THE SPECTRA OF CERTAIN TOEPLITZ MATRICES

BY
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1. Introduction
Let f(e) ¢ L'(T) where T is the reals modulo 2x. If

f(e") ~ 2220 fr(r)e™
then the Toeplitz matrix of order n + 1 associated with f is
M.Jf) = [F°(r — 8)lrem01, 0o n -
Let {\,i} im0 be the eigen values of M,[f], that is the zeros of
det [M, — N,] = 0.
For each n we define a measure a, on the Borel sets in the A-plane by
an(l) = (n 4+ 1)7 2o pen L.

An important topic in the theory of Toeplitz matrices is the study of the
asymptotic behavior of the measures a, as n — . If f(¢”) is real, in which
case the matrices M,[f] are Hermitian, there is a simple and elegant solution.
The support of each «, is contained in the interval of the real line whose end
points are ess inf f and ess sup f, and as n — « the a, converge weakly to the
measure a defined by

) = o) [,

f(eil)eE
see [1, §7.5].
When f(e”) is not real, however, the problem is very difficult and the only
results are those obtained by P. Schmidt and F. Spitzer in [5]. They assumed
that f is a Laurent polynomial,

(1) f(e”) = 2w A (1)e™,
where h, & > 0, (otherwise the problem in question is trivial) and showed that
there then exists a compact set C in the N-plane, which can be described pre-
cisely, such that if N is any neighborhood of C' the support of a, must be in N
provided n is sufficiently large. Moreover, no smaller closed set C' has this
property.

In this paper we will complete the investigation of Schmidt and Spitzer by
showing that asn — « the a, converge weakly to a measure a with support in

(. This is rather easy. What is of greater interest is that we will obtain an
cxplicit formula for a.
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146 1. I. HIRSCHMAN, JR.

2. Preliminary results
We will need the following.

THEOREM 2a. For g(e”) e Lip B for some 8 > 0 let M ,[g] be the corresponding
Toeplitz matriz. We define s (g) 1o be the set of complex values \ for which either

g(e’)y =N =0 for some 0eT,
or tf this is not the case, .
larg {g(¢”) — NJI5™ # 0.

Then if K is any compact set such that K no*(g) = 0 there is an integer ny such
that det M,Jg — N &£ 0 forNe K, n > no, and

. det Mulg — N - i
}g}g dot Mol =N exp{(27r) fT log [g(e™) — Al dﬂ}

uniformly for N e K.

Proof. 1In the case K = {\} this follows from Baxter’s inequality for finite
section Wiener-Hopf operators in the L” formulation given by Reich [4]. With
only very minor changes Reich’s arguments can be made to give the result
stated above.

Let f(2) be defined as in (1) of §1. For convenience we set

D.(N\) = det M,[f(e”) — \].
For any p > 0 let
L) = 20 fr(r)p'e™.
Following Schmidt and Spitzer we define
C = np>0 <T+(fp)-
We can now give a new and very simple proof of part of their results.

TaBOREM 2b. If N is any neighborhood of C then the support of a, ts con-
tained in N, provided n s sufficiently large.

Proof. If X ¢ C then there cxists a p > 0 such that X ¢ o™ (f,); that is
fp(ew) -\ #= 0, 0e¢ T,
larg {f,(e”) — N}Ji" = 0.

Since o' (f,) is closed, there is a compact neighborhood K(N) of N such that
K(\) no"(f,) = #. By Theorem 2a there exists an integer no such that

det M,[f, =N #0 for NeK(\), n > no.
We now note the basic identity
det Malf, — N = Da(N)
from which it follows that supp a, n K(N\) = @ for n > ny , ete.



THE SPECTRA OF CERTAIN TOEPLITZ MATRICES 147

For \ any fixed complex number let {72,(N)}%¥} be the absolute values of the

zeros of

#f(z) =N =0

arranged in non-decreasing order. The following identification given in [5]
plays a fundamental role in all that follows.

THEOREM 2¢. We have
C={\ I me(N) = mra(N)}.
Proof. 1t is apparent that X ¢ (f,) if and only if mi(\) < p < Mmrra(N).
TFor N in €”, the complement of C, choose p such that
(1) me(N) < p < mpaa(N).

