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1. Introduction

For any set of N points in the unit square, and any point (x, y) ia the square,
let S(x, y) denote the number of points of the set which are in the rectangle
0 _< < x, 0 <_ /<= y. We shall call the difference A(x, y) S(x, y) Nxy
the error at (x, y). We shall call the quantity D sup A(x, Y)I, where the
supremum is taken over all points (x, y) of the unit square, the discrepancy of
the set of points.
K. F. Roth [3] proved that for any set of N points in the unit square,

D > c/i0g N, where c is a positive absolute constant. An analogous result
holds in k-dimensional space" Dk > ck(log N) -12, where c is a positive con-
stant depending only on 1, andD is the discrepancy of a set of N points in the
/c-dimensional unit cube.
Roth also showed an example of 2 points in the unit square for which the

discrepancy D _< 2n -k 1. In 1960 J. H. Halton [2] studied a generalization of
that example in the k-dimensional unit cube, and obtained an analogous result"
D <_ c(logN)-1.

Halton also considered the gap between (log N)-2 in Roth’s theorem, and
(log N)-1 in the examples, and he was led to state the "tentative coniecture"
that the results for the examples could be improved to agree with Roth’s
theorem. In this paper, the example in the two-dimensional case is studied
and it is shown that at least for the two-dimensional case such an improvement
is not possible.
Let J(R, n) denote the set of R points of the form

where t 0, 1, 2, R 1. We assume without loss of generality that the
set of points is ordered so the x coordinates form an increasing sequence.

Points of the unit square which are of the form (I/R, lira), where/ and
are positive integers, will be called "lattice points" of the unit square (with
respect to J(R, n)). T(R, n) will denote the average error of J(R, n) at
the lattice points, and it is shown in Section 3 that T(R, n) nT(R, 1)
n(R- 1)(R q- 1)/12R.
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J(2, n) is an example studied by Roth. In Section 4 it is shown that the
exact maximum error attained at any lattice point is n/3 + (1 (-1/2)’).
It is also shown that this maximum error, denoted by M, is attained
exactly two lattice points which are explicitly determined. The error is non-
negative at all points of the unit square, and from this it follows that
D_<M+2. Thus forJ(2, n) wehaven/3<D<n/3+3.

If N >_ 2, and n the integer such that R" < N _< R".1, the sequence of N
points in the unit square studied by Halton is the sequence

J’(R,N) I(O, Y’+I)), (1IN, Y+)), ..., ((N 1)IN, Y(+))},
V(n+l)where
_

is the y coordinate of the ih point of J(R, n + 1).
For any point (x, y) in the unit square let S(x, y) and/(x, y) refer to the

sequence J’(R, N) in the analogous way that S(x, y) and A(x, y) were defined.
Let S,(x, y) and A(x, y) refer to the sequence J(R, n). Then if (x, y) is any
point of the unit square, we may write x air’, and S,(a/R’, y)
S’(a/N, y) since for each i < R Y(+) v()

_
Therefore, A(a/N,y)

/(x, y), and so sup A(x, y) >_ sup A(x, y). For this reason we only study
the error of J(R, n) consisting of R points.

2. Preliminary results
-yf(n) y(n)The ith point of J(R, n) will be denoted by (. - ), or simply (X,

if no confusion will result. We note that since the x coordinates of J(R, n)
form an increasing sequence, X (i 1)/R’. S(x, y), or simply S(x, y),
will denote the number of points of J(R, n) in the rectangle 0 _< <: x,
0 <_ v < Y. A(x, y), or simply A(x, y), will denote the error of J(R, n) at
(x,y).

LEMMA 1. Let i, p, and q be integers, with 1 <_ i <_ R’, 0 <_ p <_ R’- 1,
and 1 <_ q <_ R. Then the following four statements are equivalent:

(1) i pR + q
y(n) v-(n-l)(2) . .+ + (q- )/R"

V(n-l)(3) Y (q 1)/R + (1/R)+1
(4) (q- 1)/R

_
yn < q/R.

