CO-EQUALIZERS AND FUNCTORS

BY

K. A. HARDIE

0. Introduction

If X and Y are objects of a category C, let |X, Y| denote their associated morphism set. Similarly if S and T are functors let |S, T| denote the class (not necessarily a set) of natural transformations from S to T. Unless otherwise stated all functors will be assumed to be covariant. Let $R : \mathbf{V} \to \mathbf{W}$ be a functor. Then $X \in \mathbf{V}$ is a (*left*) *R*-object if for every $Y \in \mathbf{V}$ the mapping function

$$R: |X, Y| \to |RX, RY|$$

is a bijection.¹ We shall find in various circumstances certain conditions some necessary others sufficient for X to be an R-object. It is clear that such information could be of interest, however our objective is to consider the case $\mathbf{V} = \mathbf{V}(\mathbf{C}, \mathbf{D})$ a subcategory of the functor category (\mathbf{C}, \mathbf{D}) and $\mathbf{W} = \mathbf{W}(\mathbf{A}, \mathbf{D})$ a subcategory of (\mathbf{A}, \mathbf{D}) in which $R : \mathbf{V} \to \mathbf{W}$ is induced by a functor $J : \mathbf{A} \to \mathbf{C}$. Then to say that $S \in \mathbf{V}$ is an R-object means that for every $T \in \mathbf{V}$ and every $u' \in |SJ, TJ|$ there exists a unique $u \in |S, T|$ such that uJ = u'. The situation described arises frequently in connection with "uniqueness theorems". Thus to cite one celebrated example, if \mathbf{V} is the category of homology theories on the category \mathbf{C} of triangulable pairs and pair maps and if J is the functor which injects the subcategory "generated by" a single point then Eilenberg and Steenrod proved [3] that each homology theory S is an R-object in \mathbf{V} .

In this paper we shall be chiefly concerned with the case $\mathbf{A} = \mathbf{X}$, the subcategory of **C** consisting of a single object X and its **C**-endomorphisms, J being the injection functor and we shall describe an *R*-object $S \in \mathbf{V}$ as an X-functor in **V**. It follows that the X-functors are determined (up to natural equivalence in **V**) by their action on **X**.

In general our basic assumption is that there exists a functor $L : \mathbf{W} \to \mathbf{V}$ and a natural transformation $\alpha : LR \to 1$. L is sometimes (but not always) a left adjoint of R and then we find:

THEOREM 0.1. If L is a left adjoint of R then X is an R-object if and only if $\alpha X \in |LRX, X|$ is an isomorphism.

One case in which 0.1 is involved is the following. Let $\mathbf{M} = \mathbf{M}_{\mathbf{A}}$ denote the

Received May 11, 1966.

¹ X is an R-object if and only if (X, i_{RX}) is free over RX with respect to R in the sense of A. Frei, *Freie Objekte und multiplikative structuren*, Math. Zeitschrift, vol. 93 (1966), pp. 109-141. There is some overlap in Section 1 with Frei's results. In particular Theorem 0.1 as stated is essentially not new. (See however Remark 1.1.) Our applications are quite different.

category of modules over a commutative ring Λ with unit. Let $\mathbf{V} = \mathbf{V}(\mathbf{M}, \mathbf{M})$ denote the subcategory of Λ -linear functors and for a given $X \in \mathbf{M}$ let the objects of \mathbf{W} be the Λ -linear functors from \mathbf{X} to \mathbf{M}_{Λ} . If $G \in \mathbf{W}$, set

$$LG = \operatorname{Hom}_{\Lambda}(X, -) \otimes_{\Lambda} GX.$$

Then

$$\alpha SY \in |\operatorname{Hom}_{A}(X, Y) \otimes_{A} SX, SY|$$

may be defined by lifting the evaluation of the mapping function of S. It turns out that L is a left adjoint of R and we shall prove

THEOREM 0.2. S is an X-functor in V if and only if S is naturally equivalent to $\operatorname{Hom}_{\Lambda}(X, -) \otimes_{\Lambda} N$ for some Λ -module N.

0.2. does not destroy the interest in X-functors: one would still wish to find a suitable X for a given S. For example we shall prove that $\operatorname{Ext}^n(C, -)$ is a K_n -functor if

$$0 \to K_n \to P_1 \to P_2 \to \cdots \to P_n \to C \to 0$$

is an exact sequence such that P_i is projective $(1 \le i \le n)$.

