ON A CONJECTURE OF ERDOS AND RENYI

BY
R. J. Miecu

Let G be a finite Abelian group of order n, a,, - -+, ax be a sequence of
elements of ¢, and let

B=B(a1,--- ,(l]c) =‘{81a1+ —|—ekak:£i=00r1,i= l,k}

Note that if B = ( then we must have k > (logn)/log 2. In a recent paper
[1] Erdos and Rényi raised the question: how large must & be in order that
every element b of G have approximately the same number of representations
of the form

b=cam+ - +eaa

for nearly every sequence ay , - - - , a; of G? In other words, how large must &
be in order that nearly every sequence a;, --- , a; of G will generate (7 in a
uniform fashion? They proved that any k such that

k> (2logn 4 c)/log 2,

where ¢ is a certain constant, is sufficient and they conjectured that the
coefficient of log n in this inequality, 2, could not be replaced by anything
better. The purpose of this paper is to show that the 2 can be replaced by
2 for most groups and that the conjecture, if it is true, is valid only for groups
of a particular nature.

Several definitions are needed before precise results can be stated. Let Gy
be the Cartesian product of k copies of @, let I’ be the probability measure on
G, whose value at each point of G is n™*, and let, for each b in G, V() be
the random variable whose value at each point (a) = (a1, ---, ax) of Gy
is given by

V}c(b, (a)) -‘-—‘N{(é‘l, ,Sk):é‘l(h—l— e gpap = b}

where N{11} is the number of elements in the set 1. Suppose, furthermore,
that if (@ is expressed as a direct sum of cyclic groups of prime power order
then 7 of the summands have orders that are powers of 2. Then we have
the

TarEoREM. Let G be a finite Abelian group of order n and let P, Vi(b),
and r be defined as above. Let ¢ and § be any fized positive numbers. Then if
k s any integer such that

k> <max{% log n, log n + r log 2} + 4 loge1 + log) 10%2 + 8

114
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we have
P{maxpes | Vi(b) — 2/n| < e-2%/n} > 1 — 6.

It is also quite easy to show, using a result of [1], that if all of the summands
of @ are of order 2, in which case @ is of order 27, then the conclusion of this
theorem holds provided that

1 1
P p - 5.
Ic__]0g2<rlog2+log1“—|—zlog6>+ 5

Thus, the Erdos-Rényi conjecture will hold only if the direct sum decomposi-
tion of @ contains a relatively large number of groups of order 2 and a small
positive number of groups whose order exceeds 2. I suspect that the co-
efficient of log n can be reduced to § for these exceptional cases, but so far I
have been unable to prove it.

A large part of this paper is devoted to an examination of 3 X k and 4 X &
0-1 matrices, for the proof of the theorem is based on the value of a fourth
moment and the calculation of this moment depends on certain properties of
these matrices.

Section 1

It will be evident later that the main problem we have is that of finding
the number of solutions of the system of equations

(1) eqaa+ -+ eaqa=0>

wherez = 1, --- , 7, A = (&pg) is a 0-1 matrix of rank j and j = 1, 2, 3, or 4.
Under certain circumstances the problem is very simple, for since row and
columns can be interchanged and rows can be added and subtracted in (1)
without changing the nature of the system it is equivalent to a system of the
form

duor+ -0 + duar = bib

2 dnae+ - 4 dmar = S2b

6,']'(1]' R 6,~ka;a = 5jb
where the &’s are integers and 6u, «-:, 8;-1 ;.1 0;, is the determinant of a
7 X 7 minor of A for v = j, ---, k. Thus if one of these determinants is

equal to 1 or, more generally, relatively prime to the order of the group
the system has n*~7 solutions for every b in G.