Then the function f(z) — N does not vanish on | z| = p and inside this circle
it has k zeros plus a pole of order k at z = 0. Thus log [f(z) — N] is analytic
and single valued in the annulus mx(N) < | 2| < me1(N), the branches differ-
ing by integral multiples of 2x¢. For any p satisfying (1) let

(2) G(\) exp{(%ri)"‘f log [f(2) — Al fi—z}-
lz]=p 2
Clearly G(\) is well defined and is independent of p. Since G(N) is Jocally

analytic everywhere in C’ it is analytic in C’. We now have as a corollary
of Theorem 2a the following result.

TuroreMm 2d. If X ¢ C then
liMysw Da(N)/Dua(N) = G(N)
uniformly for N in any compact set K such that K n C = §.
3. The structure of C

The following result is due to Schmidt and Spitzer, however, our demon-
stration differs from their in some details.

TuarEOREM 3a. C can be represented as a finite union of closed analytic arcs,
where either distinct arcs are disjoint or, if not, their intersection consists of one
or both common end points.

Proof. Let S(No, 8) be the disk (A : [N — No| < 8}. TakeNeC. The
discriminant of 2*{f(z) — \} considered as a polynomial in z is a polynomial
in X\ whose zeros are the winding points for the roots of 2°{f(2) — A} = 0 con-
sidered as functions of . We first consider the case when N\ is not itself a
winding point. Choose 6 so small that S(§) = S(N\, §) contains no winding
point. Then there exist analytic functions {2,(N\)}i"1 such that

Ffz) =N = ) T e — (V)] A eS(6).
Let
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Yun(8) = NeS(8) : [aN)/a(N) | =1},
I‘(ﬁ) = UM#V 'YM,V(B)-

Since 2,(N)/2z,(N\) has no zeros or poles in S(8), I'(8) is the union of a finite
number of analytic ares each beginning and ending on the boundary of S(4).
Thus by taking é if necessary still smaller I'(§) will consist of a finite number
of analytic arcs where one end point of each arc is Ao and the other is on the
boundary of S(5), and the intersection of two distinct arcsisN\g. Iach spoke
of T'(8) is now the carrier of a set of relations such as: |z(A) | = |2(N\) |
and | zz(\) | = |s(N) | = | zz(N\) |. It is apparent that if N is not an isolated
point of C then C n S(§) must consist of one or more spokes from I'(4).
Thus we need only prove that Ay cannot be an isolated point of C. If it
were, then after suitable relabelling we would have

l2(N) | < 2.\ |, v=1, -, kiu=k+1, -,k +h
for all X e S(8) — {No}, and
[2iNo) [, -+ [ zes(No) | < | 2ipraNo) | =« = [ 2(No) |
= 2eaNo) | =+ = [ zipaNo) | < [ 2erarr(No), ==+ 5 | 26a(No) [,

for some p, ¢ > 1. Consider ¢(N) = 2z,(N)/2z,(N\) where
EF—p+1<u<k and k+1Zv<Lk+q.
Then o(N) is analytic for A € S(8) and
leM) [ <1, NeS(8) — N},  o(N) =1

This contradicts the maximum modulus principle. Thus Ny cannot be an
isolated point of C.

If N\, is a winding point we introduce a uniformizing parameter N — Np = A™.
If & is small enough there exist functions {Z,(A)}i™ analytic in |[A| < &

and such that
2) — N — A" = () T 2 — Zu(A)]

there. We can now carry out the same argument in the A-plane, which we
made before in the N-plane, and at the end transfer the result to the A-plane.

It is clear that the local structure of C obtained above implies the global
description of our theorem.

ScuoriuM 3b. In the representaiion of C as a union of analytic arcs we
may assume that no winding point is an interior point of any arc.

Proof. This follows because an arc can be broken into two arcs at any
interior point. The advantage of this convention is that instead of having
two categories of exceptional points in C, end points and winding points,
we now have only one—end points.
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4. The limiting distribution

Let ¢ be an analytic arc in the representation of C given by Theorem 3a and
Scholium 3b. Locally ¢ has two sides which we designate by side 1 and side 2.
Let us denote G(\) on side 1 by Gi(N) and G(N) on side 2 by Go(N). We will
show that both Gi(N) and G2(N) can be continued across the interior of c,
that | Gi(N) | = | Ga(\) | for all X on ¢, and that Gi(N\) continued into side 2 is
never equal to Go(N) there. Let us parameterize ¢ by means of the arc length
s measured from any convenient point on ¢. We sct

1|60
2 | dN Gi(N)
Doing this for each arc ¢ of C' we define a measure « on C by

a(ds) = ®(s) ds.

