
CO-EQUALIZERS AND FUNCTORS

BY
K. A. HARDIE

0. Introduction

If X and Y are objects of a category C, let IX, Y denote their associated
morphism set. Similarly if S and T are functors let IS, T denote the class
(not necessarily a set) of natural transformations from S to T. Unless other-
wise stated all functors will be assumed to be covariant. Let R V - W be
a functor. Then X e V is a (left) R-object if for every Y e V the mapping func-
tion

R X, YI IRX, RYI
is a bijection. We shall find in various circumstances certain conditions some
necessary others sufficient for X to be an R-object. It is clear that such in-
formation could be of interest, however our objective is to consider the case
V V(C, D) a subcategory of the functor category (C, D) andW W(A, D)
a subcategory of (A, D) in which R V-W is induced by a functor J A- C.
Then to say that S e V is an R-object means that for every T e V and every
u’ SJ, TJI there exists a unique u e IS, T such that uJ u’. The situ-
ation described arises frequently in connection with "uniqueness theorems".
Thus to cite one celebrated example, if V is the category of homology theories
on the category C of triangulable pairs and pair maps and if J is the functor
which injects the subcategory "generated by" a single point then Eilenberg
and Steenrod proved [3] that each homology theory S is an R-object in V.

In this paper we shall be chiefly concerned with the case A X, the sub-
category of C consisting of a single object X and its C-endomorphisms, J being
the injection functor and we shall describe an R-object S e V as an X-functor in
V. It follows that the X-functors are determined (up to natural equivalence
in ) by their action on X.

In general our basic assumption is that there exists a functor L W -V and
a natural transformation a LR 1. L is sometimes (but not always) a left
adjoint of R and then we find"

THEOREM 0.1. If L is a left adjoint of R then X is an R-object if and only if
X e lLRX, X is an isomorphism.

One case in which 0.1 is involved is the following. Let M M denote the

Received May 11, 1966.
X is an R-object if and only if (X, ix) is free overRX with respect to R in the sense

of A. Frei, Freie Objekte und multiplikative structuren, Math. Zeitschrift, vol. 93 (1966),
pp. 109-141. There is some overlap in Section 1 with Frei’s results. In particular
Theorem 0.1 as stated is essentially not new. (See however Remark 1.1.) Our applica-
tions are quite different.
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category of modules over a commutative ring A with unit. Let V V(M, lYI)
denote the subcategory of A-linear functors and for a given X e lYI let the ob-
jects of W be the A-linear functors from X to IVIA. If G e W, set

Then
LG Hom(X, -) (R)AGX.

aSY e Hom (X, Y) (R)4 SX, SY[
may be defined by lifting the evaluation of the mapping function of S.
turns out that L is a left adjoint of R and we shall prove

It

THEOREM 0.2. S is an X-functor in V if and only if S is naturally equivalent
to HomA (X, --) (R) N for some A-module N.

0.2. does not destroy the interest in X-functors’ one would still wish to
find a suitable X for a given S. For example we shall prove that Ext (C,
is a K-functor if

is an exact sequence such that Pis projective 1 _< i _< n).
A result similar to 0.2 is available in the category T of topological spaces and

maps, but in the category Tb of based spaces and based maps the analogue of
L is not a left adjoint of R. What is to hand is a natural transformation
e RL- 1 such that

(0.3) eR Ra e lRLR, R

and we still have a commutative diagram

LRo
LRLR LR

LR -- 1.

It now becomes important to consider co-equalizers of LRaX and aLRX. We
shall prove (in general)

THEOREM 0.4. If aX is a co-equalizer of LRoX and aLRX and if RaX is
epic then X is an R-object. If X is an R-object, if RaX is a co-equalizer of
RLRaX and RaLRX, and if aLRX or LRaX is epic then aX is a co-equalizer of
LRaX and aLRX.

Section 2 introduces the concept of a valuable functor for categories with a
suitably enriched structure and Theorems 0.1 and 0.4 are applied. In a final
section we show that the based topological product, smash, join, wedge, sus-
pension and cone functors are all P-functors, where P is a 0-sphere (or an
n-tuple of 0-spheres). I hope to consider in a subsequent paper the homotopy
theory of P-functors. I am grateful to the referee for making a number of
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helpful suggestions and wish also to acknowledge several interesting conversa-
tions with Kenneth Hughes.