Those systems of the form (1) for which |det 4;| > 2 where 4; is any
non-singular j X j minor of A are less transparent. Since | det A;| < 1 if
J = 1 or 2 we begin with the case j = 3. Then we have

(3) | det 43| < 2

and, if any matrix that is obtained by interchanging the rows and columns of
a given matrix is considered to be equal to the given matrix,
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110
(4) if |det A3] = 2 then A;={0 1 1
1 0 1,

To prove (3) note that if A5 is a non-singular 3 X 3 0-1 matrix then 4; must
contain a 0, hence its determinant can be expressed as a sum of at most two
2 X 2 0-1 matrices; (4) is a consequence of the facts that if | det 43| = 2
then no row or column of A; contains two or three 0’s and if A; contains
no, one or two 0’s, then | det A3 | < 1. In short, if A is a 3 X & matrix that
is of interest to us it must contain the three columns Ci = (1, 0, 1)/,
Cy = (1,1,0)’, and C3 = (0, 1, 1)’, where the prime indicates the transpose.
One can also show that A cannot contain any other non-zero column C, for
if it did then at least one of the minors (Cy, Cs, C), (C1,Cs,C) or (Cz, Cs, C)
would have a value of 1, that is, the absolute value of the determinant of one
of these minors would be equal to 1. These results imply that 6 = 82 = 1,
033 = 2,083, =0or 2forv=7-+1, ---,k 8 = 1in (2), and that the last
equation of this system can be written as

2(a3 + Mas + -+ Mar) =0,
where | N\;| = Oor 1. Suppose now that G is expressed as a direct sum,
G=H & ---dH Ki1® - & K,.

where H; , which is generated by h; , is of order 2°* and K, , which is generated
by ks, if of order p’* where p; is an odd prime. Then if

b':‘vlhl"l— e +vrhr+t1k1+ tee +tsks
v k—3

and v; = Omod 2 fors = 1,2, -- -, r the system of equations has 2'n" " solu-
tions. If b is not equal to 29 where ¢ is some element of G there are no solu-
tions. Since there are n/2" elements b of G for which the system is solvable
we have proved:

Lemma 1. Let A be a 3 X k 0-1 matrix that is of rank 3 and let p(b, A) be
the number of solutions of the system of equations (1). Then

Zbeg p(b7 A) = nk~2.

Note also that if R; is the set of rank 3 3 X k& matrices A such that
| det A3 | = 2 for every non-singular 3 X 3 minor of 4 then N(R;), the number
of such matrices does not exceed 3! 4%, for A can only contain the columns
C1, Csy, Cy and the zero column. IFurthermore if 4 is in By and b = 0 then
(1) has 2n*® solutions since the condition »; = 0 mod 2 fori = 1,2, --- | r
is always satisfied if b = 0.

If j = 4 we can prove

Lemma 2. Let A be a 4 X k 0-1 matriz that is of rank 4 and let (b, A)
be the number of solutions of (1). Then
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(5) 2onea (b, A) = BEn*”

where E = 1 or E = 2. Moreover, the number of matrices A for which E = 2"
does not exceed 4! 8.

We assume as usual that if 44 is any non-singular minor of A then
| det A4| > 2. Equation (5) will be proved once we establish that

(I) | det A4] < 3
This implies that we can set 811 = 82 = 833 = 1 in (2).

(I/I) If | det A4 | = 3 for some minor of A then | det As| = 0 or 3, where
Ay is any other minor of A, and 44, the coefficient of b in the last equation
of (2), is equal to =+1.

Under these circumstances the last equation in (2) can be written as
3(&4 +Nas + -+ )\kak) = =+b

where | X\;| = 0 or 1. Hence, if the direct sum decomposition of G into cyclic
groups of prime power order contains s groups whose orders are powers of 3,
the system has no or 3°2*~* solutions and there will be n/3° elements b of @
for which it is solvable.

(III) 1If | det A4| = 2 for some non-singular minor of 4 then | 8| < 2and
the last equation of (2) can be written as

2(a4+)\5a5+ +)\kak) = 64b.

Thus if 6, = 0, 2, or —2 the system will have 2'n"™* solutions for every b
in @; if & = 1 or —1 the system has no or 2'n** solutions and there are n/2’
elements b of G for which it is solvable.

These facts will be proved by classifying 4 X 4 matrices according to the
number and distribution of their 0’s. The pattern of our argument will be
determined by non-singular matrices which have at least two 1’s in each
row and each column and at least one row or column that contains two 0’s.