Proof. Let i pR q. Therefore
v(n--1)P/Rn-1 + (q 1)/R + + (q 1)/R’.

n--1v-(,-) t/R + + t,_/R thereforeSince+
(q 1)/R + t,_/R + + t/R" (q 1 )/R + 1/R) "(’-)

and statement (4) follows.
The converse implications also follow immediately from the definitions.

LEMMA 2. Let x, y) be any points in the unit square, with y <_ 1/R. Then

A,(x, y) An-l(X, Ry).
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(n) y(n)Proof. If (Xi ,-i isapointofJ(R,n) in the rectangle0

_
i" < x,

V(n)0 < y, then0 < y

_
1/R, andsobyLemmal, i pR - 1,

x(n-1) y(n) 7(n--1) y(n)
+1 < x and (1/R)+I i < y.

Thus, corresponding to each point of J(R, n) in the rectangle 0

_
f < x,

0

_
n < y, there is a point of J(R, n 1) in the rectangle 0

_
< x,

O_n<Ry.
The converse is also true, and so S,(x, y) S,_(x, Ry). Lemma 2 follows

by subtracting Rxy from both sides of this equation.
To prove Theorem 1, we sum the errors at all lattice points on the horizontal

line y 1/R. For this purpose, we prove the following"

LEMMA 3. Let q be an integer such that 1

_
q

_
R, and let p be an integer

such that 1

_
p

_
Rn-1 1. Let (tc/R, 1/R) be any lattice point with

q 1)/R

_
1/R

_
q/R. Then the following statements are true"

(a) If 0

_
k/R

_
(q 1)/R, then As(k/Rn, 1/R) k kl/Rn.

(b) If ((p- 1)R --q)/R

_
k/R

_
(pR --q- 1)/R, then

An( ]/Rn, l/Rn)

A,(]c/R’, (q 1)/R) - A_(p/R’-, (1- (q 1)R-)/R-1)
kl/R -- k(q 1)/R -- p(1 (q 1 )R-)/R-.

(c) If ((R’-1 1)R - q)/R

_
t/R

_
1, then A(k/R, 1/Rn)

Proof. () The first/ points of J(R, n) are exactly the points of J(R, n)
which are in the rectangle 0

_
, ]/R, 0

_
< 1/R. For if i is an integer

such that 1

_
i _/c, thenX (i- 1)/R < I/R, and since i- 1 </

_
q-l_R--1,

Y (i- 1)/R < ]c/R

_
(q- 1)/R

_
1/R".

Therefore, S(k/R, 1/R) /c, and part (a) follows.
(b) We may write

S( k/R, I/R

(]/Rn, (q 1)/R) - S(0

_
< ]c/Rn, (q 1)/R

_
v < lira),

and we first show that this last term is equal to

S(p/R-, (1- (q 1)R-)/R).
If (X, Yi) is a point of J(R, n) such that

0

_
X < p/R-, 0

_
Y < (1- (q 1)Rn-1)/Rn,

then Y l/R, and so i p’R -- 1 for some integer p’. Therefore
X p’/R- p/R-, and therefore Xi

_
(p 1)/R-. Also

Y O/R + t_i/R -- -- tl/R,
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and so
X t/R + + t,_/R"- + O/R’.

Therefore

X+_ X- (q- 1)/R"

_
((p 1)R - q- 1)/R < k/R’,

nd
(q- 1)/R

_
Y_ (q- 1)/R - Y, < 1/R".

Thus, correspondingto ech point (X, Y) in the rectangle

0

_
< ,p/R-, 0

_
< (1- (q 1)R’-)/R",

the point (X+_, Y+_) is in the rectangle 0

_
i" < k/R, (q 1)/R

_
< 1/R". The converse is proved in similar mnner, nd this gives the

result that

S(O

_
< k/R’, (q 1)/R

_
< 1/R’)
S(p/R’-, (1- (q-

Therefore we obtain

A,(k/R’,l/R’) A(k/R, (q 1)/R) + A,(p/R"-, (1- (q 1)R’-)/R’)
kl/R -- k(q- 1)/R q-p(1- (q- 1)R’-)/R-.