1. R[-obiects
In this section will be proved Theorems 0.1 and 0.4. For details concerning

co-equalizers the reader is referred to [5] and [2]. Recall L is a left adjoint of
R if there exist a e iLR, 1 I, ] 1, RLI such that the compositions

L L LRL
L R R

L, R RLR- R

re the identies i, and i respectively.

Proof of 0.1. Suppose that X is an R-object. Then there exists a unique
v e X, LRX such that Rv RX. Then R(aX RaX RX
ix R(ix) which implies that aX. ix and we have

v. aX aLRX. LRv aLRX. LRX ix,

s required. Conversely, suppose that aX is an isomorphism and let
u e RX, RY I. Then

v aY.Lu.aX-IiX, Y
is such that Rv RaY RLu RaX- u RaX RaX- u. Moreover
for an,y w e X, Y such that Rw u, we have w aX aY LRw aY Lu
so that w v.

Remark 1.1. We have not used the full force of the equality aL. L iL.
It would have sufficed to assume the existence of " e lR, RLRI such that
Ra / i and aLR L’ iL.

Proof of 0.4. Suppose that RaX is epic and that aX is a co-equalizer of
LRaX and aLRX and let u RX, RY 1.
tive diagram

LRLu
LRLRX

aLRX

LeRX LRaX

LRX
Lu

That is to say we have

LRaY LRLu Lu LRaX and

Then we have a doubly-commuta-

LRLRY

aLRY

LeRY LRaIZ

LR Y.

aLRY LRLu Lu aLRX.
Since aY aLRY aY LRaY we find easily that aY Lu aLRX
aY Lu LRaX. Hence there exists a unique w e X, Y such that
w aX aY.Lu. Then we have

Rw RaX RaY RLu u RaX
which implies Rw u. Moreover if Rv u then
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v aX aY LRv aY Lu

so that v w. Conversely let X be an R-object and let w e LRX, Y be such
that w. aLRX w LRaX. ThenRw RaLRX Rw RLRaX and if RaX
is a co-equalizer of RLRaX and RaLRX there exists a unique u e RX, RY
such that u RaX Rw. Let v e X, Y be the unique morphism suchthat.,

Rv u. Then

w aLRX aY. LRw aY LRv LRaX aY. LRaY LRLRv

aY. aLRY. LRLRv aY. LRv aLRX.
If aLRX is epic it follows that w aY. Lu and a similar calculation yields
the same result if LRaX is epic. Moreover if u’ aX w then Ru’ RaX
Rw Ru RaX. Hence Ru’ Ru which implies u’ u, completing the
proof.

2. Valuable functors
Let E denote the category of sets and functions. We recall that a concrete

category, in the sense of Kelly [4], is a category D and a faithful functor from
D to denoted X -- X I, f- if I. "Faithful" means that Ill g implies
that f g. If D is concrete then f e IX, Y is an identification if
Ill X -- Y is onto and if, given any function k" Y - Z and any
he IX, Z such that hl /. If I, there exists g e Y, Z such that g /

(and g f h). Note that for every object X o.f D the identity morphism
ix is an identification.
A concrete product (R), r) in a concrete category D is a bifunctor

(X, Y) --- X (R) Y, (f,g) --. f (R) g

and a natural transformation

satisfying the condition hl r kl r implies h ]. We also require
that ((R), r) should admit natural associativity and commutativity isomor-
phisms , and r compatible with the associativity and commutativity bijections
c and in Ii;. That is to say the following diagrams are commutative"

lil X r

IXllY(R)Z]

IX (R) (y (R) Z)
(2.1)

r X

Ix (R) YI

I(X(R) Y)(R)ZI
[XlxlYl., ,IYIx

IX(R) YI -I; IY(R)XI.
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(@, r) admits sections if for all X, Y e D and all x e IX there exists
0e Y, Z

Let C be a D-category in the sense of Kelly [4, p. 21]. We recall that this
means that there is a functor

