CO-EQUALIZERS AND FUNCTORS

BY
 K. A. Hardie
 O. Introduction

If X and Y are objects of a category \mathbf{C}, let $|X, Y|$ denote their associated morphism set. Similarly if S and T are functors let $|S, T|$ denote the class (not necessarily a set) of natural transformations from S to T. Unless otherwise stated all functors will be assumed to be covariant. Let $R: \mathrm{V} \rightarrow \mathrm{W}$ be a functor. Then $X \in \mathrm{~V}$ is a (left) R-object if for every $Y \in \mathrm{~V}$ the mapping function

$$
R:|X, Y| \rightarrow|R X, R Y|
$$

is a bijection. ${ }^{1}$ We shall find in various circumstances certain conditions some necessary others sufficient for X to be an R-object. It is clear that such information could be of interest, however our objective is to consider the case $\mathbf{V}=\mathbf{V}(\mathbf{C}, \mathbf{D})$ a subcategory of the functor category ($\mathbf{C}, \mathbf{D})$ and $\mathbf{W}=\mathbf{W}(\mathbf{A}, \mathbf{D})$ a subcategory of (\mathbf{A}, D) in which $R: \mathrm{V} \rightarrow \mathrm{W}$ is induced by a functor $J: \mathbf{A} \rightarrow \mathbf{C}$. Then to say that $S \in \mathrm{~V}$ is an R-object means that for every $T \epsilon \mathrm{~V}$ and every $u^{\prime} \epsilon|S J, T J|$ there exists a unique $u \epsilon|S, T|$ such that $u J=u^{\prime}$. The situation described arises frequently in connection with "uniqueness theorems". Thus to cite one celebrated example, if V is the category of homology theories on the category \mathbf{C} of triangulable pairs and pair maps and if J is the functor which injects the subcategory "generated by" a single point then Eilenberg and Steenrod proved [3] that each homology theory S is an R-object in V .

In this paper we shall be chiefly concerned with the case $\mathbf{A}=\mathbf{X}$, the subcategory of \mathbf{C} consisting of a single object X and its \mathbf{C}-endomorphisms, J being the injection functor and we shall describe an R-object $S \in \mathrm{~V}$ as an X-functor in V. It follows that the X-functors are determined (up to natural equivalence in V) by their action on \mathbf{X}.

In general our basic assumption is that there exists a functor $L: \mathrm{W} \rightarrow \mathrm{V}$ and a natural transformation $\alpha: L R \rightarrow 1 . \quad L$ is sometimes (but not always) a left adjoint of R and then we find:

Theorem 0.1. If L is a left adjoint of R then X is an R-object if and only if $\alpha X \epsilon|L R X, X|$ is an isomorphism.

One case in which 0.1 is involved is the following. Let $\mathbf{M}=\mathbf{M}_{\Delta}$ denote the

[^0]category of modules over a commutative ring Λ with unit. Let $\mathbf{V}=\mathbf{V}(\mathbf{M}, \mathbf{M})$ denote the subcategory of Λ-linear functors and for a given $X \in \mathbf{M}$ let the objects of \mathbf{W} be the Λ-linear functors from \mathbf{X} to \mathbf{M}_{Λ}. If $G \in \mathbf{W}$, set
$$
L G=\operatorname{Hom}_{\Lambda}(X,-) \otimes_{\Lambda} G X
$$

Then

$$
\alpha S Y \epsilon\left|\operatorname{Hom}_{\Delta}(X, Y) \otimes_{\Lambda} S X, S Y\right|
$$

may be defined by lifting the evaluation of the mapping function of S. It turns out that L is a left adjoint of R and we shall prove

Theorem 0.2. S is an X-functor in V if and only if S is naturally equivalent to $\operatorname{Hom}_{\Lambda}(X,-) \otimes_{\Lambda} N$ for some Λ-module N.
0.2 . does not destroy the interest in X-functors: one would still wish to find a suitable X for a given S. For example we shall prove that Ext ${ }^{n}(C,-)$ is a K_{n}-functor if

$$
0 \rightarrow K_{n} \rightarrow P_{1} \rightarrow P_{2} \rightarrow \cdots \rightarrow P_{n} \rightarrow C \rightarrow 0
$$

is an exact sequence such that P_{i} is projective ($1 \leq i \leq n$).
A result similar to 0.2 is available in the category T of topological spaces and maps, but in the category Tb of based spaces and based maps the analogue of L is not a left adjoint of R. What is to hand is a natural transformation $e: R L \rightarrow 1$ such that

$$
\begin{equation*}
e R=R \alpha \epsilon|R L R, R| \tag{0.3}
\end{equation*}
$$

and we still have a commutative diagram

It now becomes important to consider co-equalizers of $L R \alpha X$ and $\alpha L R X$. We shall prove (in general)

Theorem 0.4. If αX is a co-equalizer of $L R \alpha X$ and $\alpha L R X$ and if $R \alpha X$ is epic then X is an R-object. If X is an R-object, if $R \alpha X$ is a co-equalizer of $R L R \alpha X$ and $R \alpha L R X$, and if $\alpha L R X$ or $L R \alpha X$ is epic then αX is a co-equalizer of $L R \alpha X$ and $\alpha L R X$.