Now (1 (q 1)R’-)/R <_ l/R, and therefore by Lemma 2,

/X(p/R-, (1- (q I(R-)/R) A_(p/R’-,(1- (q- 1)R-)/R"-).
(c) The points of J(R, n) which are in the rectangle 0 _< " < k/R’,

0 <_ v < 1/R, are exactly the points of J(R, n) whose y coordinates are
O, 1/R’, 2/R, 1/R. For if not, then we must have a point (X, Y)
with 0 _< Y _< (1 1)/R and k/R <_ Xi. Therefore we must have

((R-- 1)R + q)/R

_
X (i- 1)/R",

and so
(R"-- 1)R -q < i_< R".

We my therefore write i (R- 1)R -t- j where q < j _< R, and by
Lemm i this implies that Y > (j 1)/R >_ q/R > 1/R which is contr,-
diction. Therefore S(k/R, 1/R) l, nd prt (c) follows.

LEMM 4. Letj, q, k be integers such that 1 <_ j <_ R, 0 <_ q <_ R, 0 <_ k <_ R’,
and k j mod R Then A(k/R, q/R) A(j/R, q/R).

Proof. We first note that the points of J(R, 1) re (0, 0)(l/R, l/R),
((R 1)/R, (R 1)/R), nd therefore t ech lttice point (j/R, q/R),
S(j/R, q/R) min (j, q).
Now Lemma 4 is true for q 0, and for ]c 0. Suppose q > 0 and Lemma

4 is valid when q is replaced by any of the numbers 0, 1, q 1. We
establish it for q itself by applying the previous lemma with 1/R q/R. We
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consider three cases"

Case 1. 0 < I/R

_
q 1)/R’. Then k j, and by Lemma 3(a),

A,(k/R, q/R) j jq/R min (j, q) jq/R AI(j/R, q/R).

Case 2. q/R"

_
t/R

_
(R- 1)R + q 1)/R’. Let p be any integer

such that 1

_
p

_
R- 1, and consider two subcases"

Case 2(a). ((p 1)R -- q)/R <_ k,/R <_ p/R’-. Then/c (p 1)R -t-j
with q _< j _< R, and so by Lemmu 3(b) and the induction hypothesis,

A,(k/R", l/R’) A(j/R, (q 1)/R) -t-A-(p/R’-, 1) -t- 1 -j/R

min(j,q- 1) -j(q- 1)/R+ 1-j/R

q jq/R A(j/R, q/R).

A,_I(p/R-, 1) O, since the first p points of J(R, n 1) are exactly the
points of J(R, n 1) which are in the rectangle 0 _< < p/R-, 0

_
< 1.

Case 2(b). p/R- < I/R

_
pR - q 1)/R’. Then l pR + j with

1

_
j <_ q 1, and so by Lemma 3(b) and the induction hypothesis,

A(k/R’, l/R’) A(j/R, (q 1)/R) -j/R j j(q 1)/R j/R

AI(j/R, q/R).

Case 3. ((R-- 1)R+q)/R _tc/R

_
1. Then/ (R-1- 1)RWj

with q

_
j

_
R, and so by Lemma 3(c),

As(k/R’, q/R q jq/R AI(j/R, q/R

LEMMA 5. At each point of the unit square the error of J R, n) is nonnegative.

Proof. It suffices to prove that at each lattice point the error is nonnegative.
For if (x, y) is any point of the unit square, let (k/R’, l/R) be the lattice
point such that (k 1)/R" < x

_
k/R, (1 1)/R < y

_
1/R. Therefore

A(x, y) >_ S(x, y) kl/R A(t/R’, 1/R’).

The error of J(R, 1) is nonnegative at each lattice point since

/(k/R, l/R) min (, l) l/R >_ O.

We assume the error of J(R, n 1) is nonnegative at each lattice point, and
prove it is true for J(R, n).
Let (]/R", l/R") be any lattice point, and let q be the integer such that

(q- 1)/R < l/R

_
q/Rwith l

_
q_ R. Let/= (q- 1)R-+t,with

1

_ _
R"-. We again consider three cases"

Case 1. 0 < ]/R

_
(q- 1)/RL Then/(k/R’, 1/Rn) t tl/R >_ O.

