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1. Introduction

Let f(eio) e LX(T) where T is the reals modulo 2r.

f( e) f"( r)er
If

then the Toeplitz matrix of order n + 1 associated with f is

Mn[f] [f^(r- s)]r,8=0,1,...,.

Let {,,} =0 be the eigen values of Mn[f], that is the zeros of

det [M. kI.] O.

For each n we define a measure a on the Borel sets in the )-plane by

a,(E) n + 1)-1 _.x,,s 1.

An important topic in the theory of Toeplitz matrices is the study of the
asymptotic behavior of the measures a as n - . If f(ei) is real, in which
case the matrices M[f] are Hermitian, there is a simple and elegant solution.
The support of each a is contained in the interval of the real line whose end
points are ess inf f and ess sup f, and as n --+ the a converge wekly to the
mesure a defined by

(2)- / o,
(eiO)E

see [1, 7.5].
When f(e) is not real, however, the problem is very dicult and the only

results are those obtained by P. Schmidt and F. Spitzer in [5]. They assumed
that f is a Laurent polynomial,

1 f(ei) =-kf( irO
r)e

where h, lc > 0, (otherwise the problem in question is trivial) and showed that
there then exists a compact set C in the X-plane, which can be described pre-
cisely, such that if N is any neighborhood of C the support of a must be in N
provided n is sufficiently large. Moreover, no smaller closed set C has this
property.
In this paper we will complete the investigation of Schmidt and Spitzer by

showing that as n -+ the a converge weakly to a measure a with support in
C. This is rather easy. What is of greater interest is that we will obtain an
explicit formula for a.
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2. Preliminary results

We will need the following.

To2a. For g( e) e Lip for some > 0 let M,[g] be the corresponding
Toeplitz matrix. We define (+(g) to be the set of complex values X for which either

g(e) X 0 for some Oe T,
or if this is not the case,

[rg/() x l]g / o.
Then if K is any compact set such that K n +(g) 0 there is an integer no such
that det M[g k] 0 for k K, n >_ no, and

lim
detM[g--X] { ]r 0}n det M_[g X]

exp (2r)- log [g(e) X] d

uniformly for X e K.

Proof. In the case K /k} this follows from Bxter’s inequality for finite
section Wiener-Hopf operators in the L formulation given by Reich [4]. With
only very minor changes Reich’s rguments cn be mde to give the result
stated bove.

Let f(z) be defined s in (1) of 1. For convenience we set

D,(X) det Mnf(e) X].

For any o > 0 let
fo(r) =-f^(r)oe.

Following Schmidt and Spitzer we define

C N,>0+(f,).
We can now give a new and very simple proof of part of their results.

THEOREM 2b. If N is any neighborhood of C hen he support of is con-
ained in N, provided n is su2]icienly large.

Proof. If X C then there exists a p > 0 such that X z+(fo) that is

f,(e) --X 0, 0eT,

[arg Ifo(ei) X}] 0.

Since z+(fo) is closed, there is a compact neighborhood K(X) of X such that
K(X) n z+(fo) 0. By Theorem 2a there exists an integer no such that

det21][f-X] 0 for XeK(X), n >_ no.

We now note the basic identity

det Mn[fo X] D(X)

from which it follows that supp an n K(X) 0 for n >_ n0, etc.
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For any fixed complex number let Imp(X) =_ be the absolute values of the
zeros of

zklf(z) X} 0

arranged in non-decreasing order. The following identification given in [5]
plays a fundamental role in all that follows.

THEOREM 2C. We have

c {x (x) +(x)}.

Proof. It is apparent that k r+(fo) if and only if ink(X) < p < m+(X).
For X in C’, the eomplemen of C, choose p such that

(1) mk(X) < p < m+(X).

Then the function f(z) X does not vanish on zl o and inside this circle
it has/c zeros plus a pole of order/ at z 0. Thus log [f(z) X] is analytic
and single valued in the annulus m(X) < z < m+(X), the branches differ-
ing by integral multiples of 2ri. For any p satisfying (1) let

(2) G(X) exp{(2ri)-lf,,= log [f(z)- X]}.
Clearly G(X) is well defined and is independent of p. Since G(X) is locally
analytic everywhere in C’ ig is analytic in C’. We now have as a corollary
of Theorem 2a the following result.