Section 2 introduces the concept of a valuable functor for categories with a suitably enriched structure and Theorems 0.1 and 0.4 are applied. In a final section we show that the based topological product, smash, join, wedge, suspension and cone functors are all P-functors, where P is a 0 -sphere (or an n-tuple of 0 -spheres). I hope to consider in a subsequent paper the homotopy theory of P-functors. I am grateful to the referee for making a number of
helpful suggestions and wish also to acknowledge several interesting conversations with Kenneth Hughes.

1. R [-objects

In this section will be proved Theorems 0.1 and 0.4. For details concerning co-equalizers the reader is referred to [5] and [2]. Recall L is a left adjoint of R if there exist $\alpha \epsilon|L R, 1|, \beta \epsilon|1, R L|$ such that the compositions

$$
L \xrightarrow{L \beta} L R L \quad \xrightarrow{\alpha L} L, \quad R \xrightarrow{\beta R} R L R \xrightarrow{R \alpha} R
$$

are the identies i_{L} and i_{R} respectively.
Proof of 0.1. Suppose that X is an R-object. Then there exists a unique $v \epsilon|X, L R X|$ such that $R v=\beta R X$. Then $R(\alpha X \cdot \dot{v})=R \alpha X \cdot \beta R X=$ $i_{R X}=R\left(i_{X}\right)$ which implies that $\alpha X . v=i_{X}$ and we have

$$
v \cdot \alpha X=\alpha L R X . L R v=\alpha L R X \cdot L \beta R X=i_{L R X}
$$

as required. Conversely, suppose that αX is an isomorphism and let $u \in|R X, R Y|$. Then

$$
v=\alpha Y \cdot L u \cdot \alpha X^{-1} \epsilon|X, Y|
$$

is such that $R v=R \alpha Y . R L u . R \alpha X^{-1}=u . R \alpha X . R \alpha X^{-1}=u$. Moreover for any $w \in|X, Y|$ such that $R w=u$, we have $w . \alpha X=\alpha Y . L R w=\alpha Y . L u$ so that $w=v$.

Remark 1.1. We have not used the full force of the equality $\alpha L . L \beta=i_{L}$. It would have sufficed to assume the existence of $\gamma \epsilon|R, R L R|$ such that $R \alpha . \gamma=i_{R}$ and $\alpha L R . L \gamma=i_{L R}$.

Proof of 0.4. Suppose that $R \alpha X$ is epic and that αX is a co-equalizer of $L R \alpha X$ and $\alpha L R X$ and let $u \epsilon|R X, R Y|$. Then we have a doubly-commutative diagram

That is to say we have

$$
L R \alpha Y . L R L u=L u . L R \alpha X \quad \text { and } \quad \alpha L R Y . L R L u=L u . \alpha L R X
$$

Since $\alpha Y . \alpha L R Y=\alpha Y . L R \alpha Y$ we find easily that $\alpha Y . L u \cdot \alpha L R X=$ $\alpha Y . L u . L R \alpha X$. Hence there exists a unique $w \in|X, Y|$ such that $w . \alpha X=\alpha Y . L u$. Then we have

$$
R w \cdot R \alpha X=R \alpha Y . R L u=u \cdot R \alpha X
$$

which implies $R w=u$. Moreover if $R v=u$ then

$$
v \cdot \alpha X=\alpha Y \cdot L R v=\alpha Y \cdot L u
$$

so that $v=w$. Conversely let X be an R-object and let $w \epsilon|L R X, Y|$ be such that $w . \alpha L R X=w . L R \alpha X$. Then $R w . R \alpha L R X=R w . R L R \alpha X$ and if $R \alpha X$ is a co-equalizer of $\operatorname{RLR} \alpha X$ and $R \alpha L R X$ there exists a unique $u \epsilon|R X, R Y|$ such that $u . R \alpha X=R w$. Let $v \in|X, Y|$ be the unique morphism such that. $R v=u$. Then

$$
\begin{array}{r}
w \cdot \alpha L R X=\alpha Y . L R w=\alpha Y . L R v \cdot L R \alpha X=\alpha Y \cdot L R \alpha Y \cdot L R L R v \\
=\alpha Y \cdot \alpha L R Y \cdot L R L R v=\alpha Y \cdot L R v \cdot \alpha L R X .
\end{array}
$$

If $\alpha L R X$ is epic it follows that $w=\alpha Y . L u$ and a similar calculation yields the same result if $L R \alpha_{X} X$ is epic. Moreover if $u^{\prime} . \alpha X=w$ then $R u^{\prime} . R \alpha X=$ $R w=R u . R \alpha X$. Hence $R u^{\prime}=R u$ which implies $u^{\prime}=u$, completing the proof.