(1) ®(s)

A=\(s) )

Our principal result is that a so defined is the weak limit of the a,’s asn — .

In order to carry out the program outlined above we proceed as follows.
Any point in the interior of ¢ is the center of a closed disk S such that S n C
is a closed subarc of ¢ cutting across 8. By taking S small enough we can
insure that it does not contain any winding points. Let S; be the component
of S — ¢ on side 1 and S; the component on side 2. As in §3 we can find
analytic functions {z(M)}V™ such that

Ffz) =N = P IDA E — 200)], NeS.

Let N; be the (unique) subset of & integers drawn from {1, 2, --- | & + A}
such that

LN [ < 120 |, NeSy,

whenever u e N1, v ¢ N1, and let N be similarly decfined relative to Ss. We
set

G = (W) ILe — 2N, G = f2(R) [ Lewy, — 2(N).

N
AN
\ side 1
\
\ ¢ )
//
7! /
/ —— —
/ [ - ~
| side 2
\
\

Figure 1
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LemmA 4a.  The functions Gi(N) and Go(N) are analytic in S and
G\) = Gi(N), NeSi,
= G(N), NeS:.
Proof. 'That both Gi(A) and Ge(N\) are analytic in S is clear.
Let NeSi. Then if mi(N) < p < muy1(N) we have
log G(\) = (27r)'1leog [f(pe'®) — A] do.
Now
log [f(pe”) — N
= log f*(h) + 2eemlogll — 67 2 (N)] 4+ 2sew, log [0e” — 2,(N)1.
If v ¢ Ny then
log [1 — pe "2,(\)] = =21l e (N7,
while if » ¢ Ny then
log [pe” — 2,(N)] = log [—&(\)] — 2277 [ee 2, (N) 7T

It follows that
log GON) = log f*(h) + 2 uen, log [—2,(N)],

ete.
LemmA 4b.  We have
(2) LGN | = [ G(N) |, Necn S,
and
(3) TGN > GO, NeSt,  [GN] > [G(N)], NeSs.

Proof. The relation (2) is obvious.
Renumbering we may assume without loss of generality that for N eS;

2N | <z |, v=1,-,kp=k+1, -, k+h
while forAeSn ¢
laN) 1y ooy TaoN) | < | ziepnN) | = -+ = | 2u(N) |
= 262N | = -+ = | 2eaN) | < L 2hpeaN) |, <o+, [ 2ea(N) |-
Here p, ¢ > 1. Choose a point N on S n ¢ such that
d z(\) v=k—p-+1,---,k

dhz,(\) h=ny T p=k+1,---,k+q

Then if Ky is a small circular neighborhood of g, 2,(N)/2,(N) = w maps Ko
univalently. c¢n K, is mapped onto an arc of |w| = 1, while Syn K, is
mapped into | w| > 1. Consequently S: n K is mapped into |w| < 1. It
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follows that N, contains, in addition to {¢ + k + 1, --- , k + h}, min (p, q)
integers from {k — p + 1, --- , k}. Thus Ny ¢ N1, and this implies (3).

COROLLARY 4c. If ®(s) s defined as in (1) then ®(s) % 0 at any interior
point of c.

Let N(s) be a point in the interior of ¢cn S. Construct a normal to ¢ at
A(s) into Sy . Let 7 be a small positive parameter. Let v(s, ) be the point
on this normal at a distance 3r from A(s), and let K(s, ) be the closed circular
disk with center (s, r) and radius r. If r is small enough K(s, r) < 8.
Note the angle wn(s, r) is negative.