THEOREM 2d. If X C then

lim Dn()t)/Dn_I()

uniformly for in any compact set K such that K n C

3. Ihe structure of C

The following result is due to Schmidt and Spitzer, however, our demon-
stration differs from their in some details.

THEOREM 3a. C can be represented as a finite union of closed analytic arcs,
where either distinct arcs are disjoint or, if not, their intersection consists of one
or both common end points.

Proof. LetS(X0,ti) be the disk {X: [X X01 -< }. TakeX0eC. The
diseriminant of z{f(z) X} considered as a polynomial in z is a polynomial
in X whose zeros are the winding points for the roots of z{f(z) X} 0 con-
sidered as functions of X. We first consider the ease when
winding point. Choose t so small that S(t) S(X0, ) contains no winding
point. Then there exist analytic functions lz(X)} +h=1 such that

TTk+hz1f(z) x} I^(h) ,_-_ [z z(X)] X S().
Let
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Since z,(X)/z,(X) has no zeros or poles in S(/t), r(ti) is the union of a finite
number of analytic ares each beginning and ending on the boundary of S(/).
Thus by taking ti if necessary still smaller F(ti) will consist of a finite number
of analytic ares where one end point of each are is X0 and the other is on the
boundary of S(ti), and the intersection of two distinct ares is )to. Each spoke
of r(ti) is now the carrier of a set of relations such as: z(X)
and za(X) z(X) z(X) !. It is apparent that ifo is not an isolated
point of C then C n S(ti) must consist of one or more spokes from
Thus we need only prove that Xo cannot be an isolated point of C. If it
were, then after suitable relabelling we would have

for all X e S(ti) {X0}, and

.., -(x0) < -+(x0)

+(x0) z+,(x0) I,
for some p, q >_ 1. Consider (X) z,(X)/zp(X) where

lc p - I _<.t _<_ k, and lc-t-1 <_ v <_ lc n q.

Then 9(X) is analytic for X S(ti) and

[,#(X) < 1, X eS() {Xo}, (X0) 1.

This contradicts the maximum modulus principle. Thus X0 cannot be an
isolated point of C.

If X0 is a winding point we introduce a uniformizing parameter X X0 h’.
If is small enough there exist functions Zp(A)}+ analytic in lA _< ti

and such that

z {f(z) x0 (h) [z Z(h)]

there. We can now carry out the same argument in the A-plane, which we
made before in the ),-plane, and at the end transfer the result to theXplane.

It is clear that the local structure of C obtained above implies the global
description of our theorem.

SCHOLIUNI 3b. In the representation of C as a union of analytic arcs we
may assume that no winding point is an interior point of any arc.

Proof. This follows because an arc can be broken into two arcs at any
interior point. The advantage of this convention is that instead of having
two categories of exceptional points in C, end points and winding points,
we now have only one--end points.
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4. The limiting distribution

Let c be an analytic arc in the representation of C given by Theorem 3a and
Scholium 3b. Locally c has two sides which we designate by side 1 and side 2.
Let us denote G(X) on side 1 by GI(X) and G(X) on side 2 by G2(X). We will
show that both GI(X) and G2(k) can be continued across the interior of c,
that G(X) G(X) for all X on c, and that G(X) continued into side 2 is
never equal to G(X) there. Let us parameterize c by means of the are length
s measured from any convenient point on c. We set

,1 d G(X)(1) (s)
dXa(x)

Doing this for each arc c of C we define a measure a on C by

a( ds ( s ds.

Our principal result is that a so defined is the weak limit of the
In order to carry out the program outlined above we proceed s follows.

Any point in the interior of c is the center of a closed disk S such that S C
is closed subarc of c cutting across S. By taking S small enough we can
insure that it does not contain any winding points. Let S be the component
ors conside 1 and S: the component onside2. Asin 3 we can find
analytic lunctions {z()* such that

+ S.z{f(z) X} if(h) li= [z z(X)],

Let N be the (unique) subset of h integers drawn from 1, 2, lc + h}
such that

whenever e N, , t N, and let N be similarly defined relative to S. We
set

ex(x) if(h)H z(X), Ge(X) if(h)II, z(X).