2. Valuable functors

Let \mathbf{E} denote the category of sets and functions. We recall that a concrete category, in the sense of Kelly [4], is a category \mathbf{D} and a faithful functor from D to E denoted $X \rightarrow|X|, f \rightarrow|f|$. "Faithful" means that $|f|=|g|$ implies that $f=g$. If \mathbf{D} is concrete then $f \epsilon|X, Y|$ is an identification if $|f|:|X| \rightarrow|Y|$ is onto and if, given any function $k:|Y| \rightarrow|Z|$ and any $h \epsilon|X, Z|$ such that $|h|=k \cdot|f|$, there exists $g \epsilon|Y, Z|$ such that $|g|=k$ (and $g \cdot f=h$). Note that for every object X of \mathbf{D} the identity morphism i_{X} is an identification.

A concrete product (\otimes, r) in a concrete category \mathbf{D} is a bifunctor

$$
(X, Y) \rightarrow X \otimes Y, \quad(f, g) \rightarrow f \otimes g
$$

and a natural transformation

$$
r:|X| \times|Y| \rightarrow|X \otimes Y|
$$

satisfying the condition $|h| . r=|k| . r$ implies $h=k$. We also require that (\otimes, r) should admit natural associativity and commutativity isomorphisms γ and τ compatible with the associativity and commutativity bijections c and t in E. That is to say the following diagrams are commutative:

(\otimes, r) admits sections if for all $X, Y \in \mathrm{D}$ and all $x \epsilon|X|$ there exists $\theta_{x} \epsilon|Y, X \otimes Y|$ such that $\left|\theta_{x}\right|(y)=r(x, y)(y \epsilon|Y|)$.

Let \mathbf{C} be a \mathbf{D}-category in the sense of Kelly [4, p. 21]. We recall that this means that there is a functor

$$
(-,-): \mathbf{C o p}^{\mathrm{op}} \times \mathbf{C} \rightarrow \mathbf{D}
$$

with the property that $|(X, Y)|=|X, Y|$ for all $X, Y \in \mathbf{C} . \quad$ If $S: \mathbf{C} \rightarrow \mathbf{D}$ is a functor let

$$
E_{s} X Y:|X, Y| \times|S X| \rightarrow|S Y|
$$

be the function such that

$$
\begin{equation*}
E_{S} X Y(f, x)=|S f|(x) \quad(x \epsilon|S X|, f \epsilon|X, Y|) \tag{2.2}
\end{equation*}
$$

Let \mathbf{A} be a sub-category of \mathbf{C}. S is \mathbf{A}-valuable if for every $X \in \mathbf{A}$ and every $Y \in \mathbf{C}$ there exists a (necessarily unique) morphism

$$
e_{S} X Y \in|(X, Y) \otimes S X, S Y|
$$

such that

$$
\begin{equation*}
\left|e_{S} X Y\right| . r=E_{S} X Y \tag{2.3}
\end{equation*}
$$

S is \mathbf{X}-constructive if $e_{S} X X$ is an identification. We denote by V the full full sub-category of (C, D) whose objects are A-valuable functors.

For the remainder of this section let X be a fixed object of \mathbf{A} and let Ω denote the functor $(X,-): \mathbf{C} \rightarrow \mathrm{D}$. Notice that

$$
E_{\Omega} Z Y:|Z, Y| \times|X, Z| \rightarrow|X, Y|
$$

is simply the composition function. It will be assumed that Ω is \mathbf{A}-valuable. Now let W be the category of valuable X-germs: that is to say the full subcategory of (X, D) whose objects are \mathbf{X}-valuable functors. Let $R: \mathbf{V} \rightarrow \mathrm{W}$ be defined by restriction. If $G \in \mathbb{W}$, let

$$
L G=(X,-) \otimes G X: \mathbf{C} \rightarrow \mathbf{D}
$$

and set $\alpha S Y=e_{B} X Y$. We have
Theorem 2.4. If r is surjective or if (\otimes, r) admits sections then L is a functor from W to V and $\alpha: L R \rightarrow 1$ is a natural transformation. Moreover if indeed (\otimes, r) admits sections, L is a left adjoint of R.

Proof. To see that $L G \in V$, set

$$
e_{L G} Z Y=\left(e_{\Omega} Z Y \otimes i_{G X}\right) \cdot \gamma
$$

Then if $g \epsilon|Z, Y|, f \epsilon|X, Z|$ and $x \epsilon|G X|$ we have

$$
\left|e_{L G} Z Y\right| \cdot r(g, r(f, x))=\left(\left|e_{\Omega} Z Y\right| \cdot r(g, f), x\right)=r(g \cdot f, x)
$$

while

$$
E_{L G} Z Y(g, r(f, x))=\left|\Omega g \otimes i_{G X}\right| \cdot r(f, x)=r(g \cdot f, x)
$$