(-,-) :Cp X C--D

with the property that (X, Y) IX, Y for all X, Y C. If S C -- Dis a functor let
Es ZY Z,

be the function .such that

(2.2) EsXY(f, x)

Let h be a sub-category of C. S is A-valuable if for every X e h and every
Y e C there exists a (necessarily unique) morphism

esXY e X, Y) (R) SX,
such that

(2.3) lesXY! r Es XY.
S is X-constructive if es XX is an identification. We denote by V the full
full sub-category of (C, D) whose objects are A-valuable functors.
For the remainder of this section let X be

denote the functor (X, -) (3 - D. Notice that

EaZY: IZ,
is simply the composition function. It will be assumed that f is A-valuable.
Now let W be the category of valuable X-germs: that is to say the full sub-
category of (X, D) whose obiects are X-valuable functors. Let R V - Wbe defined by restriction. If G e W, let

LG (X, -) @ GX C D

and set aSY esXY. We have

THEOREM 2.4. If r is surjective or if (R), r) admits sections then L is afunctor
from W to V and a LR ----> 1 is a natural transformation. Moreover if indeed
(@, r) admits sections, L is a left adjoint of R.

Proof. To see that LG e , set

eaZY (eaZY (R) iax) ’.

Then ifge Z, Y I,fe IX, Z and x e GZlwe have

while
e,.o ZYI r(g, r(f, x)) (I ea ZYI r(g, f), x) r(g f, x),

E,aZY(g, r(f, x) g (R) iaxl r(f, x) r(g f, x).
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Hence 2.3 is satisfied if r is surjective. On the other hand if ((8), r) admits
sections then the calculation shows that e,a ZY. Og r LGg r which
implies that eLa ZY LGg. Hence for all x’ X, Z) (R) GX we have

ELGZY(g, x’) LGg [(x’) eraZY. I(x’) eraZY[, r(g, x’),

verifying 2.3. Given u W, u’G H we understand that (Lu)Y
i(.r) @ uX and the functorial relations for L clearly hold. Now we have
LRSY (X, Y) (R) SX. Thus we must show that for every S, TV,
u S -- T and y el Y, Z the following diagrams are commutative"

It is sufficient to prove that

esXZ tlg (R) is:r r Sg esXY r
and that

uYI. esXY[.r [erZYl. i(x.r)(R)uXI.r,

however the first equality simply expresses the functorial property of S and
the second the naturality of u.
Now suppose that @, r) admits sections and let

#G #GX e GX, X, X) @ GX

be the section such that #GX I(x) r(ix x) (x GX I, G W). Then
if g e IX, Y , x e GX we have

aLGY L#GY r(g, x) eraZY r(g, r(ix, x)) r(g, x)

which implies that aL. L# ir. Finally if x ISXI we have

R.Sl I.SXI x) l(x) x

which implies Ra. R i, completing the proof.
Combining 2.4 and 0.1 we have

THEOREM 2.5. If (@, r) admits sectis then S is an X-functor in V g
and ly if aS e LRS, S is a natural equivalence.

If G e W, let eG ea XX e RLGX, GX . G is a cstructive X-germ if
eG is an identification.

LEMMA 2.6. e RL 1 is a natural transformati,

eR Ra RLR R,

eGX and LeGX are epic. If @, r) admits sectis, or if r is rjective and G is
cstructive, then eG is a co-equalizer of RLeG and eRLG.
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Proof. The naturality of e follows by a special case of an argument already
given and clearly eR Ra. Suppose that u, v e lGX, W are such that
u eG v eG. Then ifxeIGXI,

ui(x) u] leG1 .r(ix, x) vi eel .r(i:r, x) Iv
so that u v. Thus eGX is epic. Now suppose that

u, vel (X,X) (R) GX, WI
are such that u.LeGX v.LeGX. Then if gelX, X and x
we have

u r(g, x) u r(g, eeX r(ix, x)) u ieGXI, r(g,r(ix,x))

v ]LeGXI r(g, r(i:r, x)) iv i. r(g, x),

which implies that u v and hence that LeGX is epic. Let

wel (X,X) (R) GX, WI
be such that w RLeG w eRLG. If (R), r) admits sections then w GX
is the necessarily unique morphism/c such that/c eG w. Alternatively
if r is surjective and G is constructive, let

ex!
be such that k’(x) wl. r(ix, x) x ex I). Then by a calculation
similar to one already performed we find that k’ eG r w[ r and
hence /c’. eGI w I. Since eG is an identification there exists /c with
kl k’ and having the desired property.
Combining 2.6 and 0.4 we obtain