/
/

side I

//

F!GURE 1
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LEMMA 4a. The functions GI(X) and G2(X) are analytic in S and

() V(k), X&,

a(k),

Proof. That both GI(X) and G2(k) are analytic in S is clear.
LetkS. Then if ink(X) < p < mk+() we have

G(X) (2r) -1 f log [f(pe’) X] dO.log
JT

log f^(h) + y, lOg[1 p e z(X)] + _Nllog[pe --z(X)].

If v N then
log [1 pe-Oz(X)] r%1 [p-le-iOz(X) r-,

while if, e N then

log [pe z(X)] log [-z(h)] ,1 [pez(X)-]’r-1.
It follows that

log G(X) logff’(h) + )-jn log [--z(X)],
etc.

LEMMA 4b. We have

() (X) (X) !, X c n S,

and

Prog. The relation (2) is obvious.
Renumbering we may assume without loss of generality that for k e St

[z(k) < z,(k)[, , 1,-.-,k;, k + 1, ...,k +h

while for h S c

Here p, q 1. Choose a point Xo on S n c such that

d z(X) , k p + 1, ...,
0,dhz(X) =0 + 1,..., 1 + q.

Then if K0 is small circular neighborhood of X0, z,(X)/z(X) w mps K0
univalently, cn Ko is mpped onto an arc of ]w 1, while Sin Ko is
mapped into [w > 1. Consequently Sn K0 is mapped into [w[ < 1. It
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follows that N contains, in addition to/q +/ + 1, lc + h}, min (p, q)
integers from l/ P 1, ,/}. Thus N N1, and this implies (3).

COROLLARY
point of c.

If ( s) is defined as in (1) then ( s) 0 at any interior

Let k(s) be a point in the interior of c n S. Construct a normal to c at
k(s) into $1. Let r be a small positive parameter. Let -(s, r) be the point
on this normal at a distance 1/2r from k(s), and let K( s, r) be the closed circular
disk with center ,(s, r) and radius r. If r is small enough K(s, r) c S.
Note the angle o(s, r) is negative.

LEMMA 4d. Let a(dk) be any weatc limit point of {a}. Then for r suf-
ficiently small

(4) log[ r ] 1 2(s’r) G2()
log dO.

n(,) d(s r, t)
a(dt)

(,.) G)
We note that by Theorem 2b the support of the restriction of a to K(s, r)

is contained in c n K(s, r) so that we may write a(dt) where dt is arc length
on c. We also note that on the right hand side of (4) we have written
for (s, r, 0).

Proof. Let us apply the Poisson-Jensen formula, see [6, 3.61], to the
function Dn(X)/G(X)+ and the circle K(s, r). Dividing by n + 1 we
obtain

Ol(s,r)

FIGURE 2
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n + 1 G(,)"+ + log a(d)
(,r) d(s, r, )

(,)
1 f, D.()

d0.
2r(n + 1)

log
G()+,

Here in he integral on he lef hnd side of (5) d(, r, ) is he dish,nee from
(s, r) o general poin in K(s, r). I is ppren from Theorem 2d ha

1 D()
lira log 0.

n G()"+

Furthermore, the definition of weak limit point implies that for some sub-
sequence 1 n n

lira j log
r r

(.) d(s, r, ) a(d) log a(dt).
n(,) d(s, r, t)

Note that d(s, r, t) d(s, r, h(t)). Finally we assert that

lira
1 fr D() l f

"(,)

log dO.,, 2(n + )
og

al(),,+
g0

(,r) G()

To verify this let > 0 be small md set

1 f D()
(+)

og
a()+ =h+++h

corresponding to ghe ranges of integration ( + , t ),
( + ,e-),(-,+),and(-,+). By Theorem 2d

,1 G2lira I 0, lira I log dO.
n n-* 1+3

We hve I I + I where

if
+ 1 f1+og 1() do, og D() do.

Since I is independent of n we pass on o I. It is easy to see that for ny
complex number X

log (, r, O) X ldO log lr sin O dO.
1--

Since D() 1)"( X,0) ( X,) we hve

log]r sin O[dO.