Lumma 4d.  Let a(dN) be any weak limit point of {an}T. Then for r suf-
fictently small

r 1 wg (5,7) ‘ Gz(i:)
4 f 1 —_— dt) = — 1 ds.
(4) K o [d(s, T, t):l Ad) =50 | 8 G®
We note that by Theorem 2b the support of the restriction of @ to K(s, r)
is contained in ¢ n K(s, r) so that we may write a(dt) where dt is arc length

on ¢. We also note that on the right hand side of (4) we have written §
for £(s, r, 6).

Proof. Let us apply the Poisson-Jensen formula, see [6, §3.61], to the
function D,(N)/Gi(N\)"™ and the circle K(s, ). Dividing by n + 1 we
obtain

g (s,x,8)

Ficure 2
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P
+ \/I;(s,r) log l:d(s, r, f):l Q’n(dE)
D.(£)

Zvr(n T f log | G

Here in the integral on the left hand side of (5) d(s, r, £) is the distance from
v(s, r) to a general point £ in K(s, r). It is apparent from Theorem 2d that

1 D,(v)

{}1}; n4+ 1 log Gh(y)"+

Furthermore, the definition of weak limit point implies that for some sub-
sequence 1< ny < mg < - -+

. r s
11:2 fx(m) log d(s, r, £) an,(dE) = v/;nK(s,r) log d(s,r, t)
Note that d(s, r, t) = d(s, r, N(¢)). Finally we assert that

. 1 D(2) | 7 og | €0 | 4
0 D Jy o } G e @

To verify this let § > 0 be small and set

1 log’ D.(v)

5) n-4+ 1 Gi(y)rH!

do.

= 0.

aldt).

1 / D,(¢) | _ -
megW =L+ L+ L4+ 1
corresponding to the ranges of integration (w2 + 8§, wi — ),
(w1 + 8, ws — 8), (w1 — 8, w1 + 68), and (w2 — 8, w2 + §). By Theorem 2d
. . 1 [e? Gy
T Il T, s
We have Iy = Iy + I where
, 1 wy+d ” 1 wy+é
I3 = ~5n do s log | Gi(§) | do, 1§ = e T D) dops log | D.(£) | db.

Since I5 is independent of n we pass on to Iy. It is easy to see that for any
complex number A

Lt:aloglg(s,r,ﬁ) — M| do > f_:log[rsinﬂd().
Since Du(£) = (—=1)"(§ = Muo) -+ (§ — Nu.a) we have

I3 (n,s) >§~f log | r sin 6 | df.
Now both the {\,:}¢ and C lie inside the circle | £ | < || f || and consequently

wytd 8
[ tog 1 a0 = nas 0 < [ o (21 1) o,

w1—d
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which implies that

1(n,8) <o [ Yog (211 711) v

It follows that, forn = 0,1, -+,

| T3] < B(s)
and similarly
|I4 I S B(a):

where B(8) —0asé | 0. Putting these facts together we obtain our desired
conclusion.
We define the constant p by

p = +/3 — /3.
Lemma 4e. Choose ti < ty so that N(t1), N(Ls) ecn S. Then

)
L1 el G
lim ‘——f log | =2
>0+ 2mr wy(s,r) Gl

do = pd(s)

uniformly forty < s < by
Proof. Letg() = G2(£)/G1(£) and let o(s) = arg {(A\(s) — v(s,r)}. Then
E(r, 8,0) — N(s) = re'®@T0 _ 1pp70@,
Since | g(£¢) | = loncand | g(£) | > 1 below ¢
g'IN(s)] = 2mgIN(s)]@(s)e .
Using Taylor’s formula we see that
glE(r, s, 0)] = gIN(8)] + ¢'INSIED) — Ns)] + O(r),

and thus
log | gl&(r, s, 0)]| = 2ar(cos 0. — $)B(s) + O(r").

Moreover, this holds uniformly for {; < s < &, wi(s, ) < 0 < we(s, ), and
0 < r < 7o, if 7o is sufficiently small. Furthermore, it is evident that

lim.op wn(s, 1) = —a/3, lim,op wo(s, 1) = w/3,

uniformly for 4 < s < t,. Combining these estimates we obtain our desired
result.