THEOREM 2.7. If S e V and aS is a co-equalizer of LRaS and aLRS then
S is an X-functor in V. If S is an X-functor in V, if aSX is an identification
and if r is surjective then aS is a co-equalizer of LRaS and aLRS.

As an application of 2.7 we have

THEOREM 2.8. If (r, O) admits sections then 2 is an X-functor in V.

For it suffices to show that a2Y ea XY is a co-equalizer of LRaY and
aLRI2Y Y C). Accordingly, suppose that

(x, Y) (R) (x,x),zl

is such that w. LRaY w. aLR2Y and let

O e I(X, Y), (X, Y) (R) (X,

be the section such that 0 I(g) r<g, Then if g e X, Y I, f e

we have

w.O.eaXY[.r(g,f) [w.Ol(g.f)
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wi r(g. f, ix) [wl aLRYi r(g, r(f, ix))

wi LRaY[ r(g, r(f, ix)) [w[ r(g, f)
which implies that w 0 ea XY w. On the other hand if ./ e (X, Y), Z
is such that /c.eaXY w we have I/i(g) I/.eaXY[ .r(g, ix)
wl. r(g, ix) Iv. 0 I(g), so that/ w. 0, which completes the proof.
If G e W, one may well ask" under what circumstances will there exist an

X-functor S such that RS G? Suppose that D is right-complete, and let
wY e lLY, TY be a co-equalizer of LeGY, aLGY e iLRLGY, LGY for each
Y e C. It is easy to see that a mapping function can be chosen in a unique
way to make T a functor from C to D and w a natural transformatibn. If (R)
preserves co-equalizers (and D is right-complete) a standard argument shows
that V is right-complete, so that we have T e V. Suppose that (R), r) admits
sections, or that r is surjective and G is constructive. We have

THEOREM 2.9. IfA X or if (R) preserves co-equalizers then T is an X-functor
in V and there exists a natural equivalence v RT =-+ G.

Proof. By 2.6, both eGX and wX are co-equalizers of RLeGX LeGX
and eRLGX aLGX. Hence there is an equivalence v el TX, GX such
that eGX v. wX. T is certainly X-valuable for we may set

erXY wY. (i(x.r) @ v).

Then if x e X, X) (R) GX !, g e X, Y I, we have

[er XY r(g, wX

wYi r(g, Iv wX I(x))

[wY[. r(g, eGX I(x)) wYl. LeGYI r(g, x)

wYI aLGYI r(g, x) wYI LGg I(x) Tg[ wX I(x).

Since wX v-1 eGX is surjective, 2.3 is satisfied with S T and Z X.
It follows easily that v is a natural equivalence RT- G, that er XY wY. Lv
and hence in view of the doubly-commutative diagram

LRLRT LRLv LRLG
LRoT LeRT ILeg<LRT <LG

LRT Lv__ LG

that aT is a co-equalizer of LRaT and aLRT.
X-functor.

2.7 implies that T is an

Suppose that A X or that (R) preserves co-equalizers.
and 2.9 yields the following corollary.

Combining 2.7

COROLLARY 2.10. If (R), r) admits sections there is a one-to-one correspond-
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ence between the family of natural equivalence classes of valuable X-germs and the
family of natural equivalence classes of X-functors in V. If r is surjective then
there is a one-to-one correspondence between the family of natural equivalence
classes of constructive X-germs and the family of natural equivalence classes of
X-constructive X-functors in V.