A result similar to 0.2 is available in the category **T** of topological spaces and maps, but in the category **Tb** of based spaces and based maps the analogue of L is not a left adjoint of R. What *is* to hand is a natural transformation $e: RL \to 1$ such that

$$eR = R\alpha \epsilon | RLR, R |$$

and we still have a commutative diagram

$$\begin{array}{ccc} LRLR & \xrightarrow{LR\alpha} & LR \\ & \downarrow^{\alpha LR} & \downarrow^{\alpha} \\ LR & \xrightarrow{\alpha} & 1. \end{array}$$

It now becomes important to consider co-equalizers of $LR\alpha X$ and αLRX . We shall prove (in general)

THEOREM 0.4. If αX is a co-equalizer of LR αX and α LRX and if R αX is epic then X is an R-object. If X is an R-object, if R αX is a co-equalizer of RLR αX and R α LRX, and if α LRX or LR αX is epic then αX is a co-equalizer of LR αX and α LRX.

Section 2 introduces the concept of a valuable functor for categories with a suitably enriched structure and Theorems 0.1 and 0.4 are applied. In a final section we show that the based topological product, smash, join, wedge, suspension and cone functors are all P-functors, where P is a 0-sphere (or an *n*-tuple of 0-spheres). I hope to consider in a subsequent paper the homotopy theory of P-functors. I am grateful to the referee for making a number of

helpful suggestions and wish also to acknowledge several interesting conversations with Kenneth Hughes.

1. R[-objects

In this section will be proved Theorems 0.1 and 0.4. For details concerning co-equalizers the reader is referred to [5] and [2]. Recall L is a left adjoint of R if there exist $\alpha \in |LR, 1|, \beta \in |1, RL|$ such that the compositions

$$L \xrightarrow{L\beta} LRL \xrightarrow{\alpha L} L, R \xrightarrow{\beta R} RLR \xrightarrow{R\alpha} R$$

are the identies i_L and i_R respectively.

Proof of 0.1. Suppose that X is an R-object. Then there exists a unique $v \in [X, LRX]$ such that $Rv = \beta RX$. Then $R(\alpha X \cdot v) = R\alpha X \cdot \beta RX = i_{RX} = R(i_X)$ which implies that $\alpha X \cdot v = i_X$ and we have

$$v \cdot \alpha X = \alpha LRX \cdot LRv = \alpha LRX \cdot L\beta RX = i_{LRX}$$
,

as required. Conversely, suppose that αX is an isomorphism and let $u \in |RX, RY|$. Then

$$v = \alpha Y \cdot Lu \cdot \alpha X^{-1} \epsilon |X, Y|$$

is such that $Rv = R\alpha Y \cdot RLu \cdot R\alpha X^{-1} = u \cdot R\alpha X \cdot R\alpha X^{-1} = u$. Moreover for any $w \in [X, Y]$ such that Rw = u, we have $w \cdot \alpha X = \alpha Y \cdot LRw = \alpha Y \cdot Lu$ so that w = v.

Remark 1.1. We have not used the full force of the equality αL . $L\beta = i_L$. It would have sufficed to assume the existence of $\gamma \epsilon | R$, RLR | such that $R\alpha \cdot \gamma = i_R$ and $\alpha LR \cdot L\gamma = i_{LR}$.

Proof of 0.4. Suppose that $R\alpha X$ is epic and that αX is a co-equalizer of $LR\alpha X$ and αLRX and let $u \in |RX, RY|$. Then we have a doubly-commutative diagram

$$LRLRX \xrightarrow{LRLu} LRLRY$$

$$\downarrow^{\alpha LRX} \downarrow^{\alpha LRX} \qquad \downarrow^{\alpha LRY} \\ LeRX = LR\alpha X \qquad \downarrow^{\alpha LRY} \\ LRX \xrightarrow{Lu} LRY.$$

That is to say we have

 $LR\alpha Y \cdot LRLu = Lu \cdot LR\alpha X$ and $\alpha LRY \cdot LRLu = Lu \cdot \alpha LRX$. Since $\alpha Y \cdot \alpha LRY = \alpha Y \cdot LR\alpha Y$ we find easily that $\alpha Y \cdot Lu \cdot \alpha LRX = \alpha Y \cdot Lu \cdot LR\alpha X$. Hence there exists a unique $w \in [X, Y]$ such that $w \cdot \alpha X = \alpha Y \cdot Lu$. Then we have

$$Rw \cdot R\alpha X = R\alpha Y \cdot RLu = u \cdot R\alpha X$$

which implies Rw = u. Moreover if Rv = u then

$$v \cdot \alpha X = \alpha Y \cdot LRv = \alpha Y \cdot Lu$$

so that v = w. Conversely let X be an R-object and let $w \in |LRX, Y|$ be such that $w \cdot \alpha LRX = w \cdot LR\alpha X$. Then $Rw \cdot R\alpha LRX = Rw \cdot RLR\alpha X$ and if $R\alpha X$ is a co-equalizer of RLR αX and $R\alpha LRX$ there exists a unique $u \in |RX, RY|$ such that $u \cdot R\alpha X = Rw$. Let $v \in |X, Y|$ be the unique morphism such that Rv = u. Then

$$w \cdot \alpha LRX = \alpha Y \cdot LRw = \alpha Y \cdot LRv \cdot LR\alpha X = \alpha Y \cdot LR\alpha Y \cdot LRLRv$$

$$= \alpha Y \cdot \alpha LRY \cdot LRLRv = \alpha Y \cdot LRv \cdot \alpha LRX$$