Now both the {X,.} nd C lie inside the circle f ]1 nd consequently

log (s, r, O) X., dO log (2 f 1) dO,
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which implies that

" f ll )I3(n, 6) -It follows that, for n 0, 1,

and similarly
_< g(a),

Puffing hese faots ogeher we obtain, our desiredwhere B(a) -- 0 s a , O.
conclusion.
We define the constant p by

p

LEMMA 4e. Choose tl < t so that X( t ( t) e c S. Then

1 2(s,r) Glira j log d0 p(s)

uniformly for t s t.

Proof. Letg() G($)/G() ndlet(s) rg h(s) (s,r)}. Then

(r, s, 0) k( s) re()’ .re().
Sinceg() 1on c ndg() > 1below c

g’[k(s)] 2rg[k(s)](s)().

Using Tylor’s formul we see that

g[(r, s, 0)] g[h(s)] + g’[h(s)][(O) h(s)] + O(r),
nd thus

log lg[(r, s, 0)][ 2rr(cos 0.- )(s) + O(r).
Moreover, this holds uniformly for tx s h, (s, r) 0 (s, r), nd
0 < r < r0, if ro is sufficiently smll. Furthermore, it is evident that

lim0+ (s, r) -r/3, lim0+ (s, r)

uniformly for t s t. Combining these estimates we obtain our desired
result.

LEMMA 4f. There exists positive constants a and A such that

lOg[d(s:;,t)]
[lg+ E + (’ : t)]-/ Ax (s-)r
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if tl

_
s

_
t,tec n K( s,r) and O

_
r

_
rofor some ro > O. Here xais the

characteristic function of [-a, a].

Proof. One easily sees that

d(s, r, t) r +(s-t) + O(r(s- t))
uniformly for tl <_. s t, c K(s, r), 0 r to, provided r0 > 0 is
small enough, etc.

LEMMA 4g. Under the above assumptions iJ’ 6 s s t then

a(ds) (s) ds.
1 Sl

Proof. For v > 0 smll let

’r
a(dt),I( v, r) ds r- log

d(s, r, t)

where the integration with respect to is over c K(s, r). Then

I(e, r) ds log+ + AXa - a(dt)

Since () 1 we see hag for r sueiengly small

Similarly
I(-e, r) N p([, ]) + 2Ar.

Ag the same ime by Lemma 4d

and therefore by Lemm 4e

s2e

(s) ds.lira (I(, r) p

Thus

(s) ds <_ .([Sl, s]) _< (s) ds,
lq-e Sl--e

and since is arbitrary our desired conclusion follows.

THEOREM 4h. The measures a(d) converge weakly to a measure a with
support C. a is absolutely continuous with respect to the measure induced on
each of the arcs of C by the arc length s and is given by the formula
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(ds) (s)
where q( s is defined by 1 ).

Proof. In view of the preceding lemma we need only show that if X is an
end point of one of the ares in the representation of C given in Theorem 3a and
Seholium 3b, then a({X} 0. Let us consider a typical ease as in Figure
3. Draw a line from X in any direction distinct from the directions at X
of the ares of C having X as an end point. Let (r) be the point on this
line at a distance r/2 from X and with 7(r) as center construct a circle K(r)
with radius r. Arguing as in the proof of Lemma 4d we find that, with an
evident notation,

a(> d(s , t)
a(dt)

log[G()/G()dO.
2 ()

og G()/G() ao +
Making use of the relations

lim_,x G.(()/GI(() 1, in region 2,

lime, G()/GI() 1, 2 in region 3,

together with the fact that GI(()I, G2(()I, and G3(() are all bounded
away from 0 and near , (because the z(X) are) we see that

ml(r)

region 3

region I

FIGURE 3

region 2
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Since

r

a({}) log 2

it follows that a( {X} 0.

lOg [d(s,rr, t)l a(dt)

5. An example
Following Schmidt nd Spitzer we consider the special cse

f(z) bz-l + az

where a > b > 0. The range of f,(e) is the ellipse whose parametric equa-
tion is

x (ap + b/p) cos 0, y (ap b/p) sin 0,

or in non-parametric form

x2/ ap + bp-1) + y2/ ap bp- 1,

and z+(p) consists of this ellipse together wih its interior. It is easily seen
that C f’lo>0 z+(p) consists of the segment from -%/- to +/-a on the
real axis. The roots of z{f(z) } 0 are ( +/- iv/- h)/2a. It is
apparent that in the situation pictured above

GI() [ + i%/ab 2]/2, e St,

G2( ) -[ i%/4ab 2]/2, e $2.