Hence 2.3 is satisfied if r is surjective. On the other hand if (\otimes, r) admits sections then the calculation shows that $\left|e_{L G} Z Y . \theta_{g}\right| . r=|L G g| . r$ which implies that $e_{L G} Z Y . \theta_{g}=L G g$. Hence for all $x^{\prime} \epsilon|(X, Z) \otimes G X|$ we have $E_{L G} Z Y\left(g, x^{\prime}\right)=|L G g|\left(x^{\prime}\right)=\left|e_{L G} Z Y . \theta_{g}\right|\left(x^{\prime}\right)=\left|e_{L G} Z Y\right| \cdot r\left(g, x^{\prime}\right)$, verifying 2.3. Given $u \in \mathbf{W}, u: G \rightarrow H$ we understand that $(L u) Y=$ $i_{(X, Y)} \otimes u X$ and the functorial relations for L clearly hold. Now we have $L R S Y=(X, Y) \otimes S X$. Thus we must show that for every $S, T \in \mathrm{~V}$, $u: S \rightarrow T$ and $y \epsilon|Y, Z|$ the following diagrams are commutative:

It is sufficient to prove that

$$
\left|e_{S} X Z\right| \cdot\left|\Omega g \otimes i_{S X}\right| \cdot r=|S g| \cdot\left|e_{S} X Y\right| \cdot r
$$

and that

$$
|u Y| \cdot\left|e_{s} X Y\right| \cdot r=\left|e_{T} X Y\right| \cdot\left|i_{(X, Y)} \otimes u X\right| \cdot r
$$

however the first equality simply expresses the functorial property of S and the second the naturality of u.

Now suppose that ($\otimes, r)$ admits sections and let

$$
\beta G=\beta G X \epsilon|G X,(X, X) \otimes G X|
$$

be the section such that $|\beta G X|(x)=r\left(i_{X}, x\right)(x \in|G X|, G \in \mathbb{W})$. Then if $g \epsilon|X, Y|, x \in|G X|$ we have

$$
|\alpha L G Y| \cdot|L \beta G Y| \cdot r(g, x)=\left|e_{L G} X Y\right| \cdot r\left(g, r\left(i_{X}, x\right)\right)=r(g, x)
$$

which implies that $\alpha L . L \beta=i_{L}$. Finally if $x \epsilon|S X|$ we have

$$
|R \alpha S| \cdot|\beta R S|(x)=|\alpha S X| \cdot r\left(i_{\bar{X}}, x\right)=\left|S i_{\bar{x}}\right|(x)=x
$$

which implies $R \alpha \cdot \beta R=i_{R}$, completing the proof.
Combining 2.4 and 0.1 we have
Theorem 2.5. If (\otimes, r) admits sections then S is an X-functor in \mathbf{V} if and only if $\alpha S \epsilon|L R S, S|$ is a natural equivalence.

If $G \in \mathrm{~W}$, let $e G=e_{L G} X X \in|R L G X, G X| . \quad G$ is a constructive X-germ if $e G$ is an identification.

Lemma 2.6. $e: R L \rightarrow 1$ is a natural transformation,

$$
e R=R \alpha: R L R \rightarrow R
$$

$e G X$ and LeGX are epic. If (\otimes, r) admits sections, or if r is surjective and G is constructive, then eG is a co-equalizer of RLeG and eRLG.

Proof. The naturality of e follows by a special case of an argument already given and clearly $e R=R \alpha$. Suppose that $u, v \in|G X, W|$ are such that $u \cdot e G=v \cdot e G$. Then if $x \epsilon|G X|$,

$$
|u|(x)=|u| \cdot|e G| \cdot r\left(i_{\bar{x}}, x\right)=|v| \cdot|e G| \cdot r\left(i_{\bar{x}}, x\right)=|v|(x)
$$

so that $u=v$. Thus $e G X$ is epic. Now suppose that

$$
u, v \in|(X, X) \otimes G X, W|
$$

are such that $u . L e G X=v . L e G X$. Then if $g \epsilon|X, X|$ and $x \epsilon|G X|$ we have

$$
\begin{aligned}
|u| \cdot r(g, x) & =|u| \cdot r\left(g,|e G X| \cdot r\left(i_{X}, x\right)\right)=|u| \cdot|L e G X| \cdot r\left(g, r\left(i_{X}, x\right)\right) \\
& =|v| \cdot|L e G X| \cdot r\left(g, r\left(i_{X}, x\right)\right)=|v| \cdot r(g, x)
\end{aligned}
$$

which implies that $u=v$ and hence that LeGX is epic. Let

$$
w \epsilon|(X, X) \otimes G X, W|
$$

be such that $w . R L e G=w . e R L G$. If (\otimes, r) admits sections then $w . \beta G X$ is the necessarily unique morphism k such that $k . e G=w$. Alternatively if r is surjective and G is constructive, let

$$
k^{\prime}:|G X| \rightarrow|W|
$$

be such that $k^{\prime}(x)=|w| \cdot r\left(i_{x}, x\right)(x \epsilon|G X|)$. Then by a calculation similar to one already performed we find that $k^{\prime} .|e G| . r=|w| . r$ and hence $k^{\prime} .|e G|=|w|$. Since $e G$ is an identification there exists k with $|k|=k^{\prime}$ and having the desired property.