If αLRX is epic it follows that $w = \alpha Y \cdot Lu$ and a similar calculation yields the same result if $LR\alpha X$ is epic. Moreover if $u' \cdot \alpha X = w$ then $Ru' \cdot R\alpha X = Rw = Ru \cdot R\alpha X$. Hence Ru' = Ru which implies u' = u, completing the proof.

2. Valuable functors

Let **E** denote the category of sets and functions. We recall that a *concrete* category, in the sense of Kelly [4], is a category **D** and a faithful functor from **D** to **E** denoted $X \to |X|, f \to |f|$. "Faithful" means that |f| = |g| implies that f = g. If **D** is concrete then $f \in |X, Y|$ is an *identification* if $|f| : |X| \to |Y|$ is onto and if, given any function $k : |Y| \to |Z|$ and any $h \in |X, Z|$ such that $|h| = k \cdot |f|$, there exists $g \in |Y, Z|$ such that |g| = k (and $g \cdot f = h$). Note that for every object X of **D** the identity morphism i_X is an identification.

A concrete product (\otimes, r) in a concrete category **D** is a bifunctor

$$(X, Y) \to X \otimes Y, \quad (f, g) \to f \otimes g$$

and a natural transformation

$$r: |X| \times |Y| \to |X \otimes Y|$$

satisfying the condition $|h| \cdot r = |k| \cdot r$ implies h = k. We also require that (\otimes, r) should admit natural associativity and commutativity isomorphisms γ and τ compatible with the associativity and commutativity bijections c and t in **E**. That is to say the following diagrams are commutative:

 (\otimes, r) admits sections if for all X, $Y \in \mathbf{D}$ and all $x \in |X|$ there exists $\theta_x \in |Y, X \otimes Y|$ such that $|\theta_x|(y) = r(x, y) (y \in |Y|)$.

Let C be a D-category in the sense of Kelly [4, p. 21]. We recall that this means that there is a functor

 $(-,-): \mathbf{C}^{\mathrm{op}} \times \mathbf{C} \to \mathbf{D}$

with the property that |(X, Y)| = |X, Y| for all X, Y ϵ C. If S : C \rightarrow D is a functor let

$$E_s XY : |X, Y| \times |SX| \to |SY|$$

be the function such that

(2.2)
$$E_{s}XY(f, x) = |Sf|(x) \quad (x \in |SX|, f \in |X, Y|).$$

Let **A** be a sub-category of **C**. S is **A**-valuable if for every $X \in \mathbf{A}$ and every $Y \in \mathbf{C}$ there exists a (necessarily unique) morphism

$$e_s XY \epsilon \mid (X, Y) \otimes SX, SY \mid$$

such that

$$(2.3) | e_s XY | \cdot r = E_s XY.$$

S is **X**-constructive if $e_s XX$ is an identification. We denote by **V** the full full sub-category of (\mathbf{C}, \mathbf{D}) whose objects are **A**-valuable functors.

For the remainder of this section let X be a fixed object of **A** and let Ω denote the functor $(X, -) : \mathbf{C} \to \mathbf{D}$. Notice that

$$E_{\Omega} ZY : |Z, Y| \times |X, Z| \rightarrow |X, Y|$$

is simply the composition function. It will be assumed that Ω is **A**-valuable. Now let **W** be the category of *valuable X-germs*: that is to say the full subcategory of (\mathbf{X}, \mathbf{D}) whose objects are **X**-valuable functors. Let $R : \mathbf{V} \to \mathbf{W}$ be defined by restriction. If $G \in \mathbf{W}$, let

$$LG = (X, -) \otimes GX : \mathbf{C} \to \mathbf{D}$$

and set $\alpha SY = e_s XY$. We have

THEOREM 2.4. If r is surjective or if (\otimes, r) admits sections then L is a functor from **W** to **V** and α : $LR \rightarrow 1$ is a natural transformation. Moreover if indeed (\otimes, r) admits sections, L is a left adjoint of R.