Thus, since

we have

1 d G-()
d G()

1 (4ab X2)-1/2

a(dx) (1/)(4ab x2)-/ dx.

S
1

(4ab) I/2 (4ab)
]./2

FIGURE 4



THE SPECTRA OF CERTAIN TOEPLITZ MATRICES 157

6. The case +(f) R(])
We remarked in 1 if f(0) e LI(T) is real, then the limit measure a is given

by the formula
1 f dO.()

In the present section we will show that this formula is valid whenever
+(f) R(f), R(f) being the range of f, if f is at all well behaved.

],EMMA 6a. If C is a compact set in the X-plane which has two dimensional
Lebesgue measure O, then the restrictions to C of the functions log [ a where
a C are fundamental i’n C(C), the space of complex continuous functions
on C with the uniform nor’re.

Proof. Suppose that a al q- ia. e C’, the (open) complement of C;
then, since for h real

lim h-{log X a -t- h log lX a I/ R1
Xh-

where the limits on the left are uniform for }, e C, it is sufficient to know that
the restrictions to C of ( a)-1 where a e C re fundamental in C(C).
That this is so is a theorem of Hartogs and Rosenthal, see [3, p. 20].

THEOUE 6b. Let f(ee), 0 e T, belong to the class Lip r for some > O,
let f(e) have the property that (r+(f) R(f), and let R(f) have two dimen.-
sional Lebesgue measure O. Then if N is any neighborhood of R(f), the support
of a, lies in N for all sudciently large n, and as n -- the a, converge weakly to
the measure a defined by

1. f dO.

Proof. The assertion concerning the supports of the a.’s follows from
r*(f) R(f) and Theorem 2a. It also follows from Theorem 2a that if
a R(f) then

lim
1 1 jn n q-i lglD(a) :27 log ]j’(e) a dO,

which we rewrite in the form

lira f log[h a c(dh) f a a(dx).

Let (X) be any continuous function defined in the complex plane. If
90(X) is the restriction of (X) to R(f) then it follows from Lemma 6a that
given e > 0 there exist {a} e R(f)’ and {be} such that
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o(k) k=l bk log lX a I] < for all k e R(f).
Then if

KN {k" I(k) =blogk a [I < 2e}

N is neighborhood of R(f). Consequently, since the a, nd a hve mss 1,

for 11 n sufficiently large; that is

lim f (X)a(dX) f
But this is the definition of wek convergence of a to a.

The property that z+(f) R(f) is insured by either of the conditions"

1. f(e) is even;
2. R(f) does not separate the plane.

The property that R(f) hs two dimensional Lebesgue mesure 0 is in-
sured by the condition

f e lip {.

Let t(dx) be finite non-negative measure on the Borel sets of
[-1 x 1]. (dx) is sid to belong to the class S if

f ( x)-’ log a(Z) dx > ,
where (dx) ,(dx) + a(X) dz is the decomposition of (dx) into its

sinlr nd bsolutely continuous prts. Let {p(k, ) 0 be the orthonorml
polynomials corresponding to (dx), normalized by the condition that the
coefficient o’f x in p(k, x) is positive.
For c(x) e LX() let

c(r, ) p(r, z)p(, z)c(z)a(dz),

and le
M[c] Ice(r,, )],.=0,...,

be ghe corresponding Toeplig magrix. Leg X,}; be ghe eigen values of
M[c] and le, as before, ( + 1)--x. 1. he mehods of his
section in eonunegion wih ghose of 6 of [2] suee go prove he following.
o 6e. Lec(z), -1 z 1 beloe o he claLip n, for e

n > 0, ed le R(c), he ree of c, hve wo dimensional Lebeue measure 0.
Tn if N i an eihborhood of R( c) he uppor of lie in N for ll

(E) -1 dO (0 _< 0 _< ).
(cos
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