = ¢ + B(¢)b, + n(c)b,; then by’ = ¢’ and ¢/b, = ¢, hence
cdb, = 0, b,¢ = 0.

Let D' = {¢’ | ce D}. Then D’ is a vector space complement of V(b , b,)
in the factor algebra. Then 0 = (¢'by)d’ = ¢'(bid’) = ¢’ d’' so that D' is
abelian. Observe that the factor algebra is not weak minimally generated
by a basis since (b;, b, + ¢) e b;, b, , c. Again the author has no example of an
associative algebra A = B+ C,B = (8 — 1), C = V(T),® = T C 8§,
S w.m.g. A, which has A/K of the above structure.

Let S be a weak minimal generating set for an algebra A. Suppose
7:8 — V(8). The following construction gives a useful sufficient condition
for 7(S) w.m.g. A. Suppose for the present that S is a linearly independent
set of elements of A. A well defined product of the elements of S will be called
a monomial in the elements of S. If {(S) = A we may find a basis B = Su M,
where M consists of monomials of the clements of S. We extend 7: S — A
to r° : A — A by requiring

(1) 7° restricted to S equals r.

(2) If JIsieM, sieS, then #*(]]s:) = ]I +(S:), where parentheses
in J] #(8S:) are inserted exactly asin [] s..

(3) 7" is linear
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If S w.m.g. A and there exists a basis B as above such that r°(4) = A
then 7(S) w.m.g. A.

TurorREM 4. Let A be a finite-dimensional algebra over an infinite field F.
Suppose A = (S—T)+ V(T2 =T 8, Swmyg. A, and (S — T) is an
wdeal of A. Then

A= (S =T+ V(8).

Proof. Suppose 0 5 2 pes\be(S — TY'N V(S). Then A, 0 for some
seS — Tsince (S — T)NV(T) = 0.

Adjoin a transcendental z to F and view A as A ®y F(x) over F(x).
Fix te T and consider 7 : S — V(8S) ®» F(x) defined by

7(s) = s + «t, 7(b) =0 forbeS — {S}.
Let B = Su M, M a set of monomials in S — T, be a basis for A. Then

(m) = 2 ewus—rury (8m + 2Pus)b, Py € Flz], for m e M,
where
oy = 0 Hm #£Db
=1 ifm=b.
Therefore
det 7 = 1 + 2P, P ¢ Flx].

From the generalized form of Cramer’s rule for vector-valued functions
applied to 7°(b) in terms of b for be M u S — T u {t} we conclude for b = ¢

_ Qbe B Qs
v b= B T apT O Typt Qe Quellal
Then
Qve B TQuit _ _
(2) (Zl+xI)r(c)+l+xP>t—bte(S T)
since (S — T is an ideal in 4, while
(3) £ — e(t)te(S —T), et)elF

by Theorem 2. TUsing (1), (2), and (3) we may calculate bc for
b,ceS — T u M concluding

_ $2Rbc
1 + zP)?

for some Ry € Flz]. By supposition

(4) be te (™ (S —TuM)) ®r F(x)

Dbes b = Zc,deS—TUM Nea cdl, Moy Nea € F.
Then

(5) DesMob = D vy M7 (b) + (A — 2N
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We conclude

2 Zc,d >\cd Rcd -
(()\t - x)\s) + X (m) t> € (TB(S —_ {t} UM)> ®F F(x),Rcdélf [.’E]-
Since \s # 0 the coefficient of ¢ is a quotient of non-zero polynomials and since
F is infinite there exists a specialization { : £ — A such that these polynomials
are non-zero. Then

t=(ror)(1) e{(sor)(S — {t} uM)),

¢ o7’ is onto since (1 + AP)* 5 0, contradicting ¢ o 7°(S) w.am.g. 4.

It is clear from the last proof that “infinite field”” could be replaced by “field
with sufficiently many elements.”” The number of elements necessary could
be calculated once a basis in terms of the generators was specified for a given
algebra. It isinteresting to rephrase the last theorem as an extension theorem.

CoOROLLARY. Suppose A is an algebra over an infinite field and S w.m.g. A.
Then there exists an algebra A over F such that

(1) A is an ideal in A,

(2) Sultlwm.g. A, where A = A + V(1) if and only if

A=A FV(8S).

Proof. The necessity follows immediately from the theorem. To show
sufficiency we construct an A given 4 = 4> + V(S). Let A = A + V (1),
ta =at = O0forallaed and # = 0. Then A®> © A® 5o that Su {t} wm.g. A.