Proof. To see that $LG \in \mathbf{V}$, set

$$e_{LG}ZY = (e_{\Omega}ZY \otimes i_{GX}) \cdot \gamma.$$

Then if $g \in [Z, Y]$, $f \in [X, Z]$ and $x \in [GX]$ we have

$$|e_{LG}ZY| \cdot r(g, r(f, x)) = (|e_{\Omega}ZY| \cdot r(g, f), x) = r(g \cdot f, x),$$

while

 $E_{LG}ZY(g, r(f, x)) = |\Omega g \otimes i_{GX}| \cdot r(f, x) = r(g \cdot f, x).$

340

Hence 2.3 is satisfied if r is surjective. On the other hand if (\otimes, r) admits sections then the calculation shows that $|e_{LG}ZY \cdot \theta_g| \cdot r = |LGg| \cdot r$ which implies that $e_{LG}ZY \cdot \theta_g = LGg$. Hence for all $x' \in |(X, Z) \otimes GX|$ we have $E_{LG}ZY(g, x') = |LGg|(x') = |e_{LG}ZY \cdot \theta_g|(x') = |e_{LG}ZY| \cdot r(g, x')$, verifying 2.3. Given $u \in \mathbf{W}$, $u : G \to H$ we understand that (Lu)Y = $i_{(X,Y)} \otimes uX$ and the functorial relations for L clearly hold. Now we have $LRSY = (X, Y) \otimes SX$. Thus we must show that for every S, $T \in \mathbf{V}$, $u : S \to T$ and $y \in |Y, Z|$ the following diagrams are commutative:

$$\begin{array}{cccc} (X, Y) \otimes SX \xrightarrow{e_S X I} SY & (X, Y) \otimes SX \xrightarrow{e_S X I} SY \\ & & & \downarrow \Omega g \otimes i_{SX} & \downarrow Sg & & \downarrow i_{(X,Y)} \otimes uX & \downarrow uY \\ (X, Z) \otimes SX \xrightarrow{e_S XZ} SZ & (X, Y) \otimes TX \xrightarrow{e_T XY} TY. \end{array}$$

It is sufficient to prove that

$$|e_s XZ| \cdot |\Omega g \otimes i_{SX}| \cdot r = |Sg| \cdot |e_s XY| \cdot r$$

and that

$$|uY| \cdot |e_s XY| \cdot r = |e_T XY| \cdot |i_{(X,Y)} \otimes uX| \cdot r,$$

however the first equality simply expresses the functorial property of S and the second the naturality of u.

Now suppose that (\otimes, r) admits sections and let

$$\beta G = \beta GX \epsilon \mid GX, (X, X) \otimes GX \mid$$

be the section such that $|\beta GX|(x) = r(i_x, x) (x \epsilon | GX|, G \epsilon W)$. Then if $g \epsilon | X, Y |, x \epsilon | GX |$ we have

$$| \alpha LGY | . | L\beta GY | . r(g, x) = | e_{LG} XY | . r(g, r(i_x, x)) = r(g, x)$$

which implies that $\alpha L \cdot L\beta = i_L$. Finally if $x \in |SX|$ we have

$$|R\alpha S| \cdot |\beta RS|(x) = |\alpha SX| \cdot r(i_x, x) = |Si_x|(x) = x$$

which implies $R\alpha \cdot \beta R = i_R$, completing the proof.

Combining 2.4 and 0.1 we have

THEOREM 2.5. If (\otimes, r) admits sections then S is an X-functor in V if and only if $\alpha S \in |LRS, S|$ is a natural equivalence.

If $G \in W$, let $eG = e_{LG} XX \in |RLGX, GX|$. G is a constructive X-germ if eG is an identification.

LEMMA 2.6. $e: RL \rightarrow 1$ is a natural transformation,

$$eR = R\alpha : RLR \rightarrow R,$$

eGX and LeGX are epic. If (\otimes, r) admits sections, or if r is surjective and G is constructive, then eG is a co-equalizer of RLeG and eRLG.

Proof. The naturality of e follows by a special case of an argument already given and clearly $eR = R\alpha$. Suppose that $u, v \in |GX, W|$ are such that $u \cdot eG = v \cdot eG$. Then if $x \in |GX|$,

$$|u|(x) = |u| \cdot |eG| \cdot r(i_x, x) = |v| \cdot |eG| \cdot r(i_x, x) = |v|(x),$$

so that u = v. Thus eGX is epic. Now suppose that

 $u, v \in |(X, X) \otimes GX, W|$

are such that $u \cdot LeGX = v \cdot LeGX$. Then if $g \in [X, X]$ and $x \in [GX]$ we have

$$|u| \cdot r(g, x) = |u| \cdot r(g, |eGX| \cdot r(i_X, x)) = |u| \cdot |LeGX| \cdot r(g, r(i_X, x))$$
$$= |v| \cdot |LeGX| \cdot r(g, r(i_X, x)) = |v| \cdot r(g, x),$$