We begin by examining exceptions. Suppose first of all that a non-singular
minor A4 of A contains three 0’s in a column. Then system (1) assumes a
form which can be treated by the methods employed for the case j = 3.
Equation (5) holds with £ = 1 in this case.

Suppose next that no non-singular minor A, of A contains three 0’s in a
column but that one of these minors has a row that contains three 0’s. Then,
since | det A4 | > 2,

(6) Ay =

[ SRS
-0 O
O = = O

0
1
0
1
+

where x, y, and z are 0’s or 1’s and
and s = 1 — 2 — y + zin (2).

Yy + 2z # 0. We also have 61 = 2



118 R. J. MIECH

We have to find the type and number of matrices A that can contain (6)
as a minor. To this end, let us list the possible non-zero columns of 4 as:

Cl C2 03 C4 05 C6 C7 C8 09 CIO Cll 012 013 014 015

0 0 0 1 11 1 1 0 1 1 0 0 O
1 o 1 1 0 0 1 1 0 1 1 0 1 o0 O
6 1 1 0 1 0 1 0 1 1 1 O 0 1 1
1 10 0 0 1 0 1 1 1 1 0 0 0 1

Set V= (1, z, y, 2)’; thus 4, = (V, Ci, Cs, C3). Suppose next that A
contains a non-zero column C = (a, 8, §, €)’ that is distinct from those of A4 .
We have

det (V,C1,C,C) =a(z+y —2) —B—08+¢

det (V,C,,C3,C) =a(e —y —2) —B+6+¢

det (V,Ce,C3,C) =a(z —y+2) —8+686—¢

and we know that A cannot contain any column C for which one of these
determinants is equal to ==1.

If, for examplex = 0,y = 0,2 = 1 then V = (s and all columns C, except
except C = C4, Cs, or Cy1 can be eliminated from consideration. We also
have det (V,Cy,Cy,C) = 0,2, or —2 when C = C,, C; or Cy1 , consequently
the last equation in (2) can be written in the form

2(a4+)\5a5+ ceo  Neag) = &b,

A similar result holds for the remaining values of z, y, 2 for which
b =1—2 —y -+ 2z=0o0r2:V must be one of the columns Cy, Cs, C¢,
Cu, the remaining three are the only others that might appear in 4, and the
last equation of (2) has the form given above. These matrices give us the
8 = 0, 2, or — 2 case of (III); in addition since they contain at most eight
distinet columns, the seven just mentioned and the zero column, their number
does not exceed 4! 8°.

We consider next those values of z, y, z for whichés =1 — 2z —y + 2 = +1.
Ifz =1,y = 1,2 = 0 then V = C; and, as an examination of the three de-
terminants above shows, the only non-zero columns that can be adjoined to
A are Cs and Cy. Turthermore since det (C7, Cy, Cy, C3) = 2forj = 8or9
the last equation of (2) assumes the form given in (III). Similar results
holdifz =1,y =0,z=1lorz =0,y =1,z = 1. Ineach case V is one of
the columns Cy , Cs, Cy , the remaining two are the only non-zero columns that
can be adjoined to 4, and the last equation of (2) takes on the form given in
(IIT). The conclusion of Lemma 2 holds with £ = 1 for these cases.

We can now assume that any non-singular minor A, of A4 has at most two
0’s in any row or column; we would also like to assume that A, has a row or
column containing two 0’s. If it doesn’t then it contains at most 4. But if
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A4 has no, one, two, or three 0’s then | det 44| < 1. If it contains four 0’s
we can have

— - O

(7 Ay = = (Cy, Cs, Cy, Cy),

— O =
— O
O =
e

since | det A4 | = 3. Since, if ¢ = (a, 8, 6, €)',
det (Cy,Cs,Cr,C) = =20+ B+ 6+ ¢
det (Cy, Cs, Cro, C) = —a — B — & + 2,
det (Cy, C7,Cr0,C) = a+ B — 25 + ¢,
det (Cs, C7, Cy,C) = —a + 28 — 6 — &,

and since at least one of these determinants is equal to =1 for every non-
zero columns C distinet from those of A4, one can say that A must contain
the columns Cy, Cs, C7, Cyo and cannot contain any other non-zero column.
Straight-forward calculations show that 6, = 1 in this case, so the situation
here is the one described in (II).