Combining 2.6 and 0.4 we obtain
Theorem 2.7. If $S \in \mathrm{~V}$ and αS is a co-equalizer of $L R \alpha S$ and $\alpha L R S$ then S is an X-functor in V . If S is an X-functor in V , if $\alpha S X$ is an identification and if r is surjective then αS is a co-equalizer of LR αS and $\alpha L R S$.

As an application of 2.7 we have
Theorem 2.8. If (r, θ) admits sections then Ω is an X-functor in \mathbf{V}.
For it suffices to show that $\alpha \Omega Y=e_{\Omega} X Y$ is a co-equalizer of $L R \alpha \Omega Y$ and $\alpha L R \Omega Y(Y \in \mathbf{C})$. Accordingly, suppose that

$$
w \in|(X, Y) \otimes(X, X), Z|
$$

is such that $w \cdot L R \alpha \Omega Y=w \cdot \alpha L R \Omega Y$ and let

$$
\theta \in|(X, Y),(X, Y) \otimes(X, X)|
$$

be the section such that $|\theta|(g)=r\left(g, i_{X}\right)$. Then if $g \epsilon|X, Y|, f \epsilon|X, X|$ we have

$$
\left|w \cdot \theta \cdot e_{\Omega} X Y\right| \cdot r(g, f)=|w \cdot \theta|(g \cdot \mathrm{f})
$$

$$
\begin{aligned}
& =|w| \cdot r\left(g \cdot f, i_{X}\right)=|w| \cdot|\alpha L R \Omega Y| \cdot r\left(g, r\left(f, i_{X}\right)\right) \\
& =|w| \cdot|L R \alpha \Omega Y| \cdot r\left(g, r\left(f, i_{x}\right)\right)=|w| \cdot r(g, f)
\end{aligned}
$$

which implies that $w \cdot \theta \cdot e_{\Omega} X Y=w$. On the other hand if $k \in|(X, Y), Z|$ is such that $k . e_{\Omega} X Y=w$ we have $|k|(g)=\left|k \cdot e_{\Omega} X Y\right| \cdot r\left(g, i_{X}\right)=$ $|w| \cdot r\left(g, i_{X}\right)=|w \cdot \theta|(g)$, so that $k=w \cdot \theta$, which completes the proof.

If $G \epsilon \mathrm{~W}$, one may well ask: under what circumstances will there exist an X-functor S such that $R S=G$? Suppose that \mathbf{D} is right-complete, and let $w Y \epsilon|L Y, T Y|$ be a co-equalizer of $L e G Y, \alpha L G Y \epsilon|L R L G Y, L G Y|$ for each $Y \in \mathrm{C}$. It is easy to see that a mapping function can be chosen in a unique way to make T a functor from \mathbf{C} to \mathbf{D} and w a natural transformation. If \otimes preserves co-equalizers (and \mathbf{D} is right-complete) a standard argument shows that V is right-complete, so that we have $T \in \mathrm{~V}$. Suppose that ($\otimes, r)$ admits sections, or that r is surjective and G is constructive. We have

Theorem 2.9. If $\mathbf{A}=\mathbf{X}$ or if \otimes preserves co-equalizers then T is an X-functor in V and there exists a natural equivalence $v: R T \rightarrow G$.

Proof. By 2.6, both $e G X$ and $w X$ are co-equalizers of $R L e G X=L e G X$ and $e R L G X=\alpha L G X$. Hence there is an equivalence $v \epsilon|T X, G X|$ such that $e G X=v . w X . \quad T$ is certainly \mathbf{X}-valuable for we may set

$$
e_{T} X Y=w Y \cdot\left(i_{(X, Y)} \otimes v\right)
$$

Then if $x \epsilon|(X, X) \otimes G X|, g \epsilon|X, Y|$, we have

$$
\begin{array}{rl}
\mid e_{T} & X Y \mid \cdot r(g,|w X|(x)) \\
& =|w Y| \cdot r(g,|v \cdot w X|(x)) \\
& =|w Y| \cdot r(g,|e G X|(x))=|w Y| \cdot|L e G Y| \cdot r(g, x) \\
& =|w Y| \cdot|\alpha L G Y| \cdot r(g, x)=|w Y| \cdot|L G g|(x)=|T g| \cdot|w X|(x)
\end{array}
$$

Since $|w X|=\left|v^{-1} . e G X\right|$ is surjective, 2.3 is satisfied with $S=T$ and $Z=X$. It follows easily that v is a natural equivalence $R T \rightarrow G$, that $e_{T} X Y=w Y . L v$ and hence in view of the doubly-commutative diagram

that αT is a co-equalizer of $L R \alpha T$ and $\alpha L R T . \quad 2.7$ implies that T is an X-functor.

Suppose that $\mathbf{A}=\mathbf{X}$ or that \otimes preserves co-equalizers. Combining 2.7 and 2.9 yields the following corollary.