Lemma 4f.  There exists positive constanis a and A such that
_ 27)—1/2 .
<Liogt [l + (s——t> ] + Axa <s———t>
11 gl: r :I r 4 r r
—_ o —
r d(S, ) t) 1 1 s — e s — 1
>-logt |- +(° - .
s[5+ () | - 4 ()
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ifth <s<t,tecnK(s,r)and 0 < r < 7o for somery > 0. Here x, is the
characteristic function of [—a, al.
Proof. One easily sees that
(s, r, 1) = " + (s = )" + O(r(s — O)")

uniformly for & < s < &, tecnK(s,7),0 < r < 7y, provided 7y > 0 is
small enough, etc.

LeEMMA 4g.  Under the above assumptions if t < s; < sy < iy then
+

/:i alds) = /:2 &(s) ds.

1 1

Proof. For ¢ > 0 small let

sote
. = ] oo | "
I(+e,7) /SIP ds / 7 log [d(s, . t)] aldt),

where the integration with respect to ¢ is over ¢cn K(s, r). Then

mwzsf%f@£E+C;§TﬂwMC;%am
o [ o [ (] )

Since a(C) = 1 we see that for r sufficiently small

I(e,7) > pa([si, s3]) — 2adr.

Similarly
I(—¢,7) < pallsi, s2]) + 2aAr.

At the same time by Lemma 4d

1 sote wo(s,r)
He,r) = oo [ as [ o | Gu(o)/6u(8) | ds
s1Fe

wi(s,r

and therefore by Lemma 4e

sgte
lim (I(ze,r) =p ®(s) ds.

>0+ s1F¢E

Thus
s27¢ sote
[C e as <alls, o < [ a(s) ds,
site 8$1—¢€
and since ¢ is arbitrary our desired conclusion follows.

TuEOREM 4h. The measures a,(dE) converge weakly to a measure o with
support C. « is absolutely continuous with respect to the measure induced on
each of the arcs of C by the arc length s and is gien by the formula



THE SPECTRA OF CERTAIN TOEPLITZ MATRICES 155

a(ds) = ®(s) ds,
where ®(s) 1s defined by (1).

Proof. 1In view of the preceding lemma we need only show that if N is an
end point of one of the arcs in the representation of C given in Theorem 3a and
Scholium 3b, then a({\}) = 0. Let us consider a typical case as in Figure
3. Draw a line from N in any direction distinct from the directions at N
of the arcs of C having N as an end point. Let v(r) be the point on this
line at a distance 7/2 from N and with v(r) as center construct a circle K(r)
with radius . Arguing as in the proof of Lemma 4d we find that, with an
evident notation,

frer 8 0

1 wg (r) 1 wg(r)
= [ g | Gu(0)/G®) [0 + - [ o | Gale)/G(8) | .
T Yy (r) 2 wg(r)
Making use of the relations
limg | Go(£)/Ga(8) | = 1, £ in region 2,
limga | Gs(£)/Gu(§) | = 1, ¢ in region 3,

together with the fact that | Gi(£) |, | Ga(§) |, and | Gs(£) | are all bounded
away from 0 and « near N, (because the z,(\) are) we see that

F1cure 3
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li —i_] dt) = 0.
r~1)101_11_ CcNK(r) log [d(s, T,t) a( ‘t) 0

Since

r
a({A}) log2 < N log [d(s, . t):l a(dt)

it follows that a({\}) = 0.

5. An example

Following Schmidt and Spitzer we consider the special case
f(z) = bz + az
where @ > b > 0. The range of f,(¢”) is the ellipse whose parametric equa-
tion is
x = (ap + b/p) cos0, y = (ap —b/p) sin¥,
or in non-parametric form
&/(ap + bp ) + ¢'/(ap — bp ") = 1,

and o7 (p) consists of this ellipse together with its interior. It is easily seen
that ¢ = N,500" (p) consists of the segment from —+/4ab to ++/4ab on the
real axis. The roots of 2{f(z) — \} = 0 are (A == 12/4ab — N")/2a. Tt is
apparent that in the situation pictured above

Gi(%) = —[t + iv4ab — £1/2, teSi,
Go(E) = —[t — iv/4ab — £9/2, EelSy.
Thus, since
1 d Gl(i;) _ 1 _ 2\—1/2
5 | TGl e = 7 R0 27
we have
a(dz) = (1/x)(4ab — 2*)™* da.
- (Gav) /2 (haby /2

Fiaure 4
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6. The case ' (f) = R(f)

We remarked in §1 if £(6) e L'(T) is real, then the limit measure « is given
by the formula
N1
a(E) N 57; flei®)eR
In the present section we will show that this formula is valid whenever
a"(f) = R(f), R(f) being the range of f, if f is at all well behaved.