We can now assume that for every non-singular minor A, of A: (M),
| det A4| > 2; (Ms), no row or column of A, contains three 0’s; (M3), at
least one row or column of A4 contains two 0’s. Then

0 01
Ay =

LR

0 1
11
1 u

SR =

w/
where the roman letters denote 0’s or 1’s. To see this set;
Ay = (aij)> Z,] = 17 2, 37 4.

If we assume that a column of A4 contains two 0’s then, after interchanging
rows and columns, we can conclude that ain = aun = 0. Hence, by M,
an = ag = 1 Now,ifay; = 1fori =1,2andj = 2, 3, 4 then the first two
rows of A are identical; thus at least one of these elements must be a 0.
Assume that a;2 = 0. Since an = a2 = 0 we have, by M», a3 = au = 1.
If ass = 0 then, by Ms, ass = as = 1, and the first two rows of A are identical,
hence azz = 1. Condition M also implies that as; = 1 or az = 1; assume that
a3 = 1. Similarly, ass = 1. If we assume that A4 has a row containing two
0’s we get the same result. The following form of A, will be more convenient
than the one above for our purposes:

(8) A, =

—-_o O =
=~
R = <
N =8 g
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Note that
9) detds=v+z2—w—y+ (1 —2)(1—u).

Let us first consider a matrix A which satisfies conditions My, Ma, M;
and which contains a minor A4 such that | det As| = 3. Then, by (9),
z2=0y=0,z=1u=0v=1w=0,s0

A4 = (Ce, Cl, 07; 02)
Since, if C = (a, B, 5, €)'

det (Ce,C1,Cr,C) = —a — B+ 20 + ¢
det (Cs,C7,C,C) = —a+ 28 —06.4 ¢
det (C1,C7,C2,C) = =20+ 8+6 — ¢

we can now show in the usual fashion that any matrix A that contains A4
contains precisely four distinet kinds of non-zero columns, Cs, C1, C7 and Cs .
Since 61 = 1 in this case, (II) holds.

We can now replace the condition My, | det As| > 2, by |det 44| = 2.
Then 6u = 2,61, = 0or2forv =5, -+, k,andds = v —yin (2). Ifv =y
there is no problem; (5) holds with Z# = 1. If v — y = 0, then by (9)

jdet As| =|v—y+z—w+ (1 —2)(1 —u)| =2

and it follows that 2 = 1, w = 0, x = 0, w = 0. If v = y = 0 then
u = v = w = 0 and the matrix 44 of (8) has three 0’s in a row so this pos-
sibility need not be considered. If v = y = 1 then

A4 = (Oe y 01 ) 011 ) 02)'
Since

det (Cs,C1,C1u,C) = —a—B+06+¢

a matrix A that contained the columns Cs, Ci, Cu, Cs might also contain
the columns C;3, Cys, Cs, but it cannot contain any other non-zero columns.
Since all the matrices of this type were included when the previous bound
was computed the number of matrices A such that E = 2" does not exceed
41 8*. This completes the proof of Lemma 2.

We now turn to the problem of determining the number of solutions of a
system (1) where the matrix A has no row that is identically zero, does not
have two identical rows, and is not of rank j. Ifj = 1 or 2 there is no problem.
If 7 = 3, A might be of rank 2. In this case one of its rows, say the third,
is a linear combination of the other two, so, if A = (¢,,), there are numbers
61 and & such that

01 €1 + 0262 = Ng,

where N\, = Oor 1, forqg = 1, --- | k. Moreover, there are integers v and ¢
such that the system of equations
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51 1w + 2 Eop = xv
dren + Geg2r = Ny

has one solution. Solving it, we see that §; = —1,0, or 1. Now, we cannot
have 81 = 0 or & = 0 for then one row of A would be identical to another.
If 6, = 6 = 1 then we must have