Appendix

In this appendix we answer some of the natural questions which arise con-
cerning the concept of weak minimal generating set.

It is clear that weak minimal generating sets exist for finite-dimensional
algebras but need not exist for an infinite-dimensional algebra as the following
example shows. Let @ denote the rational numbers. Let k = Q (w, | w. a
primitive 2" root of unity, n a positive integer). Let K = k(x) be a tran-
scendental extension of K. Consider the algebra 4 = Klz, | (2.)" = @, n a
positive integer]. Suppose (S) = A. Itis clear Sisinfinite. We show given
s, 8 €S either (S — {s}) = 4 or (S — {s'}) = A, and thereforec 4 would have
no weak minimal generating sets. For se S, K(s) & K(zx), where m is the
greatest integer n occurring in either a numerator or denominator term \, z,
of s, A\, # 0, and s assumed to be expressed with numerator and denominator
relatively prime over K. Since K(z,) is a finite normal extension of K, hence
has finite cyclic Galois group, every subgroup of which is determined by its
order, every subfield of K(z,) is one of the K(z.), 1 < n < m. Therefore
K(s) = K(z,) for some n. For s ¢S, K(§) = K(z/n). Therefore
K(s) C K(s') or K(s') € K(s) whenn < n’ orn’ < n, respectively. Since
K(s) = K[s] and K(s') = K[§'] either (S — {s}) = A or (S — {s'}) = A.°

3 This example resulted from a conversation with Max Zorn.
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The term weak minimal generating set is justified by the fact that weak
minimal generating sets for finite-dimensional algebras may have distinct
number of elements. Consider the vector space A with basis {a, b, ¢, d} over
a field I and multiplication specified by the following table:

_la b ¢ d
al 0 ¢ b O
b| —c 0 0 O
c| —=b 0 0 a
d, 0 0 —a O

Then {a, b, d} and {c, d} both w.m.g. A. Observe though, A is neither a Lie
algebra nor an associative algebra. The author has no examples of a finite-
dimensional Lie or associative algebra which have two weak minimal generat-
ing sets consisting of different numbers of elements.

We now indicate how an example of an infinite-dimensional Lie algebra could
be constructed which is weak minimally generated by two elements and also
by three clements.

Suppose S is a set of elements; then an element of (--- (8S)8) --- S is
called a standard monomial in S of length n. The standard monomials span
the free Lie algebra generated by S, but are not linearly independent because
of the square nil identity (e.g. 0 = (ab)(ab) = ((ab)a)b — ((ab)b)a). If we
inductively extend a basis consisting of standard monomials of length < %t — 1
to a basis for those of length < k, then those monomials of length k in the basis
will lead to linear relations of standard monomials of weight 2k. With respect
to this basis we can now see what happens if we factor a free Lie algebra o
generated by S = {a, b} by the relations

((ab)a)(ab) = (((ab)a)a)b — (((ab)a)b)a

a
and

b = ((ab)b)ab) = (((ab)b)a)b) — (((ab)b)b)a.

If I is the minimal two sided ideal in L containing these relations, the linear
dependence relations among standard monomials induced by factoring by I
arise simply by multiplying the above relations successively by a and b.
It follows that L/I is an infinite-dimensional algebra so constructed that both
{a, b} and {ab, (ab)a, (ab)b} wm.g. L/I.

Finally, if we cannot produce an example of a finite-dimensional Lie al-
gebra with two distinet w.m.g. sets, can we prove that all w.m.g. sets have the
same number of eclements? We now sketch a proof under the hypothesis L
is a nilpotent Lie algebra (probably too strong an assumption). It has been
shown that a finite-dimensional Lie algebra L is nilpotent if and only if every
maximal subalgebra of L is an ideal. This implies L is nilpotent if and only if

4 Donald Barnes, Nilpotency of Lie algebras, Math. Zeitschrift, vol. 79 (1962), pp.
237-238.
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L? = &L, where ®L is the intersection of all maximal proper subalgebras of I,
called the I'rattini subalgebra of L. It follows if S w.m.g. a finite-dimensional
nilpotent Lie algebra L then L = ®L + V(S),i.e. V(8) has codimension equal
to the dimension of L in L. Simply observe for _.es\s s, Nsg 7 0, Ny I,
there exists a maximal subalgebra M of L containing (S — {so}) and not con-
taining D s s s.
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