which implies that u = v and hence that LeGX is epic. Let

 $w \epsilon \mid (X, X) \otimes GX, W \mid$

be such that $w \cdot RLeG = w \cdot eRLG$. If (\otimes, r) admits sections then $w \cdot \beta GX$ is the necessarily unique morphism k such that $k \cdot eG = w$. Alternatively if r is surjective and G is constructive, let

$$k': |GX| \to |W|$$

be such that $k'(x) = |w| \cdot r(i_x, x)$ $(x \in |GX|)$. Then by a calculation similar to one already performed we find that $k' \cdot |eG| \cdot r = |w| \cdot r$ and hence $k' \cdot |eG| = |w|$. Since eG is an identification there exists k with |k| = k' and having the desired property.

Combining 2.6 and 0.4 we obtain

THEOREM 2.7. If $S \in V$ and αS is a co-equalizer of LR αS and αLRS then S is an X-functor in V. If S is an X-functor in V, if αSX is an identification and if r is surjective then αS is a co-equalizer of LR αS and αLRS .

As an application of 2.7 we have

THEOREM 2.8. If (r, θ) admits sections then Ω is an X-functor in **V**.

For it suffices to show that $\alpha \Omega Y = e_{\Omega} XY$ is a co-equalizer of $LR\alpha \Omega Y$ and $\alpha LR\Omega Y$ ($Y \in \mathbb{C}$). Accordingly, suppose that

$$w \in (X, Y) \otimes (X, X), Z$$

is such that $w \, . \, LR\alpha\Omega Y = w \, . \, \alpha LR\Omega Y$ and let

 $\theta \epsilon \mid (X, Y), (X, Y) \otimes (X, X) \mid$

be the section such that $|\theta|(g) = r(g, i_x)$. Then if $g \in [X, Y|, f \in [X, X]$ we have

 $|w \cdot \theta \cdot e_{\Omega} XY| \cdot r(g, f) = |w \cdot \theta|(g \cdot f)$

$$= |w| \cdot r(g \cdot f, i_{\mathbf{X}}) = |w| \cdot |\alpha LR\Omega Y| \cdot r(g, r(f, i_{\mathbf{X}}))$$

$$= |w| \cdot |LR \alpha \Omega Y| \cdot r(g, r(f, i_{x})) = |w| \cdot r(g, f)$$

which implies that $w \cdot \theta \cdot e_{\Omega} XY = w$. On the other hand if $k \in |(X, Y), Z|$ is such that $k \cdot e_{\Omega} XY = w$ we have $|k|(g) = |k \cdot e_{\Omega} XY| \cdot r(g, i_{X}) = |w| \cdot r(g, i_{X}) = |w \cdot \theta|(g)$, so that $k = w \cdot \theta$, which completes the proof.

If $G \in \mathbf{W}$, one may well ask: under what circumstances will there exist an X-functor S such that RS = G? Suppose that **D** is right-complete, and let $wY \in |LY, TY|$ be a co-equalizer of LeGY, $\alpha LGY \in |LRLGY, LGY|$ for each $Y \in \mathbf{C}$. It is easy to see that a mapping function can be chosen in a unique way to make T a functor from **C** to **D** and w a natural transformation. If \otimes preserves co-equalizers (and **D** is right-complete) a standard argument shows that **V** is right-complete, so that we have $T \in \mathbf{V}$. Suppose that (\otimes, r) admits sections, or that r is surjective and G is constructive. We have

THEOREM 2.9. If $\mathbf{A} = \mathbf{X}$ or if \otimes preserves co-equalizers then T is an X-functor in \mathbf{V} and there exists a natural equivalence $v : RT \to G$.

Proof. By 2.6, both eGX and wX are co-equalizers of RLeGX = LeGX and $eRLGX = \alpha LGX$. Hence there is an equivalence $v \in |TX, GX|$ such that $eGX = v \cdot wX$. T is certainly X-valuable for we may set

$$e_T XY = wY \cdot (i_{(X,Y)} \otimes v).$$

Then if $x \in |(X, X) \otimes GX|$, $g \in |X, Y|$, we have $|e_T XY|$, r(g, |wX|(x))

$$= |wY| \cdot r(g, |v \cdot wX|(x))$$

= |wY| \cdot r(g, |eGX|(x)) = |wY| \cdot |LeGY| \cdot r(g, x)
= |wY| \cdot |aLGY| \cdot r(g, x) = |wY| \cdot |LGg|(x) = |Tg| \cdot |wX|(x).