(81‘1 ) 82{1), = (11 0), or (0; 1)’ or (07 O)I
and

(8111 y €20, ‘(:34)/ = (17 07 l)l = (1 or (O) 17 1), = (Czor (01 Oy O)I

That is, if 61 = 8 = 1, A must contain the columns C; and C» and cannot
contain any other non-zero columns; similar considerations for those cases
where 8; 62 = —1 lead to a matrix that can be obtained by interchanging the
rows of this Cy, Cs matrix. Thus, if the 1%t through the ut* columns of A
are of the form C; and the (w + 1)st through the wt are of the form Cs then
the system (1) must be of the form

B, =b
(10) B+ By =b
Bz=b

where By = ay + -+ 4+ ay, and By = ayy1 + -+ -+ a,. This system has
17 solutions if b = 0 and no solutions if b # 0. Furthermore, if Qo is the
set of 3 X k matrices associated with a system of the form (10) then N(Q,),
the number of such matrices, does not exceed 3! 3*.

If j = 4 and A is not of rank 4 then A is of rank 3. Tor if it were of rank
2 then B, the matrix that consists of the first three rows of 4, would be of
rank 2. However, if B is of rank 2 then it contains but two distinet kinds
of non-zero columns; this implies that A has two identical rows, a contradic-
tion to our assumptions. The essential facts about rank 3 matrices are
summarized in

Levmma 3. The set of 4 X k matrices A of rank 3 such that no row of A s
identically zero and mo two rows of A are identical can be split into three sets
Q1 , Q2 , Qs relative to the system of equations (1). Qi consists of those matrices
for which the associated system is solvable if and only if b = 0, Q2 those for which
the system s solvable if and only if 2b = 0, and Qs those for which the system
s solvable for every b in G. M oreover, if in each case the system is solvable then
there are n*~° solutions. We also have N(Q;) < 414" and N(Q;) < 4!6".

This lemma will be proved, as usual, by considering the possible forms the
columns might take. If it is assumed that the last row of 4 = (&,) is a
linear combination of the first three then there are numbers 61 , 8 , 83 such that

01 €19 + 82 E2q + 8 €3¢ = )‘q )
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where N\ = Oor 1, forq =1, --- , k. Since A is of rank 3 one can show, by
solving an appropriate system of equations, that §; = 0, &%, =41, or #2.
It is clear that not all three of the numbers 6, 82, 83 are negative. Further-
more if 8;, 62, and 83 are fixed and z, y, and #z are considered to be the first
three entries of a column of A then the equation

(11) ha+ 6y + 6z2=0o0rl

must have three distinet non-zero solutions, since 4 is of rank 3. Finally,
if (11) has exactly three non-zero solutions (x;, ¥:, 2;) then the matrix

r1 Xo X3
Y Y2 Ys
21 29 23
ol s

where {; = & x; + 62y; + 8 2;, cannot have two identical rows nor can any
row be identically zero if it is to be of interest to us.

We shall now consider particular values of 61, 8, 83. Suppose first of all
that for some fixed selection of &, 82, 5 at least one of the §; is equal to F=13.
We cannot. have exactly one of them, say 8:, equal to &% for then the first
row of A would be identically zero. If exactly two, say & and 8 were equal
to =% the first and second row of A would be identical. We can have
01 =0, =208 =%o0rd =8 =%, 86 = —%  Then the non-zero columns of A
have the forms

1 10 1 10
011 or 1 01
1 01 011
1 1 1 1 00

and simple computations show that A belongs to @1 in each case. These
two selections, and their permutations, exhaust all the selection of &1, 82, 8
thatcontain at least one 4=%. The only other possibility & = %, 6 =86 =— %
can be ruled out since (11) has only two distinet non-zero solutions under
these circumstances.