3. A-modules
In the category of modulesM Nix, the tensor product (R), r) is concrete"

r denotes the function (a, b) --* a (R) b. A functor S NI -- M is A-linear if
for allA, B eNI, all f, fe A, B Hom (A, B) and all X, eA we
have

It follows easily that S is M-valuable if and only if S is A-linear. Let V be
the full subcategory of M-valuable functors and let X e M. Then the bilin-
earity of composition implies that t (X, Hom (X, belongs
to V. Since ((R), r) admits sections, 2.5 states that S is an X-functor in
V if and only if aS (X, (R) SX - S is a natural equivalence. One of the
assertions of Theorem 0.2 is thus proved. 2.8 implies that t is an X-functor
in V. If we now let T (X, (R) N it is easily verified that aTY is equiva-
lent to aY (R) i and that LRaTY and aLRTY are equivalent to
LRaY (R) i and aLRY (R) i respectively. It follows that aTY is a co-
equalizer of LRaTY and aLRTY and hence that T is an X-functor, which
completes the proof of 0.2.
LetCeM, n_> landlet

O- K,,--> P,--> ...--P--P-C-O
be an exact sequence in which P is projective (1

_
i

_
n). We have

THEOREM 3.1. Ext C, -) is a K,-functor in V.

Proof. In view of 0.2 we need only establish a natural isomorphism

(3.2) Ext

There is certainly a natural isomorphism Ext" (C, Y) Ext (K._, Y)
[6, p. 102] and so we need only consider the case n 1. Accordingly let
0 -- K- P -- C- 0 be exact with P projective and let S denote Ext (C, ).
Then LRSY (K, Y) (R) SK and we find easily that aSY(a @ E) aE
(a e (K, Y), E e SK), where aE denotes the composite extension obtained
by completing the diagram

E" O---> K--> M--) C-. O

[a
E: 0--- Y >? >6’--*0.
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(For details see [6, p. 66].) In view of 2.7 it will be sufficient to verify that
SY is the difference cokernel of LRaSY and aLRSY. Now aSY is certainly
an epimorphism, for P is projective and hence the following diagram can
always be completed:

F: O--. K x- P--- C---- O

v 9
O--. Y--- N---. C--- O.

Thus we have only to prove that if ’ (1

_
i

_
n)aiE O, ae (K, Y)

then
(1

_
i

_
n)ai (R) E (aLRSY- LRaSY)(t),

where e (K, Y) (R) ((K, K) (R) SK). Let b e (K, K) be obtained by com-
pleting the following diagram 1

_
i

_
n)"

F: 0--*KX- P --.C--.0

bi

E O---* K--- M -o C-- O.

Then aE 0 implies that there exists h e (P, Y) such that
hX a.b. Let K denote the direct sum of ncopies of K and

e (K, K) the projection onto the ith summand (1

_
i

_
n). P being

projective there exists g e (P, K) such that a. ) .g h, for without
loss of generality we may assume that a. r e K, Y) is an epimorphism.
If we now let

’{a,(R) ((b- r,.g. X) (R)F},

the desired equality is easily verified.
We conclude this section with the observation that multifunctors in M of

whatever variance may be studied. Thus for example a functor contravariant
in one argument and covariant in another may be regarded as a covariant
functor from M" M to M and if we set

((X1, X.), (Y1, Y)) Hom (Y, X1) Hom (X., Y),

we convert Mp X M into an M-category.

4. Spaces
The categories T and Tb are certainly concrete. We have in fact a com-

mutative diagram of forgetful functors"

Tb F T

II \\, ///Jl.
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[1, 1.2] shows that a morphism of T is an identification if and only if it is an
identification map in the usual sense and the following lemma is easily proved.

LEMMA 4.1. f e Tb is an identification if and only if Ff is an identification
inT.

In T or Tb let (X, Y) denote IX, Y enriched with the compact-open
topology. Specifically, when appropriate, the base point of (X, Y) is the
constant map at the base point of Y. Many different concrete products
offer themselves, however let (, r) denote the topological product in T and
the based topological product in Tb, r being the identity function. Then, r) admits sections in T but not in Tb. In Tb the smash product is con-
crete and it admits sections but it imposes severe restrictions on the valuable
functors.

Let x denote the sub-category of T or of Tb whose spaces are locally-
compact and Hausdorff and let X e T or Tb. We have

LEMMA 4.2. X, --) is A-valuable relative to X, r ).