Case 2. q/R

_
k/R"

_
((R-1 1)R + q 1)/R. Let p be any integer
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such that 1

_
p

_
Rn-1 1, and consider two subcases"

Case 2(a). ((p 1)R -t- q)/R

_
k/R

_
p/R-1. Then

k (p- 1)R+j

with q

_
j

_
R, and so by Lemmas 3(b) and 4, and the induction hypothesis,

(/R, /R
AI(N/R, (q- 1)/R) + A_I(p/R-1, t/R-) --t/R(R- j) >_ O.

Case 2(b). p/R-1 < k/R

_
(pR --q- 1)/R. Thenk pR --j

with 1

_
j

_
q 1, nd so by Lemmas 3(b) nd 4, nd the induction hy-

pothesis,

A(k/R, 1/R’) j j(q 1)/R + A,_(p/R-, t/Rn-l) jt/R >_ O.

Case 3. ((R"- 1)R -t- q)/R

_
k/R

_
1. Then A,(k/R’, I/Rn)- Z/R >_ O.

The following result is needed in Theorem 1.

LEMMA 6. Let T(R, 1) (1/R)==AI(k/R, l/R). Then

T(R, 1) (R 1)(R + 1)/12R.

Proof. Since the points of J(R, 1 are on the diagonal y x, at each lattice
point (k/R, l/R) we have S(k/R, l/R) min (k,/), and therefore the errors
on the row of lattice points are

51(k/R, l/R) k kl/R k 1, 2, l)

l- kl/R (k l-l-- 1,...,R).

Therefore the sum of the errors on the row of lattice points is

5- a(/R, /R -- ( t/R) + _,- ( ( + )t/R)

1/2(R ).
Therefore

T(R, 1) (1/R) -’=1 --1 51(k/R, l/R)

(1/2R:) -,.n__ (R1 ) (R 1)(R + 1)/12R.

The following two lemmas are needed for the proof of Theorem 2.

LEMMA 7. At each lattice point k/R, lira),

A,(k/R, 1/R’) An( 1 k/R’, 1 liRa).

Proof. Let each point (X, Y) of J(R, n) be shifted to the point

(X*, Y*) (Z + 1/2R, Y + 1/2R),

and denote this shift sequence by J*(R, n). The points of J*(R, n) are
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symmetric with respect to both diagonals of the unit square. For a point
(X*, Y*) belongs to J*(R, n) if and only if the point (Y*, X*) belongs to
J*(R, n), and if and only if the point 1 Y*, 1 X*) belongs to J*(R, n).

Let S*(x, y) be defined for J*(R, n) in the same way that S(x, y) was
defined for J(R, n). Then at each lattice point (]c/R, lira), S*(]c/R, 1/R)

S(]C/R’, lira), so it suffices to prove Lemma 5 for J*(R, n).
From the symmetry of J*(R, n) it follows that at each lattice point

]c/Rn, 1/Rn),

S(]C/R, 1/R’) S(1, 1/R’) {S(1, 1 ]C/Rn) S(1 1/R, 1

z- (R ) + ( /R, -Z/R)

A( 1 k/R, i 1/R) -- ]Cl/R.
LEMMA 8. If (]C/2, y) is a point of the unit square, such that ]C is an odd

integer and y

_
1/2, then for the sequence J(2, n),

A(]C/2, y) A((/ + 1)/2n, y) + y.

Proof. If (X, Y) is the point of J 2, n) with X k/2, then, since ]C is odd,

X tl/2 + + t_1/2’-1 + 1/2n,
and so Y >_ 1/2. This implies that S(]C/2, y) S((]C + 1)/2, y), and the
lemma follows.

3. The average error of J(R, n) at the lattice points

THEOREM 1 Let T(R, n) (1/R2) klR1=1/( ]C/R, 1/R) Then

T(R, n) nT(R, 1) n(R 1)(R + 1)/12R.

Proof. Part 1. In the first part of the proof, let q and be fixed integers
such that 1

_
q

_
R and (q 1)/R < 1/R

_
q/R, and let/= (q-

with 1 <:

_
R-1. We shall obtain an expression for the sum of the errors

at the lattice points on the line y 1/R.
Part l a). 0 < ]C/R

_
q 1) /R’.