Corollary 2.10. If (\otimes, r) admits sections there is a one-to-one correspond-
ence between the family of natural equivalence classes of valuable \mathbf{X}-germs and the family of natural equivalence classes of X-functors in V . If r is surjective then there is a one-to-one correspondence between the family of natural equivalence classes of constructive \mathbf{X}-germs and the family of natural equivalence classes of \mathbf{X}-constructive X-functors in \mathbf{V}.

3. Λ-modules

In the category of modules $\mathbf{M}=\mathbf{M}_{\boldsymbol{\Lambda}}$, the tensor product (\otimes_{Δ}, r) is concrete: r denotes the function $(a, b) \rightarrow a \otimes b$. A functor $S: \mathbf{M} \rightarrow \mathbf{M}$ is Λ-linear if for all $A, B \in \mathbf{M}$, all $f_{1}, f_{2} \epsilon|A, B|=\left|\operatorname{Hom}_{\Lambda}(A, B)\right|$ and all $\lambda_{1}, \lambda_{2} \in \Lambda$ we have

$$
S\left(\lambda_{1} \cdot f_{1}+\lambda_{2} \cdot f_{2}\right)=\lambda_{1} \cdot S f_{1}+\lambda_{2} \cdot S f_{2} \epsilon|S A, S B|
$$

It follows easily that S is \mathbf{M}-valuable if and only if S is Λ-linear. Let V be the full subcategory of \mathbf{M}-valuable functors and let $X \in \mathbf{M}$. Then the bilinearity of composition implies that $\Omega=(X,-)=\operatorname{Hom}_{\Lambda}(X,-)$ belongs to V. Since (\otimes, r) admits sections, 2.5 states that S is an X-functor in V if and only if $\alpha S:(X,-) \otimes S X \rightarrow S$ is a natural equivalence. One of the assertions of Theorem 0.2 is thus proved. 2.8 implies that Ω is an X-functor in V . If we now let $T=(X,-) \otimes N$ it is easily verified that $\alpha T Y$ is equivalent to $\alpha \Omega Y \otimes i_{N}$ and that $L R \alpha T Y$ and $\alpha L R T Y$ are equivalent to $L R \alpha \Omega Y \otimes i_{N}$ and $\alpha L R \Omega Y \otimes i_{N}$ respectively. It follows that $\alpha T Y$ is a coequalizer of $L R \alpha T Y$ and $\alpha L R T Y$ and hence that T is an X-functor, which completes the proof of 0.2.

Let $C \epsilon \mathbf{M}, n \geq 1$ and let

$$
0 \rightarrow K_{n} \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow C \rightarrow 0
$$

be an exact sequence in which P_{i} is projective $(1 \leq i \leq n)$. We have
Theorem 3.1. $\operatorname{Ext}^{n}(C,-)$ is a K_{n}-functor in V .
Proof. In view of 0.2 we need only establish a natural isomorphism

$$
\begin{equation*}
\operatorname{Ext}^{n}(C, Y) \approx \operatorname{Hom}_{\Lambda}\left(K_{n}, Y\right) \otimes_{\Lambda} \operatorname{Ext}^{n}\left(C, K_{n}\right) \tag{3.2}
\end{equation*}
$$

There is certainly a natural isomorphism $\operatorname{Ext}^{n}(C, Y) \approx \operatorname{Ext}^{1}\left(K_{n-1}, Y\right)$ [6, p. 102] and so we need only consider the case $n=1$. Accordingly let $0 \rightarrow K \rightarrow P \rightarrow C \rightarrow 0$ be exact with P projective and let S denote Ext ${ }^{1}(C,-)$. Then $L R S Y=(K, Y) \otimes S K$ and we find easily that $\alpha S Y(a \otimes E)=a E$ ($a \in(K, Y), E \in S K$), where $a E$ denotes the composite extension obtained by completing the diagram

(For details see [6, p. 66].) In view of 2.7 it will be sufficient to verify that $S Y$ is the difference cokernel of $L R \alpha S Y$ and $\alpha L R S Y$. Now $\alpha S Y$ is certainly an epimorphism, for P is projective and hence the following diagram can always be completed:

Thus we have only to prove that if $\sum(1 \leq i \leq n) a_{i} E_{i}=0, a_{i} \epsilon(K, Y)$ then

$$
\sum(1 \leq i \leq n) a_{i} \otimes E_{i}=(\alpha L R S Y-L R \alpha S Y)(t)
$$

where $t \epsilon(K, Y) \otimes((K, K) \otimes S K)$. Let $b_{i} \epsilon(K, K)$ be obtained by completing the following diagram $(1 \leq i \leq n)$:

Then $\sum a_{i} E_{i}=0$ implies that there exists $h \in(P, Y)$ such that $h \mathbf{X}=\sum a_{i}, b_{i}$. Let $\oplus K$ denote the direct sum of n copies of K and $\pi_{i} \epsilon(\oplus K, K)$ the projection onto the $i^{\text {th }}$ summand $(1 \leq i \leq n) . \quad P$ being projective there exists $g \epsilon(P, \oplus K)$ such that $\left(\sum a_{i} \cdot \pi_{i}\right) . g=h$, for without loss of generality we may assume that $\sum a_{i} \cdot \pi_{i} \epsilon(\oplus K, Y)$ is an epimorphism. If we now let

$$
t=\sum\left\{a_{i} \otimes\left(\left(b_{i}-\pi_{i} \cdot g \cdot \mathbf{X}\right) \otimes F\right\}\right.
$$

the desired equality is easily verified.
We conclude this section with the observation that multifunctiors in \mathbf{M} of whatever variance may be studied. Thus for example a functor contravariant in one argument and covariant in another may be regarded as a covariant functor from $\mathbf{M}^{\text {op }} \times \mathbf{M}$ to \mathbf{M} and if we set

$$
\left(\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)\right)=\operatorname{Hom}_{\Lambda}\left(Y_{1}, X_{1}\right) \oplus \operatorname{Hom}_{\Lambda}\left(X_{2}, Y_{2}\right)
$$

we convert $\mathbf{M}^{\mathrm{op}} \times \mathbf{M}$ into an \mathbf{M}-category.

4. Spaces

The categories \mathbf{T} and $\mathbf{T b}$ are certainly concrete. We have in fact a commutative diagram of forgetful functors:

[1, 1.2] shows that a morphism of T is an identification if and only if it is an identification map in the usual sense and the following lemma is easily proved.

Lemma 4.1. $f \in \mathbf{T b}$ is an identification if and only if Ff is an identification in T .

In T or Tb let (X, Y) denote $|X, Y|$ enriched with the compact-open topology. Specifically, when appropriate, the base point of (X, Y) is the constant map at the base point of Y. Many different concrete products offer themselves, however let (X, r) denote the topological product in T and the based topological product in $\mathbf{T b}, r$ being the identity function. Then (X, r) admits sections in \mathbf{T} but not in $\mathbf{T b}$. In $\mathbf{T b}$ the smash product is concrete and it admits sections but it imposes severe restrictions on the valuable functors.

Let \mathbf{A} denote the sub-category of \mathbf{T} or of $\mathbf{T b}$ whose spaces are locallycompact and Hausdorff and let $X \in \mathbf{T}$ or $\mathbf{T b}$. We have

Lemma 4.2. ($X,-$) is A-valuable relative to (X, r).
Proof. The composition function $\theta:(Z, Y) \times(X, Z) \rightarrow(X, Y)$ respects base points, thus we have only to prove that θ is continuous provided that Z is locally compact and Hausdorff. Given U (open) $\subseteq Y$ and C (compact) $\subseteq X$ it will be sufficient to show that $\theta^{-1}[C, U]$ is open, where

$$
[C, U]=\{f \epsilon|X, Y| \mid f(C) \subseteq U\}
$$

Suppose $(g, h) \in \theta^{-1}[C, U]$ so that $g . h(C) \subseteq U$. If $z \in h(C)$ let $V(z)$ be an open set such that $z \epsilon V(\mathbf{z})$ and $\mathrm{Cl}(V(z))$ is compact ($\mathrm{Cl}=$ closure). Since Z is regular and $g(z) \in U$, we may also require that $\mathrm{Cl}(V(z)) \subseteq g^{-1}(U)$. But $h(C)$ is compact, hence there exist $z_{i} \in h(C)(1 \leq i \leq n)$ such that $h(C) \subseteq U(1 \leq i \leq n) V\left(z_{i}\right)=V($ say $)$. Then

$$
\mathrm{Cl}(V)=\mathrm{U}(1 \leq i \leq n) \mathrm{Cl}\left(V\left(z_{i}\right)\right)
$$

is compact and since

$$
(g, h) \in[\mathrm{Cl}(V), U] \times[C, V] \subseteq \theta^{-1}[C, U]
$$

θ is continuous.
Let \mathbf{C}^{n} denote the category of n-tuples of members of the category \mathbf{C} and let $X \in \mathbf{C}^{n}$ denote ($X_{1}, X_{2}, \cdots, X_{n}$) where $X_{i} \in \mathbf{C}, 1 \leq i \leq n$. Then T^{n} becomes a T-category if we define (X, Y) to be the topological product $\Pi(1 \leq i \leq n)\left(X_{i}, Y_{i}\right)$. A similar definition provides Tb^{n} with the structure of a Tb -category. The product of continuous functions being continuous we have

Lemma 4.3. The functor ($X,-$) from \mathbf{T}^{n} to \mathbf{T} or from $\mathbf{T b}^{n}$ to $\mathbf{T b}$ is \mathbf{A}^{n}-valuable.