Proof. The composition function 0 (Z, Y) X (X, Z) -- (X, Y) respects
base points, thus we have only to prove that 0 is continuous provided that Z is
locally compact and Hausdorff. Given U (open) Y and C (compact) X
it will be sufficient to show that 0-1[C, U] is open, where

[C, U] {fe IX, Y If(C) V}.

Suppose (g, h) e -1[C, U] so thatg, h(C) U. If zeh(C) let V(z) be an
open set such that zeV(z) and C1 (V(z)) is compact (C1 closure).
Since Z is regular and g(z) e U, we may also require that C1 (V(z) g-(U).
But h(C) is compact, hence there exist zi e h(C) (1 <_ i _< n) such that
h(C) (1 <_ i <_ n)V(zi) V(say). Then

C1 (V) [J(1 _< i _< n) C1 (V(z))

is compact and since

(g, h) [Cl (V), V] [C, V] O--[C, V],
0 is continuous.
Let C denote the category of n-tuples of members of the category C and

letXe denote (X1,X, ...,Xn) whereXie(, 1 _< i _< n. ThenT"
becomes a T-category if we define (X, Y) to be the topological product
IX (1 _< i _< n)(xi, Yi). A similar definition provides Tb" with the struc-
ture of a Tb-category. The product of continuous functions being con-
tinuous we have

LEMMA 4.3. The functor X, --) from T to T or from Tb" to Tb is tk’*-valu-
able.

Let P e Tb be a discrete, space with exactly two points" p and the base
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point (1

_
i

_
n), and let V be the category of P-valuable functors from

Tb to Tb. The remainder of this paper is devoted to the study of the P-func-
tors in V. In view of 2.10 the interest centers on the constructiveP-germs.
We have

LEMMA 4.4. Every functor G" P -- Tb is P-constructive.

Proof. (P, P) is a discrete semi-group with ideatity element generated
by the n commuting idempotents , where

((x)). xj (ji)

(j i)
(xeP).

(P, P) GP consists of 2 copies of GP each of which is mapped con-
tinuously by Ee, one copy being mapped identically. Thus

eG P, P) X GP, GP

is well defined and is moreover an identification.
A morphism f e Tb is a projection if f. f f. We remark that a functor

G P - Tb can be regarded simply as a pair (W, f) where W GP and f is
an n-tuple of commuCing projections f Gi (1

_
i n). The pairs

(W, f) and (W’, f’) are equivalent if there exists an equivalence h
such that h. f f h (1

_
i

_
n). 2.10 and 4.4 now imply

THEOREM 4.5. There is a one-to-one correspondence between the family of
equivalence classes of pairs (W, f) and the family of natural equivalence classes
of P-functors in V.

If (W, f) is a pair, let us construct the P-functor T (determined up to nat-
ural equivalence) corresponding to (W, f). We first observe that the functor
t (P, -) can be replaced by the based topological product functor
II Tb -- Tb, for there is natural equivalence ) (P, -) -- II given by
the rule

)Y(g) (g(p), g(p), g(p,) (g e (P, Y) ).

Then if G is the P-germ corresponding to W, f), LGYis equivalent to IIY W
and LRLGY to IIY (P, P) X W. Moreover LeGY and aLGY are de-
scribed by the rules

LeGY(y, x, w) (y, eG(x, w)

aLGY(y, x, w) (y x, w).

Now y - y is simply the projection IIY -- IIY which replaces the
i coordinate by the basepoint. Since (P, P) is generated by (1

_
i

_
n),

it follows that vY e iIIY W, TYI will be a co-equalizer of LeGY and
aLGY if vY is the quotient map and TY the space obtained from IIY X W
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by performing the identification

(4.6) (r(y), w) (y,f,(w)) (y IIY, w W, i 1, 2, n).

It may now be verified that the based topological product II, the smash
Y1 Y, the wedge functors (thin, fat or indifferent), various ioin, suspen-
sion and cone functors are all P-functors since they are (or are naturally
equivalent to) functors obtained by the above construction. To test whether
a given S Tb --* Tb is a P-functor one simply chooses W SP, f S
(1 _< i _< n) and examines whether S is naturally equivalent to the result-
ing T.
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