We can now assume that the 6; are integers. Since a selection of &1, 82, 83
that contained two or three 0’s would lead to a matrix which has two identical
rows or a row of 0’s any selection of these numbers that contains at least one
0 contains exactly one 0. Thus, if the three conditions on the §; given two
paragraphs above are applied to the possible choices, we see that the only
selections of &, 82, 8 that contain a 0 are 6 = 0,8 = & = 1 and & = 0,
8, = 1, 863 = —1. These three conditions also yield the fact that the only
choices of these numbers that contain a 2 are 6 = 2, 6 = —1, 8 = 1;
0= 1,80 =108 = —1;and & = —2,8 = 6 = 1. Observe that in all these
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cases 8 + 62 + 63 = N = 0 or 2. Consequently, since the last equation of a
system associated with these choices is the sum of the first three,

N = ¢enoy+ - + egar = b

That is, the system is solvable only if b = 0. To establish the converse note
that for any one of these particular choices of 8;, 82, 8; there always exist two
8’s whose sum is not equal to 0 or 1. Therefore B, the matrix consisting of
the first three rows of A cannot contain a minor whose valueis 2. Tor if

1 01
0 1 1
1 10

were a minor of B then the corresponding elements of the last row of 4,

being a sum of two of the §’s, would not consist of 0’s and 1’s. In short, B

contains a minor whose value is 1, so if b = 0 the system has n*° solutions.
Those selections of the &’s which consist solely of 4+1’s and —1’s remain.

If 6, = 6 = 8 = lorif & = 1, 8 = § = —1 the corresponding matrices
must contain the columns
1 00 11 1
010 010
or ,
0 0 1 0 01
11 1 100

and cannot contain any other non-zero columns. Since, upon adding the
first three equations of the system together, we havce

N =¢epa+ - Fegar=0

where X = 3 or —1, it is not difficult to show that these matrices belong to Qs .
Finally, since the second block is a permutation of the rows of the first block,
N(Q,) < 4!14%

If 6, = 8 = 1, 63 = —1 then the columns of A must have one of the fol-
lowing forms

111000
100 110
110010
101 100

Since 81 + 8 + 8 = 1 and since no 3 X 3 determinant that can be derived
from the first three rows of this block has a value of 42 any rank 3 matrix
whose columns are elements of this block has n*~ solutions for every b in
G. We also have N(Q;) < 4! 6", so this completes the proof of Lemma 3.
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Section 2
We shall now prove the theorem of this paper. By Tchebichev’s inequality

210 2 €'2k 2 n4 210 4
plme (v =) > (57)} < v man (vew - )
where E[X] is the expectation of X. Since
Elmaxeq (v(b) — 2°/n)*] < 2uee BI(Vi(b) — 2°/n)),

the theorem will be proved once a suitable bound is established for this sum
of expectations.

Several definitions are in order. If (¢°) = (ea, --- ; €x) is a 0-1 k-tuple
and (@) = (a1, - -, a;) is an element of Gy let the notation
(611 ,ej;a) =

denote the fact that
eaa+ - Fegpar =0

fori— 1,2, -+, j. Set
S(J) = 2obes 2oy, meiny PL(EY, <+, 'y a) = b},

where the index of summation runs over those j-tuples ((&'), -+, (&%)
that satisfy the conditions:
(') # (0) fori =1,2,---,3j.

(") # (&) forp #q 1 <p,g <3

Let Uy be the set of rank 4 4 X k matrices A for which the number E of Lemma
2 is cqual to 1, let Uz be those for which £ = 2", and let @1, @2, @3 bethose
described in Lemma 3. Tinally let

u(j) = (2" = 1)(2" —2) .- (2" = ).
Then we have

S = u(f)/m! forj = 1,2,3
(12)
st =" 4 2D v v + Y@ (1),

Since the proof of the first three equations is similar to and simpler than the
proof of the fourth, the details concerning the last equation will be the only
ones given here.