LemmA 6a. If C is a compact set in the N-plane which has two dimensional
Lebesgue measure 0, then the restrictions to C of the functions log |N — a | where
a ¢C are fundamental in C(C), the space of complex continuous functions
on C with the uniform norm.

Proof. Suppose that @ = a, + tazeC’, the (open) complement of C;
then, since for 4 real

lim 2 '{log |A —a 4+ h| —log |\ — al}

h=>0

Il
=
N

>
| | =
S}
N——

lim 27 {log |\ —a +4h| —log |\ —al|} = -—Im( ! ),
h>0 AN—oa
where the limits on the left are uniform for N € C, it is sufficient to know that
the restrictions to C' of (A — @)™* where a¢C are fundamental in C(C).
That this is so is a theorem of Hartogs and Rosenthal, see [3, p. 20].

TuEOREM 6b. Let f(e”), 0 ¢ T, belong to the class Lip n for some n > 0,
let f(e) have the property that o*(f) = R(f), and let R(f) have two dimen-
stonal Lebesgue measure 0. Then ¢f N is any neighborhood of R(f), the support
of o lies in N for all sufficiently large n, and asn — « the a, converge weakly to
the measure o defined by

w(ll) = - f do.
2w Jyceityen

Proof. The assertion concerning the supports of the a,’s follows from
o' (f) = R(f) and Theorem 2a. It also follows from Theorem 2a that if
a ¢ R(f) then

fim
n>o0 1 1

1 i
log | Du(a) | = :,;leog [f(e") — a| db,
which we rewrite in the form

lim flog [N — a] an(dr) = flog [N — a| aldn).
Let ¢(N) be any continuous function defined in the complex plane. If
@o(N\) is the restriction of ¢(N) to R(f) then it follows from Lemma 6a that
given ¢ > 0 there exist {a}1 € R(f)’ and {bi}1 such that
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looN) — 2 iabilog|N —ar|| <&  forallNeR().
Then if
N ={N\:le\) — D habilog|N —ax ]| < 2¢)

N is a neighborhood of B(f). Consequently, since the a, and o have mass 1,

[ [ea@n ~ [otoatm) | < 1

for all n sufficiently large; that is

lim [ p(ea(@) = [ e(aldn).

But this is the definition of weak convergence of a, to a.
The property that ¢"(f) = R(f) is insured by either of the conditions:

1. f(€”) is even;
2. R(f) does not separate the plane.

The property that R(f) has two dimensional Lebesgue measure 0O is in-
sured by the condition

felip 3.
Let Q(dx) be a finite non-negative measure on the Borel sets of
[—1 <2 < 1]. Q(dz) is said to belong to the class S if

1
f (1 — ") ™ log Qu(z) dz > — =,
1

where Q(dx) = Q(dx) 4+ Q.(z) dz is the decomposition of Q(dx) into its
singular and absolutely continuous parts. Let {p(k, x)}xo be the orthonormal
polynomials corresponding to Q(dz), normalized by the condition that the
coefficient of " in p(k, z) is positive.

For ¢(z) e L'(Q) let

cr(r,s) = [lp(r, z)p(s, x)c(x)Q(dz),

and let
M,lc] = [er(ry 8)]r 50, 0n

be the corresponding Toeplitz matrix. Let {N,:}¢ be the eigen values of
M.[c] and let, as before, a, = (n + 1)"'D 4,z 1. The methods of this
section in conjunction with those of §6 of [2] suffice to prove the following.
TueoreEM 6¢. Let ¢(x), —1 < z < 1 belong to the class Lip 4, for some
n > 0, and let R(c), the range of c, have two dimensional Lebesgue measure 0.
Then if N 1is any neighborhood of R(c) the support of o, lies in N for all suf-
fictently large n, and as n — o the a, converge weakly to the measure o defined by

a(E)=lf de 0<6<Lm).
T Je(cosB)eE
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