Let $P_{i} \in \mathrm{~Tb}$ be a discrete space with exactly two points: p_{i} and the base
point * $(1 \leq i \leq n)$, and let V be the category of \mathbf{P}-valuable functors from Tb^{n} to Tb . The remainder of this paper is devoted to the study of the P-functors in V. In view of 2.10 the interest centers on the constructive \mathbf{P}-germs. We have

Lemma 4.4. Every functor $G: \mathbf{P} \rightarrow \mathbf{T b}$ is \mathbf{P}-constructive.
Proof. $\quad(P, P)$ is a discrete semi-group with identity element $*$ generated by the n commuting idempotents ϕ_{i}, where

$$
\begin{align*}
\left(\phi_{i}(x)\right)_{j} & =x_{j} \quad \\
& (j \neq i) \\
& =* \quad(j=i)
\end{align*}
$$

$(P, P) \times G P$ consists of 2^{n} copies of $G P$ each of which is mapped continuously by E_{G}, one copy being mapped identically. Thus

$$
e G \epsilon|(P, P) \times G P, G P|
$$

is well defined and is moreover an identification.
A morphism $f e \mathrm{~Tb}$ is a projection if $f . f=f$. We remark that a functor $G: \mathbf{P} \rightarrow \mathbf{T b}$ can be regarded simply as a pair (W, f) where $W=G P$ and f is an n-tuple of commuting projections $f_{i}=G \phi_{i}(1 \leq i \leq n)$. The pairs (W, f) and $\left(W^{\prime}, f^{\prime}\right)$ are equivalent if there exists an equivalence $h \epsilon\left|W, W^{\prime}\right|$ such that $h . f_{i}=f_{i}^{\prime} \cdot h(1 \leq i \leq n) .2 .10$ and 4.4 now imply

Theorem 4.5. There is a one-to-one correspondence between the family of equivalence classes of pairs (W, f) and the family of natural equivalence classes of \mathbf{P}-functors in \mathbf{V}.

If (W, f) is a pair, let us construct the P-functor T (determined up to natural equivalence) corresponding to (W, f). We first observe that the functor $\Omega=(P,-)$ can be replaced by the based topological product functor $\Pi: \mathrm{Tb}^{n} \rightarrow \mathrm{~Tb}$, for there is a natural equivalence $\lambda:(P,-) \rightarrow \Pi$ given by the rule

$$
\lambda Y(g)=\left(g_{1}\left(p_{1}\right), g_{2}\left(p_{2}\right), \cdots, g_{n}\left(p_{n}\right)\right) \quad(g \in(P, Y))
$$

Then if G is the P -germ corresponding to $(W, f), L G Y$ is equivalent to $\Pi Y \times W$ and $L R L G Y$ to $\Pi Y \times(P, P) \times W$. Moreover LeGY and $\alpha L G Y$ are described by the rules

$$
\begin{aligned}
\operatorname{Le} G Y(y, x, w) & =(y, e G(x, w)) \\
\alpha \operatorname{LGY}(y, x, w) & =(y \cdot x, w)
\end{aligned}
$$

Now $y \rightarrow y . \phi_{i}$ is simply the projection $\pi_{i}: \Pi Y \rightarrow \Pi Y$ which replaces the $i^{\text {th }}$ coordinate by the basepoint. Since (P, P) is generated by $\phi_{i}(1 \leq i \leq n)$, it follows that $v Y \in|\Pi Y \times W, T Y|$ will be a co-equalizer of $L e G Y$ and $\alpha L G Y$ if $v Y$ is the quotient map and $T Y$ the space obtained from $\Pi Y \times W$
by performing the identification

$$
\begin{equation*}
\left(\pi_{i}(y), w\right)=\left(y, f_{i}(w)\right) \quad(y \in \Pi Y, w \in W, i=1,2, \cdots, n) \tag{4.6}
\end{equation*}
$$

It may now be verified that the based topological product Π, the smash $Y_{1} * Y_{2}$, the wedge functors (thin, fat or indifferent), various join, suspension and cone functors are all P-functors since they are (or are naturally equivalent to) functors obtained by the above construction. To test whether a given $S: \mathrm{Tb}^{n} \rightarrow \mathrm{~Tb}$ is a P-functor one simply chooses $W=S P, f_{i}=S \phi_{i}$ ($1 \leq i \leq n$) and examines whether S is naturally equivalent to the resulting T.

References

1. D. E. Cohen, Products and carrier theory, Proc. London Math. Soc., vol. 7 (1957), pp. 219-248.
2. B. Eckmann and P. J. Hilton, Group-like structures in general categories II, Math. Ann., vol. 151 (1963), pp. 150-186.
3. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton, Princeton University Press, 1952.
4. G. M. Kelly, Tensor products in categories, J. Algebra, vol. 2 (1965), pp. 15-37.
5. S. MacLane, Categorical algebra, Bull. Amer. Math. Soc., vol. 71 (1965), pp. 40-106. 6. -, Homology, Berlin, Springer, 1963.

University of Cape Town
Republic of South Africa

[^0]: Received May 11, 1966.
 ${ }^{1} X$ is an R-object if and only if ($X, i_{R X}$) is free over $R X$ with respect to R in the sense of A. Frei, Freie Objekte und multiplikative structuren, Math. Zeitschrift, vol. 93 (1966), pp. 109-141. There is some overlap in Section 1 with Frei's results. In particular Theorem 0.1 as stated is essentially not new. (See however Remark 1.1.) Our applications are quite different.