Since $|wX| = |v^{-1} \cdot eGX|$ is surjective, 2.3 is satisfied with S = T and Z = X. It follows easily that v is a natural equivalence $RT \to G$, that $e_T XY = wY \cdot Lv$ and hence in view of the doubly-commutative diagram

LRLRT	\xrightarrow{LRLv}	LRLG
LRlpha T lpha LRT	= LeRT	$Leg \ \alpha LG$
LRT	\xrightarrow{Lv}	LG

that αT is a co-equalizer of $LR\alpha T$ and αLRT . 2.7 implies that T is an X-functor.

Suppose that $\mathbf{A} = \mathbf{X}$ or that \otimes preserves co-equalizers. Combining 2.7 and 2.9 yields the following corollary.

COROLLARY 2.10. If (\otimes, r) admits sections there is a one-to-one correspond-

ence between the family of natural equivalence classes of valuable X-germs and the family of natural equivalence classes of X-functors in V. If r is surjective then there is a one-to-one correspondence between the family of natural equivalence classes of constructive X-germs and the family of natural equivalence classes of X-constructive X-functors in V.

3. Λ -modules

In the category of modules $\mathbf{M} = \mathbf{M}_{\Delta}$, the tensor product (\otimes_{Δ}, r) is concrete: r denotes the function $(a, b) \rightarrow a \otimes b$. A functor $S : \mathbf{M} \rightarrow \mathbf{M}$ is Λ -linear if for all A, B ϵ M, all $f_1, f_2 \epsilon | A, B | = | \operatorname{Hom}_{\Delta}(A, B) |$ and all $\lambda_1, \lambda_2 \epsilon \Lambda$ we have

$$S(\lambda_1 \cdot f_1 + \lambda_2 \cdot f_2) = \lambda_1 \cdot Sf_1 + \lambda_2 \cdot Sf_2 \epsilon | SA, SB |$$

It follows easily that S is **M**-valuable if and only if S is A-linear. Let **V** be the full subcategory of **M**-valuable functors and let $X \in \mathbf{M}$. Then the bilinearity of composition implies that $\Omega = (X, -) = \operatorname{Hom}_{A}(X, -)$ belongs to **V**. Since (\otimes, r) admits sections, 2.5 states that S is an X-functor in **V** if and only if $\alpha S : (X, -) \otimes SX \to S$ is a natural equivalence. One of the assertions of Theorem 0.2 is thus proved. 2.8 implies that Ω is an X-functor in **V**. If we now let $T = (X, -) \otimes N$ it is easily verified that αTY is equivalent to $\alpha \Omega Y \otimes i_N$ and that $LR\alpha TY$ and $\alpha LRTY$ are equivalent to $LR\alpha\Omega Y \otimes i_N$ and $\alpha LR\Omega Y \otimes i_N$ respectively. It follows that αTY is a coequalizer of $LR\alpha TY$ and $\alpha LRTY$ and hence that T is an X-functor, which completes the proof of 0.2.

Let $C \in \mathbf{M}$, $n \geq 1$ and let

$$0 \to K_n \to P_n \to \cdots \to P_2 \to P_1 \to C \to 0$$

be an exact sequence in which P_i is projective $(1 \le i \le n)$. We have

THEOREM 3.1. Extⁿ (C, -) is a K_n -functor in V.

Proof. In view of 0.2 we need only establish a natural isomorphism

$$(3.2) \qquad \operatorname{Ext}^{n}(C, Y) \approx \operatorname{Hom}_{\Lambda}(K_{n}, Y) \otimes_{\Lambda} \operatorname{Ext}^{n}(C, K_{n}).$$

There is certainly a natural isomorphism $\operatorname{Ext}^n(C, Y) \approx \operatorname{Ext}^1(K_{n-1}, Y)$ [6, p. 102] and so we need only consider the case n = 1. Accordingly let $\mathbf{0} \to K \to P \to C \to \mathbf{0}$ be exact with P projective and let S denote $\operatorname{Ext}^1(C, -)$. Then $LRSY = (K, Y) \otimes SK$ and we find easily that $\alpha SY(a \otimes E) = aE$ $(a \in (K, Y), E \in SK)$, where aE denotes the composite extension obtained by completing the diagram

(For details see [6, p. 66].) In view of 2.7 it will be sufficient to verify that SY is the difference cokernel of $LR\alpha SY$ and $\alpha LRSY$. Now αSY is certainly an epimorphism, for P is projective and hence the following diagram can always be completed:

Thus we have only to prove that if $\sum (1 \le i \le n)a_i E_i = 0$, $a_i \epsilon (K, Y)$ then

$$\sum (1 \leq i \leq n) a_i \otimes E_i = (\alpha LRSY - LR\alpha SY)(t),$$

where $t \in (K, Y) \otimes ((K, K) \otimes SK)$. Let $b_i \in (K, K)$ be obtained by completing the following diagram $(1 \le i \le n)$:

Then $\sum a_i E_i = 0$ implies that there exists $h \in (P, Y)$ such that $hX = \sum a_i \cdot b_i$. Let $\oplus K$ denote the direct sum of n copies of K and $\pi_i \in (\oplus K, K)$ the projection onto the *i*th summand $(1 \le i \le n)$. P being projective there exists $g \in (P, \oplus K)$ such that $(\sum a_i \cdot \pi_i) \cdot g = h$, for without loss of generality we may assume that $\sum a_i \cdot \pi_i \in (\oplus K, Y)$ is an epimorphism. If we now let

$$t = \sum \{a_i \otimes ((b_i - \pi_i \cdot g \cdot X) \otimes F\},\$$

the desired equality is easily verified.

We conclude this section with the observation that multifunctors in \mathbf{M} of whatever variance may be studied. Thus for example a functor contravariant in one argument and covariant in another may be regarded as a covariant functor from $\mathbf{M}^{\text{op}} \times \mathbf{M}$ to \mathbf{M} and if we set

$$((X_1, X_2), (Y_1, Y_2)) = \operatorname{Hom}_{\Lambda}(Y_1, X_1) \oplus \operatorname{Hom}_{\Lambda}(X_2, Y_2),$$

we convert $\mathbf{M}^{op} \times \mathbf{M}$ into an \mathbf{M} -category.

4. Spaces

The categories \mathbf{T} and \mathbf{Tb} are certainly concrete. We have in fact a commutative diagram of forgetful functors:

[1, 1.2] shows that a morphism of \mathbf{T} is an identification if and only if it is an identification map in the usual sense and the following lemma is easily proved.

LEMMA 4.1. $f \in \mathbf{Tb}$ is an identification if and only if Ff is an identification in \mathbf{T} .

In **T** or **Tb** let (X, Y) denote |X, Y| enriched with the compact-open topology. Specifically, when appropriate, the base point of (X, Y) is the constant map at the base point of Y. Many different concrete products offer themselves, however let (\times, r) denote the topological product in **T** and the based topological product in **Tb**, r being the identity function. Then (\times, r) admits sections in **T** but *not* in **Tb**. In **Tb** the smash product is concrete and it admits sections but it imposes severe restrictions on the valuable functors.

Let **A** denote the sub-category of **T** or of **Tb** whose spaces are locallycompact and Hausdorff and let $X \in \mathbf{T}$ or **Tb**. We have

LEMMA 4.2. (X, -) is A-valuable relative to (\times, r) .

Proof. The composition function θ : $(Z, Y) \times (X, Z) \rightarrow (X, Y)$ respects base points, thus we have only to prove that θ is continuous provided that Z is locally compact and Hausdorff. Given $U(\text{open}) \subseteq Y$ and $C(\text{compact}) \subseteq X$ it will be sufficient to show that $\theta^{-1}[C, U]$ is open, where

$$[C, U] = \{f \in | X, Y | | f(C) \subseteq U\}.$$

Suppose $(g, h) \epsilon \theta^{-1}[C, U]$ so that $g \cdot h(C) \subseteq U$. If $z \epsilon h(C)$ let V(z) be an open set such that $z \epsilon V(z)$ and Cl (V(z)) is compact (Cl = closure). Since Z is regular and $g(z) \epsilon U$, we may also require that $\text{Cl}(V(z)) \subseteq g^{-1}(U)$. But h(C) is compact, hence there exist $z_i \epsilon h(C)$ $(1 \leq i \leq n)$ such that $h(C) \subseteq U(1 \leq i \leq n)V(z_i) = V(\text{say})$. Then

$$\operatorname{Cl}(V) = \bigcup (1 \leq i \leq n) \operatorname{Cl}(V(z_i))$$

is compact and since

$$(g, h) \in [Cl(V), U] \times [C, V] \subseteq \theta^{-1}[C, U],$$

 θ is continuous.

Let \mathbb{C}^n denote the category of *n*-tuples of members of the category \mathbb{C} and let $X \in \mathbb{C}^n$ denote (X_1, X_2, \dots, X_n) where $X_i \in \mathbb{C}$, $1 \leq i \leq n$. Then \mathbb{T}^n becomes a **T**-category if we define (X, Y) to be the topological product $\prod (1 \leq i \leq n)(X_i, Y_i)$. A similar definition provides \mathbb{Tb}^n with the structure of a **Tb**-category. The product of continuous functions being continuous we have

LEMMA 4.3. The functor (X, -) from \mathbf{T}^n to \mathbf{T} or from \mathbf{Tb}^n to \mathbf{Tb} is \mathbf{A}^n -valuable.