(/R, /R)
k kl/R min (]C, q 1) t(q 1)/R -- ]c(q 1)/R kl/R

AI(]c/R, (q 1 )/R) ]Ct/R.
Therefore- A,(I/R, 1/R) - 51(]C/R, (q 1)/R) tq(q 1)/2R’.

Part l(b). alp

_
k/R

_
((R- 1)R + q- 1)/R’. Ifpis any

integer such that 1 <_ p

_
R-1 1, we may consider two subcases"

Case 1. ((p 1)R + q)/R

_
k/R

_
p/R’-. If we write
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k (p 1)R + j with q _< j _< R, then by Lemmas 3(b) and 4,

.( /R", /R)

A(j/R, (q 1)/R) -- An_(p/R-, t/R-) -t-t/R-- jt/R’.

Therefore

Eg(p-)+q An(/Rn, 1/Rn)
qA(((p 1)R + j)/R, 1/R)

q5(j/R, (q- 1)/R) + (R-q + 1)A_(p/R-, t/R-)

+ (t/2R)(R+R- 2qr- q+qe).

Case2. p/R- < k/R (pR + q- 1)/R. Ifwewrite pR + j
with 1 j g q 1, then by Lemmas 3(b) and 4,

A(lc/R, 1/R) A(j/R, (q- 1)/R) + A_(p/R-1, t/R-) jt/R.
Therefore

+-(/R, /RkpR+l

RE: a((p + )/ /)

A(j/R, (q- 1)/R) + (q- 1)A_(p/R-, t/R-) tq(q 1)/2R.
Combining Cases 1 and 2 we obtain

k=(p--)+q

5(j/R, (q 1)/R) + RA_(p/R-, t/R-’)

+ (t/2R)(R + R 2qR).
Therefore

Ei]-’-),+- a(/, /)Rn--l--1+- a(/R, /R)k(--)+q

(R- 1)%(i/R, (q )/R)
Rn--l--1+ R _(p/n-, t/-)

+ (t/2)(1 + R 2q) + (t/2R)(-R R + 2qR).

Part 1(c). ((R- 1)R + q)/R k/R g 1. If we write
(R- 1)R + j with q g j g R, then by Lemma 3(c),

a(/R, /R) /R (q- 1) -j(q- )/R + (t/)( -)

min(j,q-- 1) --j(q-- 1)/R+ (t/RE)(R-j)

A(j/R, (q 1)/R) + (t/R)(R -j).
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Therefore

/(/R, /REk(R 1--1)Rq

’/(j/R, (q 1)/R) q- (t/2R’)(R q- R 2qR q -t- q).

Combining prts 1(), 1(b), and 1(c), we obtain

E: /R, /R)
2 A(k/R, (q 1)/R) tq(q 1)/2R

+ (R- 1) A(j/R, (q 1)/R)
Rn--l--1+ R,= _(p/R-’ t/R-)

+ (t/2)(1 + R 2q) + (t/2R)(-R R + 2qR)

+ %=A(j/R, (q 1)/R) + (t/2R’)(R + R 2Rq q + q)
n--1-’- _(p/R t/R-’)R-%,(j/R, ( )/R) + R

+ (t/2)( + R 2).

Part 2. We now find the sum of the errors t 11 lttice points of the unit
squre.

-,-,+E-(/e /R)
R Rn-1=t= :a(k/n’, ((q 1)R- + t)/R)

= A(j/R, (q 1)/R)

+ RE:- a._(p/-, t/n-) + (t/)( +
2; {R-%%(/, (q )/)

a_,(p/R-, t/n-) + (t/2)(n + R 2-, q)}

-,%E%a(j/, (q- )/)

a_(p/R-,t/R-)-,%%a(j/, q/)- a_(p/n’- t/n-).
The last equality follows since A(j/R, O) A(j/R, 1) ,_(p/R-, 1) O.

Therefore T(R, n) T(R, 1) T(R, n 1) nT(R, 1), and the theorem
is proved.