As for these details, let ((£'), - -+, (&*)) be considered as a 4 X & matrix A
whose 7t row is (¢°). Then, if A4 isin 9,

ZbeG (81"')84;0’):17}:1/"3

Consequently, since the index of summation of the inner sum of S(4) runs
over (28 — 1) -+ (28 — 4) = w(4) j-tuples, we have
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S(4) = u(4)  (NQ%b) + N(@) + N(Q.) + N(Q3))
n3

nd

where I consists of those terms of S(4) for which ((&"), -+, (&*)) is not in
A . According to Lemma 2,

D sea Douy PU(EY -+, € a) = b) = (27/n°)N(Wa).
According to Lemma 3, for7 = 1,2, 3
Zbea Zw ‘1 T '4' a) = b} = N(Q:)w(7)

where w(1) = 1/n° w(Z) = 2 /n and w(3) = 1/n’. If these results are
brought together we have the stated equation for S(4).
The results of (12) will be used to prove:

172; E[Vﬁ(b)] = 0(0) +.7(7 ‘2“ 1) U(nl) + (.7 - 1)(.7 — 2) v(2)

2 n?

forj = 1,2, 3, and

> EVI)] = 0(0) + 7”@ n 9?9) ) v<3> 44V @) + N(Qs)( _ l)
beG n n
+ 2D N () + N ) + N(Q)

where v(l) = 28(2" — 1) --. (2 — 1). As before, only the last equation
will be considered.
To prove the last equation let, for each fixed b and (&), X[b, €] be the random

variable whose value at the point (a) = (a1, - -+, ai) of G} is given by
X, e,a] =1 if (¢;a) =¢ear+ -+ +erap,=0
=0 if (¢,a) b
Then

Vi(b) = X[b, 0] + 2w XIb, el = Y + W
where Y = X[b, 0] and W is the sum, and
S BIVED)] = Dpec EIY + 4YV-W + 6Y-W* + 4-Y-W® + W1
Now, since X[b, 0]X[b, ¢] = 1 only if b = 0,
e BIY] = E[X[0, 0] =
2 onea BIY - W] = B2 wxw X0, ] = (2° — 1)/n = w(1)/n,
2ovea BIY - W) = Bl 2o X10, e])’] = u(1)/n + u(2)/n,

and, by the comments following Lemma 1 and (10),
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2. EIY-W'] = EI( X, XI0, &)’
beG (£)5#(0)

w(l) | 3u(2) | u(3) N Q) <1 _1>+<2' — 1)N(Ry)
2 n n :

= + n8

n n n?
Elementary combinatorial arguments yield the equation
2 e BI( 2o XIb, €)' = S(1) + 78(2) + 6S(3) + S(4).

If these results are combined with those of (12) we have the desired result.
We now have, after a few more calculations,

(0 -2)]
N )

AN(Qo) + N(Qs) <1 _ 1)

“+

n? n

+ (N(Az) + N(Q2) + 4N(Ry)) 2 —1)

nd

According to (10), Lemma 1, Lemma 2, and Lemma, 3,
AN(Qo) + N (@) < 414° + 416" < (36)-6°
N(%) + N(Qz) + 4N(Ry) < 4!18° 4 414" + 414* < (36)8"
for k > 2. Hence
> e EL(Vi(b) — 2¢/n)"] < 2° + 3-2%/n + 36-6°/n + (36)8°(2" — 1)/n".

This gives us
K
P{max = €—2~}
beG n
1ot 30" 36 n'-3

36, .r
Semtamta T -0

o
Vi(b) — f—l-

n
?7

which completes the proof of the theorem since each of the terms in this sum
does not exceed 6/4 provided that

Y

! 3 a 1 1
k Tog 2[max{§10g n, log n + r log 2} + 4 log B + log5 + log (144)].

To prove the comment following the theorem suppose that
G = Hl @ . e @ Hr

where the H; are of order 2. Then since G is a vector space over the integers
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modulo 2 any sequence hy, - - -, Ay, of G that generates G must contain a sub-
sequence hy, - -, h, that is a basis for ¢. Using these facts one can show,
by induction, that if hy, - | h; generates G then every b in G has the same
number of representations, 27, of the form b = ey by + -+ + e hi. Now,

Erdos and Rényi have shown (see Theorem 2 of [1] that if G is a finite Abelian
group of order =, if 8 > 0, and if

! 1 log n 1
> o =) 2 log = 5
k= Tog 2 l:lot, n + log <log 2) + 2 log 6] + 5

then
P{miny.e Vi(b) > 0} > 1 — 4.

That is, nearly every sequence hy, ---, h; generates . This, of course,
yields what was claimed.
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