Let $P_i \in \mathbf{Tb}$ be a discrete space with exactly two points: p_i and the base

point $* (1 \leq i \leq n)$, and let V be the category of P-valuable functors from \mathbf{Tb}^n to \mathbf{Tb} . The remainder of this paper is devoted to the study of the *P*-functors in V. In view of 2.10 the interest centers on the constructive P-germs. We have

LEMMA 4.4. Every functor $G: \mathbf{P} \to \mathbf{Tb}$ is **P**-constructive.

Proof. (P, P) is a discrete semi-group with identity element * generated by the *n* commuting idempotents ϕ_i , where

$$\begin{aligned} (\phi_i(x))_j &= x_j \quad (j \neq i) \\ &= * \quad (j = i) \end{aligned} \qquad (x \in P). \end{aligned}$$

 $(P, P) \times GP$ consists of 2^n copies of GP each of which is mapped continuously by E_{G} , one copy being mapped identically. Thus

$$eG \epsilon \mid (P, P) \times GP, GP \mid$$

is well defined and is moreover an identification.

A morphism $f \in \mathbf{Tb}$ is a projection if $f \cdot f = f$. We remark that a functor $G: \mathbf{P} \to \mathbf{Tb}$ can be regarded simply as a pair (W, f) where W = GP and f is an *n*-tuple of commuting projections $f_i = G\phi_i$ $(1 \leq i \leq n)$. The pairs (W, f) and (W', f') are equivalent if there exists an equivalence $h \in [W, W']$ such that $h \cdot f_i = f'_i \cdot h \ (1 \le i \le n)$. 2.10 and 4.4 now imply

THEOREM 4.5. There is a one-to-one correspondence between the family of equivalence classes of pairs (W, f) and the family of natural equivalence classes of **P**-functors in **V**.

If (W, f) is a pair, let us construct the P-functor T (determined up to natural equivalence) corresponding to (W, f). We first observe that the functor $\Omega = (P, -)$ can be replaced by the based topological product functor Π : **Tb**^{*n*} \rightarrow **Tb**, for there is a natural equivalence λ : $(P, -) \rightarrow \Pi$ given by the rule

$$\lambda Y(g) = (g_1(p_1), g_2(p_2), \cdots, g_n(p_n)) \qquad (g \in (P, Y)).$$

Then if G is the **P**-germ corresponding to (W, f), LGY is equivalent to $\Pi Y \times W$ and LRLGY to $\Pi Y \times (P, P) \times W$. Moreover LeGY and αLGY are described by the rules

$$LeGY(y, x, w) = (y, eG(x, w))$$

$$\alpha LGY(y, x, w) = (y \cdot x, w).$$

OTT /

Now $y \to y$, ϕ_i is simply the projection $\pi_i : \Pi Y \to \Pi Y$ which replaces the *i*th coordinate by the basepoint. Since (P, P) is generated by $\phi_i (1 \le i \le n)$, it follows that $vY \in |\Pi Y \times W, TY|$ will be a co-equalizer of LeGY and αLGY if vY is the quotient map and TY the space obtained from $\Pi Y \times W$

by performing the identification

(4.6)
$$(\pi_i(y), w) = (y, f_i(w))$$
 $(y \in \Pi Y, w \in W, i = 1, 2, \cdots, n).$

It may now be verified that the based topological product II, the smash $Y_1 \not \ll Y_2$, the wedge functors (thin, fat or indifferent), various join, suspension and cone functors are all *P*-functors since they are (or are naturally equivalent to) functors obtained by the above construction. To test whether a given $S: \mathbf{Tb}^n \to \mathbf{Tb}$ is a *P*-functor one simply chooses W = SP, $f_i = S\phi_i$ $(1 \leq i \leq n)$ and examines whether *S* is naturally equivalent to the resulting *T*.

References

- 1. D. E. COHEN, Products and carrier theory, Proc. London Math. Soc., vol. 7 (1957), pp. 219-248.
- 2. B. ECKMANN AND P. J. HILTON, Group-like structures in general categories II, Math. Ann., vol. 151 (1963), pp. 150–186.
- 3. S. EILENBERG AND N. STEENROD, Foundations of algebraic topology, Princeton, Princeton University Press, 1952.
- 4. G. M. KELLY, Tensor products in categories, J. Algebra, vol. 2 (1965), pp. 15-37.
- S. MACLANE, Categorical algebra, Bull. Amer. Math. Soc., vol. 71 (1965), pp. 40-106.
 -----, Homology, Berlin, Springer, 1963.

UNIVERSITY OF CAPE TOWN REPUBLIC OF SOUTH AFRICA