Coov. For the sequence J(R, n),

f f 1)(, + +12R + 4R-"
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The maximum error of (2, )
THEOREM 2. Let M, denote the maximum error of J( 2, n) at the lattice

points of the unit square. Then
(1) M. is attained at exactly two lattice points

(A,/2", B/2") and (1 A/2", 1 B/2"),
where

A, (3.2n-1 -t- (-2)"-1- 1)/3 and B. (2"- (--1)")/3.

(2) M. n/3 -t- -(1 (-)").

Proof. By constructing the sequence J(2, 1), we see the theorem is true
for n 1. We assume it is true for J(2, n 1), and establish it for J(2, n)
where n > 2.

If we denote M, An(A,/2", B,/2"), we have by Lemmas 7, 2, und 8,

._,/2 B._,/2Mn_l An-I(A n--1 n--1

A,_(2(2"-1 An_)/2", 2(2"-1

A.(2(2"-1 A._1)/2", (2"-1

An((2(2n-1 A,_) 1)/2", (2"-1 B._)/2") (2"-1 B._x)/2".

We define An and Bn by the recursion formulas"

A1 1, A, 2(2"-1 A,_I) 1 (n >_ 2).

B 1, B. 2"-l-

and obtain the recursion formula for Mn
(n>_ 2).

M 1/2, Mn M,_a -k- B,/2".
From these recursion formulas we obtain the formulas for A., B,, and M,

stated in the theorm. We must show that at each lattice point (//2n, l/2n)
different from (A./2n, B./2") and (1 A,/2", 1 B,/2"), we have
,5.(1/2", 1/2n) < M,

This is true for J(2, 1 so we assume it is true for J(2, n 1 and establish
it for J(2, n). Let (1/2’, 1/2") be any lattice point as described above. By
Lemma 7 we may assume l/2" <_ 1/2.
Case 1. k even. Therefore by Lemm 2,

A.(k/2", l/2") ZX._I(1/2k/2"-1, 1/2n-l) <_ M,_I < M,.

Case 2. k odd, and < Bn. Therefore by Lemma 8 and Case 1,

5.(k/2n, 1/2") A,((k + 1)/2n, l/2’) + 1/2 <_ M,_ -k- 1/2" <
Case 3. ] odd, Bn, and ] A,. Therefore by Lemmas 8 and 2,

,5.(k/2", 1/2") ,5,( (k -t- 1)/2", B,/2") -t-
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A._l(1/2(k + 1)/2"-1, (2

< M,_I+B,/2’=
The last inequality holds, for otherwise 1/2(/ + 1) 2"- A,_ which

would imply

Case 4. k odd, and > B,. Therefore by Lemmas 8, 2, and 7,

n(]/2n, 1/2n) an( (k + 1)/2n, 1/2n) + 1/2

n--l(( + 1 )/2n-l, 1/2n-l) + 1/2

._( ("- ( + 1) )/n-, (.- )/2.-) + /2".

We note that (2"- 1)/2"- and consider two subcases"
Case4(a). 2"-1 (k+ 1) iseven. Then by Case l,

an_((2"- k( + 1))/2"-, ("- )/z"-) +
m,_ + 1/2"

M. Bn/2" Bn_/2

M. Bn/2" (2"- B.)/2"- + /2" < Mn.
The last inequality follows since B,/2" < 1/2"

Case 4(b). 2n- (k + 1) is odd. Then by Lemma 8 and a result
shown in Case 4(a),

._( (2"- ( + 1) )/2"-1, (2"-1 )/2"-) + t/2n

an-( (2"-’ ( + 1) + 1)/"-,

+ (2"- t)/Z"-
m. B./2" (2"- B.)/2"- + t/2" + (2"- t)/2"- < m..

This completes the proof of Theorem 2.

ConoAnV. For the sequence J(2, n), n/3 < D < n/3 + 3.

Proof. D > M, > n/3. ByLemmaS, D sup A(x, y). Let (x, y)
be any point of the unit square. We may assume x 0 and y 0, and we
choose the lattice point (k/2", 1/2") such that

(- 1)/2" < x /2", (t- )/2" < y g /".

Then (x, y) (/2", t/2") g (( 1)/2n, (t 1)/2") + 2, and so

(x, y) < (( )/2", (t- 1)/2") + 2 M, + 2.

Therefore D <_ M. + 2 < n/3 -- 3.
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